
.SRecordReference ManualPeter Millerpmiller@opensource.org.au

.This document describes SRecord version 1.62and was prepared 18 August 2013.This document describing the SRecord program, and the SRecord program itself, areCopyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,2011, 2012, 2013 Peter MillerThis program is free software; you can redistribute it and/or modify it under the terms of theGNU General Public License as published by the Free Software Foundation; either version 3 ofthe License, or (at your option) anylater version.This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without eventhe implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-LAR PURPOSE.See the GNU General Public License for more details.Youshould have receivedacopyofthe GNU General Public License along with this program. Ifnot, see <http://www.gnu.org/licenses/>.0

Read Me(SRecord)Read Me(SRecord)NAMESRecord − manipulate EPROM load filesDESCRIPTIONTheSRecordpackage is a collection of powerful tools for manipulating EPROM load files.Iwrote SRecord because when I was looking for programs to manipulate EPROM load files, I could notfind very many. The ones that I could find only did a fewofthe things I needed.SRecord is written in C++and polymorphism is used to provide the file format flexibility and arbitrary filter chaining.Adding morefile formats and filters is relatively simple.The File FormatsThe SRecord package understands a number of file formats:Ascii-HexThe ascii-hexformat is understood for both reading and writing.(Also known as the ascii-space-hexformat.)ASMIt is possible, for output only,toproduce a serices of DB statements containing the data.This canbe useful for embedding data into assembler programs.This format cannot be read.Atmel GenericThis format is produced by the Atmel AVR assembler.Itisunderstood for both reading andwriting.BASICIt is possible, for output only,toproduce a serices of DAT Astatements containing the data.Thiscan be useful for embedding data into BASIC programs.This format cannot be read.BinaryBinary files can both be read and written.B-RecordFiles in Freescale Dragonball bootstrap b-record format can be read and written.CIt is also possible to write a C array declaration which contains the data.This can be useful whenyou want to embed download data into C programs.This format cannot be read.COEThe Xilinx Coefficient File Format (.coe) is understood for output only.CosmacThe RCA Cosmac Elf format is understood for both reading and writing.DEC BinaryThe DEC Binary (XXDP) format is understood for both reading and writing.Elektor Monitor (EMON52)The EMON52 format is understood for both reading and writing.Fairchild FairbugThe Fairchild Fairbug format is understood for both reading and writing.Formatted BinaryThe Formatted Binary format is understood for both reading and writing.Four Packed Code (FPC)The FPC format is understood for both reading and writing.HexdumpIt is possible to get a simple hexdump as output.IDT/simThe IDT/sim binary file format is understood for both reading and writing.IntelThe Intel hexadecimal format is understood for both reading and writing.(Also known as theIntel MCS-86 Object format.)Intel AOMFThe Intel Absolute Object Module Format (AOMF) is understood for both reading and writing.Intel 16The Intel hexadecimal 16 format is understood for both reading and writing.(Also known as theINHX16 file format.)Reference ManualSRecord 1

Read Me(SRecord)Read Me(SRecord)LSI Logic Fast LoadThe LSI Logic Fast Load format is understood for both reading and writing.Memory Initialization FormatThe Memory Initialization Format (.mem) by Lattice Semiconductor is understood for writingonly.MIFThe Memory Initialization File format by Altera is supported for both reading and writing.MOS TechnologyThe MOS Technology hexadecimal format is understood for both reading and writing.MIPS-FlashThe MIPS Flash file format is supported for both reading and writing.Motorola S-RecordThe Motorola hexadecimal S-Record format is understood for both reading and writing.(Alsoknown as the Exorciser,Exormacs or Exormax format.)MsBinThe Windows CE Binary Image Data Format is supported both for reading and writing.NeedhamThe Needham Electronics ASCII file format is understood for both reading and writing.OS65VThe Ohio Scientific hexadecimal format is understood for both reading and writing.PPBThe Stag Prom Programmer binary format is understood for both reading and writing.PPXThe Stag Prom Programmer hexadecimal format is understood for both reading and writing.SigneticsThe Signetics format is understood for both reading and writing.SPASMThe SPASM format is used by a variety of PIC programmers; it is understood for both readingand writing.SpectrumThe Spectrum format is understood for both reading and writing.Tektronix (Extended)The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are bothunderstood for both reading and writing.Te xas Instruments TaggedThe Texas Instruments Tagged format is understood for both reading and writing (both 8 and 16bit). Alsoknown as the TI-tagged or TI-SDSMACformat.Te xas Instruments ti-txtThe TI-TXT format is understood for reading and writing.This format is used with the bootstraploader of the Texas Instruments MSP430 family of processors.TRS-80The Radio Shack TRS-80 object file format is understood for reading and writing.VHDLIt is possible to write VHDL file. Thisis only supported for output.Verilog VMEMIt is possible to write a Verilog VMEM file suitable for loading with$readmemh().Thisformat is supported for reading and writing.WilsonThe Wilson format is understood for both reading and writing.This mystery format was addedfor a mysterious type of EPROM writer.The ToolsThe primary tools of the package aresrec_catandsrec_cmp.All of the tools understand all of the fileformats, and all of the filters.srec_catThesrec_catprogram may be used to catenate (join) EPROM load files, or portions of EPROMload files, together.Because it understands all of the input and output formats, it can also be usedReference ManualSRecord 2

Read Me(SRecord)Read Me(SRecord)to convert files from one format to another.srec_cmpThesrec_cmpprogram may be use to compare EPROM load files, or portions of EPROM loadfiles, for equality.srec_infoThesrec_infoprogram may be used to print summary information about EPROM load files.The FiltersTheSRecordpackage is made more powerful by the concept ofinput filters.Whereveraninput file may bespecified, filters may also be applied to that input file. Thefollowing filters are available:bit reverseThebit-reversefilter may be used to reverse the order of bits in each data byte.byte swapThebyte swapfilter may be used to swap pairs of add and evenbytes.CRCThe variouscrcfilters may be used to insert a CRC into the data.checksumThechecksumfilters may be used to insert a checksum into the data.Positive,neg ativeand bit-not checksums are available, as well as big-endian and little-endian byte orders.cropThecropfilter may be used to isolate an input address range, or ranges, and discard therest.excludeTheexcludefilter may be used to exclude an input address range, or ranges, and keep therest.fillThefillfilter may be used to fill anyholes in the data with a nominated value.lengthThelengthfilter may be used to insert the data length into the data.maximumThemaximumfilter may be used to insert the maximum data address into the data.minimumTheminimumfilter may be used to insert the minimum data address into the data.offsetTheoffsetfilter may be used to offset the address of data records, both forwards andbackwards.random fillTherandom fillfilter may be used to fill holes in the data with random byte values.splitThesplitfilter may be used to split EPROM images for wide data buses or othermemory striping schemes.unfillTheunfillfilter may be used to makeholes in the data at bytes with a nominated value.unsplitTheunsplitfilter may be reverse the effects of the split filter.More than one filter may be applied to each input file. Different filters may be applied to eachinput file. Allfilters may be applied to all file formats.ARCHIVE SITEThe latest version ofSRecordis available on the Web from:URL: http://srecord.sourceforge.net/File: index.html #the SRecord pageFile: srecord−1.62.README#Description, from the tar fileFile: srecord−1.62.lsm#Description, LSM formatFile: srecord−1.62.spec#RedHat package specificationFile: srecord−1.62.tar.gz #the complete sourceReference ManualSRecord 3

Read Me(SRecord)Read Me(SRecord)File: srecord−1.62.pdf#Reference ManualBUILDING SRECORDFull instructions for buildingSRecordmay be found in theBUILDINGfile included in thisdistribution.It is also possible to buildSRecordon Windows using the Cygwin (www.cygwin.com) or DJGPP(www.delorie.com/djgpp) environments. Instructionsare in theBUILDINGfile, including howtoget native Windows binaries.COPYRIGHTsrecordversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,2011, 2012, 2013 Peter MillerThis program is free software; you can redistribute it and/or modify it under the terms of the GNUGeneral Public License as published by the Free Software Foundation; either version 3 of theLicense, or (at your option) anylater version.This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without eventhe implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULARPURPOSE. Seethe GNU General Public License for more details.Youshould have receivedacopyofthe GNU General Public License along with this program. Ifnot, see <http://www.gnu.org/licenses/>.It should be in theLICENSEfile included with this distribution.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/*WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 4

Read Me(SRecord)Read Me(SRecord)RELEASE NOTESThis section details the various features and bug fixes of the various releases.Forexcruciating andcomplete detail, and also credits for those of you who have generously sent me suggestions andbugreports, see theetc/CHANGES.*files.Version 1.62 (2013-Jun-05)•Luc Steynen <LucSteynen@edna.be> discovered that the −hecksum-big-endian opion was acounter-intuitive alias for the the −checksum-bitnot-big-endian option.The −checksum-big-endian option is nowdeprecated, in favorofthe −checksum-bitnot-big-endian option; the codewill warn uers of the old option theywill need to change.Ditto little-endian variants•Alin Pilkington <apilkington@moog.com> found that the Tektronics Extended format wascalculating the record length incorrectory.Thanks you for the bug report.This has been fixedfor both reading and writing.•Dr.Benedikt Schmitt <Benedikt.Schmitt@safeintrain.de> suggested being able to injectarbitrary data into the file header (such as NUL termination characters). This change set addsURL-style escapes (e.g. %25) to the string on he command line. For example: −header or−generate −stringVersion 1.61 (2013-Jan-04)•Izzet Ozcelik <izzetozcelik@cscope.co.uk> discovered a bug in the Tektronix-Extenden formatline checksum calculations. The comparison should have been in 8 bits, not int.•Daniel Anselmi <danselmi@gmx.ch> contributed a Memory Initialization Format by LatticeSemiconductor,for output only.•Daniel Anselmi <danselmi@gmx.ch> contributed a Xilinx Coefficient File Format (.coe) outputclass.Version 1.60 (2012-May-19)•There are nowsev eral additional CRC-16 polynomials, plus the ability to select a polynomial byname, rather than by value. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a tableof names and values.Version 1.59 (2012-Feb-10)•Anumber of additional CRC-16 polynomials have been added, as well as the ability to select apolynomial by name, rather than by value. Seesrec_input(1) for more information.Version 1.58 (2011-Dec-18)•The−guesscommand line option, for guessing the file format, nowalso tells you the commandline option you could have used instead of−guessfor the exact format.•The Intergated Device Technology (IDT) system integration manager (IDT/sim) binary formatis nowunderstood for both reading and writing.•The Stag Prom Programmer binary format is nowsupported for both reading and writing.•The Stag Prom Programer hexadecimal format is nowunderstood for both reading and writing.•The MIPS-Flash fiel format is nowsupported for both reading and writing.•Bernhard Weirich<Bernhard.Weirich@riedel.net>discovered that a backwardcompatible option had been omitted when the−INtel_16option was renamed−INtel_HeX_16to more closely match the usual abbreviation (INHX16) for this format.The backwardscompatible option name has been reintroduced.•The windows build instructions have been greatly imptoved, based on the experiences of JensHeilig<jens@familie-heilig.net>which he has generously shared.•The documentation in the manual about sequence warnings has been improved. The−disable-sequence-warningsoption must come before the input file on the command line.My thanks toEmil Gracic<emil_kruki@yahoo.com>for reporting this problem.Reference ManualSRecord 5

Read Me(SRecord)Read Me(SRecord)Version 1.57 (2011-Jun-09)•The byte order of the fletcher16 output has been reversed.•The meaning of the−address-lengthoption has been change for the Intel output format.Previously,2meant using i16hex20-bit segmented addressing, and >2 meant using i32hexextended addressing. This has been changed: a value of 2 requests i8hex16-bit addressing, avalue of 3 requests i16hex20-bit segment addressing, and a value >=4 requests i32hex32-bitaddressing. Mythanks to Stephen R. Phillips<srp@CSECorporation.com>for reportingthe absence of i8hexsupport.•The−generate −repeat-stringoption is nowable to takeastring that looks likeanumber as thetext to be repeated. My thanks to Stephen R. Phillips<srp@CSECorporation.com>forreporting this problem.•Luca Giancristofaro<luca.giancristofaro@prosa.com>discovered a WinAVR linkerthat is a sandwich short of a picnic: it generated non-conforming Intel hexend-of-file records.This is no longer an error,but only a warning.•There were some problems with the RPM spec file, these have been improved. Mythanks toGalen Seitz<galens@seitzassoc.com>for reporting this problem.Version 1.56 (2010-Sep-15)•Abug has been fixed in the MsBin output, it nowconcatenates records correctly,and calaulatechecksums appropriately.•It is nowpossible to ask the Fletcher 16 filter to give you a specific answer,and adjusting thechecksum to achieve that result. It is also possible to specify different seed values for the sums.•There is a newsrec_cat−enable=optional-addressoption to cause output formats capable ofomitting addresses, to omit a leading zero address, as those formats usually default the addressto zero, if no address information is seen before the first data record.Defaults to false(disabled).•There is a newsrec_cat(1)−output-block-packingoption, that may be used to pack outputrecords evenwhen theycross internal SRecord boundaries.•There is a newsrec_cat(1)−output-block-sizeso that you can specify the block size exactly,rather than implying it with the line length option.Version 1.55 (2010-Feb-10)•The Makefile.in has been improved, it nowcopes with non-standard−−prefixoptions.•The rpm.spec file has been improved, it nowseparates the commands, shared libraries anddevelopment files.Version 1.54 (2010-Jan-29)•There is nowashared library installed, including the necessary header files so that you can useall of the file formats and filters in your own projects.•The license on the shared library code is GNU Lesser General Public License, version 3.0 orlater.•The code can cope with older versions of GNU Libgcrypt.In the case of very old versions, byignoring it.•Anumber of build problems have been fixed.Version 1.53 (2009-Nov-10)•There is a newMsBin (Windows CE Binary Image Data) file format, supported for both readingand writing.•The lintian(1) warning about hyphen in the manual pages has been silenced, by careful use of −,-and−as appropriate. Sure makes some of the sources ugly,tho. Thelintian(1) warning aboutthe undefined .XX macro has been silenced, by making it conditional.Reference ManualSRecord 6

Read Me(SRecord)Read Me(SRecord)•The code will build without libgcrypt.Version 1.52 (2009-Sep-17)•There is a newsrec_cat −generator −l-e-constantdata generator (and also−b-e-const)that maybe used to insert multi-byte constants into your data.Seesrec_input(1) for more information.Version 1.51 (2009-Sep-13)•Anumber of gcc 4.4 build problems have been fixed.•Abugs has been fixed in the Intel output format. When using the segemented format (address-length=2) records that span the end of segment boundary are tricky. The code nowcarefullysplits such output records, to ensure the twoparts are explicitly placed into separate segments.Version 1.50 (2009-Jul-09)•The CRC16 code has been enhanced to provide low-to-high bit order,inaddition to the previoushigh-to-lowbit order.Itisalso possible to specify the polynomial, with the default the CCITTstandard polynomial, as was in the previous code.Seesrec_input(1) for more information.•The MD5, RipeMD-160, SHA1, SHA224, SHA256, SHA384, SHA 512 and Whirlpoolmessage digests are nowsupported. Seesrec_input(1) for more information.•There is a newsrec_cat −bit-reversefilter,that may be used to reverse the bits in each data byte.Seesrec_input(1) for more information.Version 1.49 (2009-May-17)•Atypo in the srec_input(1) man page has been fixed.Version 1.48 (2009-Apr-19)•There are newFletcher Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.•There are newAdler Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.Version 1.47 (2009-Feb-19)•Memory Initialzation File (MIF) format by Altera is nowsupported for reading and writing.Version 1.46 (2009-Jan-13)•There is a newoption for the −−x-e-length filters, theycan nowaccept a width, and this isdivided into the byte lenght, so that you can insert the length in units of words (2) or longs (4).•Some small corrections have been made to the documentation.•The −minimum and −maximum options have been renamed −minimum-address and−maximum-address, to avoid a command line grammar syntax problem.Version 1.45 (2008-Sep-30)•Abug has been fixed in thesrec_cat(1) command.Youare nowable to specify several inputswithin parentheses, instead of just one.This allows filters to be applied to the concatenation ofseveral inputs.•Thesrec_cat(1) command is nowable to write FORTH output.Version 1.44 (2008-Aug-29)•Some compilers issue a warning when const appears before extern. "warning: storage class isnot first". TheCoutput has been updated to conform to this expectation.•The manual page forsrec_cat(1) has been enhanced to describe the in-memory data model, andthe resulting output data order.•The−motorolaoptional width argument nowproduces a better error message when it is out ofrange.•The−fillfilter nowchecks the size, and fails for absurdly large fills, with a−bigoverride if theyreally want >1GB fills.Reference ManualSRecord 7

Read Me(SRecord)Read Me(SRecord)•Abug in the .spec file for rpmbuild has been fixed, it nowtakes notice of$RPM_BUILD_ROOT•There is a new−line-terminationoption, which may be used to select the desired linetermination of output text files.Version 1.43 (2008-Jul-06)•Thesrec-cat −data-onlyoption has been broken down into four separate controls.It is nowpossible to−enableand−disableindividual features, such as “header”, “data-count”,“execution-start-address” and “footer”.Seesrec_cat(1) for more information.•Thesrec_cat −start-addressoption has been renamed−execution-start-addressto remove anyconfusion with the−offsetfilter.The documentation nowexplicitly explains the differencebetween the two.•Examples of converting to and from binary files have been added to thesrec_examples(1) manpage.•Abug has been fixed in the MOS Tech format, it nowemits an end record evenwhen there is noexecution start address passed in.Version 1.42 (2008-Jun-01)•The MOS Technology format was not reading and writing end records correctly,this has beenfixed. Thename of the companyhas been corrected.•Some examples of howtoinsert constant or scripted data into your EPROM load files have beenadded to thesrec_examples(1) man page.Version 1.41 (2008-May-12)•False negative being reported by tests on Cygwin have been fixed.•There are six newfilters (−be-exclusive-length, −le-exclusive-length, −be-exclusive-maximum,−le-exclusive-maximum, −be-exclusive-minimum and −le-exclusive-minimum) which are verysimilar to their non-exclusive equivalents, except that theydonot include the adress rangecovered by their output in their output.•Abug has been fixed in the C word-array output.It was getting offsets and lengths wrong insome cases.•Abug has been fixed in the generated C array header file, it no longer omits the sectiondescriptor arrays.•Aproblem with building RPM packages with the names of the executables in the .spec file hasbeen fixed, and the BuildRequires has been updated.Version 1.40 (2008-Mar-13)•An RPM build problem has been fixed.•The dependencyonthe Boost library is nowdocumented in the BUILDING file.•Some build problems with g++ 4.3 have been fixed•Abug has been fixed in the calculation of ranges on the command line, it no longer goes into aninfinite loop for "−fill 0xFF −over{foo.hex−exclude −within foo.hex}"construct, whichshould have been calculating an empty fill set, but was instead calculating a 4GB fill set.•The CRC32 filters nowtakean−xmodem option, to use an xmodem-like(all bit zero) initialstate, rather than the default CCITT (all bits on) initial state.Version 1.39 (2008-Feb-04)•Abug has been fixed in the use of parentheses to group filters and override the defaultprecedences.Version 1.38 (2008-Jan-14)•The CRC16 filters nowsupport a −Broken option, to perform a common-but-broken CRC16calculation, in addition to the CCITT and XMODEM calculations.Reference ManualSRecord 8

Read Me(SRecord)Read Me(SRecord)•Alink has been added to the CRC16 man page section to thewww.joegeluso.com/software/articles/ccitt.htm web page, to explain the difficulties in seedingCRC16 calculations.•Abuglet has been fixed in thesrec_motorola(5) man page, it nowincludesS6in the list ofthings that can appear in the type field.•The ability to negate expressions is nowmentioned in thesrec_examples(1) man page.Version 1.37 (2007-Oct-29)•It is nowpossible to have neg ative expressions on the command line, to facilitate “−−offset −−minimum foo” usages.•Thesrec_cat(1) command nowhas a simple hexadecimal dump output format.•The use ofuudecode(1) in the tests has been removed, sosharutilsis no longer a builddependency.Version 1.36 (2007-Aug-07)•Abug has been fixed in the CRC-16 CCITT calculation; the algorithm was correct but the startvalue was incorrect, leading to incorrect results.•The CRC16 filters have a new −−no-augment option, to omit the 16 zero bits augmenting themessage. Thisis not CCITT standard conforming, but some implementations do this.•Aproblem has been fixed in the generated Makefile.in file found in the tarball.•The license has been changed to GNU GPL version 3.Version 1.35 (2007-Jun-23)•Amajor build problem with the generated makefile has been fixed.Version 1.34 (2007-Jun-22)•The C and ASM output formats have been improvedinthe word mode.•Several build problems have been fixed.Version 1.33 (2007-May-18)•More examples have been added to the documentation.•It is nowpossible to perform set intersection and set difference on address ranges on thecommand line.•There is a newcategory of data source: generators.Youcan generate constant data, randomdata and repeating data.•The assembler and C-Array outputs nowsupport additional options to facilitate MSP430systems. Theycan also optionally write shorts rather than bytes.•Youcan nowround address ranges on the command line to be whole multiples of a number ofbytes.Version 1.32 (2007-Apr-24)•The TI-TXT format output has been improved; it is less spec conforming but more realityconforming. Itnowallows odd alignment without padding.It also ends with aqinstead of aQ.•The warning for odd input addresses has been dropped.The spec didn’tlikethem, but theMSP430 handles them without a hiccup.Version 1.31 (2007-Apr-03)•The Verilog format nowsuppresses comments when you specify the −−data-only option.•The Texas Instruments ti-txt (MSP430) format is nowunderstood for reading and writing.Version 1.30 (2007-Mar-21)•The ascii-hexoutput format has been improved.Reference ManualSRecord 9

Read Me(SRecord)Read Me(SRecord)•The ti-tagged 16-bit format is nowunderstood for reading and writing.•The Intel format no longer warns about missing optional records.•Abug in the ti-tagged format has been fixed, it nowunderstands the ’0’ tag.Version 1.29 (2007-Mar-13)•Aserious bug has been fixed in the generated Makefile.Version 1.28 (2007-Mar-08)•It is nowpossible to read and write files in the Freescale MC68EZ328 Dragonball bootstrap b-record formatVersion 1.27 (2006-Dec-21)•[SourceForge Feature Request 1597637] There is a newwarning issued when input data recordsare not in strictly ascending address order.There is a newcommand line option to silence thewarning.•[SourceForge FeatureRequest 1592348] The command line processing of all srecordcommands nowunderstands@filecommand line options, filled with additional space separatedstrings witch will be treated as of theywere command line options.This gets around absurdlyshort command line length limits in some operating systems.Version 1.26 (2006-May-26)•It is nowpossible to place parentheses on the command line in more places to clarify yourintent.•This change prepares SRecord for the next public release.Version 1.25 (2006-May-18)•The assembler output has been enhanced to produce ORG directives, if necessary,tochange thedata address.•Thesrec_cat(1) command nowonly writes an execution start address into the output if therewasanexecution start address present in the input.Version 1.24 (2006-Mar-08)•Additional information has been added to the lseek error when theytry to seek to addresses >=2**31•The CRC 16 filters have been enhanced to accept an argument to specify whether CCITT orXMODEM calculations are to be performed.Version 1.23 (2005-Sep-23)•Asegfault has been fixed on x86_64 when running the regression test suite.•Acompile problem with the lib/srec/output/file/c.cc file has been fixed.Version 1.22 (2005-Aug-12)•The−byte-swapfilter nowhas an optionalwidthargument, to specify the address width toswap. Thedefault is twobytes.•The motorola file format nowaccepts an additional ’width’ command line argument, so you canhave 16-bit and 32-bit address multiples.•Abug has been fixed in the VMEM output format. It was failing to correctly set the nextaddress in some cases.This fixes SourceForge bug 1119786.•The −C-Array output format nowuses theconstkeyword by default, you can turn it offwiththe −no-const option.The −C-Array output format can nowgenerate an additional include fileif you use the −INClude option.This answers SourceForge feature request 942132.•Afix for the "undefined symbols" problem when using g++ 3.x on Cygwin and MacOsX hasbeen added to the ./configure script.Reference ManualSRecord 10

Read Me(SRecord)Read Me(SRecord)•There is a new−ignore-checksum command line option.The −ignore-checksums option maybe used to disable checksum validation of input files, for those formats which have checksumsat all.Note that the checksum values are still read in and parsed (so it is still an error if theyaremissing) but their values are not checked.Version 1.21 (2005-Feb-07)•More Doxygen comments have been added to the class header files.•There is a newsrec_cat −−crlfoption, which may be used for force CRLF output on operatingsystems which don’tuse that style of line termination.•Anumber of problems with GCC, particularly with the early 3.xseries.•There is a new"Stewie" format, an undocumented format loosely based on the Motorola S-Record format, apparently used in mobile phones.More information would be most welcome.•Anumber of build problems have been fixed.Version 1.20 (2004-Feb-08)•The AOMF format nowaccepts (and ignores) more record types.Version 1.19 (2004-Jan-03)•It is nowpossible to set the execution start address in the output using thesrec_cat−Execution_Start_Addresscommand line option.•The Intel Absolute Object Module Format (AOMF) is nowsupported for reading and writing.•There is a newsrec_cat −Random_Fillfilter,likethesrec_cat −Fillfilter except that it usesrandom values.Version 1.18 (2004-Jan-01)•The VMEM format is nowable to output data for 64 and 128 bits wide memories.•Abug in the SRecord reference manuals has been fixed; the CRCxx had a copy-and-paste glitchand always said big-endian where little endian was intended half the time.Version 1.17 (2003-Oct-12)•There is nowsupport for Intel Extended Segment addressing output, via the −−address-length=2option.•There is nowsupport for output of Verilog VMEM format.Seesrec_vmem(5) for moreinformation.•There is nowsupport for reading and writing the INHX16 format, used in various PICprogrammers. Itlooks just likethe Intel Hexformat, except that the bytes counts and theaddresses refer to words (hi,lo) rather than bytes.Seesrec_intel16(5) for more information.Version 1.16 (2003-Jul-28)•Some updates have been made to cope with GCC 3.2Version 1.15 (2003-Jun-16)•The ASCII-Heximplementation is nowslightly more complete.Istill haven’tfound a definitivedescription.•The Fairchild Fairbug format has been added for reading and writing.Seesrec_fairchild(5) formore information.•The Spectrum format has been added for reading and writing.Seesrec_spectrum(5) for moreinformation.•The Formatted Binary format has been added for reading and writing.Seesrec_formatted_binary(5) for more information.•The RCA Cosmac Elf format has been added for reading and writing.Seesrec_cosmac(5) formore information.Reference ManualSRecord 11

