CVC3
2.4.1
|
"Theory" of symbolic simulation. More...
#include <theory_simulate.h>
Public Member Functions | |
TheorySimulate (TheoryCore *core) | |
Constructor. More... | |
~TheorySimulate () | |
Destructor. More... | |
void | assertFact (const Theorem &e) |
Assert a new fact to the decision procedure. More... | |
void | checkSat (bool fullEffort) |
Check for satisfiability in the theory. More... | |
Theorem | rewrite (const Expr &e) |
Theory-specific rewrite rules. More... | |
void | computeType (const Expr &e) |
Compute and store the type of e. More... | |
Expr | computeTCC (const Expr &e) |
Compute and cache the TCC of e. More... | |
Expr | parseExprOp (const Expr &e) |
Theory-specific parsing implemented by the DP. More... | |
ExprStream & | print (ExprStream &os, const Expr &e) |
Theory-specific pretty-printing. More... | |
![]() | |
Theory (TheoryCore *theoryCore, const std::string &name) | |
Whether theory has been used (for smtlib translator) More... | |
virtual | ~Theory (void) |
Destructor. More... | |
ExprManager * | getEM () |
Access to ExprManager. More... | |
TheoryCore * | theoryCore () |
Get a pointer to theoryCore. More... | |
CommonProofRules * | getCommonRules () |
Get a pointer to common proof rules. More... | |
const std::string & | getName () const |
Get the name of the theory (for debugging purposes) More... | |
virtual void | setUsed () |
Set the "used" flag on this theory (for smtlib translator) More... | |
virtual bool | theoryUsed () |
Get whether theory has been used (for smtlib translator) More... | |
virtual void | addSharedTerm (const Expr &e) |
Notify theory of a new shared term. More... | |
virtual Theorem | theoryPreprocess (const Expr &e) |
Theory-specific preprocessing. More... | |
virtual void | setup (const Expr &e) |
Set up the term e for call-backs when e or its children change. More... | |
virtual void | update (const Theorem &e, const Expr &d) |
Notify a theory of a new equality. More... | |
virtual Theorem | solve (const Theorem &e) |
An optional solver. More... | |
virtual void | checkAssertEqInvariant (const Theorem &e) |
A debug check used by the primary solver. More... | |
virtual Theorem | simplifyOp (const Expr &e) |
Recursive simplification step. More... | |
virtual void | checkType (const Expr &e) |
Check that e is a valid Type expr. More... | |
virtual Cardinality | finiteTypeInfo (Expr &e, Unsigned &n, bool enumerate, bool computeSize) |
Compute information related to finiteness of types. More... | |
virtual Type | computeBaseType (const Type &tp) |
Compute the base type of the top-level operator of an arbitrary type. More... | |
virtual Expr | computeTypePred (const Type &t, const Expr &e) |
Theory specific computation of the subtyping predicate for type t applied to the expression e. More... | |
virtual void | computeModelTerm (const Expr &e, std::vector< Expr > &v) |
Add variables from 'e' to 'v' for constructing a concrete model. More... | |
virtual void | refineCounterExample () |
Process disequalities from the arrangement for model generation. More... | |
virtual void | computeModelBasic (const std::vector< Expr > &v) |
Assign concrete values to basic-type variables in v. More... | |
virtual void | computeModel (const Expr &e, std::vector< Expr > &vars) |
Compute the value of a compound variable from the more primitive ones. More... | |
virtual void | assertTypePred (const Expr &e, const Theorem &pred) |
Receives all the type predicates for the types of the given theory. More... | |
virtual Theorem | rewriteAtomic (const Expr &e) |
Theory-specific rewrites for atomic formulas. More... | |
virtual void | notifyInconsistent (const Theorem &thm) |
Notification of conflict. More... | |
virtual void | registerAtom (const Expr &e, const Theorem &thm) |
virtual void | registerAtom (const Expr &e) |
Theory-specific registration of atoms. More... | |
virtual bool | inconsistent () |
Check if the current context is inconsistent. More... | |
virtual void | setInconsistent (const Theorem &e) |
Make the context inconsistent; The formula proved by e must FALSE. More... | |
virtual void | setIncomplete (const std::string &reason) |
Mark the current decision branch as possibly incomplete. More... | |
virtual Theorem | simplify (const Expr &e) |
Simplify a term e and return a Theorem(e==e') More... | |
