001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.math.analysis.interpolation;
018    
019    import java.io.Serializable;
020    
021    import org.apache.commons.math.MathException;
022    import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm;
023    
024    /**
025     * Implements the <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
026     * Neville's Algorithm</a> for interpolation of real univariate functions. For
027     * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
028     * chapter 2.
029     * <p>
030     * The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm,
031     * this class provides an easy-to-use interface to it.</p>
032     *
033     * @version $Revision: 799857 $ $Date: 2009-08-01 09:07:12 -0400 (Sat, 01 Aug 2009) $
034     * @since 1.2
035     */
036    public class NevilleInterpolator implements UnivariateRealInterpolator,
037        Serializable {
038    
039        /** serializable version identifier */
040        static final long serialVersionUID = 3003707660147873733L;
041    
042        /**
043         * Computes an interpolating function for the data set.
044         *
045         * @param x the interpolating points array
046         * @param y the interpolating values array
047         * @return a function which interpolates the data set
048         * @throws MathException if arguments are invalid
049         */
050        public PolynomialFunctionLagrangeForm interpolate(double x[], double y[])
051            throws MathException {
052            return new PolynomialFunctionLagrangeForm(x, y);
053        }
054    }