Read Me(SRecord)Read Me(SRecord)•The Needham EMP programmer format has been added for reading and writing.Seesrec_needham(5) for more information.Version 1.14 (2003-Mar-11)•Numerous fixes have been made to header handling.It is nowpossible to specify an emptyheader with the−headercommand line option.•Some more GCC 3.2 build problems have been fixed.Version 1.13 (2003-Feb-05)•Bugs have been fixed in the Texas Instruments Tagged and VHDL formats, which producedinconsistent output.•Acouple of build problems have been fixed.•There are twonew output formats for ASM and BASIC.Version 1.12 (2002-Dec-06)•It is nowpossible to put−minimuminput.spec(also−maximumand−length)almostanywhere on the command line that you can put a number.Itallows, for example, the −offsetvalue to be calculated from the maximum of the previous file. Thevalues calculated by−Minimum,−Maximumand−Lengthmay also be rounded to arbitrary boundaries, using−Round_Down,−Round_Nearestand−Round_Up.•The malformed Motorola S5 records output by the Green Hills tool chain are nowunderstood.Version 1.11 (2002-Oct-21)•The Ohio Scientific OS65V audio tape format has been added for reading and writing.Seesrec_os65v(5) for more information.•Some build problems have been fixed.Version 1.10 (2002-Jun-14)•The Intel format nowemits the redundant extended linear address record at the start of the file;some loaders couldn’tcope without it.•The Binary format nowcopes with writing to pipes.•The Motorola format nowunderstands the S6 (24-bit data record count) records for reading andwriting.•The DEC Binary format nowworks correctly on Windows machines.•The LSI Logic Fast Load format is nowunderstood for both reading and writing.Seesrec_fastload(5) for more information.Version 1.9 (2001-Nov-27)•The DEC Binary (XXDP) format is nowunderstood for both reading and writing.Seesrec_dec_binary(5) for more information.•The Elektor Monitor (EMON52) format is nowunderstood for both reading and writing.Seesrec_emon52(5) for more information.•The Signetics format is nowunderstood for both reading and writing.Seesrec_signetics(5) formore information.•The Four Packed Code (FPC) format is nowunderstood for both reading and writing.Seesrec_fpc(5) for more information.•Whereverpossible, header data is nowpassed through bysrec_cat(1). Thereis also a newsrec_cat −headeroption, so that you can set the header comment from the command line.•The Atmel Generic format for Atmel AVR programmers is nowunderstood for both reading andwriting. Seesrec_atmel_generic(5) for more information.•The handling of termination records has been improved. Itcaused problems for a number offilters, including the −fill filter.Reference ManualSRecord 12

Read Me(SRecord)Read Me(SRecord)•Abug has been fixed in the checksum calculations for the Tektronix format.•There is a newSPASM format for PIC programmers.Seesrec_spasm(5) for more information.Version 1.8 (2001-Apr-20)•There is a new“unfill” filter,which may be used to perform the reverse effect of the “fill” filter.•There is a newbit-wise NOTfilter,which may be used to invert the data.•Acouple of bugs have been fixed in the CRC filters.Version 1.7 (2001-Mar-19)•The documentation is nowinPDF format.This was in order to makeitmore accessible to awider range of people.•There is a newsrec_cat −−address-lengthoption, so that you can set the length of the addressfields in the output file. For example, if you always want S3 data records in a Motorola hexfile,use the−−address-length=4option. Thishelps when talking to brain-dead EPROMprogrammers which do not fully implement the format specification.•There is a new−−multipleoption to the commands, which permits an input file to containmultiple (contradictory) values for some memory locations.The last value in the file will beused.•Aproblem has been fixed which stopped SRecord from building under Cygwin.•Abug has been fixed in the C array output.It used to generate invalid output when the inputhad holes in the data.Version 1.6 (2000-Dec-03)•Abug has been fixed in the C array output.(Holes in the input caused an invalid C file to beproduced.)•There is are newCRC input filters, both 16-bit and 32-bit, both big and little endian.Seesrec_cat(1) for more information.•There is a newVHDL output format.•There are newchecksum filters: in addition to the existing one’scomplement (bit not) checksumfilter,there are nowneg ative and positive checksum filters. Seesrec_cat(1) for moreinformation.•The checksum filters are nowable to sum over16-bit and 32-bit values, in addition to theexisting byte sums.•Thesrec_cmpprogram nowhas a−−verboseoption, which givesmore information about howthe twoinputs differ.Seesrec_cmp(1) for more information.Version 1.5 (2000-Mar-06)•There is nowacommand line option to guess the input file format; all of the tools understandthis option.•The “MOS Technologies” file format is nowunderstood for reading and writing.Seesrec_mos_tech(5) for more information.•The “Tektronix Extended” file format is nowunderstood for reading and writing.Seesrec_tektronix_extended(5) for more information.•The “Texas Instruments Tagged” file format is nowunderstood for reading and writing.(Alsoknown as the TI-Tagged or SDSMACformat.) Seesrec_ti_tagged(5) for more information.•The “ascii-hex” file format is nowunderstood for reading and writing.(Also known as theascii-space-hexformat.) Seesrec_ascii_hex(5) for more information.•There is a newbyte swapinput filter,allowing pairs of odd and eveninput bytes to be swapped.Seesrec_cat(1) for more information.Reference ManualSRecord 13

Read Me(SRecord)Read Me(SRecord)•The “wilson” file format is nowunderstood for reading and writing.This mystery format wasadded for a mysterious type of EPROM writer.Seesrec_wilson(5) for more information.•Thesrec_catprogram nowhas a−data-onlyoption, which suppresses all output except for thedata records.This helps when talking to brain-dead EPROM programmers which barf atanything but data.Seesrec_cat(1) for more information.•There is a new−Line-Lengthoption for thesrec_catprogram, allowing you to specify themaximum width of output lines.Seesrec_cat(1) for more information.Version 1.4 (2000-Jan-13)•SRecord can nowcope with CRLF sequences in Unix files. Thiswasunfortunately commonwhere the file was generated on a PC, but SRecord was being used on Unix.Version 1.3 (1999-May-12)•Abug has been fixed which would cause the crop and exclude filters to dump core sometimes.•Abug has been fixed where binary files were handled incorrectly on Windows NT (actually,anysystem in which text files aren’tthe same as binary files).•There are three newdata filters. The−−OR filter,which may be used to bit-wise OR a value toeach data byte; the −−AND filter,which may be used to bit-wise AND a value to each databyte; and the −−eXclusive-OR filter,which may be used to bit-wise XOR a value to each databyte. Seesrec_cat(1) for more information.Version 1.2 (1998-Nov-04)•This release includes file format man pages.The web page also includes a PostScript referencemanual, containing all of the man pages.•The Intel hexformat nowhas full 32-bit support.Seesrec_intel(5) for more information.•The Tektronix hexformat is nowsupported (only the 16-bit version, Extended Tektronix hexisnot yet supported).Seesrec_tektronix(5) for more information.•There is a newsplitfilter,useful for wide data buses and memory striping, and a complementaryunsplitfilter to reverse it.Seesrec_cat(1) for more information.Version 1.1 (1998-Mar-22)First public release.Reference ManualSRecord 14

Build(SRecord) Build(SRecord)NAMEHowtobuild SRecordSPACEREQUIREMENTSYouwill need about 3MB to unpack and build theSRecordpackage. Your milage may vary.BEFORE YOU STARTThere are a fewpieces of software you may want to fetch and install before you proceed with yourinstallation of SRecord.Boost LibraryYouwill need the C++ Boost Library.Ifyou are using a package based system, you will need thelibboost-develpackage, or one named something very similar.http://boost.org/Libgcrypt LibraryYouwill need the GNU Crypt library.Ifyou are using a package based system, you will need thelibgcrypt-develpackage, or one named something very similar.http://directory.fsf.org/project/libgcrypt/GNU LibtoolYouwill need the GNU Libtool software, used to build shared libraries on a variety of systems.http://www.gnu.org/software/libtool/GNU GroffThe documentation for theSRecordpackage was prepared using the GNU Groffpackage(version 1.14 or later).This distribution includes full documentation, which may be processedinto PostScript or DVI files at install time − if GNU Groffhas been installed.GCCYoumay also want to consider fetching and installing the GNU C Compiler if you have not doneso already.This is not essential.SRecord was developed using the GNU C++ compiler,and theGNU C++ libraries.The GNU FTP archivesmay be found atftp.gnu.org,and are mirrored around the world.SITE CONFIGURATIONTheSRecordpackage is configured using theconfigureprogram included in this distribution.Theconfigureshell script attempts to guess correct values for various system-dependent variables usedduring compilation, and creates theMakefileandlib/config.hfiles. Italso creates a shell scriptconfig.statusthat you can run in the future to recreate the current configuration.Normally,you justcdto the directory containingSRecord’s source code and then type%./configure...lots of output...%If you’re usingcshon an old version of System V,you might need to type%sh configure...lots of output...%instead to preventcshfrom trying to executeconfigureitself.Runningconfiguretakes a minute or two. Whileit is running, it prints some messages that tell what it isdoing. Ifyou don’twant to see the messages, runconfigureusing the quiet option; for example,%./configure −−quiet%To compile theSRecordpackage in a different directory from the one containing the source code, you mustuse a version ofmakethat supports theVPATHvariable,such asGNU make.cdto the directory where youwant the object files and executables to go and run theconfigurescript.configureautomatically checks forthe source code in the directory thatconfigureis in and in..(the parent directory).If for some reasonconfigureis not in the source code directory that you are configuring, then it will report that it can’tfind theReference ManualSRecord 15

Build(SRecord) Build(SRecord)source code.In that case, runconfigurewith the option−−srcdir=DIR,whereDIRis the directory thatcontains the source code.By default,configurewill arrange for themakeinstallcommand to install theSRecordpackage’sfiles in/usr/local/bin,and/usr/local/man.There are options which allowyou to control the placement of thesefiles.−−prefix=PA THThis specifies the path prefix to be used in the installation.Defaults to/usr/localunless otherwisespecified.−−exec−prefix=PA THYoucan specify separate installation prefixes for architecture-specific files files. Defaults to${prefix}unless otherwise specified.−−bindir=PA THThis directory contains executable programs.On a network, this directory may be sharedbetween machines with identical hardware and operating systems; it may be mounted read-only.Defaults to${exec_prefix}/binunless otherwise specified.−−mandir=PA THThis directory contains the on-line manual entries.On a network, this directory may be sharedbetween all machines; it may be mounted read-only.Defaults to${prefix}/manunless otherwisespecified.configureignores most other arguments that you give it; use the−−helpoption for a complete list.On systems that require unusual options for compilation or linking that theSRecordpackage’sconfigurescript does not knowabout, you can giveconfigureinitial values for variables by setting them in theenvironment. InBourne-compatible shells, you can do that on the command line likethis:$CXX=’g++ −traditional’ LIBS=−lposix ./configure...lots of output...$Here are themakevariables that you might want to override with environment variables when runningconfigure.Variable: CXXC++ compiler program.The default isc++.Variable: CPPFLAGSPreprocessor flags, commonly defines and include search paths.Defaults to empty.Itiscommonto useCPPFLAGS=−I/usr/local/includeto access other installed packages.Variable: INSTALLProgram to use to install files. Thedefault isinstallif you have it,cpotherwise.Variable: LIBSLibraries to link with, in the form−lfoo−lbar.Theconfigurescript will append to this, ratherthan replace it.It is common to useLIBS=−L/usr/local/libto access other installedpackages.If you need to do unusual things to compile the package, the author encourages you to figure out howconfigurecould check whether to do them, and mail diffs or instructions to the author so that theycan beincluded in the next release.BUILDING SRECORDAll you should need to do is use the%make...lots of output...%command and wait. Whenthis finishes you should see a directory calledbincontaining three files:srec_cat,srec_cmpandsrec_info.Reference ManualSRecord 16

Build(SRecord) Build(SRecord)srec_catsrec_catprogram is used to manipulate and convert EPROM load files. For more information,seesrec_cat(1).srec_cmpThesrec_cmpprogram is used to compare EPROM load files. For more information, seesrec_cmp(1).srec_infoThesrec_infoprogram is used to print information about EPROM load files. For moreinformation, seesrec_info(1).If you have GNU Groffinstalled, the build will also create aetc/reference.psfile. Thiscontains theREADME file, this BUILDING file, and all of the man pages.Youcan remove the program binaries and object files from the source directory by using the%make clean...lots of output...%command. Toremove all of the above files, and also remove theMakefileandlib/config.handconfig.statusfiles, use the%make distclean...lots of output...%command.The fileetc/configure.inis used to createconfigureby a GNU program calledautoconf.You only need toknowthis if you want to regenerateconfigureusing a newer version ofautoconf.Windows NTIt is possible to build SRecord on MS Windows platforms, using the Cygwin (seewww.cygwin.com)orDJGPP (seewww.delorie.com/djgpp)environments. Thisprovides the “porting layer” necessary torun Unix programs on Windows. Thebuild process is exactly as described above.Youmay need to pass in the include path to the Boost library.This is most simply done asCC=’gcc −no−cygwin’ \CXX=’g++ −mno−cygwin −I/usr/include/boost−1_33_1’ \DJGPP always produces native binaries, howeverifyou want to makenative binaries with Cygwin (i.e.ones which work outside Cygwin) there is one extra step you need after running./configureandbefore you runmake.You need to edit theMakefilefile, and add−mno−cygwinto the end of theCXX=g++line.Once built (using either tool set) Windows binaries should be testable in the same way as described in thenext section.However, there may be some CRLF issues in the text file comparisons which give falsenegatives, depending on the CRLF setting of your Cygwin file system when you unpacked the tarball.TESTING SRECORDTheSRecordpackage comes with a test suite.To run this test suite, use the command%make sure...lots of output...Passed All Tests%The tests takeafew seconds each, with a fewvery fast, and a couple very slow, but it varies greatlydepending on your CPU.If all went well, the messagePassed All Testsshould appear at the end of the make.Reference ManualSRecord 17

Build(SRecord) Build(SRecord)INSTALLING SRECORDAs explained in theSITE CONFIGURATIONsection, above,theSRecordpackage is installed under the/usr/localtree by default. Usethe−−prefix=PA THoption toconfigureif you want some other path.More specific installation locations are assignable, use the−−helpoption toconfigurefor details.All that is required to install theSRecordpackage is to use the%make install...lots of output...%command. Controlof the directories used may be found in the first fewlines of theMakefilefile and theother files written by theconfigurescript; it is best to reconfigure using theconfigurescript, rather thanattempting to do this by hand.GETTING HELPIf you need assistance with theSRecordpackage, please do not hesitate to contact the author atPeter Miller <pmiller@opensource.org.au>Anyand all feedback is welcome.Please makesure “srecord” appears in the Subject: line.When reporting problems, please include the version number givenbythe%srec_cat −versionsrecord version1.62.D001...warranty disclaimer...%command. Pleasedo not send this example; run the program for the exact version number.COPYRIGHTsrecordversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerTheSRecordpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without eventhe implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULARPURPOSE. Seethe GNU General Public License for more details.It should be in theLICENSEfile included with this distribution.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/*WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 18

NewFormat(SRecord) NewFormat(SRecord)NAMEHowtoadd a newfile formatDESCRIPTIONThis section describes howtoadd a newfile format.It’smostly a set of reminders for the maintainer.Ifyou want a format added to the distribution, use this method and e-mail the maintainer a patch (generatedwithdiff −Nur,usually) and it can be added to the sources if appropriate.New FilesThe directory hierarchyisanecho of the class hierarchy, making it easy to guess the filename of a class,and to work out the appropriate file name of a newclass. You get used to it.It is suggested that you simplywork in the root of the source tree (exploiting tab-completion in your shell and your editor) rather thancontinually changing directories up and down the source tree.All of the file names belowassume this.The following files need to be creates for a newformat.srecord/output/file/name.ccThis file is howtowrite the newformat. Takealook at the other files in the same directory forexamples. Alsocheck outsrecord/output/file.handsrecord/output.hfor various helper methods.srecord/output/file/name.hThis is the class declaration for the above file.srecord/input/file/name.ccThis file is howtoread the newformat. Takealook at the other files in the same directory forexamples. Alsocheck outsrecord/input/file.handsrecord/input.hfor various helper methods.srecord/input/file/name.hThis is the class declaration for the above file.man/man5/srec_name.5This file describes the format.Take a look at the other files in the same directory for examples.If you need to describe something as “stupid”, as is all too often the case, usethesaurus.comto find a synonym. Usethe following commandfind man/. −type f | xargs grep −isynonymto makesure it hasn’tbeen used yet.test/nn/tnnmma.shYoumay have noticed that SRecord comes with a lot of tests.Youare more likely to get thepatch for your newformat accepted rapidly if it comes with at least one test for its output class,and at least one test for its input class.If your filter has endian-ness, add tests for each endian.Modified FilesThe following files need to be updated to mention the newformat.srecord/srecord.hAdd the newinclude file to the list.This file controls what files are installed into the/usr/includedirectory.Not all of them, just the public interface.etc/README.manMention the newformat in the section of this file which describes the supported file formats.etc/index.htmlMention the newformat in the section of this file which describes the supported file formats.srecord/arglex/tool.hAdd the newformat to the command line argument type enum.If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.Reference ManualSRecord 19

NewFormat(SRecord) NewFormat(SRecord)srecord/arglex/tool.ccAdd the newformat to the array of command line arguments types.If your filter has endian-ness, add one for each endian, using “_Big_Endian” and“_Little_Endian” suffixes.srecord/arglex/tool/input.ccAdd the newformat to the code which parses input formats.srecord/arglex/tool/output.ccAdd the newformat to the code which parses output formats.srecord/input/file/guess.ccAdd the newformat to the list of formats which are tested.man/man1/srec_input.1Mention the newformat in the section of this file which describes the supported input fileformats.man/man1/srec_cat.1Mention the newformat in the section of this file which describes the supported output fileformats.MakefileActually,the system the maintainer uses automatically generates this file, but if you aren’tusingAegis you will need to edit this file for your own use.TestsYoumay have noticed that SRecord comes with a lot of tests.Youare more likely to get the patch for yournewformat accepted rapidly if it comes with at least one test for its output class, and at least one test for itsinput class.If your filter has endian-ness, add tests for each endian.IMPLEMENTATION ISSUESIn implementing a newfile format, there are a couple of philosophical issues which affect technicaldecisions:Be liberal in what you acceptWhere everpossible, consume the widest possible interpretation of valid data.This includestreating mandatory input fields as optional (e.g.file headers and execution start addresses), andcoping with input definitions to their logical extremes (e.g.255 byte data records in Motorolaformat). Checksumsshould always be checked on input, only ignore them if the −ignore-checksums command line option has been given. Absurdline lengths must be tolerated.Be conservative inwhat you produceEven when the input is questionable, the output produced bysrec_catmust always be strictlyconforming with the format definition (except as mandated by command line options, see below).Checksums, if the format has them, must always be correct on output.Line lengths shoulddefault to something reasonable (about 80 characters or less).Eat Your Own Dog FoodYouinput class must always be able to consume what your output class produces, no matter whatcombination of command line options (see below) has been selected.Round TripIn general, what went in is what comes out.•The data may be re-arranged in order,the line lengths may change, but the same data shouldgo out as came in.(The data should be unchanged evenifthe format changed, assumingequally capable formats.)Thesrec_cmp(1) command may be used to verify this.•If the input has no header record, the output should not have one either (if at all possible).This means not automatically inserting a header record if the output file code sees data as theReference ManualSRecord 20

NewFormat(SRecord) NewFormat(SRecord)first method call.(The −disable=header option affects this, too.)•If the input has no execution start address record, the output should not have one either (if atall possible).This means not automatically inserting an execution start address record if theoutput file code does not see one by the time the destructor is called.(The −disable=exec-start-addr flag affects this, too.)•Write at least onetestthat does a “round trip” of data through the newformat and back again,exercising anyinteresting boundary conditions along the way (e.g.data records spanningsegment boundaries).HolesDo not to fill in holes in the data.That said, sometimes youhaveto fill holes in the data.Thishappens, for example, when a 16-bit format is faced with an 8-bit byte of data for one or otherhalf of a 16-bit word. Ifthere is no other way around it, call the fatal_alignment_error method,which will suggest a suitable input filter.OPTIONSThere are also some command line arguments you will need to takeinto account:−address-lengthThis options is used to specify the minimum address length, if your newformat has a choiceabout howmanybytes of address it produces.−data-onlyThis option implies all of the−disable=header,−disable=data-count −disable=exec-start-addrand−disable=footeroptions. Onlythe essential data records are produced.−disable=headerIf this option is used, no header records are to be produced (or minimal header records).This isavailable as theenable_header_flagclass variable in the methods of your derivedclass.−disable=data-countIf this option is used, no data record count records are to be produced.This is available as theenable_data_count_flagclass variable in the methods of your derivedclass.−disable=exec-start-addrIf this option is used, no execution start address records are to be produced.This is available astheenable_goto_addr_flagclass variable in the methods of your derivedclass.−disable=footerIf this option is used, no end-of-file records are to be produced.This is available as theenable_footer_flagclass variable in the methods of your derivedclass.−enable=optional-addressIf this option is used, in combination with a format that does not have anaddress on every line,the the first zero address manybeomitted. Allsubsequent addresses are not optional, just thefirst zero address.Defaults to disabled.−ignore-checksumsIf this flag is set, your file input methods must parsebutnot checkchecksums, if the format haschecksums. You can tell if you need to use checksums by calling theuse_checksums()method within the implementation of your derivedclass. Thisonly applies to input; output mustalways produce correct checksums.−line-lengthWhere your output format is text, and there exists the possibility of putting more or less text oneach line (e.g.the Motorola format allows a variable number of data bytes per record) then thisshould be controllable.This manifests in theaddress_length_setandpreferred_block_size_getmethods you must implement in your derivedclass.CODING STYLEPlease following the coding style of the existing code.It makes your patches and contributions more likelyto be accepted if theydon’thav eto be extensively reformatted.Reference ManualSRecord 21

NewFormat(SRecord) NewFormat(SRecord)Indent increments are four characters.Do not use tab characters at all, nobody can agree howwide theyaresupposed to be.Line length is 80 characters or fewer,noexceptions.Please followthe existing convention of always using Doxygen comments on all your instance variablesand methods, evenfor private methods.Always document all arguments of all methods, evenprivatemethods, using@paramtags; see existing style.Always use whole sentences in your Doxygendocumentation, see existing code for examples.Do not use upper case letters in file names.Do not use white space or shell special characters in file names.When sending a patch please use “diff−Nur”, as this will include your newfiles in the patch, and you willnot need additional attachments in your email.Patches are preferred overtarballs.Include tests.It makes your patches and contributions more likely to be accepted if the maintainer doesn’thave towrite your tests for you.See sources for examples of existing tests.CONTRACT RATESIt is possible to have the maintainer write your newfile format or newfilter for you.However, ifyou wantit done for nothing, you will be put at the end of a (very) long queue of othergratisopen source work themaintainer has yet to do.Youcan jump the queue if you want to pay the maintainer to do the work for you.The maintainer’srates are AU$100 per hour.Awell document newformat typically takes six hours to write and test, this includes both reading andwriting the newformat. Awell documented newfilter typically takes three hours to write and test.Examples makethese tasks easier.Poor documentation makes these tasks takelonger.Amystery formatthat requires reverse engineering may takemuchlonger; ask again once you have figured it out.All code written for you will be included in the project source tarball in its next release.All formats andfilters written for you will be copyright Peter Miller,and theywill be GNU GPL licensed.If youneedaformat or filter written, it has value to you; the issue of freeloaders is irrelevant.Conversely,integrating complete open source contributions and patches is donegratis,and usually done aspromptly as time permits.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/*WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 22

NewFilter(SRecord) NewFilter(SRecord)NAMEHowtoadd a newfilterDESCRIPTIONThis section describes howtoadd a newfilter.It’smostly a set of reminders for the maintainer.Ifyouwant a filter added to the distribution, use this method and e-mail the maintainer a patch (generated withdiff −Nur,usually) and it can be added to the sources if appropriate.New FilesThe directory hierarchyisanecho of the class hierarchy, making it easy to guess the filename of a class,and to work out the appropriate file name of a newclass. You get used to it.It is suggested that you simplywork in the root of the source tree (exploiting tab-completion in your shell and your editor) rather thancontinually changing directories up and down the source tree.All of the file names belowassume this.The following files need to be created for a newfilter.srecord/input/filter/name.ccThis file is howtoprocess the newfilter.Takealook at the other files in the same directory forexamples. Alsoreadsrecord/input.handsrecord/input/filter.hfor various helper methods.srecord/input/filter/name.hThis is the class declaration for the above file.srecord/input/filter/message/name.ccIf your filter needs all of the data to be known before it can proceed, or it needs all of the data toappear in ascending address order,derive from thesrec_input_filter_messageclass,instead. Thistakes care of all data handling, you only have towrite the method that computes theresult from the data.Take a look at the other files in the same directory for examples.srecord/input/filter/message/name.hThis is the class declaration for the above file.test/nn/tnnmma.shYoumay have noticed that SRecord comes with a lot of tests.Youare more likely to get thepatch for your newfilter accepted rapidly if it comes with at least one test.Modified FilesThe following files need to be updated to mention the newfilter.srecord/srecord.hAdd the newinclude file to the list.This file controls what files are installed into the/usr/includedirectory.Not all of them, just the public interface.etc/README.manMention the newfilter in the section of this file which describes the supported filters.etc/index.htmlMention the newfilter in the section of this file which describes the supported filters.srecord/arglex/tool.hAdd the newfilter to the command line argument type enum.If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.srecord/arglex/tool.ccAdd the newfilter to the array of command line arguments types.If your filter has endian-ness, add one for each endian, using “_Big_Endian” and“_Little_Endian” suffixes.srecord/arglex/tool/input.ccAdd the newfilter to the code which parses input filters.If your filter has endian-ness, add your command line tokens to the switch in thesrecord::arglex_tool::get_endian_by_token method.Reference ManualSRecord 23