Expr | simplifyExpr (const Expr &e) |
Simplify a term e w.r.t. the current context. More... | |
virtual void | enqueueFact (const Theorem &e) |
Submit a derived fact to the core from a decision procedure. More... | |
virtual void | enqueueSE (const Theorem &e) |
Check if the current context is inconsistent. More... | |
virtual void | assertEqualities (const Theorem &e) |
Handle new equalities (usually asserted through addFact) More... | |
virtual Expr | parseExpr (const Expr &e) |
Parse the generic expression. More... | |
virtual void | assignValue (const Expr &t, const Expr &val) |
Assigns t a concrete value val. Used in model generation. More... | |
virtual void | assignValue (const Theorem &thm) |
Record a derived assignment to a variable (LHS). More... | |
void | registerKinds (Theory *theory, std::vector< int > &kinds) |
Register new kinds with the given theory. More... | |
void | unregisterKinds (Theory *theory, std::vector< int > &kinds) |
Unregister kinds for a theory. More... | |
void | registerTheory (Theory *theory, std::vector< int > &kinds, bool hasSolver=false) |
Register a new theory. More... | |
void | unregisterTheory (Theory *theory, std::vector< int > &kinds, bool hasSolver) |
Unregister a theory. More... | |
int | getNumTheories () |
Return the number of registered theories. More... | |
bool | hasTheory (int kind) |
Test whether a kind maps to any theory. More... | |
Theory * | theoryOf (int kind) |
Return the theory associated with a kind. More... | |
Theory * | theoryOf (const Type &e) |
Return the theory associated with a type. More... | |
Theory * | theoryOf (const Expr &e) |
Return the theory associated with an Expr. More... | |
Theorem | find (const Expr &e) |
Return the theorem that e is equal to its find. More... | |
const Theorem & | findRef (const Expr &e) |
Return the find as a reference: expr must have a find. More... | |
Theorem | findReduce (const Expr &e) |
Return find-reduced version of e. More... | |
bool | findReduced (const Expr &e) |
Return true iff e is find-reduced. More... | |
Expr | findExpr (const Expr &e) |
Return the find of e, or e if it has no find. More... | |
Expr | getTCC (const Expr &e) |
Compute the TCC of e, or the subtyping predicate, if e is a type. More... | |
Type | getBaseType (const Expr &e) |
Compute (or look up in cache) the base type of e and return the result. More... | |
Type | getBaseType (const Type &tp) |
Compute the base type from an arbitrary type. More... | |
Expr | getTypePred (const Type &t, const Expr &e) |
Calls the correct theory to compute a type predicate. More... | |
Theorem | updateHelper (const Expr &e) |
Update the children of the term e. More... | |
void | setupCC (const Expr &e) |
Setup a term for congruence closure (must have sig and rep attributes) More... | |
void | updateCC (const Theorem &e, const Expr &d) |
Update a term w.r.t. congruence closure (must be setup with setupCC()) More... | |
Theorem | rewriteCC (const Expr &e) |
Rewrite a term w.r.t. congruence closure (must be setup with setupCC()) More... | |
void | getModelTerm (const Expr &e, std::vector< Expr > &v) |
Calls the correct theory to get all of the terms that need to be assigned values in the concrete model. More... | |
Theorem | getModelValue (const Expr &e) |
Fetch the concrete assignment to the variable during model generation. More... | |
void | addSplitter (const Expr &e, int priority=0) |
Suggest a splitter to the SearchEngine. More... | |
void | addGlobalLemma (const Theorem &thm, int priority=0) |
Add a global lemma. More... | |
bool | isLeaf (const Expr &e) |
Test if e is an i-leaf term for the current theory. More... | |
bool | isLeafIn (const Expr &e1, const Expr &e2) |
Test if e1 is an i-leaf in e2. More... | |
bool | leavesAreSimp (const Expr &e) |
Test if all i-leaves of e are simplified. More... | |
Type | boolType () |
Return BOOLEAN type. More... | |
const Expr & | falseExpr () |
Return FALSE Expr. More... | |
const Expr & | trueExpr () |
Return TRUE Expr. More... | |
Expr | newVar (const std::string &name, const Type &type) |
Create a new variable given its name and type. More... | |
Expr | newVar (const std::string &name, const Type &type, const Expr &def) |
Create a new named expression given its name, type, and definition. More... | |