NewFilter(SRecord) NewFilter(SRecord)man/man1/o_input.soMention the newfilter in the section of this file which describes the supported input filters.MakefileActually,the system the maintainer has Aegis automatically generate this file, but if you aren’tusing Aegis you will need to edit this file for your own use.TestsYoumay have noticed that SRecord comes with a lot of tests.Youare more likely to get the patch for yournewfilter accepted rapidly if it comes with at least one test.If your filter has endian-ness, add tests for each endian.IMPLEMENTATION ISSUESIn implementing a newfilter,there are a couple of philosophical issues which affect technical decissions:•Be liberal in what you accept.Where everpossible, consume the widest possible interpretation of“valid” data.Youespecially need to cope with data with holes, and data records out of order,and datarecords not nicely aligned.If your filter has endian-ness, add tests for each endian.•Be conservative inwhat you produce.Even when the input is weird, the output produced by the filtermust be conforming.E.g.the byte-swap filter still works when it has only one of the twobytes, and theother is a hole; it swaps the byte and the hole.•If the input has no header record, the output should not have one either.•If the input has no execution start address record, the output should not have one either.•Do not to fill in holes in the data, unless you are a writing a “fill” filter.See thesrecord/input/filter/message.ccfile for an example of issuing a warning in the presenceof holes.•If the newfilter is supposed to be its own inverse (e.g.byte-swap), or a pair of filters are supposed to beinverses (e.g.split and unsplit) be sure to write a test to confirm this.The tests should exersize all of theboundary conditions (e.g.around the edges of holes, extremes of data ranges).CODING STYLEPlease following the coding style of the existing code.It makes your patches and contributions more likelyto be accepted if theydon’thav eto be extensively reformatted.Indent increments are four characters.Do not use tab characters at all, nobody can agree howwide theyaresupposed to be.Line length is 80 characters or fewer,noexceptions.Please followthe existing convention of always using Doxygen comments on all your instance variablesand methods, evenfor private methods.Always document all arguments of all methods, evenprivatemethods, using@paramtags; see existing style.Always use whole sentences in your Doxygendocumentation, see existing code for examples.Do not use upper case letters in file names.Do not use white space or shell special characters in file names.When sending a patch please use “diff−Nur”, as this will include your newfiles in the patch, and you willnot need additional attachments in your email.Patches are preferred overtarballs.Include tests.It makes your patches and contributions more likely to be accepted if the maintainer doesn’thave towrite your tests for you.See sources for examples of existing tests.CONTRACT RATESIt is possible to have the maintainer write your newfile format or newfilter for you.However, ifyou wantit done for nothing, you will be put at the end of a (very) long queue of othergratisopen source work themaintainer has yet to do.Youcan jump the queue if you want to pay the maintainer to do the work for you.The maintainer’srates are AU$100 per hour.Awell document newformat typically takes six hours to write and test, this includes both reading andReference ManualSRecord 24

NewFilter(SRecord) NewFilter(SRecord)writing the newformat. Awell documented newfilter typically takes three hours to write and test.Examples makethese tasks easier.Poor documentation makes these tasks takelonger.Amystery formatthat requires reverse engineering may takemuchlonger; ask again once you have figured it out.All code written for you will be included in the project source tarball in its next release.All formats andfilters written for you will be copyright Peter Miller,and theywill be GNU GPL licensed.If youneedaformat or filter written, it has value to you; the issue of freeloaders is irrelevant.Conversely,integrating complete open source contributions and patches is donegratis,and usually done aspromptly as time permits.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/*WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 25

srec_cat(1) GeneralCommands Manualsrec_cat(1)NAMEsrec_cat − manipulate EPROM load filesSYNOPSISsrec_cat[option...]filename...srec_cat −Helpsrec_cat −VERSionDESCRIPTIONThesrec_catprogram is used to assemble the giveninput files into a single output file. Theuse of filters(see below) allows significant manipulations to be performed by this command.Data OrderThe data from the input files is not immediately written to the output, but is stored in memory until thecomplete EPROM image has been assembled.Data is then written to the output file in ascending addressorder.The original ordering of the data (in those formats capable of random record ordering) isnotpreserved.Data ComparisonBecause input record order is not preserved, textual comparison of input and output (such as thediff(1) ortkdiff(1) commands) can be misleading.Not only can lines appear in different address orders, but linelengths and line termination can differ as well.Use thesrec_cmp(1) program to compare twoEPROM loadfiles. Ifatextcomparison is essential, run both files through thesrec_cat(1) program to ensure both files tobe compared have identical record ordering and line lengths.Data ConflictsThe storing of data in memory enables the detection of data conflicts, typically caused by linker sectionsunintentionally overlapping.•Awarning will be issued for each address which is redundantly set to the same value.•Afatal error will be issued if anyaddress is set with contradictory values. Toavoid this error use an−exclude −withinfilter (seesrec_input(1)) or,tomakeitawarning, use the−multipleoption (seebelow).•Awarning will be issued for input files where the data records are not in strictly ascending address order.To suppress this warning, use the−disable-sequence-warningoption (see below).These features are designed to detect problems which are difficult to debug, and detects thembeforethedata is written to an EPROM and run in your embedded system.INPUT FILE SPECIFICATIONSInput may be qualified in twoways: you may specify a data file or a data generator.format and you mayspecify filters to apply to them.An input file specification looks likethis:data-file[filter...]data-generator[filter...]Data FilesInput from data files is specified by file name and format name.An input file specification looks likethis:filename[format][−ignore-checksums]The default format is Motorola S-Record format, butmanyothers are also understood.Data GeneratorsIt is also possible to generate data, rather than read it from a file. You may use a generator anywhere youcould use a file. Aninput generator specification looks likethis:−GENerateaddress-range−data-sourceGenerators include random data and various forms of constant data.Common Manual PageSeesrec_input(1) for complete details of input specifiers. Thisdescription is in a separate manual pagebecause it is common to more than one SRecord command.Reference ManualSRecord 26

srec_cat(1) GeneralCommands Manualsrec_cat(1)OPTIONSThe following options are understood:@filenameThe named text file is read for additional command line arguments. Arguments are separated bywhite space (space, tab, newline,etc). Thereis no wildcard mechanism.There is no quotingmechanism. Comments,which start with ’#’and extend to the end of the line, are ignored.Blank lines are ignored.−Outputfilename[format]This option may be used to specify the output file to be used.The special file name “−[rq] isunderstood to mean the standard output.Output defaults to the standard output if this option isnot used.Theformatmay be specified as:−Absolute_Object_Module_FormatAn Intel Absolute Object Module Format file will be written.(Seesrec_aomf(5) for adescription of this file format.)−Ascii_HexAn Ascii-Hexfile will be written.(Seesrec_ascii_hex(5) for a description of this fileformat.)−ASM[prefix][−option...]Aseries of assembler DB statements will be written.The optionalprefixmay be specified to change the names of the symbols generated.The defaults to "eprom"ifnot set.Several options are available to modify the style of output:−Dot_STyleUse "dot" style pseudo-ops instead of words. For example.byteinstead oftheDBdefault.−HEXadecimal_STyleUse hexadecimal numbers in the output, rather than the default decimalnumbers.−Section_STyleBy default the generated assemble of placed at the correct address usingORGpseudo-ops. Sectionstyle output emits tables of section addresses andlengths, so the data may be related at runtime.−A430Generate output which is compliant to thea430.execompiler as it is used,e.g.in IAR Embedded Workbench. Thisis short-hand for −section-style−hex-style−CL430Generate outputwhich is Code Composer Essentials compliant,i.e.thecompiler of it.This is short-hand for −section-style −hex-style −dot-style−Output_WordGenerate output which is in two-byte words rather than bytes.This assumeslittle-endian words; you will need to use the −Byte-Swap filter if your targetis big-endian.No attempt is made to align the words onto evenaddressboundaries; use and input filter such asinput-file−fill 0xFF −withininput-file−range-pad 2to pad the data to whole words first.Reference ManualSRecord 27

srec_cat(1) GeneralCommands Manualsrec_cat(1)−Atmel_GenericAn Atmel Generic file will be written.(Seesrec_atmel_generic(5) for a description ofthis file format.)−BASicAseries of BASIC DAT Astatements will be written.−B-RecordAFreescale MC68EZ328 Dragonball bootstrap b-record format file will be written.(Seesrec_brecord(5) for a description of this file format.)−BinaryAraw binary file will be written.If you get unexpected resultspleasesee thesrec_binary(5) manual for more information.−C-Array[identifier][−option...]ACarray defintion will be written.The optionalidentifieris the name of the variable to be defined, orbugusif notspecified.−INCludeThis option asks for an include file to be generated as well.−No-CONSTThis options asks for the variables to not use the const keyword (theyaredeclared constant be default, so that theyare placed into the read-onlysegment in embedded systems).−C_COMpressedThese options ask for an compressed c-array whose memory gaps will not befilled.−Output_WordThis option asks for an output which is in words not in bytes.This is littleendian, so you may need to−COEThis option says to use the Xilinx Coefficient File Format (.coe) for output.(Seesrec_coe(5) for a description of this file format.)−COsmacAn RCA Cosmac Elf format file will be written.(Seesrec_cosmac(5) for a descriptionof this file format.)−Dec_BinaryADEC Binary (XXDP) format file will be written.(Seesrec_dec_binary(5) for adescription of this file format.)−Elektor_Monitor52This option says to use the EMON52 format file when writing the file. (Seesrec_emon52(5) for a description of this file format.)−FAIrchildThis option says to use the Fairchild Fairbug format file when writing the file. (Seesrec_fairchild(5) for a description of this file format.)−Fast_LoadThis option says to use the LSI Logic Fast Load format file when writing the file. (Seesrec_fastload(5) for a description of this file format.)−Formatted_BinaryAFormatted Binary format file will be written.(Seesrec_formatted_binary(5) for adescription of this file format.)Reference ManualSRecord 28

srec_cat(1) GeneralCommands Manualsrec_cat(1)−FORTH[−option]AFORTH input file will be written.Each line of output includes a byte value, anaddress, and a command.−RAMThe store command is C!This is the default.−EEPROMThe store command is EEC!−Four_Packed_CodeThis option says to use the PFC format file when writing the file. (Seesrec_fpd(5) foradescription of this file format.)−HEX_DumpAhuman readable hexadecimal dump (including ASCII) will be printed.−IDTAn IDT System Integration Manager (IDT/sim) binary file will be written.(Seesrec_idt(5) for a description of this file format.)−IntelAn Intel hexformat file will be written.(Seesrec_intel(5) for a description of this fileformat.) Thedefault is to emit “i32hex” 32-bit linear addressing; if you want “i16hex”20-bit extended segment addressing use the−address-length=3option, if you want“i8hex” 16-bit addressing use the−address-length=2option.−Intel_HeX_16An Intel-16 hexformat (INHX16) file will be written.(Seesrec_intel16(5) for adescription of this file format.)−Lattice_Memory_Initialization_Format [width]The Memory Initialization Format (.mem) by Lattice Semiconductor is understood forwriting only.(A.k.a.−MEM)(Seesrec_mem(5) for a description of this file format.)−Memory_Initialization_File[width]Memory Initialization File (MIF) by Altera format will be written.Thewidthdefaultsto 8 bits.(Seesrec_mif(5) for a description of this file format.)−Mips_Flash_Big_Endian−Mips_Flash_Little_EndianMIPS Flash file format will be written.(Seesrec_mips_flash(5) for a description ofthis file format.)−MOS_TechnologiesAn Mos Technologies format file will be written.(Seesrec_mos_tech(5) for adescription of this file format.)−Motorola[width]AMotorola S-Record file will be written.(Seesrec_motorola(5) for a description ofthis file format.)This is the default output format.By default, the smallest possibleaddress length is emitted, this will be S19 for data in the first 64KB; if you wish toforce S28 use the−address-length=3option; if you wish to force S37 use the−address-length=4optionThe optionalwidthargument describes the number of bytes which form each addressmultiple. For normal uses the default of one (1) byte is appropriate.Some systemswith 16-bit or 32-bit targets mutilate the addresses in the file; this option will imitatethat behavior.Unlikemost other parameters, this one cannot be guessed.−MsBinThis option says to use the Windows CE Binary Image Data Format to write the file.Seesrec_msbin(5) for a description of this file format.−Needham_HexadecimalThis option says to use the Needham Electronics ASCII file format to write the file.Seesrec_needham(5) for a description of this file format.Reference ManualSRecord 29

srec_cat(1) GeneralCommands Manualsrec_cat(1)−Ohio_ScientificThis option says to use the Ohio Scientific hexadecimal format.Seesrec_os65v(5) foradescription of this format.−PPBThis option says to use the Stag Prom Programmer binary format.Seesrec_ppb(5) foradescription of this format.−PPXThis option says to use the Stag Prom Programmer hexadecimal format.Seesrec_ppx(5) for a description of this format.−SIGneticsThis option says to use the Signetics hexformat. Seesrec_signetics(5) for a descriptionof this format.−SPAsmThis option says to use the SPASM assembler output format (commonly used by PICprogrammers). Seesrec_spasm(5) for a description of this format.−SPAsm_Little_EndianThis option says to use the SPASM assembler output format (commonly used by PICprogrammers). Butwith the data the other way around.−STewieAStewie binary format file will be written.(Seesrec_stewie(5) for a description of thisfile format.)−TektronixATektronix hexformat file will be written.(Seesrec_tektronix(5) for a description ofthis file format.)−Tektronix_ExtendedATektronix extended hexformat file will be written.(Seesrec_tektronix_extended(5)for a description of this file format.)−Texas_Instruments_TaggedATI-Tagged format file will be written.(Seesrec_ti_tagged(5) for a description ofthis file format.)−Texas_Instruments_Tagged_16ATexas Instruments SDSMAC320 format file will be written.(Seesrec_ti_tagged_16(5) for a description of this file format.)−Texas_Instruments_TeXTThis option says to use the Texas Instruments TXT (MSP430) format to write the file.Seesrec_ti_txt(5) for a description of this file format.−TRS80This option says to use the Radio Shack TRS-80 object file format to write the file. Seesrec_trs80(5) for a description of this file format.−VHdl[bytes-per-word[name]]AVHDL format file will be written.Thebytes-per-worddefaults to one, thenamedefaults toeprom.Theetc/x_defs_pack.vhdfile in the source distribution contains anexample ROM definitions pack for the type-independent output.Youmay need to usethe −byte-swap filter to get the byte order you want.−VMem[memory-width]AVerilog VMEM format file will be written.Thememory-widthmay be 8, 16, 32, 64or 128 bits; defaults to 32 if unspecified. (Seesrec_vmem(5) for a description of thisfile format.)Youmay need to use the −byte-swap filter to get the byte order you want.Reference ManualSRecord 30

srec_cat(1) GeneralCommands Manualsrec_cat(1)−WILsonAwilson format file will be written.(Seesrec_wilson(5) for a description of this fileformat.)−Address_LengthnumberThis option manybeused to specify the minimum number of bytes to be used in the output torepresent an address (padding with leading zeros if necessary).This helps when talking toimbecilic EPROM programmer devices which do not fully implement the format specification.−Data_OnlyThis option implies the−disable=header,−disable=data-count,−disable=exec-start-addressand−disable=footeroptions.−ENablefeature-nameThis option is used to enable the output of a named feature.HeaderThis feature controls the presence of header records, records which appear before thedata itself.Headers often, but not always, include descriptive text.Data_CountThis feature controls the presence of data record count records, which appear aftre thedata, and state howmanydata records preceeded them.Usually a data integritymechanism.Execution_Start_AddressThis feature controls the presence of execution start address records, which is where themonitor will jump to and start executing code once the hexfile has finished loading.FooterThis feature controls the presence of a file termination record, one thatdoes notdoubleas an execution start address record.Optional_AddressIn formats that have the address and the data separated or partially separated (asopposed to having a complete address in every record) it is possible to disable emittingthe first address where that address would be zero, as these format often default theaddress to zero if no address is seen beofre the first data record.This is disabled bydefault, the zero address is always emitted.Not all formats have all of the above features. Notall formats are able to optionally omit anyorall the above features. Featurenames may be abbreviated likecommand line option names.−DISablefeature-nameThis option is used to disable the output of a named feature.See the−enableoption for adescription of the available features.−IGnore_ChecksumsThe−IGnore-Checksumsoption may be used to disable checksum validation of input files, forthose formats which have checksums at all.Note that the checksum values are still read in andparsed (so it is still an error if theyare missing) but their values are not checked. Usedafter aninput file name, the option affects that file alone; used anywhere else on the command line, itapplies to all following files.−Enable_Sequence_WarningsThis option may be used to enable warnings about input files where the data records are not instrictly ascending address order.Only one warning is issued per input file. Thisis the default.Note:the output ofsrec_cat(1) is always in this order.Note:This option must be usedbeforethe input file. Thisis because if there are several files onthe command line, each may need different settings.The setting remains in force until the next−Disable_Sequence_Warningsoption.Reference ManualSRecord 31

srec_cat(1) GeneralCommands Manualsrec_cat(1)−Disable_Sequence_WarningsThis option may be used to disable warnings about input files where the data records are not instrictly ascending address order.Note:This option must be usedbeforethe offending input file. Thisis because if there areseveral files on the command line, each may need different settings.The setting remains in forceuntil the next−Ensable_Sequence_Warningsoption.−CRLFThis option is short-hand for the−line-termination=crlfoption. For use with harebrainedEPROM programmer devices which assume all the world uses Evil Bill’soperating system’slinetermination.−Line_Terminationstyle-nameThis option may be used to specify line termination style for text output.The default is to use thehost operating system’sdefault line termination style (but Cygwin behavesasifit’sUnix). Usethis option with caution, because it will also introduce extra (i.e. wrong) CR bytes into binaryformats.Carriage_Return_Line_FeedUse the CRLF line termination style, typical of DOS and M$ Windows.NewLineUse the NL line termination style, typical of Unix and Linux.Carriage_ReturnUse the CR line termination style, typical of Apple Macintosh.All other line termination style names will produce a fatal error.Style names may be abbreviatedlikecommand line option names.−Line_LengthnumberThis option may be used to limit the length of the output lines to at mostnumbercharacters. (Notmeaningful for binary file format.)Defaults to something less than 80 characters, depending onthe format.If you need to control the maximum number of bytes in each output record, use the−−Ouput_Block_Sizeoption.−HEAderstringThis option may be used to set the header comment, in those formats which support it.Thisoption implies the−enable=headeroption.If you need to inject binary data into the header,use the URL encoding that uses % followed bytwohexadeimal characters.Forexample a backspace would be encoded as “%08”.−Execution_Start_AddressnumberThis option may be used to set the execution start address, in those formats which support it.Theexecution start address is where the monitor will jump to and start executing code once the hexfile has finished loading, think of it as a “goto” address.Usually ignored by EPROMprogrammer devices. Thisoption implies the−enable=exec-start-addroption.Please note: the execution start address is a different concept than the first address in memory ofyour data.If you want to change where your data starts in memory,use the−offsetfilter.−Output_Block_SizenumberThis option may be used to specify the exact number of data bytes to appear in each outputrecord. Thereare format-specific limitations on this value, you will get an error if the value isn’tvalid. Ifyou need to control the maximum number of characters on a line of text output, use the−−Line_Lengthoption.−Output_Block_PackingFrom time to time, with large files, you may notice that your data records are spit unexpectedlyon output.This usually happens where record lengths are not a power of 2.If this bothers you(or your comparison tools) this option may be used to repack the output so that SRecord’sinternal block boundaries are not visable in the output.Reference ManualSRecord 32

srec_cat(1) GeneralCommands Manualsrec_cat(1)−Output_Block_AlignmentThis option is similar to the−Output_Block_Packingoption, except that short records are usedafter holes to cause subsequent records to be placed on a block size boundary.−MULTipleUse this option to permit a file to contain multiple (contradictory) values for some memorylocations. Awarning will be printed.The last value in the file will be used.The default is forthis condition to be a fatal error.All other options will produce a diagnostic error.All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower caseletters and underscores (_) are optional.Youmust use consecutive sequences of optional letters.All options are case insensitive,you may type them in upper case or lower case or a combination of both,case is not important.Forexample: the arguments “−help”, “−HEL” and “−h” are all interpreted to mean the−Helpoption. Theargument “−hlp” will not be understood, because consecutive optional characters were not supplied.Options and other command line arguments may be mixed arbitrarily on the command line.The GNU long option names are understood.Since all option names forsrec_catare long, this meansignoring the extra leading “−”.The “−−option=value”convention is also understood.EXIT STATUSThesrec_catcommand will exit with a status of 1 on anyerror.Thesrec_catcommand will only exit withastatus of 0 if there are no errors.COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 33

srec_cmp(1) GeneralCommands Manualsrec_cmp(1)NAMEsrec_cmp − compare twoEPROM load files for equalitySYNOPSISsrec_cmp[option...]filename...srec_cmp −Helpsrec_cmp −VERSionDESCRIPTIONThesrec_cmpprogram is used to compare twoEPROM load files for equality.This comparison isperformed irrespective ofthe load order of the data in each of the files.INPUT FILE SPECIFICATIONSInput may be qualified in twoways: you may specify a data file or a data generator.format and you mayspecify filters to apply to them.An input file specification looks likethis:data-file[filter...]data-generator[filter...]Data FilesInput from data files is specified by file name and format name.An input file specification looks likethis:filename[format][−ignore-checksums]The default format is Motorola S-Record format, butmanyothers are also understood.Data GeneratorsIt is also possible to generate data, rather than read it from a file. You may use a generator anywhere youcould use a file. Aninput generator specification looks likethis:−GENerateaddress-range−data-sourceGenerators include random data and various forms of constant data.Common Manual PageSeesrec_input(1) for complete details of input specifiers. Thisdescription is in a separate manual pagebecause it is common to more than one SRecord command.OPTIONSThe following options are understood:@filenameThe named text file is read for additional command line arguments. Arguments are separated bywhite space (space, tab, newline,etc). Thereis no wildcard mechanism.There is no quotingmechanism. Comments,which start with ’#’and extend to the end of the line, are ignored.Blank lines are ignored.−HelpProvide some help with using thesrec_cmpprogram.−IGnore_ChecksumsThe−IGnore-Checksumsoption may be used to disable checksum validation of input files, forthose formats which have checksums at all.Note that the checksum values are still read in andparsed (so it is still an error if theyare missing) but their values are not checked. Usedafter aninput file name, the option affects that file alone; used anywhere else on the command line, itapplies to all following files.−Enable_Sequence_WarningsThis option may be used to enable warnings about input files where the data records are not instrictly ascending address order.Only one warning is issued per input file. Thisis the default.Note:the output ofsrec_cat(1) is always in this order.Note:This option must be usedbeforethe input file. Thisis because if there are several files onthe command line, each may need different settings.The setting remains in force until the next−Disable_Sequence_Warningsoption.Reference ManualSRecord 34

srec_cmp(1) GeneralCommands Manualsrec_cmp(1)−Disable_Sequence_WarningsThis option may be used to disable warnings about input files where the data records are not instrictly ascending address order.Note:This option must be usedbeforethe offending input file. Thisis because if there areseveral files on the command line, each may need different settings.The setting remains in forceuntil the next−Ensable_Sequence_Warningsoption.−MULTipleUse this option to permit a file to contain multiple (contradictory) values for some memorylocations. Awarning will be printed.The last value in the file will be used.The default is forthis condition to be a fatal error.−VERSionPrint the version of thesrec_cmpprogram being executed.−VerboseThis option may be used to obtain more information about howand where the twofiles differ.Please note that this takes longer,and the output can be voluminous.All other options will produce a diagnostic error.All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower caseletters and underscores (_) are optional.Youmust use consecutive sequences of optional letters.All options are case insensitive,you may type them in upper case or lower case or a combination of both,case is not important.Forexample: the arguments “−help”, “−HEL” and “−h” are all interpreted to mean the−Helpoption. Theargument “−hlp” will not be understood, because consecutive optional characters were not supplied.Options and other command line arguments may be mixed arbitrarily on the command line.The GNU long option names are understood.Since all option names forsrec_cmpare long, this meansignoring the extra leading “−”.The “−−option=value”convention is also understood.EXIT STATUSThesrec_cmpcommand will exit with a status of 1 on anyerror.Thesrec_cmpcommand will only exitwith a status of 0 if there are no errors.EXAMPLEAcommon use for thesrec_cmpcommand is to verify that a particular signature is present in the code.Inthis example, the signature is in a file called“signature[rq], and the EPROM image is in a file called“image[rq]. Weassume theyare both Motorola S-Record format, although this will work for all formats:srec_cmp signatureimage −crop −within signatureThe signature need not be at the start of memory,nor need it be one single contiguous piece of memory.Inthe above example, the portions of the image which have the same address range as the signature arecompared with the signature.COPYRIGHTsrec_cmpversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_cmpprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cmp−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cmp −VERSion License’command.Reference ManualSRecord 35

srec_cmp(1) GeneralCommands Manualsrec_cmp(1)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 36

srec_examples(1) GeneralCommands Manualsrec_examples(1)NAMEsrec_examples − examples of howtouse SRecordDESCRIPTIONThesrec_catcommand is very powerful, due to the ability to combine the the input filters in almostunlimited ways. Thismanual page describes a fewofthem.This manual page describes howtouse the various input files, input filters and input generators.But theseare only examples, for more complete details, see thesrec_input(1) manual page.The Commands Lines AreToo LongIf you are marooned on an operating system with absurdly short command line length limits, some of thecommands which followmay be too long.Youcan get around this handicap by placing your command linein a file, sayfred.txt,and then tellsrec_cat(1) to read this file for the rest of its command line, likethissrec_cat @fred.txtThis also has the advantage of allowing comments, allowing you to write your command line options overseveral lines, and evenindenting to makethe command more clear.Comments start at a “#”and extend tothe end of the line.Blank lines are ignored.Of course, you could always upgrade to Linux, which has been sucking less for over21years now.Your Examples WantedIf you have a cleverway of using SRecord, or have solved a difficult problem with SRecord, you couldcontribute to this manual page, making it more useful for everyone. Sendyour example in an email to theemail address at the end of this manual page.CONVERTING FILE FORMATSThe simplest of the thingssrec_cat(1) can do is convert from one EPROM file format to another.Pleasekeep in mind, as you read this section, that you can do manyofthese things simultaneously in onecommand. Theyare only broken out separately to makethem easier to understand.Intel to MotorolaOne of the simplest examples is converting files from Intel hexformat to Motorola S-Record format:srec_catintel-file−intel −osrec-fileNote that the format specifier immediately follows the name of the file it is describing.Pick anytwoformats that SRecord understands, and it can convert between all of them.(Except the assembler,BASIC,Cand FPGA outputs which are write only.)Motorola to IntelConverting the other way is just as simple:srec_catsrec-file−ointel-file−intelThe default format is Motorola S-Record format, so it does not need to be specified after the file name.Different Shapes of the Same FormatIt is regrettably common that some addle-pated EPROM programmers only implement a portion of thespecification used to represent their hexfiles. For example, some compilers produce “s19” Motorola data(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that someblockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 startrecords, 32 bit address fields).It is possible to convert from one Motorola shape to another using the−Address-Lengthoption:srec_cat short.srec −o long.srec −address-length=4This command says to use four byte (32-bit) addresses on output.This section also applies to Intel hexfiles, as they, too, have the ability to select from a variety of addresswidths. Toconvert from one Intel shape to another using the same−Address-Lengthoption:Reference ManualSRecord 37

srec_examples(1) GeneralCommands Manualsrec_examples(1)srec_cat i32.hex −o i16.hex −address-length=3This command says to use “i16hex” 20-bit segmented addresses on output.An address length of 4 is thedefault (“i32hex” 32-bit linear addressing), and an address length of 2 would request “i8hex” 16-bitaddressing.Line LengthsFrom time to time you will come across a feeble-minded EPROM programmer that can’tcope with longtext lines, theyassume that there will only everbe46characters per line and barf when theysee the defaultline lengths thatsrec_cat(1) writes (or worse, get a stack scribble and crash).The Motorola S-record format definition permits up to 255 bytes of payload, or lines of514characters, plusthe line termination.All EPROM programmersshouldhave sufficiently large line buffers to cope withrecords this big.Fewdo.The −line-length option may be used to specify the maximum line length (not including the newline) to beused on output.Forexample, 16 byte payloads for Motorola hexsrec_cat long.srec −o short.s19 −line-length=46The line length option interacts with the address length option, so some tinkering to optimize for yourparticular situation manybenecessary.Output Block SizeEvery once in a while you will come across an ancient daft EPROM programmer that can’tcope with longdata records, theyassume that there will only everbeatmost 16 bytes of data per record, and barf whentheysee the default 32 byte payloads thatsrec_cat(1) writes (or worse, the buffer over-run causes a tallgrass walk that scribbles on your EPROM).The Intel hexformat definition permits up to 255 bytes of payload data per record.All EPROMprogrammersshouldhave sufficiently large data buffers to cope with records this big.Good luck with that.The −Output-Block-Size option may be used to specify the record data size to be used on output.Forexample, Intel hexwith 16 byte payloads:srec_cat long.srec −o short.hex −intel −obs=16Be careful not to put the−obsoption between the output file name and the format specifier.Just the Data, PleaseThere are some bonehead EPROM programmers which can only cope with data records, and are unable tocope with header records or execution start address records.If you have this problem, the−data-onlyoption can be used to suppress just about everything except the data.The actual effect depends on theformat, of course, because some don’thav ethese features anyway.The−data-onlyoption is short hand.There are four properties which may be−disabledor−enabledseparately.See thesrec_cat(1) man page for a description of the−disabledand−enabledoptions.Forexample, your neanderthal EPROM programmer requires Motorola hexwith header records (S0), butwithout data count (S5) records.Not using the−data-onlyoption has it barf on the data count record, butusing the−data-onlyoption has it barf on the missing header record.Using the−disable=data-countoption would leave the header record intact while suppressing the data count record.Data HeadersThesrec_cat(1) command always tries to pass through header records unchanged, whenevertheyarepresent. Itev entries preservethem across file format changes, to the limit the file formats are capable of.If there is no file header record and you would liketoadd one, or you wish to override an existing fileheader record, use the−header=stringoption. You will need to quote the string (to insulate it from theshell) if it contains spaces or shell meta-characters.Execution Start AddressesThesrec_cat(1) command always tries to pass through execution start addresses (typically occurring at theend of the file), whenevertheyare present.Theyare adjusted along with the data records by the−offsetfilter.Iteventries preservethem across file format changes, to the limit the file formats are capable of.Reference ManualSRecord 38

srec_examples(1) GeneralCommands Manualsrec_examples(1)If there is no execution start address record and you would liketoadd one, or you wish to override anexisting execution start address record, use the−execution-start-address=numberoption.Please note: the execution start address is a different concept than the first address in memory of your data.Think of it as a “goto” address to be jumped to by the monitor when the hexload is complete.If you wantto change where your data starts in memory,use the−offsetfilter.Fixing ChecksumsSome embedded firmware developers are saddled with featherbrained tools which produce incorrectchecksums, which the more vigilant models of EPROM programmer will not accept.To fix the checksums on a file, use the−ignore-checksumsoption. For example:srec_cat broken.srec −ignore-checksums −o fixed.srecThe checksums inbroken.srecare parsed (it is still and error if theyare absent) but are not checked. Theresultingfixed.srecfile has correct checksums.The−ignore-checksumsoption only applies to input.This option may be used on anyfile format which has checksums, including Intel hex.Discovering Mystery FormatsSee theWhat Format Is This?section, below, for howtodiscoverand convert mystery EPROM load fileformats.BINARYFILESIt is possible to convert to and from binary files. You can evenmix binary files and other formats togetherin the samesrec_cat(1) command.Writing Binary FilesThe simplest way of reading a hexfile and converting it to a binary file looks likethis:srec_cat fred.hex −o fred.bin −binaryThis reads the Motorola hexfilefred.srecand writes it out to thefred.binas rawbinary.Note that the data is placed into the binary file at the byte offset specified by the addresses in the hexfile.If there are holes in the data theyare filled with zero.This is, of course, common with linker output wherethe code is placed starting at a particular place in memory.For example, when you have animage thatstarts at 0x100000, the first 1MB of the output binary file will be zero.Youcan automatically cancel this offset using a command likesrec_cat fred.hex −offset−−minimum-addr fred.hex −o fred.binThe above command works by offsetting thefred.hexfile lower in memory by the least address in thefred.hexfile’sdata.See also thesrec_binary(5) man page for additional detail.Reading Binary FilesThe simplest way of reading a binary file and converting it looks likethissrec_cat fred.bin −binary −o fred.srecThis reads the binary filefred.binand writes all of its data back out again as a Motorola S-Record file.Often, this binary isn’texactly where you want it in the address space, because it is assumed to reside ataddress zero.If you need to move itaround use the−offsetfilter.srec_cat fred.bin −binary −offset 0x10000 −o fred.srecYoualso need to avoid file “holes” which are filled with zero.Youcan use the−cropfilter,ofyou coulduse the−unfillfilter if you don’tknowexactly where the data is.srec_cat fred.bin −binary −unfill 0x00 512 −o fred.srecThe above command removesruns of zero bytes that are 512 bytes long or longer.Ifyour file contains1GB of leading zero bytes, this is going to be slow, itmay be better to use thedd(1) command to slice anddice first.Reference ManualSRecord 39

srec_examples(1) GeneralCommands Manualsrec_examples(1)JOINING FILES TOGETHERThesrec_catcommand takes its name from the UNIXcat(1) command, which is short for “catenate” or “tojoin”. Thesrec_catcommand joins EPROM load files together.All In OneJoining EPROM load files together into a single file is simple, just name as manyfiles on the command lineas you need:srec_catinfile1 infile2−ooutfileThis example is all Motorola S-Record files, because that’sthe default format.Youcan have multipleformats in the one command, andsrec_cat(1) will still work. You don’tevenhav eto output the sameformat:srec_catinfile1−spectruminfile2−needham \−ooutfile−signeticsThese are all ancient formats, howeveritisn’tuncommon to have tomix and match Intel and Motorolaformats in the one project.Filtering After JoiningThere are times when you want to join twosets of data together,and then apply a filter to the joined result.To dothis you use parentheses.srec_cat \’(’ \infile−exclude 0xFFF0 0x10000\−generate 0xFFF0 0xFFF8 −repeat-string ’Bananas ’ \’)’ \−length-b-e 0xFFF8 4\−checksum-neg-b-e 0xFFFC 4 4\−ooutfileThe above example command catenates an input file (with the generated data area excluded) with aconstant string.This catenated input is then filtered to add a 4-byte length, and a 4-byte checksum.Joining End-to-EndAll too often the address ranges in the EPROM load files will overlap. You will get an error if theydo. Ifboth files start from address zero, because each goes into a separate EPROM, you may need to use theoffset filter:srec_catinfile1\infile2−offset 0x80000 \−ooutfileSometimes you want the twofiles to followeach other exactly,but you don’tknowthe offset in advance:srec_catinfile1\infile2−offset −maximum-addrinfile1\−ooutfileNotice that where the was a number (0x80000) before, there is nowacalculation (−maximum-addrinfile1).This is possible most places a number may be used (also −minimum-addr and −range).CROPPING THE DAT AIt is possible to copyanEPROM load file, selecting addresses to keep and addresses to discard.What ToKeepAcommon activity is to crop your data to match your EPROM location.Your linker may add other junkthat you are not interested in,e.g.at the RAM location.In this example, there is a 1MB EPROM at the2MB boundary:srec_catinfile−crop 0x200000 0x300000 \−ooutfileReference ManualSRecord 40

srec_examples(1) GeneralCommands Manualsrec_examples(1)The lower bound for all address ranges is inclusive,the upper bound is exclusive.Ifyou subtract them, youget the number of bytes.Address OffsetJust possibly,you have a moronic EPROM programmer,and it barfs if the EPROM image doesn’tstart atzero. Tofind out just where isdoesstart in memory,use thesrec_info(1) command:$srec_info example.srecFormat: Motorola S-RecordHeader: extra-whizz tool chain linkerExecution Start Address: 0x00200000Data: 0x200000−0x32AAEF$Rather than butcher the linker command file, just offset the addresses:srec_catinfile−crop 0x200000 0x300000 −offset−0x200000 \−ooutfileNote that the offset givenisnegative,ithas the effect of subtracting that value from all addresses in theinput records, to form the output record addresses.In this case, shifting the image back to zero.This example also demonstrates howthe input filters may be chained together: first the crop and then theoffset, all in one command, without the need for temporary files.If all you want to do is offset the data to start from address zero, this can be automated, so you don’thav etoknowthe minimum address in advance, by usingsrec_cat’s ability to calculate some things on thecommand line:srec_catinfile−offset−−minimum-addrinfile\−ooutfileNote the spaces either side of the minus sign, theyare mandatory.What ToThrow AwayThere are times when you need to exclude an small address range from an EPROM load file, rather thanwanting to keep a small address range.The−excludefilter may be used for this purpose.Forexample, if you wish to exclude the address range where the serial number of an embedded device iskept, say 0x20 bytes at 0x100, you would use a command likethis:srec_cat input.srec −exclude 0x100 0x120 −o output.srecTheoutput.srecfile will have a hole in the data at the necessary locations.Note that you can have both−cropand−excludeon the same command line, whicheverworks morenaturally for your situation.Discontinuous Address RangesAddress ranges don’thav eto be a single range, you can build up an address range using more than a singlepair.srec_catinfile−crop 0x100 0x200 0x1000 0x1200 \−ooutfileThis filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest isdropped. Thisis is more efficient than chaining a−cropand an−excludefilter together.MOVING THINGS AROUNDIt is also possible to change the address of data records, both forwards and backwards. Itis also possiblerearrange where data records are placed in memory.Offset FilterThe−offset=numberfilter operates on the addresses of records.If the number is positive the addressesmove that manybytes higher in memory,neg ative values move lower.Reference ManualSRecord 41

srec_examples(1) GeneralCommands Manualsrec_examples(1)srec_catinfile−crop 0x200000 0x300000 −offset−0x200000 \−ooutfileThe above example movesthe 1MB block of data at 0x200000 down to zero (the offset isnegative)anddiscards the rest of the data.Byte SwappingThere are times when the bytes in the data need to be swapped, converting between big-endian and little-endian data usually.srec_catinfile−byte-swap 4 −ooutfileThis reverses bytes in 32 bit values (4 bytes).The default, if you don’tsupply a width, is to reverse bytes in16 bit values (2 bytes).Youcan actually use anyweird value you like, it doesn’tevenhav eto be a power of2. Perhaps64 bits (8 bytes) may be useful one day.Binary OutputYouneed to watch out for binary files on output, because the holes are filled with zeros.Your 100kBprogram at the top of 32-bit addressed memory will makea4GB file. Seesrec_binary(5) for howunderstand and avoid this problem, usually with the−offsetfilter.Splitting an ImageIf you have a 16-bit data bus, but you are using two8-bit EPROMs to hold your firmware, you can generatethe evenand odd images by using the−SPlitfilter.Assuming your firmware is in thefirmware.hexfile, usethe following:srec_cat firmware.hex −split 2 0 −o firmware.even.hexsrec_cat firmware.hex −split 2 1 −o firmware.odd.hexThis will result in the twonecessary EPROM images.Note that the output addresses are divided by thesplit multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),you need to remove the offset, and then replace it...srec_cat firmware.hex \−offset−0x10000 −split 2 0 \−offset 0x10000 −o firmware.even.hexsrec_cat firmware.hex \−offset−0x10000 −split 2 1 \−offset 0x10000 −o firmware.odd.hexNote howthe ability to apply multiple filters simplifies what would otherwise be a much longer script.StripingAsecond use for the−SPlitfilter is memory striping.Youdon’thav eto split into byte-wide parts, you can choose other sizes.It is common to want to convert32-bit wide data into twoset of 16-bit wide data.srec_cat firmware.hex −split 4 0 2 −o firmware.01.hexsrec_cat firmware.hex −split 4 2 2 −o firmware.23.hexThis is relatively simple to understand, but you can use evenwider stripes.In this next example, the hardware requires that 512-byte blocks alternate between 4 EPROMs. Generatingthe 4 images would be done as follows:srec_cat firmware.hex −split 0x800 0x000 0x200 −o firmware.0.hexsrec_cat firmware.hex −split 0x800 0x200 0x200 −o firmware.1.hexsrec_cat firmware.hex −split 0x800 0x400 0x200 −o firmware.2.hexsrec_cat firmware.hex −split 0x800 0x600 0x200 −o firmware.3.hexAsymmetric StripingAmore peculiar example of striping is the Microchip dsPIC33F microcontroller,that has a weird memorystorage pattern and theyare able to store 3 bytes in an address that should only contain 2 bytes.The resultis a hexfile that has zero-filled the top byte (little-endian), and all addresses are doubled from what theyareReference ManualSRecord 42

srec_examples(1) GeneralCommands Manualsrec_examples(1)in the chip.Here is an example:S1130000000102000405060008090A000C0D0E0098S1130010101112001415160018191A001C1D1E00C8S1130020202122002425260028292A002C2D2E00F8S1130030303132003435360038393A003C3D3E0028To get rid of the 00 padding bytes, leaving only the 3/4 significant bytes, you also use the split filter,withits additionalwidthargument, likethis:srec_cat example.srec −split 4 0 3 −o no_dross.srecThis results in a file with the 00 padding bytes removed. Itlooks likethis:S113000000010204050608090A0C0D0E1011121451S1130010151618191A1C1D1E2021222425262829ECS11300202A2C2D2E30313234353638393A3C3D3E87Notice howthe addresses are 3/4 the size, as well.Youcan reverse this using the−unsplitand−fill=0filters.Unspliting ImagesThe unsplit filter may be used to reverse the effects of the split filter.Note that the address range isexpanded leaving holes between the stripes.By using all the stripes, the complete input is reassembled,without anyholes.srec_cat −o firmware.hex \firmware.even.hex −unsplit 2 0 \firmware.odd.hex −unsplit21The above example reverses the previous 16-bit data bus example. Ingeneral, you unsplit with the sameparameters that you split with.FILLING THE BLANKSOften EPROM load files will have “holes” in them, places where the compiler and linker did not putanything. For some purposes this is OK, and for other purposes something has to be done about the holes.The Fill FilterIt is possible to fill the blanks where your data does not lie.The simplest example of this fills the entireEPROM:srec_catinfile−fill 0x00 0x200000 0x300000 −ooutfileThis example fills the holes, if any, with zeros.Youmust specify a range − with a 32-bit address space,filling everything generateshugeload files.If you only want to fill the gaps in your data, and don’twant to fill the entire EPROM, try:srec_catinfile−fill 0x00 −overinfile−ooutfileThis example demonstrates the fact that whereveranaddress range may be specified, the−overand−withinoptions may be used.Unfilling the BlanksIt is common to need to “unfill” an EPROM image after you read it out of a chip.Usually,itwill have hadall the holes filled with 0xFF (areas of the EPROM you don’tprogram showas0xFF when you read themback).To get rid of all the 0xFF bytes in the data, use this filter:srec_catinfile−unfill 0xFF −ooutfileThis will get rid ofallthe 0xFF bytes, including the ones you actually wanted in there.There are twowaysto deal with this.First, you can specify a minimum run length to the un-fill:srec_catinfile−unfill 0xFF 5 −ooutfileThis says that runs of 1 to 4 bytes of 0xFF are OK, and that a hole should only be created for runs of 5 orReference ManualSRecord 43

srec_examples(1) GeneralCommands Manualsrec_examples(1)more 0xFF bytes in a row. The second method is to re-fill overthe intermediate gaps:srec_catoutfile−fill 0xFF −overoutfile\−ooutfile2Which method you choose depends on your needs, and the shape of the data in your EPROM. You mayneed to combine both techniques.Address Range PaddingSome data formats are 16 bits wide, and automatically fill with 0xFF bytes if it is necessary to fill out theother half of a word which is not in the data.If you need to fill with a different value, you can use acommand likethis:srec_catinfile−fill 0x0A \−withininfile−range-padding 2 \−ooutfileThis givesthe fill filter an address range calculated from details of the input file. Theaddress range is allthe address ranges covered by data in theinfile,extended downwards (if necessary) at the start of each sub-range to a 2 byte multiple and extended upwards (if necessary) at the end of each sub-range to a 2 bytemultiple. Thisalso works for larger multiples, like1kB page boundaries of flash chips.This address rangepadding works anywhere an address range is required.Fill with CopyrightIt is possible to fill unused portions of your EPROM with a repeating copyright message.Anyone trying toreverse engineer your EPROMs is going to see the copyright notice in their hexeditor.This is accomplished with twoinput sources, one from a data file, and one which is generated on-the-fly.srec_catinfile\−generate ’(’ 0 0x100000 −minus −withininfile’)’ \−repeat-string ’Copyright (C) 1812 Tchaikovsky.’\−ooutfileNotice the address range for the data generation: it takes the address range of your EPROM, in this case1MB starting from 0, and subtracts from it the address ranges used by the input file.If you want to script this with the current year (because 1812 is a bit out of date) use the shell’soutputsubstitution (back ticks) ability:srec_catinfile\−generate ’(’ 0 0x100000 −minus −withininfile’)’ \−repeat-string "Copyright (C) ‘date +%Y‘ Tchaikovsky."\−ooutfileThe string specified is repeated overand overagain, until it has filled all the holes.Obfuscating with NoiseSometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.Youcan do this with the−random-fillfilter.srec_catinfile−random-fill 0x200000 0x300000 \−ooutfileIt works just likethe−fillfilter,but uses random numbers instead of a constant byte value.Fill With 16-bit WordsWhen filling the image with a constant byte value doesn’twork, and you need a constant 16-bit word valueinstead, use the−repeat-datagenerator,which takes an arbitrarily long sequence of bytes to use as the fillpattern:srec_catinfile\−generator ’(’ 0x200000 0x300000 −minus −withininfile’)’ \−repeat-data 0x1B 0x08 \−ooutfileReference ManualSRecord 44

srec_examples(1) GeneralCommands Manualsrec_examples(1)Notice howthe generator’saddress range once again avoids the address ranges occupied by theinfile’s data.Youhav eto get the endian-ness right yourself.INSERTING CONSTANT DAT AFrom time to time you will want to insert constant data, or data not produced by your compiler orassembler,into your EPROM load images.Binary Means LiteralOne simple way is to have the desired information in a file. Toinsert the file’scontents literally,with noformat interpretation, use thebinaryinput format:srec_catinfile−binary −ooutfileIt will probably be necessary to use anoffsetfilter to move the data to where you actually want it within theimage:srec_catinfile−binary −offset 0x1234 −ooutfileIt is also possible to use the standard input as a data source, which lends itself to being scripted.Forexample, to insert the current date and time into an EPROM load file, you could use a pipe:date | srec_cat − −bin −offset 0xFFE3 −ooutfileThe special file name “−”means to read from the standard input.The output of thedatecommand isalways 29 characters long, and the offset shown will place it at the top of a 64KB EPROM image.Repeating OnceTheFill with Copyrightsection, above,shows howtorepeat a string overand over. Wecan use a singlerepeat to insert a string just once.srec_cat −generate 0xFFE3 0x10000 −repeat-string "‘date‘" \−ooutfileNotice howthe address range for the data generation exactly matches the length of thedate(1) output size.Youcan, of course, add your input file to the abovesrec_cat(1) command to catenate your EPROM imagetogether with the date and time.Inserting A LongAnother possibility is to add the Subversion commit number to your EPROM image.In this example, weare inserting it a a 4-byte little-endian value at address 0x0008.The Subversion commit number is in the$versionshell variable in this example:srec_cat −generate 0x0008 0x000C −constant-l-e $version 4 \infile−exclude 0x0008 0x000C \−ooutfileNote that we use a filter to ensure there is a hole in the input where the version number goes, just in casethe linker put something there.DATA ABOUT THE DAT AIt is possible to add a variety of data about the data to the output.ChecksumsThe−checksum-negative-big-endianfilter may be used to sum the data, and then insert the negative ofthesum into the data.This has the effect of summing to zero when the checksum itself is summed across,provided the sum width matches the inserted value width.srec_catinfile\−crop 0 0xFFFFFC \−random-fill 0 0xFFFFFC \−checksum-neg-b-e 0xFFFFFC 4 4 \−ooutfileIn this example, we have anEPROM in the lowest megabyte of memory.The −crop filter ensures we areonly summing the data within the EPROM, and not anywhere else.The −random-fill filter fills anyholesReference ManualSRecord 45

srec_examples(1) GeneralCommands Manualsrec_examples(1)left in the data with random values. Finally,the −checksum-neg-b-e filter inserts a 32 bit (4 byte)checksum in big-endian format in the last 4 bytes of the EPROM image.Naturally,there is a little-endianversion of this filter as well.Your embedded code can check the EPROM using C code similar to the following:unsigned long *begin = (unsigned long *)0;unsigned long *end = (unsigned long *)0x100000;unsigned long sum = 0;while (begin < end)sum += *begin++;if (sum != 0){Oops}The−checksum-bitnot-big-endianfilter is similar,except that summing overthe checksum should yield avalue of all-one-bits (−1). For example, using shorts rather than longs:srec_catinfile\−crop 0 0xFFFFFE \−fill 0xCC 0x00000 0xFFFFFE \−checksum-neg-b-e 0xFFFFFE 2 2 \−ooutfileAssuming you chose the correct endian-ness filter,your embedded code can check the EPROM using Ccode similar to the following:unsigned short *begin = (unsigned short *)0;unsigned short *end = (unsigned short *)0x100000;unsigned short sum = 0;while (begin < end)sum += *begin++;if (sum != 0xFFFF){Oops}There is also a−checksum-positive-b-efilter,and a matching little-endian filter,which inserts the simplesum, and which would be checked in C using an equality test.srec_catinfile\−crop 0 0xFFFFFF \−fill 0x00 0x00000 0xFFFFFF \−checksum-neg-b-e 0xFFFFFF 1 1 \−ooutfileAssuming you chose the correct endian-ness filter,your embedded code can check the EPROM using Ccode similar to the following:unsigned char *begin = (unsigned char *)0;unsigned char *end = (unsigned char *)0xFFFFF;unsigned char sum = 0;while (begin < end)sum += *begin++;if (sum != *end){Oops}In the 8-bit case, it doesn’tmatter whether you use the big-endian or little-endian filter.Reference ManualSRecord 46