Op | newFunction (const std::string &name, const Type &type, bool computeTransClosure) |
Create a new uninterpreted function. More... | |
Op | lookupFunction (const std::string &name, Type *type) |
Look up a function by name. More... | |
Op | newFunction (const std::string &name, const Type &type, const Expr &def) |
Create a new defined function. More... | |
Expr | addBoundVar (const std::string &name, const Type &type) |
Create and add a new bound variable to the stack, for parseExprOp(). More... | |
Expr | addBoundVar (const std::string &name, const Type &type, const Expr &def) |
Create and add a new bound named def to the stack, for parseExprOp(). More... | |
Expr | lookupVar (const std::string &name, Type *type) |
Lookup variable and return it and its type. Return NULL Expr if it doesn't exist yet. More... | |
Type | newTypeExpr (const std::string &name) |
Create a new uninterpreted type with the given name. More... | |
Type | lookupTypeExpr (const std::string &name) |
Lookup type by name. Return Null if no such type exists. More... | |
Type | newTypeExpr (const std::string &name, const Type &def) |
Create a new type abbreviation with the given name. More... | |
Type | newSubtypeExpr (const Expr &pred, const Expr &witness) |
Create a new subtype expression. More... | |
Expr | resolveID (const std::string &name) |
Resolve an identifier, for use in parseExprOp() More... | |
void | installID (const std::string &name, const Expr &e) |
Install name as a new identifier associated with Expr e. More... | |
Theorem | typePred (const Expr &e) |
Return BOOLEAN type. More... | |
Theorem | reflexivityRule (const Expr &a) |
==> a == a More... | |
Theorem | symmetryRule (const Theorem &a1_eq_a2) |
a1 == a2 ==> a2 == a1 More... | |
Theorem | transitivityRule (const Theorem &a1_eq_a2, const Theorem &a2_eq_a3) |
(a1 == a2) & (a2 == a3) ==> (a1 == a3) More... | |
Theorem | substitutivityRule (const Op &op, const std::vector< Theorem > &thms) |
(c_1 == d_1) & ... & (c_n == d_n) ==> op(c_1,...,c_n) == op(d_1,...,d_n) More... | |
Theorem | substitutivityRule (const Expr &e, const Theorem &t) |
Special case for unary operators. More... | |
Theorem | substitutivityRule (const Expr &e, const Theorem &t1, const Theorem &t2) |
Special case for binary operators. More... | |
Theorem | substitutivityRule (const Expr &e, const std::vector< unsigned > &changed, const std::vector< Theorem > &thms) |
Optimized: only positions which changed are included. More... | |
Theorem | substitutivityRule (const Expr &e, int changed, const Theorem &thm) |
Optimized: only a single position changed. More... | |
Theorem | iffMP (const Theorem &e1, const Theorem &e1_iff_e2) |
e1 AND (e1 IFF e2) ==> e2 More... | |
Theorem | rewriteAnd (const Expr &e) |
==> AND(e1,e2) IFF [simplified expr] More... | |
Theorem | rewriteOr (const Expr &e) |
==> OR(e1,...,en) IFF [simplified expr] More... | |
Theorem | rewriteIte (const Expr &e) |
Derived rule for rewriting ITE. More... | |
Theorem | renameExpr (const Expr &e) |
Derived rule to create a new name for an expression. More... | |
Private Member Functions | |
SimulateProofRules * | createProofRules () |
Create proof rules for this theory. More... | |
Private Attributes | |
SimulateProofRules * | d_rules |
Our local proof rules. More... | |
Additional Inherited Members | |
![]() | |
bool | d_theoryUsed |
"Theory" of symbolic simulation.
Author: Sergey Berezin
Created: Tue Oct 7 10:13:15 2003
This theory owns the SIMULATE operator. It's job is to replace the above expressions by their definitions using rewrite rules.
Definition at line 46 of file theory_simulate.h.
TheorySimulate::TheorySimulate | ( | TheoryCore * | core) |
Constructor.
Definition at line 35 of file theory_simulate.cpp.
References createProofRules(), d_rules, CVC3::Theory::registerTheory(), and SIMULATE.
TheorySimulate::~TheorySimulate | ( | ) |
|
private |
Create proof rules for this theory.
Definition at line 38 of file simulate_theorem_producer.cpp.
Referenced by TheorySimulate().
|
inlinevirtual |
Assert a new fact to the decision procedure.
Each fact that makes it into the core framework is assigned to exactly one theory: the theory associated with that fact. assertFact is called to inform the theory that a new fact has been assigned to the theory.