srec_examples(1) GeneralCommands Manualsrec_examples(1)Quick Hex-DumpYoucan look at the checksum of your data, by using the “hex-dump” output format.This is useful forlooking at calculated values, or for debugging ansrec_cat(1) command before immortalizing it in a script.srec_catinfile\−crop 0 0x10000\−fill 0xFF 0x0000 0x10000\−checksum-neg-b-e 0x10000 4 \−crop 0x10000 0x10004\−o − −hex-dumpThis command reads in the file, checksums the data and places the checksum at 0x10000, crops the result tocontain only the checksum, and then prints the checksum on the standard output in a classical hexadecimaldump format.The special file name “−”means “the standard output” in this context.Cyclic Redundancy ChecksThe simple additive checksums have a number of theoretical limitations, to do with errors theycan andcan’tdetect. TheCRC methods have fewer problems.srec_catinfile\−crop 0 0xFFFFFC\−fill 0x00 0x00000 0xFFFFFC \−crc32-b-e 0xFFFFFC\−ooutfileIn the above example, we have anEPROM in the lowest megabyte of memory.The−cropfilter ensures weare only summing the data within the EPROM, and not anywhere else.The−fillfilter fills anyholes left inthe data.Finally,the−checksum-neg-b-efilter inserts a 32 bit (4 byte) checksum in big-endian format inthe last 4 bytes of the EPROM image.Naturally,there is a little-endian version of this filter as well.The checksum is calculated using the industry standard 32-bit CRC.Because SRecord is open source, youcan always read the source code to see howitworks. Thereare manynon-GPL versions of this codeavailable on the Internet, and suitable for embedding in proprietary firmware.There is also a 16-bit CRC available.srec_catinfile\−crop 0 0xFFFFFE\−fill 0x00 0x00000 0xFFFFFE \−crc16-b-e 0xFFFFFE\−ooutfileThe checksum is calculated using the CCITT formula.Because SRecord is open source, you can alwaysread the source code to see howitworks. Thereare manynon-GPL version of this code available on theInternet, and suitable for embedding in proprietary firmware.Youcan look at the CRC of your data, by using the “hex-dump” output format.srec_catinfile\−crop 0 0x10000\−fill 0xFF 0x0000 0x10000 \−crc16-b-e 0x10000\−crop 0x10000 0x10002\−o − −hex-dumpThis command reads in the file, calculates the CRC of the data and places the CRC at 0x10000, crops theresult to contain only the CRC, and then prints the checksum on the standard output in a classicalhexadecimal dump format.WhereIsMyData?There are several properties of your EPROM image that you may wish to insert into the data.srec_catinfile−minimum-b-e 0xFFFE 2 −ooutfileReference ManualSRecord 47

srec_examples(1) GeneralCommands Manualsrec_examples(1)The above example inserts the minimum address of the data (low water)into the data, as twobytes in big-endian order at address 0xFFFE.This includes the minimum itself.If the data already contains bytes at thegivenaddress, you need to use an exclude filter.The number of bytes defaults to 4.There is also a−minimum-l-efilter for inserting little-endian values, and twomore filters called−exclusive-minimum-b-eand−exclusive-minimum-l-ethat do not include the minimum itself in thecalculation of the minimum data address.srec_catinfile−maximum-b-e 0xFFFFFC 4 −ooutfileThe above example inserts the maximum address of the data (high water + 1,just likeaddress ranges) intothe data, as four bytes in big-endian order at address 0xFFFFFC.This includes the maximum itself.If thedata already contains bytes at the givenaddress, you need to use an−excludefilter.The number of bytesdefaults to 4.There is also a−maximum-l-efilter for inserting little-endian values, and twomore filters called−exclusive-maximum-b-eand−exclusive-maximum-l-ethat do not include the maximum itself in thecalculation of the maximum data address.srec_catinfile−length-b-e 0xFFFFFC 4 −ooutfileThe above example inserts the length of the data (high water+1−low water)into the data, as four bytes inbig-endian order at address 0xFFFFFC.This includes the length itself.If the data already contains bytes atthe length location, you need to use an−excludefilter.The number of bytes defaults to 4.There is also a−length-l-efilter for inserting a little-endian length, and the−exclusive-length-b-eand−exclusive-length-l-efilters that do not include the length itself in the calculation.What Format Is This?Youcan obtain a variety of information about an EPROM load file by using thesrec_info(1) command.Forexample:$srec_info example.srecFormat: Motorola S-RecordHeader: "http://srecord.sourceforge.net/"Execution Start Address: 00000000Data: 0000−01220456 − 0FFF$This example shows that the file is a Motorola S-Record.The text in the file header is printed, along withthe execution start address.The final section shows the address ranges containing data (the upper bound ofeach subrange isinclusive,rather than theexclusive form used on the command line.$srec_info some-weird-file.hex −guessFormat: SigneticsData: 0000−01220456 − 0FFF$The above example guesses the EPROM load file format.It isn’tinfallible but it usually gets it right.Youcan use−guessanywhere you would give anexplicit format, but it tends to be slower and for that reason isnot recommended.Also, for automated build systems, you want hard errors as early as possible; if a fileisn’tinthe expected format, you want it to barf.MANGLING THE DAT AIt is possible to change the values of the data bytes in several ways.srec_catinfile−and 0xF0 −ooutfileThe above example performs a bit-wise AND of the data bytes with the 0xF0 mask.The addresses ofrecords are unchanged.Ican’tactually think of a use for this filter.srec_catinfile−or 0x0F −ooutfileReference ManualSRecord 48

srec_examples(1) GeneralCommands Manualsrec_examples(1)The above example performs a bit-wise OR of the data bytes with the 0x0F bits.The addresses of recordsare unchanged.Ican’tactually think of a use for this filter.srec_catinfile−xor 0xA5 −ooutfileThe above example performs a bit-wise exclusive ORofthe data bytes with the 0xA5 bits.The addressesof records are unchanged.Youcould use this to obfuscate the contents of your EPROM.srec_catinfile−not −ooutfileThe above example performs a bit-wise NOTofthe data bytes.The addresses of records are unchanged.Security by obscurity?COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 49

srec_info(1) GeneralCommands Manualsrec_info(1)NAMEsrec_info − information about EPROM load filesSYNOPSISsrec_info[option...]filename...srec_info−Helpsrec_info−VERSionDESCRIPTIONThesrec_infoprogram is used to obtain input about EPROM load files. Itreads the files specified, and thenpresents statistics about them.These statistics include: the file header if any, the execution start address ifany, and the address ranges covered by the data if any.If there is binary data the header,itwill be presented using the URL encoding that uses % followed by twohexadeimal characters.Forexample a backspace would be encoded as “%08”.(This is symmetric with thesrec_cat --header opion).INPUT FILE SPECIFICATIONSInput may be qualified in twoways: you may specify a data file or a data generator.format and you mayspecify filters to apply to them.An input file specification looks likethis:data-file[filter...]data-generator[filter...]Data FilesInput from data files is specified by file name and format name.An input file specification looks likethis:filename[format][−ignore-checksums]The default format is Motorola S-Record format, butmanyothers are also understood.Data GeneratorsIt is also possible to generate data, rather than read it from a file. You may use a generator anywhere youcould use a file. Aninput generator specification looks likethis:−GENerateaddress-range−data-sourceGenerators include random data and various forms of constant data.Common Manual PageSeesrec_input(1) for complete details of input specifiers. Thisdescription is in a separate manual pagebecause it is common to more than one SRecord command.OPTIONSThe following options are understood:@filenameThe named text file is read for additional command line arguments. Arguments are separated bywhite space (space, tab, newline,etc). Thereis no wildcard mechanism.There is no quotingmechanism. Comments,which start with ’#’and extend to the end of the line, are ignored.Blank lines are ignored.−HelpProvide some help with using thesrec_infoprogram.−IGnore_ChecksumsThe−IGnore-Checksumsoption may be used to disable checksum validation of input files, forthose formats which have checksums at all.Note that the checksum values are still read in andparsed (so it is still an error if theyare missing) but their values are not checked. Usedafter aninput file name, the option affects that file alone; used anywhere else on the command line, itapplies to all following files.−Enable_Sequence_WarningsThis option may be used to enable warnings about input files where the data records are not instrictly ascending address order.Only one warning is issued per input file. Thisis the default.Reference ManualSRecord 50

srec_info(1) GeneralCommands Manualsrec_info(1)Note:the output ofsrec_cat(1) is always in this order.Note:This option must be usedbeforethe input file. Thisis because if there are several files onthe command line, each may need different settings.The setting remains in force until the next−Disable_Sequence_Warningsoption.−Disable_Sequence_WarningsThis option may be used to disable warnings about input files where the data records are not instrictly ascending address order.Note:This option must be usedbeforethe offending input file. Thisis because if there areseveral files on the command line, each may need different settings.The setting remains in forceuntil the next−Ensable_Sequence_Warningsoption.−MULTipleUse this option to permit a file to contain multiple (contradictory) values for some memorylocations. Awarning will be printed.The last value in the file will be used.The default is forthis condition to be a fatal error.−VERSionPrint the version of thesrec_infoprogram being executed.All other options will produce a diagnostic error.All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower caseletters and underscores (_) are optional.Youmust use consecutive sequences of optional letters.All options are case insensitive,you may type them in upper case or lower case or a combination of both,case is not important.Forexample: the arguments “−help”, “−HEL” and “−h” are all interpreted to mean the−Helpoption. Theargument “−hlp” will not be understood, because consecutive optional characters were not supplied.Options and other command line arguments may be mixed arbitrarily on the command line.The GNU long option names are understood.Since all option names forsrec_infoare long, this meansignoring the extra leading “−”.The “−−option=value”convention is also understood.EXIT STATUSThesrec_infocommand will exit with a status of 1 on anyerror.Thesrec_infocommand will only exitwith a status of 0 if there are no errors.COPYRIGHTsrec_infoversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_infoprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_info−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_info −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 51

srec_input(1) GeneralCommands Manualsrec_input(1)NAMEsrec_input − input file specificationsSYNOPSISsrec_*filename[format]DESCRIPTIONThis manual page describes the input file specifications for thesrec_cat(1),srec_cmp(1) andsrec_info(1)commands.Input files may be qualified in a number of ways: you may specify their format and you may specify filtersto apply to them.An input file specification looks likethis:filename[format][−ignore-checksums][filter...]Thefilenamemay be specified as a file name, or the special name “−” which is understood to mean thestandard input.Grouping with ParenthesesThere are some cases where operator precedence of the filters can be ambiguous.Input specifications mayalso be enclosed by(parentheses)to makegrouping explicit. Rememberthat the parentheses must beseparate words,i.e.surrounded by spaces, and theywill need to be quoted to get them past the shell’sinterpretation of parentheses.Those Option Names SureAre LongAll options may be abbreviated; the abbreviation is documented as the upper case letters, all lower caseletters and underscores (_) are optional.Youmust use consecutive sequences of optional letters.All options are case insensitive,you may type them in upper case or lower case or a combination of both,case is not important.Forexample: the arguments “−help”, “−HEL” and “−h” are all interpreted to mean the−Helpoption. Theargument “−hlp” will not be understood, because consecutive optional characters were not supplied.Options and other command line arguments may be mixed arbitrarily on the command line.The GNU long option names are understood.Since all option names forsrec_inputare long, this meansignoring the extra leading “−”.The “−−option=value”convention is also understood.File FormatsTheformatis specified by the argumentafterthe file name.The format defaults to Motorola S-Record ifnot specified. Theformat specifiers are:−Absolute_Object_Module_FormatThis option says to use the Intel Absolute Object Module Format (AOMF) to read the file. (Seesrec_aomf(5) for a description of this file format.)−Ascii_HexThis option says to use the Ascii-Hexformat to read the file. Seesrec_ascii_hex(5) for adescription of this file format.−Atmel_GenericThis option says to use the Atmel Generic format to read the file. Seesrec_atmel_genetic(5) foradescription of this file format.−BinaryThis option says the file is a rawbinary file, and should be read literally.(This option may alsobe written −Raw.)Seesrec_binary(5) for more information.−B-RecordThis option says to use the Freescale MC68EZ328 Dragonball bootstrap b-record format to readthe file. Seesrec_brecord(5) for a description of this file format.Reference ManualSRecord 52

srec_input(1) GeneralCommands Manualsrec_input(1)−COsmacThis option says to use the RCA Cosmac Elf format to read the file. Seesrec_cosmac(5) for adescription of this file format.−Dec_BinaryThis option says to use the DEC Binary (XXDP) format to read the file. Seesrec_dec_binary(5)for a description of this file format.−Elektor_Monitor52This option says to use the EMON52 format to read the file. Seesrec_emon52(5) for adescription of this file format.−FAIrchildThis option says to use the Fairchild Fairbug format to read the file. Seesrec_fairchild(5) for adescription of this file format.−Fast_LoadThis option says to use the LSI Logic Fast Load format to read the file. Seesrec_fastload(5) foradescription of this file format.−Formatted_BinaryThis option says to use the Formatted Binary format to read the file. Seesrec_formatted_binary(5) for a description of this file format.−Four_Packed_CodeThis option says to use the FPC format to read the file. Seesrec_fpc(5) for a description of thisfile format.−GuessThis option may be used to ask the command to guess the input format.This is slower thanspecifying an explicit format, as it may open and scan and close the file a number of times.−HEX_DumpThis option says to try to read a hexadecimal dump file, more or less in the style output by thesame option.This is not an exact reverse mapping, because if there are ASCII equivalents on theright hand side, these may be confused for data bytes.Also, it doesn’tunderstand white spacerepresenting holes in the data in the line.−IDTThis option says to the the IDT/sim binary format to read the file. Seesrec_idt(5) for adescription of this file format.−IntelThis option says to use the Intel hexformat to read the file. Seesrec_intel(5) for a description ofthis file format.−INtel_HeX_16This option says to use the Intel hex16(INHX16) format to read the file. Seesrec_intel16(5) foradescription of this file format.−Memory_Initialization_FileThis option says to use the Memory Initialization File (MIF) format by Altera to read the file.Seesrec_mif(5) for a description of this file format.−Mips_Flash_Big_Endian−Mips_Flash_Little_EndianThese options say to use the MIPS Flash file format to read the file. Seesrec_mips_flash(5) for adescription of this file format.−MOS_TechnologiesThis option says to use the Mos Technologies format to read the file. Seesrec_mos_tech(5) for adescription of this file format.−Motorola[width]This option says to use the Motorola S-Record format to read the file. (Maybe written−S-Recordas well.)Seesrec_motorola(5) for a description of this file format.Reference ManualSRecord 53

srec_input(1) GeneralCommands Manualsrec_input(1)The optionalwidthargument describes the number of bytes which form each address multiple.Fornormal uses the default of one (1) byte is appropriate.Some systems with 16-bit or 32-bittargets mutilate the addresses in the file; this option will correct for that.Unlikemost otherparameters, this one cannot be guessed.−MsBinThis option says to use the Windows CE Binary Image Data Format to read the file. Seesrec_msbin(5) for a description of this file format.−Needham_HexadecimalThis option says to use the Needham Electronics ASCII file format to read the file. Seesrec_needham(5) for a description of this file format.−Ohio_ScientificThis option says to use the Ohio Scientific format.Seesrec_os65v(5) for a description of this fileformat.−PPBThis option says to use the Stag Prom Programmer binary format.Seesrec_ppb(5) for adescription of this file format.−PPXThis option says to use the Stag Prom Programmer hexadecimal format.Seesrec_ppx(5) for adescription of this file format.−SIGneticsThis option says to use the Signetics format.Seesrec_spasm(5) for a description of this fileformat.−SPAsmThis is a synonym for the−SPAsm_Big_Endianoption.−SPAsm_Big_EndianThis option says to use the SPASM assembler output format (commonly used by PICprogrammers). Seesrec_spasm(5) for a description of this file format.−SPAsm_Little_EndianThis option says to use the SPASM assembler output format, but with the data the other wayaround.−STewieThis option says to use the Stewie binary format to read the file. Seesrec_stewie(5) for adescription of this file format.−TektronixThis option says to use the Tektronix hexformat to read the file. Seesrec_tektronix(5) for adescription of this file format.−Tektronix_ExtendedThis option says to use the Tektronix extended hexformat to read the file. Seesrec_tektronix_extended(5) for a description of this file format.−Texas_Instruments_TaggedThis option says to use the Texas Instruments Tagged format to read the file. Seesrec_ti_tagged(5) for a description of this file format.−Texas_Instruments_Tagged_16This option says to use the Texas Instruments SDSMAC320 format to read the file. Seesrec_ti_tagged_16(5) for a description of this file format.−Texas_Instruments_TeXTThis option says to use the Texas Instruments TXT (MSP430) format to read the file. Seesrec_ti_txt(5) for a description of this file format.−TRS80This option says to use the Radio Shack TRS-80 object file format to read the file. Seesrec_trs80(5) for a description of this file format.Reference ManualSRecord 54

srec_input(1) GeneralCommands Manualsrec_input(1)−VMemThis option says to use the Verilog VMEM format to read the file. Seesrec_vmem(5) for adescription of this file format.−WILsonThis option says to use the wilson format to read the file. Seesrec_wilson(5) for a description ofthis file format.IgnoreChecksumsThe−IGnore-Checksumsoption may be used to disable checksum validation of input files, for thoseformats which have checksums at all.Note that the checksum values are still read in and parsed (so it isstill an error if theyare missing) but their values are not checked. Usedafter an input file name, the optionaffects that file alone; used anywhere else on the command line, it applies to all following files.GeneratorsIt is also possible to generate data, rather than read it from a file. You may use a generator anywhere youcould use a file. Aninput generator specification looks likethis:−GENerateaddress-range−data-sourceThe−data-sourcemay be one of the following:−CONSTantbyte-valueThis generator manufactures data with the givenbyte value of the the givenaddress range.It isan error if the byte-value is not in the range 0..255.Forexample, to fill memory addresses 100..199 with newlines (0x0A), you could use a commandlikesrec_cat −generate 100 200 −constant 10 −o newlines.srecThis can, of course, be combined with data from files.−REPeat_Databyte-value...This generator manufactures data with the givenbyte values repeating overthe the givenaddressrange. Itis an error if anyofthe the byte-values are not in the range 0..255.Forexample, to create a data region with 0xDE in the evenbytes and 0xAD in the odd bytes, useagenerator likethis:srec_cat −generate 0x1000 0x2000 −repeat-data 0xDE 0xADThe repeat boundaries are aligned with the base of the address range, modulo the number ofbytes.−REPeat_StringtextThis generator is almost identical to −repeat-data except that the data to be repeated is the text ofthe givenstring.Forexample, to fill the holes in an EPROM imageeprom.srecwith the text “Copyright (C) 1812Tchaikovsky”, combine a generator and an −exclude filter,such as the commandIf you need to inject binary data into the string (e.g. a terminating NUL character), use the URLencoding that uses % followed by twohexadeimal characters.Forexample a backspace would beencoded as “%08”.srec_cat eprom.srec \−generate 0 0x100000 \−repeat-string ’Copyright (C) 1812 Tchaikovsky. ’ \−exclude −within eprom.srec \−o eprom.filled.srecThe thing to note is that we have two data sources: theeprom.srecfile, and generated data overanaddress range which covers first megabyte of memory but excluding areas covered by theeprom.srecdata.Reference ManualSRecord 55

srec_input(1) GeneralCommands Manualsrec_input(1)−CONSTant_Little_Endianvalue widthThis generator manufactures data with the givennumeric value, of a givenbyte width, in little-endian byte order.Itisanerror if the givenvalue does not fit into the givenbyte width.It willrepeat overand overwithin the address range range.Forexample, to insert a subversion commit number into 4 bytes at 0x0008..0x000B you woulduse a command likesrec_cat −generate 8 12 −constant-l-e $VERSION 4 \−o version.srecThis generator is a convenience wrapper around the−REPeat_Datagenerator.Itcan, of course,be combined with data from files.−CONSTant_Big_Endianvalue widthAs above,but using big-endian byte ordering.Anything else will result in an error.Input FiltersYoumay specify zero or morefiltersto be applied.Filters are applied in the order the user specifies.−Adler_16_Big_EndianaddressThis filter may be used to insert an “Adler” 16-bit checksum of the data into the data.Tw obytes,big-endian order,are inserted at the address given. Holesin the input data are ignored.Bytes areprocessed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Adler checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Adler checksum filters. You willreceive a warning if the data presented for Adler checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Adler-32−Adler_16_Little_EndianaddressThis filter may be used to insert an Adler 16-bit checksum of the data into the data.Tw obytes, inlittle-endian order,are inserted at the address given. Holesin the input data are ignored.Bytesare processed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Adler checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Adler filters. You will receive awarning if the data presented for Adler checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Adler-32−Adler_32_Big_EndianaddressThis filter may be used to insert a Adler 32-bit checksum of the data into the data.Four bytes,big-endian order,are inserted at the address given. Holesin the input data are ignored.Bytes areprocessed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Adler checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Adler checksum filters. You willreceive a warning if the data presented for Adler checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asReference ManualSRecord 56

srec_input(1) GeneralCommands Manualsrec_input(1)the lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Adler-32−Adler_32_Little_EndianaddressThis filter may be used to insert a Adler 32-bit checksum of the data into the data.Four bytes, inlittle-endian order,are inserted at the address given. Holesin the input data are ignored.Bytesare processed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Adler checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Adler checksum filters. You willreceive a warning if the data presented for Adler checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Adler-32−ANDvalueThis filter may be used to bit-wise AND avalueto every data byte.This is useful if you need toclear bits.Only existing data is altered, no holes are filled.−Bit_Reverse[width]This filter may be used to reverse the order of the bits in each data byte.By specifying a width(in bytes) it is possible to reverse the order multi-byte values; this is implemented using the byte-swap filter.−Byte_Swap[width]This filter may be used to swap pairs of odd and evenbytes. Byspecifying a width (in bytes) it ispossible to reverse the order of 4 and 8 bytes, the default is 2 bytes.(Widths in excess of 8 areassumed to be number of bits.)It is not possible to swap non-power-of-twoaddresses. Tochange the alignment, use the offset filter before and after.−Checksum_BitNot_Big_Endianaddress[nbytes[width]]This filter may be used to insert the one’scomplement checksum of the data into the data, mostsignificant byte first. Thedata is literally summed; if there are duplicate bytes, this will producean incorrect result, if there are holes, it will be as if theywere filled with zeros.If the dataalready contains bytes at the checksum location, you need to use an exclude filter,orthis willgenerate errors.Youneed to apply and crop or fill filters before this filter.The value will bewritten with the most significant byte first. Thenumber of bytes of resulting checksum defaultsto 4.The width (the width in bytes of the values being summed) defaults to 1.−Checksum_BitNot_Little_Endianaddress[nbytes[width]]This filter may be used to insert the one’scomplement (bitnot) checksum of the data into the data,least significant byte first. Otherwisesimilar to the above.−Checksum_Negative_Big_Endianaddress[nbytes[width]]This filter may be used to insert the two’scomplement (negative)checksum of the data into thedata. Otherwisesimilar to the above.−Checksum_Negative_Little_Endianaddress[nbytes[width]]This filter may be used to insert the two’scomplement (negative)checksum of the data into thedata. Otherwisesimilar to the above.−Checksum_Positive_Big_Endianaddress[nbytes[width]]This filter may be used to insert the simple checksum of the data into the data.Otherwise similarto the above.Reference ManualSRecord 57

srec_input(1) GeneralCommands Manualsrec_input(1)−Checksum_Positive_Little_Endianaddress[nbytes[width]]This filter may be used to insert the simple checksum of the data into the data.Otherwise similarto the above.−CRC16_Big_Endianaddress[modifier...]This filter may be used to insert an industry standard 16-bit CRC checksum of the data into thedata. Two bytes, big-endian order,are inserted at the address given. Holesin the input data areignored. Bytesare processed in ascending address order (notin the order theyappear in theinput).The following additional modifiers are understood:numberSet the polynomial to be used to the givennumber.−POLYnomialnameThis option may be used to set the CRC polynomial to be used, by name.The knownnames include:ibm 0x8005ansi 0x8005ccitt 0x1021t10-dif 0x8bb7dnp 0x3d65dect 0x0589See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names andvalues.−Most_To_LeastThe CRC calculation is performed with the most significant bit in each byte processedfirst, and then proceeding towards the least significant bit.This is the default.−Least_To_MostThe CRC calculation is performed with the least significant bit in each byte processedfirst, and then proceeding towards the most significant bit.−CCITTThe CCITT calculation is performed.The initial seed is 0xFFFF.This is the default.−XMODEMThe alternate XMODEM calculation is performed.The initial seed is 0x0000.−BROKENAcommon-but-broken calculation is performed (see note 2 below). Theinitial seed is0x84CF.−AUGmentThe CRC is augmented by sixteen zero bits at the end of the calculation.This is thedefault.−No-AUGmentThe CRC is not augmented at the end of the calculation.This is less standardconforming, but some implementations do this.Note:If you have holes in your data, you will get a different CRC than if there were no holes.This is important because the in-memory EPROM image will not have holes. You almost alwayswant to use the−fillfilter before anyofthe CRC filters. You will receive a warning if the datapresented for CRC has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.Note 2:there are a great manyCRC16 implementations out there, see http://www.joegeluso.com-Reference ManualSRecord 58

srec_input(1) GeneralCommands Manualsrec_input(1)/software/articles/ccitt.htm (nowgone, reproduced at http://srecord.sourceforge.net-/crc16−ccitt.html) and “Apainless guide to CRC error detection algorithms”http://www.repairfaq.org/filipg/LINK/F_crc_v3.html for more information.If all else fails,SRecord is open source software: read the SRecord source code.The CRC16 source code (foundin thesrecord/crc16.ccfile of the distribution tarball) has a great manyexplanatorycomments.Please try all twelvecombinations of the above options before reporting a bug in the CRC16calculation.−CRC16_Little_Endianaddress[modifier...]The same as the−CRC16_Big_Endianfilter,except in little-endian byte order.−CRC32_Big_Endianaddress[modifier...]This filter may be used to insert an industry standard 32-bit CRC checksum of the data into thedata. Four bytes, big-endian order,are inserted at the address given. Holesin the input data areignored. Bytesare processed in ascending address order (notin the order theyappear in theinput). Seealso the note about holes, above.The following additional modifiers are understood:−CCITTThe CCITT calculation is performed.The initial seed is all one bits.This is thedefault.−XMODEMAn alternate XMODEM-style calculation is performed.The initial seed is all zero bits.−CRC32_Little_EndianaddressThe same as the−CRC32_Big_Endianfilter,except in little-endian byte order.−Cropaddress-rangeThis filter may be used to isolate a section of data, and discard the rest.−Excludeaddress-rangeThis filter may be used to exclude a section of data, and keep the rest.The is the logicalcomplement of the−Cropfilter.−Exclusive_Length_Big_Endianaddress[nbytes[width]]The same as the−Length_Big_Endianfilter,except that the result doesnotinclude the lengthitself.−Exclusive_Length_Little_Endianaddress[nbytes[width]]The same as the−Length_Little_Endianfilter,except that the result doesnotinclude the lengthitself.−Exclusive_MAXimum_Big_Endianaddress[nbytes]The same as the−MAXimum_Big_Endianfilter,except that the result doesnotinclude themaximum itself.−Exclusive_MAXimum_Little_Endianaddress[nbytes]The same as the−MAXimum_Little_Endianfilter,except that the result doesnotinclude themaximum itself.−Exclusive_MINimum_Big_Endianaddress[nbytes]The same as the−MINimum_Big_Endianfilter,except that the result doesnotinclude theminimum itself.−Exclusive_MINimum_Little_Endianaddress[nbytes]The same as the−MINimum_Little_Endianfilter,except that the result doesnotinclude theminimum itself.Reference ManualSRecord 59

srec_input(1) GeneralCommands Manualsrec_input(1)−eXclusive-ORvalueThis filter may be used to bit-wise XOR avalueto every data byte.This is useful if you need toinvert bits.Only existing data is altered, no holes are filled.−Fillvalue address-rangeThis filter may be used to fill anygaps in the data with bytes equal tovalue.The fill will onlyoccur in the address range given.−Fletcher_16_Big_Endianaddress[sum1 sum2[answer]]This filter may be used to insert an Fletcher 16-bit checksum of the data into the data.Tw obytes,big-endian order,are inserted at the address given. Holesin the input data are ignored.Bytes areprocessed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Fletcher checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Fletcher checksum filters. You willreceive a warning if the data presented for Fletcher checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Fletcher%27s_checksumIt is possible to select seed values forsum1andsum2in the algorithm, by adding seed values onthe command line.Theyeach default to 0xFF if not explicitly stated.The default values (0)means that an empty EPROM (all 0x00 or all 0xFF) will sum to zero; by changing the seeds, anempty EPROM will always fail.The third optional argument is the desired sum, when the checksum itself is summed.Acommonvalue is 0x0000, placed in the last twobytes of an EPROM, so that the Fletcher 16 checksum ofthe EPROM is exactly 0x0000.No manipulation of the final value is performed if this value ifnot specified.−Fletcher_16_Little_EndianaddressThis filter may be used to insert an Fletcher 16-bit checksum of the data into the data.Tw obytes,in little-endian order,are inserted at the address given. Holesin the input data are ignored.Bytesare processed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Fletcher checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Fletcher filters. You will receive awarning if the data presented for Fletcher checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Fletcher%27s_checksum−Fletcher_32_Big_EndianaddressThis filter may be used to insert a Fletcher 32-bit checksum of the data into the data.Four bytes,big-endian order,are inserted at the address given. Holesin the input data are ignored.Bytes areprocessed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Fletcher checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Fletcher checksum filters. You willreceive a warning if the data presented for Fletcher checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.Reference ManualSRecord 60

srec_input(1) GeneralCommands Manualsrec_input(1)http://en.wikipedia.org/wiki/Fletcher%27s_checksum−Fletcher_32_Little_EndianaddressThis filter may be used to insert a Fletcher 32-bit checksum of the data into the data.Four bytes,in little-endian order,are inserted at the address given. Holesin the input data are ignored.Bytesare processed in ascending address order (notin the order theyappear in the input).Note:If you have holes in your data, you will get a different Fletcher checksum than if there wereno holes.This is important because the in-memory EPROM image will not have holes. Youalmost always want to use the−fillfilter before anyofthe Fletcher checksum filters. You willreceive a warning if the data presented for Fletcher checksum has holes.Youshould also be aware that the lower and upper bounds of your data may not be the same asthe lower and upper bounds of your EPROM. Thisis another reason to use the−fillfilter,because it will establish the data across the full EPROM address range.http://en.wikipedia.org/wiki/Fletcher%27s_checksum−Length_Big_Endianaddress[nbytes[width]]This filter may be used to insert the length of the data (high water minus lowwater) into the data.This includes the length itself.If the data already contains bytes at the length location, you needto use an exclude filter,orthis will generate errors.The value will be written with the mostsignificant byte first. Thenumber of bytes defaults to 4.The width defaults to 1, and is dividedinto the actual length, thus you can insert the width in units of words (2) or longs (4).−Length_Little_Endianaddress[nbytes[width]]The same as the−Length_Big_Endianfilter,except the value will be written with the leastsignificant byte first.−MAXimum_Big_Endianaddress[nbytes]This filter may be used to insert the maximum address of the data (high water+1)into the data.This includes the maximum itself.If the data already contains bytes at thegivenaddress, you need to use an exclude filter,orthis will generate errors.The value will bewritten with the most significant byte first. Thenumber of bytes defaults to 4.−MAXimum_Little_Endianaddress[nbytes]The same as the−MAXimum_Big_Endianfilter,except the value will be written with the leastsignificant byte first.−Message_Digest_5addressThis filter may be used to insert a 16 byte MD5 hash into the data, at the address given.−MINimum_Big_Endianaddress[nbytes]This filter may be used to insert the minimum address of the data (lowwater) into the data.Thisincludes the minimum itself.If the data already contains bytes at the givenaddress, you need touse an exclude filter,orthis will generate errors.The value will be written with the mostsignificant byte first. Thenumber of bytes defaults to 4.−MINimum_Little_Endianaddress[nbytes]The same as the−MINimum_Big_Endianfilter,except the value will be written with the leastsignificant byte first.−NOTThis filter may be used to bit-wise NOTthe value of every data byte.This is useful if you need toinvert the data.Only existing data is altered, no holes are filled.−OFfsetnbytesThis filter may be used to offset the addresses by the givennumber of bytes.No data is lost, theaddresses will wrap around in 32 bits, if necessary.You may use negative numbers for the offset,if you wish to move data lower in memory.Please note: the execution start address is a different concept than the first address in memory ofyour data.If you want to change where your monitor will start executing, use the−execution-start-addressoption (srec_cat(1) only).Reference ManualSRecord 61

srec_input(1) GeneralCommands Manualsrec_input(1)−ORvalueThis filter may be used to bit-wise OR avalueto every data byte.This is useful if you need to setbits. Onlyexisting data is altered, no holes are filled.−Random_Filladdress-rangeThis filter may be used to fill anygaps in the data with random bytes.The fill will only occur inthe address range given.−Ripe_Message_Digest_160addressThis filter may be used to insert an RMD160 hash into the data.−Secure_Hash_Algorithm_1addressThis filter may be used to insert a 20 byte SHA1 hash into the data, at the address given.−Secure_Hash_Algorithm_224addressThis filter may be used to insert a 28 byte SHA224 hash into the data, at the address given. SeeChange Notice 1 for FIPS 180-2 for the specification.−Secure_Hash_Algorithm_256addressThis filter may be used to insert a 32 byte SHA256 hash into the data, at the address given. SeeFIPS 180-2 for the specification.−Secure_Hash_Algorithm_384addressThis filter may be used to insert a 48 byte SHA384 hash into the data, at the address given. SeeFIPS 180-2 for the specification.−Secure_Hash_Algorithm_512addressThis filter may be used to insert a 64 byte SHA512 hash into the data, at the address given. SeeFIPS 180-2 for the specification.−SPlitmultiple[offset[width]]This filter may be used to split the input into a subset of the data, and compress the address rangeso as to leave nogaps. Thisuseful for wide data buses and memory striping.Themultipleis thebytes multiple to split over, theoffsetis the byte offset into this range (defaults to 0), thewidthisthe number of bytes to extract (defaults to 1) within the multiple.In order to leave nogaps, theoutput addresses are (width/multiple)times the input addresses.−STM32addressThis is a synonym for the−STM32_Little_Endianfilter.−STM32_Little_Endianaddress−STM32_Big_EndianaddressThese filters manybeuse to generate the CRC used by the hardware CRC unit on the STM32series of ARM MPUs.The algorithm used by the STM32 hardware unit is just a CRC32 with adifferent polynomial and word-fed instead of byte-fed.Theaddressis where to place the 4-byte STM32 CRC.The CRC used is documented in “RM0041, STM32F100xx reference manual”, page 46, chapter“CRC Calculation Unit”, which can be found athttp://www.st.com/internet/mcu/product/216844.jsp−TIGeraddressThis filter may be used to insert a 24 byte TIGER/192 hash into the data at the address given.−UnFillvalue[min-run-length]This filter may be used to create gaps in the data with bytes equal tovalue.You can think of it asreversing the effects of the−Fillfilter.The gaps will only be created if the are at leastmin-run-lengthbytes in a row(defaults to 1).−Un_SPlitmultiple[offset[width]]This filter may be used to reverse the effects of the split filter.The arguments are identical.Notethat the address range is expanded (multiple/width)times, leaving holes between the stripes.Reference ManualSRecord 62

srec_input(1) GeneralCommands Manualsrec_input(1)−WHIrlpooladdressThis filter may be used to insert a 64 byte WHIRLPOOL hash into the data, at the address given.Address RangesThere are eight ways to specify an address range:minimum maximumIf you specify twonumber on the command line (decimal, octal and hexadecimal are understood,using the C conventions) this is an explicit address range.The minimum is inclusive,themaximum is exclusive (one more than the last address).If the maximum is givenaszero then therange extends to the end of the address space.−Withininput-specificationThis says to use the specified input file as a mask.The range includes all the places the specifiedinput has data, and holes where it has holes.The input specification need not be just a file name,it may be anything anyother input specification can be.See also the−overoption for a discussion on operator precedence.−OVERinput-specificationThis says to use the specified input file as a mask.The range extends from the minimum to themaximum address used by the input, without anyholes, evenifthe input has holes.The inputspecification need not be just a file name, it may be anything anyother input specification can be.Youmay need to encloseinput-specificationin parentheses to makesure it can’tmisinterpretwhich arguments go with which input specification. Thisis particularly important when a filter isto follow. For examplefilename−fill 0 −overfilename2−swap-bytesgroups asfilename−fill 0 −over’(’filename2−swap-bytes ’)’when what you actually wanted was’(’filename−fill 0 −overfilename2’)’ −swap-bytesThe command line expression parsing tends to be “greedy” (or right associative)rather thanconservative (or left associative).address-range−RAnge-PADdingnumberIt is also possible to pad ranges to be whole aligned multiples of the givennumber.For exampleinput-file−fill 0xFF −withininput-file−range-pad 512will fill theinput-fileso that it consists of whole 512-byte blocks, aligned on 512 byte boundaries.Anylarge holes in the data will also be multiples of 512 bytes, though theymay have been shrunkas blocks before and after are padded.This operator has the same precedence as the explicit union operator.address-range−INTERsectaddress-rangeYoucan intersect twoaddress ranges to produce a smaller address range.The intersectionoperator has higher precedence than the implicit union operator (evaluated left to right).address-range−UNIonaddress-rangeYoucan union twoaddress ranges to produce a larger address range.The union operator haslower precedence than the intersection operator (evaluated left to right).address-range−DIFferenceaddress-rangeYoucan difference twoaddress ranges to produce a smaller address range.The result is the lefthand range with all of the right hand range removed. Thedifference operator has the sameprecedence as the implicit union operator (evaluated left to right).address-rangeaddress-rangeIn addition, all of these methods may be used, and used more than once, and the results will becombined (implicit union operator,same precedence as explicit union operator).Reference ManualSRecord 63

srec_input(1) GeneralCommands Manualsrec_input(1)Calculated ValuesMost of the places above where a number is expected, you may supply one of the following:−valueThe value of this expression is the negative ofthe expression argument. Notethespacebetweenthe minus sign and its argument: this space is mandatory.srec_cat in.srec −offset−−minimum-addr in.srec −oout.srecThis example shows howtomove data to the base of memory.(value)Youmay use parentheses for grouping.When using parentheses, theymust each be a separatecommand line argument, theycan’tbewithin the text of the preceding or following option, andyou will need to quote them to get them past the shell, such as’(’and’)’.−MINimum-Addressinput-specificationThis inserts the minimum address of the specified input file. Theinput specification need not bejust a file name, it may be anything anyother input specification can be.See also the−overoption for a discussion on operator precedence.−MAXimum-Addressinput-specificationThis inserts the maximum address of the specified input file, plus one.The input specificationneed not be just a file name, it may be anything anyother input specification can be.See also the−overoption for a discussion on operator precedence.−Lengthinput-specificationThis inserts the length of the address range in the specified input file, ignoring anyholes. Theinput specification need not be just a file name, it may be anything anyother input specificationcan be.See also the−overoption for a discussion on operator precedence.Forexample, the−OVERinput-specificationoption can be thought of as short-hand for’(’ −minfile−maxfile’)’,except that it is much easier to type, and also more efficient.In addition, calculated values may optionally be rounded in one of three ways:value−Round_DownnumberThevalueis rounded down to the the largest integer smaller than or equal to a whole multiple ofthenumber.value−Round_NearestnumberThevalueis rounded to the the nearest whole multiple of thenumber.value−Round_UpnumberThevalueis rounded up to the the smallest integer larger than or equal to a whole multiple of thenumber.When using parentheses, theymust each be a separate command line argument, theycan’tbewithin thetext of the preceding or following option, and you will need to quote them to get them past the shell, as’(’and’)’.COPYRIGHTsrec_inputversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_inputprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_input−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_input −VERSion License’command.Reference ManualSRecord 64

srec_input(1) GeneralCommands Manualsrec_input(1)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 65

GPL(GNU) FreeSoftware Foundation GPL(GNU)GNU GENERAL PUBLIC LICENSEVersion 3, 29 June 2007Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copyanddistribute verbatim copies of this license document, but changing it is not allowed.PreambleThe GNU General Public License is a free, copyleft license for software and other kinds of works.The licenses for most software and other practical works are designed to takeawayyour freedom to shareand change the works. Bycontrast, the GNU General Public License is intended to guarantee your freedomto share and change all versions of a program − to makesure it remains free software for all its users.We,the Free Software Foundation, use the GNU General Public License for most of our software; it applies alsoto anyother work released this way by its authors.Youcan apply it to your programs, too.When we speak of free software, we are referring to freedom, not price.Our General Public Licenses aredesigned to makesure that you have the freedom to distribute copies of free software (and charge for themif you wish), that you receive source code or can get it if you want it, that you can change the software oruse pieces of it in newfree programs, and that you knowyou can do these things.To protect your rights, we need to prevent others from denying you these rights or asking you to surrenderthe rights.Therefore, you have certain responsibilities if you distribute copies of the software, or if youmodify it: responsibilities to respect the freedom of others.Forexample, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to therecipients the same freedoms that you received. You must makesure that they, too, receive orcan get thesource code.And you must showthem these terms so theyknowtheir rights.Developers that use the GNU GPL protect your rights with twosteps: (1) assert copyright on the software,and (2) offer you this License giving you legalpermission to copy, distribute and/or modify it.Forthe developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this freesoftware. For both users’ and authors’ sake, the GPL requires that modified versions be marked aschanged, so that their problems will not be attributed erroneously to authors of previous versions.Some devices are designed to denyusers access to install or run modified versions of the software insidethem, although the manufacturer can do so.This is fundamentally incompatible with the aim of protectingusers’ freedom to change the software. Thesystematic pattern of such abuse occurs in the area of productsfor individuals to use, which is precisely where it is most unacceptable.Therefore, we have designed thisversion of the GPL to prohibit the practice for those products.If such problems arise substantially in otherdomains, we stand ready to extend this provision to those domains in future versions of the GPL, as neededto protect the freedom of users.Finally,every program is threatened constantly by software patents.States should not allowpatents torestrict development and use of software on general-purpose computers, but in those that do, we wish toavoid the special danger that patents applied to a free program could makeiteffectively proprietary.Toprevent this, the GPL assures that patents cannot be used to render the program non-free.GNU GPL66

GPL(GNU) FreeSoftware Foundation GPL(GNU)The precise terms and conditions for copying, distribution and modification follow.TERMS AND CONDITIONS0. Definitions.“This License” refers to version 3 of the GNU General Public License.“Copyright” also means copyright-likelawsthat apply to other kinds of works, such as semiconductormasks.“The Program” refers to anycopyrightable work licensed under this License.Each licensee is addressed as“you”. “Licensees”and “recipients” may be individuals or organizations.To “modify” a work means to copyfrom or adapt all or part of the work in a fashion requiring copyrightpermission, other than the making of an exact copy. The resulting work is called a “modified version” ofthe earlier work or a work “based on” the earlier work.A“covered work” means either the unmodified Program or a work based on the Program.To “propagate” a work means to do anything with it that, without permission, would makeyou directly orsecondarily liable for infringement under applicable copyright law, except executing it on a computer ormodifying a private copy. Propagation includes copying, distribution (with or without modification),making available to the public, and in some countries other activities as well.To “convey”awork means anykind of propagation that enables other parties to makeorreceive copies.Mere interaction with a user through a computer network, with no transfer of a copy, isnot conveying.An interactive user interface displays “Appropriate LegalNotices” to the extent that it includes a convenientand prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user thatthere is no warranty for the work (except to the extent that warranties are provided), that licensees mayconvey the work under this License, and howtoviewacopyofthis License.If the interface presents a listof user commands or options, such as a menu, a prominent item in the list meets this criterion.1. Source Code.The “source code” for a work means the preferred form of the work for making modifications to it.“Objectcode” means anynon-source form of a work.A“Standard Interface” means an interface that either is an official standard defined by a recognizedstandards body,or, inthe case of interfaces specified for a particular programming language, one that iswidely used among developers working in that language.The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) isincluded in the normal form of packaging a Major Component, but which is not part of that MajorComponent, and (b) serves only to enable use of the work with that Major Component, or to implement aStandard Interface for which an implementation is available to the public in source code form.A“MajorComponent”, in this context, means a major essential component (kernel, windowsystem, and so on) of thespecific operating system (if any) on which the executable work runs, or a compiler used to produce thework, or an object code interpreter used to run it.The “Corresponding Source” for a work in object code form means all the source code needed to generate,install, and (for an executable work) run the object code and to modify the work, including scripts tocontrol those activities. However, itdoes not include the work’sSystem Libraries, or general-purpose toolsor generally available free programs which are used unmodified in performing those activities but which arenot part of the work. For example, Corresponding Source includes interface definition files associated withsource files for the work, and the source code for shared libraries and dynamically linked subprograms thatthe work is specifically designed to require, such as by intimate data communication or control flowbetween those subprograms and other parts of the work.The Corresponding Source need not include anything that users can regenerate automatically from otherparts of the Corresponding Source.GNU GPL67

GPL(GNU) FreeSoftware Foundation GPL(GNU)The Corresponding Source for a work in source code form is that same work.2. Basic Permissions.All rights granted under this License are granted for the term of copyright on the Program, and areirrevocable provided the stated conditions are met.This License explicitly affirms your unlimitedpermission to run the unmodified Program.The output from running a covered work is covered by thisLicense only if the output, givenits content, constitutes a covered work. ThisLicense acknowledges yourrights of fair use or other equivalent, as provided by copyright law.Youmay make, run and propagate covered works that you do not convey,without conditions so long asyour license otherwise remains in force.Youmay convey covered works to others for the sole purpose ofhaving them makemodifications exclusively for you, or provide you with facilities for running those works,provided that you comply with the terms of this License in conveying all material for which you do notcontrol copyright. Thosethus making or running the covered works for you must do so exclusively on yourbehalf, under your direction and control, on terms that prohibit them from making anycopies of yourcopyrighted material outside their relationship with you.Conveying under anyother circumstances is permitted solely under the conditions stated below.Sublicensing is not allowed; section 10 makes it unnecessary.3. Protecting Users’ LegalRights From Anti-Circumvention Law.No covered work shall be deemed part of an effective technological measure under anyapplicable lawfulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, orsimilar laws prohibiting or restricting circumvention of such measures.When you convey a covered work, you waive any leg alpower to forbid circumvention of technologicalmeasures to the extent such circumvention is effected by exercising rights under this License with respect tothe covered work, and you disclaim anyintention to limit operation or modification of the work as a meansof enforcing, against the work’susers, your or third parties’ legalrights to forbid circumvention oftechnological measures.4. Conveying Verbatim Copies.Youmay convey verbatim copies of the Program’ssource code as you receive it, in anymedium, providedthat you conspicuously and appropriately publish on each copyanappropriate copyright notice; keep intactall notices stating that this License and anynon-permissive terms added in accord with section 7 apply tothe code; keep intact all notices of the absence of anywarranty; and give all recipients a copyofthisLicense along with the Program.Youmay charge anyprice or no price for each copythat you convey,and you may offer support or warrantyprotection for a fee.5. Conveying Modified Source Versions.Youmay convey a work based on the Program, or the modifications to produce it from the Program, in theform of source code under the terms of section 4, provided that you also meet all of these conditions:a)The work must carry prominent notices stating that you modified it, and giving a relevant date.b)The work must carry prominent notices stating that it is released under this License and anyconditionsadded under section 7.This requirement modifies the requirement in section 4 to “keep intact allnotices”.c)Youmust license the entire work, as a whole, under this License to anyone who comes into possessionof a copy. This License will therefore apply,along with anyapplicable section 7 additional terms, tothe whole of the work, and all its parts, regardless of howtheyare packaged.This License givesnopermission to license the work in anyother way,but it does not invalidate such permission if you haveseparately receivedit.d)If the work has interactive user interfaces, each must display Appropriate LegalNotices; however, ifthe Program has interactive interfaces that do not display Appropriate LegalNotices, your work neednot makethem do so.GNU GPL68

GPL(GNU) FreeSoftware Foundation GPL(GNU)Acompilation of a covered work with other separate and independent works, which are not by their natureextensions of the covered work, and which are not combined with it such as to form a larger program, in oron a volume of a storage or distribution medium, is called an “aggregate” if the compilation and itsresulting copyright are not used to limit the access or legalrights of the compilation’susers beyond whatthe individual works permit.Inclusion of a covered work in an aggregate does not cause this License toapply to the other parts of the aggregate.6. Conveying Non-Source Forms.Youmay convey a covered work in object code form under the terms of sections 4 and 5, provided that youalso convey the machine-readable Corresponding Source under the terms of this License, in one of theseways:a)Convey the object code in, or embodied in, a physical product (including a physical distributionmedium), accompanied by the Corresponding Source fixed on a durable physical medium customarilyused for software interchange.b)Convey the object code in, or embodied in, a physical product (including a physical distributionmedium), accompanied by a written offer,valid for at least three years and valid for as long as youoffer spare parts or customer support for that product model, to give anyone who possesses the objectcode either (1) a copyofthe Corresponding Source for all the software in the product that is coveredby this License, on a durable physical medium customarily used for software interchange, for a priceno more than your reasonable cost of physically performing this conveying of source, or (2) access tocopythe Corresponding Source from a network server at no charge.c)Convey individual copies of the object code with a copyofthe written offer to provide theCorresponding Source.This alternative isallowed only occasionally and noncommercially,and onlyif you receivedthe object code with such an offer,inaccord with subsection 6b.d)Convey the object code by offering access from a designated place (gratis or for a charge), and offerequivalent access to the Corresponding Source in the same way through the same place at no furthercharge. You need not require recipients to copythe Corresponding Source along with the object code.If the place to copythe object code is a network server,the Corresponding Source may be on adifferent server (operated by you or a third party) that supports equivalent copying facilities, providedyou maintain clear directions next to the object code saying where to find the Corresponding Source.Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it isavailable for as long as needed to satisfy these requirements.e)Convey the object code using peer-to-peer transmission, provided you inform other peers where theobject code and Corresponding Source of the work are being offered to the general public at no chargeunder subsection 6d.Aseparable portion of the object code, whose source code is excluded from the Corresponding Source as aSystem Library,need not be included in conveying the object code work.A“User Product” is either (1) a “consumer product”, which means anytangible personal property which isnormally used for personal, family,orhousehold purposes, or (2) anything designed or sold forincorporation into a dwelling.In determining whether a product is a consumer product, doubtful casesshall be resolved in favorofcoverage. For a particular product receivedbyaparticular user,“normallyused” refers to a typical or common use of that class of product, regardless of the status of the particularuser or of the way in which the particular user actually uses, or expects or is expected to use, the product.Aproduct is a consumer product regardless of whether the product has substantial commercial, industrial ornon-consumer uses, unless such uses represent the only significant mode of use of the product.“Installation Information” for a User Product means anymethods, procedures, authorization keys, or otherinformation required to install and execute modified versions of a covered work in that User Product from amodified version of its Corresponding Source.The information must suffice to ensure that the continuedfunctioning of the modified object code is in no case prevented or interfered with solely becausemodification has been made.If you convey anobject code work under this section in, or with, or specifically for use in, a User Product,GNU GPL69