Implements CVC3::Theory.
Definition at line 58 of file theory_simulate.h.
|
inlinevirtual |
Check for satisfiability in the theory.
fullEffort | when it is false, checkSat can do as much or as little work as it likes, though simple inferences and checks for consistency should be done to increase efficiency. If fullEffort is true, checkSat must check whether the set of facts given by assertFact together with the arrangement of shared terms (provided by addSharedTerm) induced by the global find database equivalence relation are satisfiable. If satisfiable, checkSat does nothing. |
If satisfiability can be acheived by merging some of the shared terms, a new fact must be enqueued using enqueueFact (this fact need not be a literal). If there is no way to make things satisfiable, setInconsistent must be called.
Implements CVC3::Theory.
Definition at line 59 of file theory_simulate.h.
Theory-specific rewrite rules.
By default, rewrite just returns a reflexive theorem stating that the input expression is equivalent to itself. However, rewrite is allowed to return any theorem which describes how the input expression is equivalent to some new expression. rewrite should be used to perform simplifications, normalization, and any other preprocessing on theory-specific expressions that needs to be done.
Reimplemented from CVC3::Theory.
Definition at line 53 of file theory_simulate.cpp.
References d_rules, CVC3::SimulateProofRules::expandSimulate(), CVC3::Expr::getKind(), CVC3::Theory::reflexivityRule(), and SIMULATE.
|
virtual |
Compute and store the type of e.
e | is the expression whose type is computed. |
This function computes the type of the top-level operator of e, and recurses into children using getType(), if necessary.
Reimplemented from CVC3::Theory.
Definition at line 65 of file theory_simulate.cpp.
References CVC3::Type::arity(), CVC3::Expr::arity(), DebugAssert, CVC3::Type::funType(), CVC3::Theory::getBaseType(), CVC3::Expr::getKind(), CVC3::int2string(), CVC3::Type::isFunction(), CVC3::isRational(), CVC3::isReal(), CVC3::Expr::setType(), SIMULATE, CVC3::Type::toString(), and CVC3::Expr::toString().
Compute and cache the TCC of e.
e | is an expression (term or formula). This function computes the TCC of e which is true iff the expression is defined. |
This function computes the TCC or predicate of the top-level operator of e, and recurses into children using getTCC(), if necessary.
The default implementation is to compute TCCs recursively for all children, and return their conjunction.
Reimplemented from CVC3::Theory.
Definition at line 164 of file theory_simulate.cpp.
References CVC3::andExpr(), CVC3::Type::arity(), CVC3::Expr::arity(), DebugAssert, CVC3::ExprManager::falseExpr(), CVC3::Theory::getEM(), CVC3::Expr::getKind(), CVC3::Expr::getRational(), CVC3::Theorem::getRHS(), CVC3::Theory::getTypePred(), CVC3::Type::isFunction(), CVC3::Theory::rewriteAnd(), SIMULATE, CVC3::Expr::toString(), and CVC3::ExprManager::trueExpr().
Theory-specific parsing implemented by the DP.
Reimplemented from CVC3::Theory.
Definition at line 131 of file theory_simulate.cpp.
References CVC3::Expr::arity(), CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::Theory::getEM(), CVC3::Expr::getEM(), CVC3::ExprManager::getKind(), CVC3::Expr::getKind(), CVC3::Theory::parseExpr(), RAW_LIST, SIMULATE, CVC3::Expr::toString(), and TRACE.
|
virtual |
Theory-specific pretty-printing.
By default, print the top node in AST, and resume pretty-printing the children. The same call e.print(os) can be used in DP-specific printers to use AST printing for the given node. In fact, it is strongly recommended to add e.print(os) as the default for all the cases/kinds that are not handled by the particular pretty-printer.
Reimplemented from CVC3::Theory.
Definition at line 215 of file theory_simulate.cpp.
References CVC3::Expr::arity(), CVC3::Theory::d_theoryUsed, CVC3::Expr::getKind(), CVC3::ExprStream::lang(), CVC3::LISP_LANG, CVC3::pop(), CVC3::PRESENTATION_LANG, CVC3::Expr::printAST(), CVC3::push(), SIMULATE, CVC3::SMTLIB_LANG, CVC3::SMTLIB_V2_LANG, and CVC3::space().
|
private |
Our local proof rules.
Definition at line 49 of file theory_simulate.h.
Referenced by rewrite(), TheorySimulate(), and ~TheorySimulate().