GPL(GNU) FreeSoftware Foundation GPL(GNU)and the conveying occurs as part of a transaction in which the right of possession and use of the UserProduct is transferred to the recipient in perpetuity or for a fixed term (regardless of howthe transaction ischaracterized), the Corresponding Source conveyed under this section must be accompanied by theInstallation Information.But this requirement does not apply if neither you nor anythird party retains theability to install modified object code on the User Product (for example, the work has been installed inROM).The requirement to provide Installation Information does not include a requirement to continue to providesupport service, warranty,orupdates for a work that has been modified or installed by the recipient, or forthe User Product in which it has been modified or installed.Access to a network may be denied when themodification itself materially and adversely affects the operation of the network or violates the rules andprotocols for communication across the network.Corresponding Source conveyed, and Installation Information provided, in accord with this section must bein a format that is publicly documented (and with an implementation available to the public in source codeform), and must require no special password or key for unpacking, reading or copying.7. Additional Terms.“Additional permissions” are terms that supplement the terms of this License by making exceptions fromone or more of its conditions.Additional permissions that are applicable to the entire Program shall betreated as though theywere included in this License, to the extent that theyare valid under applicable law.If additional permissions apply only to part of the Program, that part may be used separately under thosepermissions, but the entire Program remains governed by this License without regard to the additionalpermissions.When you convey a copyofacovered work, you may at your option remove any additional permissionsfrom that copy, orfrom anypart of it.(Additional permissions may be written to require their own removalin certain cases when you modify the work.) You may place additional permissions on material, added byyou to a covered work, for which you have orcan give appropriate copyright permission.Notwithstanding anyother provision of this License, for material you add to a covered work, you may (ifauthorized by the copyright holders of that material) supplement the terms of this License with terms:a)Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of thisLicense; orb)Requiring preservation of specified reasonable legalnotices or author attributions in that material or inthe Appropriate LegalNotices displayed by works containing it; orc)Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of suchmaterial be marked in reasonable ways as different from the original version; ord)Limiting the use for publicity purposes of names of licensors or authors of the material; ore)Declining to grant rights under trademark lawfor use of some trade names, trademarks, or servicemarks; orf)Requiring indemnification of licensors and authors of that material by anyone who conveysthematerial (or modified versions of it) with contractual assumptions of liability to the recipient, for anyliability that these contractual assumptions directly impose on those licensors and authors.All other non-permissive additional terms are considered “further restrictions” within the meaning ofsection 10.If the Program as you receivedit, or anypart of it, contains a notice stating that it is governedby this License along with a term that is a further restriction, you may remove that term.If a licensedocument contains a further restriction but permits relicensing or conveying under this License, you mayadd to a covered work material governed by the terms of that license document, provided that the furtherrestriction does not survive such relicensing or conveying.If you add terms to a covered work in accord with this section, you must place, in the relevant source files,astatement of the additional terms that apply to those files, or a notice indicating where to find theapplicable terms.GNU GPL70

GPL(GNU) FreeSoftware Foundation GPL(GNU)Additional terms, permissive ornon-permissive,may be stated in the form of a separately written license,or stated as exceptions; the above requirements apply either way.8. Termination.Youmay not propagate or modify a covered work except as expressly provided under this License.Anyattempt otherwise to propagate or modify it is void, and will automatically terminate your rights under thisLicense (including anypatent licenses granted under the third paragraph of section 11).However, ifyou cease all violation of this License, then your license from a particular copyright holder isreinstated (a) provisionally,unless and until the copyright holder explicitly and finally terminates yourlicense, and (b) permanently,ifthe copyright holder fails to notify you of the violation by some reasonablemeans prior to 60 days after the cessation.Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holdernotifies you of the violation by some reasonable means, this is the first time you have receivednotice ofviolation of this License (for anywork) from that copyright holder,and you cure the violation prior to 30days after your receipt of the notice.Termination of your rights under this section does not terminate the licenses of parties who have receivedcopies or rights from you under this License.If your rights have been terminated and not permanentlyreinstated, you do not qualify to receive new licenses for the same material under section 10.9. Acceptance Not Required for Having Copies.Youare not required to accept this License in order to receive orrun a copyofthe Program.Ancillarypropagation of a covered work occurring solely as a consequence of using peer-to-peer transmission toreceive a copylikewise does not require acceptance.However, nothing other than this License grants youpermission to propagate or modify anycovered work. Theseactions infringe copyright if you do not acceptthis License.Therefore, by modifying or propagating a covered work, you indicate your acceptance of thisLicense to do so.10. Automatic Licensing of Downstream Recipients.Each time you convey a covered work, the recipient automatically receivesalicense from the originallicensors, to run, modify and propagate that work, subject to this License.Youare not responsible forenforcing compliance by third parties with this License.An “entity transaction” is a transaction transferring control of an organization, or substantially all assets ofone, or subdividing an organization, or merging organizations. Ifpropagation of a covered work resultsfrom an entity transaction, each party to that transaction who receivesacopyofthe work also receiveswhateverlicenses to the work the party’spredecessor in interest had or could give under the previousparagraph, plus a right to possession of the Corresponding Source of the work from the predecessor ininterest, if the predecessor has it or can get it with reasonable efforts.Youmay not impose anyfurther restrictions on the exercise of the rights granted or affirmed under thisLicense. For example, you may not impose a license fee, royalty,orother charge for exercise of rightsgranted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in alawsuit) alleging that anypatent claim is infringed by making, using, selling, offering for sale, or importingGNU GPL71

GPL(GNU) FreeSoftware Foundation GPL(GNU)the Program or anyportion of it.11. Patents.A“contributor” is a copyright holder who authorizes use under this License of the Program or a work onwhich the Program is based.The work thus licensed is called the contributor’s“contributor version”.Acontributor’s“essential patent claims” are all patent claims owned or controlled by the contributor,whether already acquired or hereafter acquired, that would be infringed by some manner,permitted by thisLicense, of making, using, or selling its contributor version, but do not include claims that would beinfringed only as a consequence of further modification of the contributor version. For purposes of thisdefinition, “control” includes the right to grant patent sublicenses in a manner consistent with therequirements of this License.Each contributor grants you a non-exclusive,worldwide, royalty-free patent license under the contributor’sessential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagatethe contents of its contributor version.In the following three paragraphs, a “patent license” is anyexpress agreement or commitment, howeverdenominated, not to enforce a patent (such as an express permission to practice a patent or covenant not tosue for patent infringement).To “grant” such a patent license to a party means to makesuch an agreementor commitment not to enforce a patent against the party.If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of thework is not available for anyone to copy, free of charge and under the terms of this License, through apublicly available network server or other readily accessible means, then you must either (1) cause theCorresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patentlicense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,to extend the patent license to downstream recipients.“Knowingly relying” means you have actualknowledge that, but for the patent license, your conveying the covered work in a country,oryour recipient’suse of the covered work in a country,would infringe one or more identifiable patents in that country thatyou have reason to believe are valid.If, pursuant to or in connection with a single transaction or arrangement, you convey,orpropagate byprocuring conveyance of, a covered work, and grant a patent license to some of the parties receiving thecovered work authorizing them to use, propagate, modify or convey a specific copyofthe covered work,then the patent license you grant is automatically extended to all recipients of the covered work and worksbased on it.Apatent license is “discriminatory” if it does not include within the scope of its coverage, prohibits theexercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically grantedunder this License.Youmay not convey a covered work if you are a party to an arrangement with a thirdparty that is in the business of distributing software, under which you makepayment to the third partybased on the extent of your activity of conveying the work, and under which the third party grants, to anyofthe parties who would receive the covered work from you, a discriminatory patent license (a) in connectionwith copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily forand in connection with specific products or compilations that contain the covered work, unless you enteredinto that arrangement, or that patent license was granted, prior to 28 March 2007.Nothing in this License shall be construed as excluding or limiting anyimplied license or other defenses toGNU GPL72

GPL(GNU) FreeSoftware Foundation GPL(GNU)infringement that may otherwise be available to you under applicable patent law.12. No Surrender of Others’ Freedom.If conditions are imposed on you (whether by court order,agreement or otherwise) that contradict theconditions of this License, theydonot excuse you from the conditions of this License.If you cannotconvey a covered work so as to satisfy simultaneously your obligations under this License and anyotherpertinent obligations, then as a consequence you may not convey itatall. For example, if you agree toterms that obligate you to collect a royalty for further conveying from those to whom you convey theProgram, the only way you could satisfy both those terms and this License would be to refrain entirely fromconveying the Program.13. Use with the GNU Affero General Public License.Notwithstanding anyother provision of this License, you have permission to link or combine anycoveredwork with a work licensed under version 3 of the GNU Affero General Public License into a singlecombined work, and to convey the resulting work. Theterms of this License will continue to apply to thepart which is the covered work, but the special requirements of the GNU Affero General Public License,section 13, concerning interaction through a network will apply to the combination as such.14. Revised Versions of this License.The Free Software Foundation may publish revised and/or newversions of the GNU General PublicLicense from time to time.Such newversions will be similar in spirit to the present version, but may differin detail to address newproblems or concerns.Each version is givenadistinguishing version number.Ifthe Program specifies that a certain numberedversion of the GNU General Public License “or anylater version” applies to it, you have the option offollowing the terms and conditions either of that numbered version or of anylater version published by theFree Software Foundation. Ifthe Program does not specify a version number of the GNU General PublicLicense, you may choose anyversion everpublished by the Free Software Foundation.If the Program specifies that a proxy can decide which future versions of the GNU General Public Licensecan be used, that proxy’spublic statement of acceptance of a version permanently authorizes you to choosethat version for the Program.Later license versions may give you additional or different permissions.However, noadditional obligationsare imposed on anyauthor or copyright holder as a result of your choosing to followalater version.15. Disclaimer of Warranty.THERE IS NO WARRANTY FOR THE PROGRAM, TOTHE EXTENT PERMITTED BYAPPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHTHOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTYOF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOTLIMITED TO, THEIMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.THE ENTIRE RISK AS TOTHE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITHYOU. SHOULDTHE PROGRAM PROVEDEFECTIVE, YOU ASSUME THE COST OF ALLNECESSARYSERVICING, REPAIR OR CORRECTION.16. Limitation of Liability.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAWORAGREED TOINWRITING WILLANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THEPROGRAM AS PERMITTED ABOVE, BE LIABLE TOYOU FOR DAMAGES, INCLUDING ANYGENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THEUSE OR INABILITY TOUSE THE PROGRAM (INCLUDING BUT NOTLIMITED TOLOSS OFDATA ORDAT ABEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRDPARTIES OR A FAILURE OF THE PROGRAM TOOPERATE WITH ANY OTHER PROGRAMS),EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OFGNU GPL73

GPL(GNU) FreeSoftware Foundation GPL(GNU)SUCH DAMAGES.17. Interpretation of Sections 15 and 16.If the disclaimer of warranty and limitation of liability provided above cannot be givenlocal legaleffectaccording to their terms, reviewing courts shall apply local lawthat most closely approximates an absolutewaiv erofall civil liability in connection with the Program, unless a warranty or assumption of liabilityaccompanies a copyofthe Program in return for a fee.END OF TERMS AND CONDITIONSHowtoApply These Terms to Your NewProgramsIf you develop a newprogram, and you want it to be of the greatest possible use to the public, the best wayto achieve this is to makeitfree software which everyone can redistribute and change under these terms.To doso, attach the following notices to the program.It is safest to attach them to the start of each sourcefile to most effectively state the exclusion of warranty; and each file should have atleast the “copyright”line and a pointer to where the full notice is found.one line to give the program’sname and a brief idea of what it does.Copyright (C)year name of authorThis program is free software: you can redistribute it and/or modify it under the terms of the GNUGeneral Public License as published by the Free Software Foundation, either version 3 of the License,or (at your option) anylater version.This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without eventhe implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULARPURPOSE. Seethe GNU General Public License for more details.Youshould have receivedacopyofthe GNU General Public License along with this program.If not,see <http://www.gnu.org/licenses/>.Also add information on howtocontact you by electronic and paper mail.If the program does terminal interaction, makeitoutput a short notice likethis when it starts in aninteractive mode:<program> Copyright (C) <year><name of author>This program comes with ABSOLUTELYNOWARRANTY;for details type “showw”. Thisis freesoftware, and you are welcome to redistribute it under certain conditions; type “showc”for details.The hypothetical commands “showw”and “showc”should showthe appropriate parts of the GeneralPublic License.Of course, your program’scommands might be different; for a GUI interface, you woulduse an “about box”.Youshould also get your employer (if you work as a programmer) or school, if any, tosign a “copyrightdisclaimer” for the program, if necessary.For more information on this, and howtoapply and followtheGNU GPL, see <http://www.gnu.org/licenses/>.The GNU General Public License does not permit incorporating your program into proprietary programs.If your program is a subroutine library,you may consider it more useful to permit linking proprietaryapplications with the library.Ifthis is what you want to do, use the GNU Lesser General Public Licenseinstead of this License.But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.GNU GPL74

srecord(3) LibraryFunctions Manualsrecord(3)NAMEsrecord − library to manipulate EPROM load filesSYNOPSIS#include <srecord/name.h>cc ... −lsrecordDESCRIPTIONThe srecord sjared library may be used to add all of the EPROM file formats and filters to your ownprojects.The full documentation for the shared library is generated by Doxygen from the source files, and isavailable on the Internet athttp://srecord.sourceforge.net/srecord/index.htmlCOPYRIGHTsrecordversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrecordprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srecord−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srecord−VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 75

LGPL(3) FreeSoftware Foundation LGPL(3)NAMELGPG − GNU Lesser General Public LicenseDESCRIPTIONGNU LESSER GENERAL PUBLIC LICENSEVersion 3, 29 June 2007Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>Everyone is permitted to copyand distribute verbatim copies of this license document, but changing it isnot allowed.This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3of the GNU General Public License, supplemented by the additional permissions listed below.0. Additional Definitions.As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNUGPL" refers to version 3 of the GNU General Public License."The Library" refers to a covered work governed by this License, other than an Application or a CombinedWork as defined below.An "Application" is anywork that makes use of an interface provided by the Library,but which is nototherwise based on the Library.Defining a subclass of a class defined by the Library is deemed a mode ofusing an interface provided by the Library.A"Combined Work" is a work produced by combining or linking an Application with the Library.Theparticular version of the Library with which the Combined Work was made is also called the "LinkedVersion".The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for theCombined Work, excluding anysource code for portions of the Combined Work that, considered inisolation, are based on the Application, and not on the Linked Version.The "Corresponding Application Code" for a Combined Work means the object code and/or source code forthe Application, including anydata and utility programs needed for reproducing the Combined Work fromthe Application, but excluding the System Libraries of the Combined Work.1. Exception to Section 3 of the GNU GPL.Youmay convey a covered work under sections 3 and 4 of this License without being bound by section 3 ofthe GNU GPL.2. Conveying Modified Versions.If you modify a copyofthe Library,and, in your modifications, a facility refers to a function or data to besupplied by an Application that uses the facility (other than as an argument passed when the facility isinvoked), then you may convey a copyofthe modified version:a)under this License, provided that you makeagood faith effort to ensure that, in the event anApplication does not supply the function or data, the facility still operates, and performs whateverpart of its purpose remains meaningful, orb)under the GNU GPL, with none of the additional permissions of this License applicable to thatcopy.3. Object Code Incorporating Material from Library Header Files.The object code form of an Application may incorporate material from a header file that is part of theLibrary.You may convey such object code under terms of your choice, provided that, if the incorporatedmaterial is not limited to numerical parameters, data structure layouts and accessors, or small macros, inlinefunctions and templates (ten or fewer lines in length), you do both of the following:a)Give prominent notice with each copyofthe object code that the Library is used in it and that theLibrary and its use are covered by this License.GNU LGPL76

LGPL(3) FreeSoftware Foundation LGPL(3)b)Accompanythe object code with a copyofthe GNU GPL and this license document.4. Combined Works.Youmay convey a Combined Work under terms of your choice that, taken together,effectively do notrestrict modification of the portions of the Library contained in the Combined Work and reverseengineering for debugging such modifications, if you also do each of the following:a)Give prominent notice with each copyofthe Combined Work that the Library is used in it andthat the Library and its use are covered by this License.b)Accompanythe Combined Work with a copyofthe GNU GPL and this license document.c)ForaCombined Work that displays copyright notices during execution, include the copyrightnotice for the Library among these notices, as well as a reference directing the user to the copiesof the GNU GPL and this license document.d)Do one of the following:0)Convey the Minimal Corresponding Source under the terms of this License, and theCorresponding Application Code in a form suitable for,and under terms that permit,the user to recombine or relink the Application with a modified version of the LinkedVersion to produce a modified Combined Work, in the manner specified by section 6 ofthe GNU GPL for conveying Corresponding Source.1)Use a suitable shared library mechanism for linking with the Library.Asuitablemechanism is one that (a) uses at run time a copyofthe Library already present on theuser’scomputer system, and (b) will operate properly with a modified version of theLibrary that is interface-compatible with the Linked Version.e)Provide Installation Information, but only if you would otherwise be required to provide suchinformation under section 6 of the GNU GPL, and only to the extent that such information isnecessary to install and execute a modified version of the Combined Work produced byrecombining or relinking the Application with a modified version of the Linked Version. (If youuse option 4d0, the Installation Information must accompanythe Minimal Corresponding Sourceand Corresponding Application Code. If you use option 4d1, you must provide the InstallationInformation in the manner specified by section 6 of the GNU GPL for conveying CorrespondingSource.)5. Combined Libraries.Youmay place library facilities that are a work based on the Library side by side in a single library togetherwith other library facilities that are not Applications and are not covered by this License, and convey such acombined library under terms of your choice, if you do both of the following:a)Accompanythe combined library with a copyofthe same work based on the Library,uncombined with anyother library facilities, conveyed under the terms of this License.b)Give prominent notice with the combined library that part of it is a work based on the Library,and explaining where to find the accompanying uncombined form of the same work.6. Revised Versions of the GNU Lesser General Public License.The Free Software Foundation may publish revised and/or newversions of the GNU Lesser General PublicLicense from time to time. Such newversions will be similar in spirit to the present version, but may differin detail to address newproblems or concerns.Each version is givenadistinguishing version number.Ifthe Library as you receiveditspecifies that acertain numbered version of the GNU Lesser General Public License "or anylater version" applies to it,you have the option of following the terms and conditions either of that published version or of anylaterversion published by the Free Software Foundation. If the Library as you receiveditdoes not specify aversion number of the GNU Lesser General Public License, you may choose anyversion of the GNULesser General Public License everpublished by the Free Software Foundation.If the Library as you receiveditspecifies that a proxy can decide whether future versions of the GNUGNU LGPL77

LGPL(3) FreeSoftware Foundation LGPL(3)Lesser General Public License shall apply,that proxy’spublic statement of acceptance of anyversion ispermanent authorization for you to choose that version for the Library.GNU LGPL78

srec_aomf(5) FileFormats Manualsrec_aomf(5)NAMEsrec_aomf − Intel Absolute Object Module FormatDESCRIPTIONThe Absolute Object Module Format (AOMF) is a subset of the 8051 OMF.The structure of an absoluteobject file (the order of the records in it) is similar to that of a relocatable object file. Thereare three maindifferences: thefirst is that an absolute object file contains one module only,the second is that not all therecords can appear in the absolute file and the third is that the records can contain only absoluteinformation.Generic Record FormatEach record starts with a record type which indicates the type of the record, and record length whichcontain the number of bytes in the record exclusive ofthe first twofields. The record ends with a checksumbyte which contains the 2s complement of the sum (modulo 256) of all other bytes in the record.Thereforethe sum (modulo 256) of all bytes in the record is zero.The record length includes the payload and checksum fields, but excludes the type and length fields.All 16-bit fields are little-endian.RECTYP8bitsRecordLength16 bitsPayloadCHKSUM8bitsHere are some of the relevant record types:0x01 ScopeDefinition Record0x02 ModuleStart Record0x04 ModuleEnd Record0x06 ContentRecord0x0E Segment Definition Record0x12 Debug Items Record0x16 PublicDefinition Record0x18 ExternalDefinition RecordNames are not stored a C strings.Names are stored as a length byte followed by the contents.StructureAn AOMF file consists of a module header record (0x02), followed by one or more content (0x06), scope(0x01) or debug (0x12) records, and ends in a module end record (0x04).The records with the following types are extraneous (theymay appear in the file but are ignored):0x0E,0x16 and 0x18 (definition records).All records which are not part of the AOMF and are not extraneous areconsidered erroneous.Module Header RecordRECTYP0x02RecordLength16 bitsModuleNameTRN ID8bitszero8bitsCHKSUM8bitsEach module must starts with a module header record.It is used to identify the module for the RL51 andother future processors of 8051 object files. Inaddition to the Module Name the record contains:TRN IDThe byte identifies the program which has generated this module:0xFD ASM510xFE PL/M−510xFF RL51.Module End RecordReference ManualSRecord 79

srec_aomf(5) FileFormats Manualsrec_aomf(5)RECTYP0x04RecordLength16 bitsModuleNamezero16 bitsREGMSK8bitszero8bitsCHKSUM8bitsThe record ends the module sequence and contains the following information:characteristicsMODULE NAMEThe name of the module is givenhere for a consistencycheck. Itmust match the name giveninthe Module Header Record.REGISTER MASK (REG MSK)The field contains a bit for each of the four register banks.Each bit, when set specifies that thecorresponding bank is used by the module:Bit 0 (the least significant bit)bank #0.Bit 1bank #1.Bit 2bank #2.Bit 3bank #3.Content RecordRECTYP0x06RecordLength16 bitsSEG ID8bitsOffset16 bitsDATACHKSUM8bitsThis record provides one or more bytes of contiguous data, from which a portion of a memory image maybe constructed.SEG IDThis field must be zero.OFFSETGivesthe absolute address of the first byte of data in the record, within the CODE address space.DATAAsequence of data bytes to be loaded from OFFSET to OFFSET+RECORDLENGTH−5.Size MultiplierIn general, rawbinary data will expand in sized by approximately 1.02 times when represented with thisformat.SOURCEhttp://www.intel.com/design/mcs96/swsup/omf96_pi.pdfftp://download.intel.com/design/mcs51/SWSUP/omf51.exe (zip archive)http://www.elsist.net/WebSite/ftp/various/OMF51EPS.pdfCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 80

srec_ascii_hex(5) FileFormats Manualsrec_ascii_hex(5)NAMEsrec_ascii_hex−Ascii-Hexfile formatDESCRIPTIONThis format is also known as theAscii-Space-HexorAscii-Hex-Spaceformat. Ifyou knowwho inventedthis format, please let me know. Ifyou have a better or more complete description, I’dliketoknowthat,too.The file starts with a start-of-text (STX or Control-B) character (0x02).Everything before the STX isignored.Each data byte is represented as 2 hexadecimal characters, followed by an "execution character".Thedefault execution character is a space, although manyprograms which write this format omit the spacecharacter immediately preceding end-of-line.The address for data bytes is set by using a sequence of$Annnn,characters, wherennnnis the4-character ascii representation of the address.The comma is required.There is no need for an addressrecord unless there are gaps. Implicitly,the file starts a address 0 if no address is set before the first databyte.The file ends with an end-of-text (ETX or Control-C) character (0x03).Everything following the ETX isignored.It is also possible to specify a running 16-bit checksum using a sequence of$Snnnn,characters, althoughthis usually appearsafterthe ETX character and is thus often ignored.Variant FormsIn addition to a space character,the execution character can also be percent (%) called "ascii-hex-percent"format, apostrophe (’) or comma (,) called "ascii-hex-comma" format.The file must use the sameexecution character throughout.If the execution character is a comma, the address and checksum commands are terminated by a dot (.)rather than a comma (,).Size MultiplierIn general, binary data will expand in sized by approximately 3.0 times when represented with this format.EXAMPLEHere is an example ascii-hexfile. Itcontains the data “Hello, World[rq] to be loaded at address 0x1000.ˆB $A1000,48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A ˆCCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 81

srec_atmel_generic(5) FileFormats Manualsrec_atmel_generic(5)NAMEsrec_atmel_generic − Atmel Generic file formatDESCRIPTIONThis format is the output of the Atmel AVR assembler.The file contains twocolumns of hexadecimalcoded values. Thefirst column is the 24-bit word address, the second column is the 16-bit word data.Thecolumns are separated by a colon (‘:’) character.By default, SRecord treats this is little-endian data (the least significant byte first). Ifyou want big endianorder,use the −atmel-generic-be argument instead.Size MultiplierIn general, binary data will expand in sized by approximately 6.0 times when represented with this format(6.5 times in Windows).EXAMPLEHere is an example Atmel Generic file. Itcontains the data “Hello, World[rq] to be loaded at bytes address0x0100 (but remember,the file contents are word addressed).000080:4865000081:6C6C000082:6F2C000083:2057000084:6F72000085:6C64COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 82

srec_binary(5) FileFormats Manualsrec_binary(5)NAMEsrec_binary − binary file formatDESCRIPTIONIt is possible to read and write binary files usingsrec_cat(1).File HolesAfile hole is a portion of a regular file that contains NUL characters and is not stored in anydata block ondisk. Holesare a long-standing feature of Unix files. For instance, the following Unix command creates afile in which the first bytes are a hole:$echo −n "X" | dd of=/tmp/hole bs=1024 seek=6$Now/tmp/holehas 6,145 characters (6,144 NUL characters plus an X character), yet the file occupiesjust one data block on disk.File holes were introduced to avoid wasting disk space.Theyare used extensively by database applicationsand, more generally,byall applications that perform hashing on files.See http://www.oreilly.com/catalog/linuxkernel2/chapter/ch17.pdf for more information.ReadingThe size of binary files is taken from the size of the file on the file system.If the file has holes these willread as blocks of NUL (zero) data, as there is no elegant way to detect Unix file holes.In general, youprobably want to use the−unfillfilter to find and remove large swathes of zero bytes.WritingIn producing a binary file,srec_cat(1) honours the address information and places the data into the binaryfile at the addresses specified in the hexfile. Thisusually results on holes in the file. Sometimesalarmingly large file sizes are reported as a result.If you are on a brain-dead operating system without file holes then there are going to be real data blockscontaining real zero bytes, and consuming real amounts of disk space.Upgrade − I suggest Linux.To makeafile of the size you expect, usesrec_info foo.s19to find the lowest address, then usesrec_cat foo.s19 −intel −offset −n−o foo.bin −binarywherenis the lowest address present in thefoo.s19file, as reported bysrec_info(1). Thenegativeoffsetserves to move the data down to have anorigin of zero.SEE ALSOsrec_input(1)for a description of the−unfillfiltersrec_examples(1)has a section about binary files, and ways of automagically offseting the data back to zero in asingle command.COPYRIGHTSRrecordversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerTheSRrecordprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’SRrecord−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’SRrecord−VERSion License’command.Reference ManualSRecord 83

srec_binary(5) FileFormats Manualsrec_binary(5)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 84

srec_brecord(5) FileFormats Manualsrec_brecord(5)NAMEsrec_brecord − Freescale MC68EZ328 Dragonball bootstrap record formatDESCRIPTIONThis data format is understood by Freescale MC68EZ328 Dragonball series processors on their internalUART.LinesEach line contains hexadecimal data, each byte represented by twohexadecimal nybbles in upper case.Characters not in this set, but larger than 0x30 (e.g. lower case) will be ignored, less than 0x30 (e.g. CR orLF) are considered record terminators.Comments are problematic; don’ttry this at home.FieldsEach line contains a 4-byte address (big endian), a 1-byte length-and-mode, and then data bytes as dictatedby the length.There isnochecksum. Azero length record is an execution start address record, non-zerolength records are data.12345678910...nAddress LengthDataThe length-and-mode byte is formatted as follows:76 5 43210Mode RLengthModeThese bits are ignored by SRecord in input (00 = bytes, 01 = half words, 10 is reserved, 11 = longwords). Thesebits are always zero on output by SRecord.RThis bit indicates a data read rather than a data write; SRecord does not accept input files withthis bit set, and will not set it on output.LengthThe length of the records data bytes.It does not include the address or length bytes.Themaximum payload of a record is 31 bytes of data.Size MultiplierIn general, binary data will expand in sized by at least 2.35 times when represented with this format.EXAMPLEHere is an example b-record format file. Itcontains the data “Hello, World” to be loaded at address 0.000000000D48656C6C6F2C20576F726C640ASEE ALSOhttp://www.freescale.com/files/32bit/doc/ref_manual/MC68VZ328UM.pdfCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 85

srec_coe.5(5) FileFormats Manualsrec_coe.5(5)NAMEsrec_coe − Xilinx Coefficient File FormatDESCRIPTIONThe Xilinx Coefficient File Format has a general syntax of the form:keyword=value;optional commentradix-keyword=value;optional commentdata-keyword=value,...,value;There are numerous keywords, only the “memory_initialization_radix” and “memory_initialization_vector”keywords are used.The semicolons are mandatory.Size MultiplierBinary data stored in this format expand approximately 4 times (5 time on Windows).See Alsohttp://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htmCOPYRIGHTsrec_coe.5version 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_coe.5program comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_coe.5−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_coe.5 −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 86

srec_cosmac(5) FileFormats Manualsrec_cosmac(5)NAMEsrec_cosmac − RCA Cosmac Elf file formatDESCRIPTIONThis file takes the form of one or more RCA Cosmac Elf monitor commands, also known as the IDIOT/4monitor.Only the change memory command (!M)isallowed.The general form of the!Mcommand takes the form!Maaaa dd...ddThe!Mcommand writes data byte bytes (represented by character pairsdd)into successive memorylocations, started at addressaaaa.Spaces between data bytes are ignored.Using the comma (,)line continuation character resumes from the next address in sequence.!Maaaa dd...dd,dd...ddUsing the semicolon (;)line continuation character takes an address on the next line!Maaaa dd...dd;aaaa dd...ddIt is also possible to have the semicolon immediately after the command.!M;aaaa dd...ddAll of these forms may be used in combination.Size MultiplierIn general, binary data will expand in size by approximately 2.0 times when represented with this format.EXAMPLEHere is an example Cosmac file. Itcontains the data “Hello, World[rq] to be loaded at address 0x1000.!M1000 48656C6C6F2C20576F726C640ACOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 87

srec_dec_binary(5) FileFormats Manualsrec_dec_binary(5)NAMEsrec_dec_binary − DEC Binary (XXDP) file formatDESCRIPTIONThe DEC Binary (XXDP) format was used on the PDP 11 series machines.This is a binary format, and isnot readable or editable with a text editor.The file consists of records of the formtype length address ...data... checksumThe field are defined as follows:typeTw obyte little-endian value. Mustalways be 1.lengthTw obyte little-endian value. Thisis the number of bytes in the data, plus six.addressTw obyte little-endian value. Thisis the load address of the data.dataThe data is simple rawbytes. Thereare (length-6) of them.checksumThe checcksum is a single byte.It is the negative ofthe simple summ of all the header and databytes.If the record length is exactly 6 (i.e.no data), this is the execution start address record, indicating thetransfer address.In addition there may be NUL padding characters between records.It is common for records to be paddedso that theystart on evenbyte boundaries.In the days of paper tape, it was common for the file to havemanyleading NULs, to generate blank leader on the tape.Size MultiplierIn general, rawbinary data will expand in sized by approximately 1.03 times when represented with thisformat.COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 88

srec_emon52(5) FileFormats Manualsrec_emon52(5)NAMEsrec_emon52 − Elektor Monitor (EMON52) file formatDESCRIPTIONThis format is used by the monitor EMON52, developed by the European electronics magazine Elektor(Elektuur in Holland).Elektor wouldn’tbeElektor if theydidn’ttry to reinvent the wheel.It’samysterywhytheydidn’tuse an existing format for the project.Only the Elektor Assembler will produce this fileformat, reducing the choice of development tools dramatically.RecordsAll data lines are called records, and each record contains the following four fields:cc aaaa : dd... ddssssThe field are defined as follows:ccThe byte count.Atwo digit hexvalue (1 byte), counting the actual data bytes in the record.Thebyte count is separated from the next field by a space.aaaaThe address field. Afour hexdigit (2 byte) number representing the first address to be used bythis record.:The address field and the data field are separated by a colon.ddThe actual data of this record.There can be 1 to 255 data bytes per record (see cc) All bytes inthe record are separated from each other (and the checksum) by a space.ssssData Checksum, adding all bytes of the data line together,forming a 16 bit checksum.Coversonly all the data bytes of this record.Please note that there is no End Of File record defined.Byte CountThe byte count cc counts the actual data bytes in the current record.Usually records have 16data bytes.Idon’tknowwhat the maximum number of data bytes is.It depends on the size of the data buffer in theEMON52.Address FieldThis is the address where the first data byte of the record should be stored.After storing that data byte, theaddress is incremented by 1 to point to the address for the next data byte of the record.And so on, until alldata bytes are stored.The address is represented by a 4 digit hexnumber (2 bytes), with the MSD first.Data FieldThe payload of the record is formed by the Data field. Thenumber of data bytes expected is givenbytheByte Count field.ChecksumThe checksum is a 16 bit result from adding all data bytes of the record together.Size MultiplierIn general, binary data will expand in sized by approximately 3.8 times when represented with this format.EXAMPLEHere is an example of an EMON52 file:10 0000:57 6F 77 21 20 44 69 64 20 79 6F 75 20 72 65 61 056410 0010:6C 6C 79 20 67 6F 20 74 68 72 6F 75 67 68 20 61 05E910 0020:6C 6C 20 74 68 69 73 20 74 72 6F 75 62 6C 65 20 05ED10 0030:74 6F 20 72 65 61 64 20 74 68 69 73 20 73 74 72 05F004 0040:69 6E 67 21 015FSEE ALSOhttp://sbprojects.fol.nl/knowledge/fileformats/emon52.htmReference ManualSRecord 89

srec_emon52(5) FileFormats Manualsrec_emon52(5)AUTHORThis man page was taken from the above Web page.It was written by San Bergmans<sanmail@bigfoot.com>Reference ManualSRecord 90

srec_fairchild(5) FileFormats Manualsrec_fairchild(5)NAMEsrec_fairchild − Fairchild Fairbug file formatDESCRIPTIONThe Fairchild Fairbug format has 8-byte records.Afile begins with an address record and ends with anend-of-file record.There are three record types in this file format.Address records are of the formSnnnnindicating the address for the following data records.Data records are of the formXffffffffffffffff cEach data record begins with an X and always contains 8 data bytes.Theffcharacters are hexadecimal bytevalues (8 bytes).Each data byte is represented by 2 hexadecimal characters.Theccharacter is a hexdigitbeing the the nibble-sum of the data bytes.A1-digit hexadecimal checksum follows the data in each datarecord. Thechecksum represents, in hexadecimal notation, the sum of the binary equivalents of the 16digits in the record; the half carry from the fourth bit is ignored.The programmer ignores anycharacter(except for address characters and the asterisk character,which terminates the data transfer) between achecksum and the start character of the next data record. This space can be used for comments.The end-of-file record has the form*The last record consists of an asterisk only,which indicates the end of file.Size MultiplierIn general, binary data will expand in sized by approximately 2.4 times when represented with this format.EXAMPLEHere is an example Fairchild Fairbug file. Itcontains the data “Hello, World[rq] to be loaded at address0x1000. Noticehowthe last record is padded with 0xFF bytes.S1000X48656C6C6F2C2057CX6F726C64210AFFFF3*COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 91

srec_fastload(5) FileFormats Manualsrec_fastload(5)NAMEsrec_fastload − LSI Logic Fast Load file formatDESCRIPTIONThe FastLoad Format uses a compressed ASCII format that permits files to be downloaded in less than halfthe time taken for Motorola S-records.The base-64 encoding used is "A-Za-z0−9,.". Thedata is encoded in groups of 4 characters (3 bytes, 24bits).The character ’/’ is used to introduce a special function.Special functions are:AnnnnnnDefines an address.BnnDefine a single byte.CnnnnCompare the checksums.The checksum is a simple positive 16-bit sum, of the data bytes only.EAADefine the program’sentry point.The address will be the current address as defined by theAcommand. (TheAAnumber in this command is ignored.)This must be the last entry in the file.KAAClear the checksum.(TheAAnumber in this command is ignored.)Sname,XDefine a symbol.The address of the symbol will be the current address as defined by theAcommand.ZnnClear a number of bytes.Size MultiplierIn general, binary data will expand in sized by approximately 1.4 times when represented with this format.EXAMPLEHere is an example LSI Logic Fast Load format file. Itcontains the data “Hello, World[rq] to be loaded ataddress 0./AAAASGVsbG8sIFdvcmxk/BAK/CARS/AAAA/EAACOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 92

srec_formatted_binary(5) FileFormats Manualsrec_formatted_binary(5)NAMEsrec_formatted_binary − Formatted Binary file formatDESCRIPTIONThis is the PDP-11 paper tape format, described in the DEC-11-GGPC-D PDP-11 "Paper Tape SoftwareProgramming Handbook" 1972.The file starts with a character sequence which appears as an arrowwhen punched on 8-hole paper tape.0x08, 0x1C, 0x2A, 0x49, 0x08, 0x00Then follows a byte count, encoded big-endian in the low4bits of the next 4 bytes.The high bits shouldbe zero.Then follows a 0xFF byte.The data follows, as manybytes as specified in the header.The trailer consists of the following bytes:0x00, 0x00,and then a 2-byte checksum (big-endian).The alternate header sequence0x08, 0x1C, 0x3E, 0x6B, 0x08, 0x00is followed by an 8-nibble big-endian byte count.Size MultiplierIn general, binary data will expand in sized very little when represented with this format.EXAMPLEHere is a hexdump of a formatted binary file containing the data "Hello, World!".0000: 08 1C 2A 49 08 00 00 00..*I....0008: 00 0E FF 48 65 6C 6C 6F...Hello0010: 2C 20 57 6F 72 6C 64 21,World!0018: 0A 00 00 04 73....sCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 93

srec_forth(5) FileFormats Manualsrec_forth(5)NAMEsrec_forth − FORTH file formatDESCRIPTIONThis format can be read by FORTH interpretersThe file starts with HEX to set the number base.Each line contains the address, the byte and a store command, either C! for RAM or EEC! for EEPROMEXAMPLEHere is an example srec[hy]forth file. Itcontains the data “Hello, World” to be loaded at address 0x1000.HEX48 1000 C!65 1001 C!6C 1002 C!6C 1003 C!6F 1004 C!2C 1005 C!20 1006 C!57 1007 C!6F 1008 C!72 1009 C!6C 100A C!64 100B C!0A 100C C!COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 94

srec_fpc(5) FileFormats Manualsrec_fpc(5)NAMEsrec_fpc − four packed code file formatSYNOPSISAll ASCII based file formats have one disadvantage in common: theyall need more than double the amountof characters as opposed to the number of bytes to be sent.Address fields and checksums will add evenmore characters.So the shorter the records, the more characters have tobesent to get the file across.The FPC format may be used to reduce the number of characters needed to send a file in ASCII format,although it still needs more characters than the actual bytes it sends.FPC stands for "Four Packed Code".The reduction is accomplished by squeezing 4 real bytes into 5 ASCII characters.In fact every ASCIIcharacter will be a digit in the base 85 number system.There aren’tenough letters, digits and punctuationmarks available to get 85 different characters, but if we use both upper case and lower case letters we willmanage. Thisimplies that the FPCis case sensitive,asopposed to all other ASCII based file formats.Base 85The numbering system is in base 85, and is somewhat hard to understand for us humans who are usuallyonly familiar with base 10 numbers.Some of us understand base 2 and base 16 as well, but base 85 is formost people something new. Luckily we don’thav eto do anymath with this number system.We justconvert a 32 bit number into a 5 digit number in base 85.A32bit number has a range of 4,294,967,296,while a 5 digit number in base 85 has a range of 4,437,053,125, which is enough to do the trick.Onedrawback is that we always have tosend multiples of 4 bytes, evenifweactually want to send 1, 2 or 3bytes. Unusedbytes are padded with zeroes, and are discarded at the receiving end.The digits of the base 85 numbering system start at %, which represents the value of 0.The highest valueof a digit in base 85 is 84, and is represented by the character ’z’.If you want to check this with a normalASCII table you will notice that we have used one character too many! Why? Idon’tknow, but for somereason we have toskip the ’*’ character in the row. This means that after the ’)’ character follows the ’+’character.We can use normal number conversion algorithms to generate the FPC digits, with this tinydifference. Wehave tocheck whether the digit is going to be equal or larger than the ASCII value for ’*’.If this is thecase we have toincrement the digit once to stay clear of the ’*’.In base 85 MSD digits go first, likeinallnumber systems!The benefit of this all is hopefully clear.For every 4 bytes we only have tosend 5 ASCII characters, asopposed to 8 characters for all other formats.RecordsNowwetakealook at the the formatting of the FPC records.We look at the record at byte level, not at theactual base 85 encoded level. Onlyafter formatting the FPC record at byte levelweconvert 4 bytes at atime to a 5 digit base 85 number.Ifwedon’thav eenough bytes in the record to fill the last group of 5digits we will add bytes with the value of 0 behind the record.$ssccffff aaaaaaaa ddddddddThe field are defined as:$Every line starts with the character $, all other characters are digits of base 85.ssThe checksum.Aone byte 2’s-complement checksum of all bytes of the record.ccThe byte-count.Aone byte value, counting all the bytes in the record minus 4.ffffFormat code, a twobyte value, defining the record type.aaaaaaaaThe address field. A4byte number representing the first address of this record.ddddddddThe actual data of this record.Reference ManualSRecord 95

srec_fpc(5) FileFormats Manualsrec_fpc(5)Record BeginEvery record begins with the ASCII character "$". Nospaces or tabs are allowed in a record.All othercharacters in the record are formed by groups of 5 digits of base 85.Checksum fieldThis field is a one byte 2’s-complement checksum of the entire record.To create the checksum makeaonebyte sum from all of the bytes from all of the fields of the record:Then takethe 2’s-complement of this sum to create the final checksum.The 2’s-complement is simplyinverting all bits and then increment by 1 (or using the negative operator). Checkingthe checksum at thereceivers end is done by adding all bytes together including the checksum itself, discarding all carries, andthe result must be $00.The padding bytes at the end of the line, should theyexist, should not be includedin checksum.But it doesn’treally matter if theyare, for their influence will be 0 anyway.Byte CountThe byte countcccounts the number of bytes in the current record minus 4.So only the number of addressbytes and the data bytes are counted and not the first 4 bytes of the record (checksum, byte count andformat flags).The byte count can have any value from 0 to 255.Usually records have 32data bytes.It is not recommended to send too manydata bytes in a record for thatmay increase the transmission time in case of errors.Also avoid sending only a fewdata bytes per record,because the address overhead will be too heavy in comparison to the payload.Format FlagsThis is a 2 byte number,indicating what format is represented in this record.Only a fewformats areavailable, so we actually waste 1 byte in each record for the sakeofhaving multiples of 4 bytes.Format code 0 means that the address field in this record is to be treated as the absolute address where thefirst data byte of the record should be stored.Format code 1 means that the address field in this record is missing.Simply the last known address of theprevious record +1 is used to store the first data byte.As if the FPC format wasn’tfast enough already ;-)Format code 2 means that the address field in this record is to be treated as a relative address. Relative towhat is not really clear.The relative address will remain in effect until an absolute address is receivedagain.Address FieldThe first data byte of the record is stored in the address specified by the Address fieldaaaaaaaa.Afterstoring that data byte, the address is incremented by 1 to point to the address for the next data byte of therecord. Andso on, until all data bytes are stored.The length of the address field is always 4 bytes, if present of course.So the address range for the FPCformat is always 2**32.If only the address field is given, without anydata bytes, the address will be set as starting address forrecords that have noaddress field.Addresses between records are non sequential.There may be gaps in the addressing or the address pointermay evenpoint to lower addresses as before in the same file. Butev ery time the sequence of addressingmust be changed, a format 0 record must be used.Addressing within one single recordissequential ofcourse.Data FieldThis field contains 0 or more data bytes.The actual number of data bytes is indicated by the byte count inthe beginning of the record less the number of address bytes.The first data byte is stored in the locationindicated by the address in the address field. Afterthat the address is incremented by 1 and the next databyte is stored in that newlocation. Thiscontinues until all bytes are stored.If there are not enough databytes to obtain a multiple of 4 we use 0x00 as padding bytes at the end of the record.These padding bytesare ignored on the receiving side.Reference ManualSRecord 96

srec_fpc(5) FileFormats Manualsrec_fpc(5)End of FileEnd of file is recognized if the first four bytes of the record all contain 0x00.In base 85 this will be“$%%%%%”. Thisis the only decent way to terminate the file.Size MultiplierIn general, binary data will expand in sized by approximately 1.7 times when represented with this format.ExampleNowit’stime for an example. Inthe first table you can see the byte representation of the file to betransferred. The4th rowofbytes is not a multiple of 4 bytes.But that does not matter,for we append $00bytes at the end until we do have a multiple of 4 bytes.These padding bytes are not counted in the bytecount however!D81400000000B000576F77212044696420796F7520726561431400000000B0106C6C7920676F207468726F7567682061361400000000B0206C6C20746861742074726F75626C6520591100000000B030746F207265616420746869733F00000000000000Only after converting the bytes to base 85 we get the records of the FPC type file format presented in thenext table.Note that there is always a multiple of 5 characters to represent a multiple of 4 bytes in eachrecord.$kL&@h%%,:,B.\?00EPuX0K3rO0JI))$;UPR’%%,:<Hn&FCG:at<GVF(;G9wIw$7FD1p%%,:LHmy:>GTV%/KJ7@GE[kYz$B[6\;%%,:\KIn?GFWY/qKI1G5:;−_e$%%%%%As you can see the length of the lines is clearly shorter than the original ASCII lines.SEE ALSOhttp://sbprojects.fol.nl/knowledge/fileformats/fpc.htmAUTHORThis man page was taken from the above Web page.It was written by San Bergmans<sanmail@bigfoot.com>Forextra points: Who invented this format?Where is it used?Reference ManualSRecord 97

srec_idt(5) FileFormats Manualsrec_idt(5)NAMEsrec_idt − IDT/sim binary file formatDESCRIPTIONThis format comes from Integrated Device Technology (IDT) System Integration Manager (IDT/sim).It is almost identical to the Motorola S-Record format, except that most of each record is in binary,andthere is no line termination character.The ’S’ and tag characters are the same (ascii), howeverall otherbytes are emitted as binary,rather than as a 2-byte hexadecimal ascii encoding.SEE ALSOsrec_motorola(5)The orginal Motorola S-Record format.srec_wilson(5)Foradifferent spin on making S-Record into a more densely packed binary file.COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 98

srec_intel16(5) FileFormats Manualsrec_intel16(5)NAMEsrec_intel16 − Intel Hexadecimal 16-bit file format specificationDESCRIPTIONThis format is also known as theINHX16format.This document describes the hexadecimal object file format for 16-bit microprocessors.This format is very similar to thesrec_intel(5) format, except that the addresses are word addresses.Thecount field is a word count.The hexadecimal representation of binary is coded in ASCII alphanumeric characters.Forexample, the8-bit binary value 0011-1111 is 3F in hexadecimal. Tocode this in ASCII, one 8-bit byte containing theASCII code for the character ’3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code forthe character ’F’ (0100-0110 or 0x46) are required.Foreach byte value, the high-order hexadecimal digitis always the first digit of the pair of hexadecimal digits.This representation (ASCII hexadecimal) requirestwice as manybytes as the binary representation.Ahexadecimal object file is blocked into records, each of which contains the record type, length, memoryload address and checksum in addition to the data.There are currently six (6) different types of records thatare defined, not all combinations of these records are meaningful, however. The record are:•Data Record•End of File Record•Extended Segment Address Record•Start Segment Address Record•Extended Linear Address Record•Start Linear Address RecordGeneral Record FormatRecordMarkRecordLengthLoadOffsetRecordTypeDataChecksumRecord Mark.Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon (“:”)character.Record LengthEach record has a Record Length field which specifies the number of 16-bit words of informationor data which follows the Record Type field of the record.This field is one byte, represented astwohexadecimal characters.The maximum value of the Record Length field is hexadecimal ’FF’or 255.Load OffsetEach record has a Load Offset field which specifies the 16-bit starting load offset of the datawords, therefore this field is only used for Data Records (if the words are loaded as bytes, theaddress needs to be doubled).In other records where this field is not used, it should be coded asfour ASCII zero characters (“0000” or 0x30303030).This field one 16-bit word, represented asfour hexadecimal characters.Record TypeEach record has a Record Type field which specifies the record type of this record.The RecordType field is used to interpret the remaining information within the record.This field is one byte,represented as twohexadecimal characters.The encoding for all the current record types are:0Data Record1End of File RecordReference ManualSRecord 99

srec_intel16(5) FileFormats Manualsrec_intel16(5)5Execution Start Address RecordDataEach record has a variable length Data field, it consists of zero or more 16-bit words encoded asset of 4 hexadecimal digits, most significant digit first. Theinterpretation of this field depends onthe Record Type field.ChecksumEach record ends with a Checksum field that contains the ASCII hexadecimal representation ofthe two’scomplement ofthe 8-bit bytes that result from converting each pair of ASCIIhexadecimal digits to one byte of binary,from and including the Record Length field to andincluding the last byte of the Data field. Therefore,the sum of all the ASCII pairs in a recordafter converting to binary,from the Record Length field to and including the Checksum field, iszero.Data Record(8-, 16- or 32-bit formats)RecordMark(“:”)RecordLengthLoadOffsetRecordTypeDataChecksumThe Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes thatmakeupaportion of a memory image.The contents of the individual fields within the record are:Record MarkThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains twoASCII hexadecimal digits that specify the number of 16-bit data words inthe record.The maximum value is 255 decimal.Load OffsetThis field contains four ASCII hexadecimal digits representing the word address at which the firstword of the data is to be placed.(For an exquivalent bytes address, double it.)Record TypeThis field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, whichspecifies the record type to be a Data Record.DataThis field contains sets of four ASCII hexadecimal digits, one set for each 16-bit data word, mostsignificant digit first.ChecksumThis field contains the check sum on the Record Length, Load Offset, Record Type, and Datafields.Execution Start Address RecordRecordMark(“:”)RecordLength(4)LoadOffset(0)RecordType(5)EIP (4bytes)ChecksumThe Execution Start Address Record is used to specify the execution start address for the object file. Thisis where the loader is to jump to begin execution once the hexload is complete.The Execution Start Address Record can appear anywhere in a hexadecimal object file. Ifsuch a record isnot present in a hexadecimal object file, a loader is free to assign a default execution start address.The contents of the individual fields within the record are:Record markThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Reference ManualSRecord 100

srec_intel16(5) FileFormats Manualsrec_intel16(5)Record lengthThe field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is thelength, in bytes, of the EIP register content within this record.Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, sincethis field is not used for this record.Record TypeThis field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, whichspecifies the record type to be a Start Address Record.EIPThis field contains eight ASCII hexadecimal digits that specify the address.The field is encodedbig-endian (most significant digit first).ChecksumThis field contains the check sum on the Record length, Load Offset, Record Type, and EIPfields.End of File RecordThis shall be the last record in the file.RecordMark(“:”)RecordLength(0)LoadOffset(0)RecordType(1)Checksum(0xFF)The End of File Record specifies the end of the hexadecimal object file.The contents of the individual fields within the record are:Record markThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”.Since thisrecord does not contain anyData bytes, the length is zero.Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, sincethis field is not used for this record.Record TypeThis field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, whichspecifies the record type to be an End of File Record.ChecksumThis field contains the check sum an the Record Length, Load Offset, and Record Type fields.Since all the fields are static, the check sum can also be calculated statically,and the value is0x4646, the hexadecimal encoding of the ASCII characters “FF”.Size MultiplierIn general, binary data will expand in sized by approximately 2.3 times when represented with this format.Reference ManualSRecord 101

srec_intel16(5) FileFormats Manualsrec_intel16(5)EXAMPLEHere is an example INHX16 file. Itcontains the data “Hello, World” to be loaded at address 0.:0700000065486C6C2C6F5720726F646CFF0AA8:00000001FFCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 102

srec_intel(5) FileFormats Manualsrec_intel(5)NAMEsrec_intel − Intel Hexadecimal object file format specificationDESCRIPTIONThis format is also known as theIntel MCS-86 Objectformat.This document describes the hexadecimal object file format for the Intel 8-bit, 16-bit, and 32-bitmicroprocessors. Thehexadecimal format is suitable as input to PROM programmers or hardwareemulators.Hexadecimal object file format is a way of representing an absolute binary object file in ASCII.Becausethe file is in ASCII instead of binary,itispossible to store the file is non-binary medium such as paper-tape, punch cards, etc.; and the file can also be displayed on CRTterminals, line printers, etc..The 8-bithexadecimal object file format allows for the placement of code and data within the 16-bit linear addressspace of the Intel 8-bit processors.The 16-bit hexadecimal format allows for the 20-bit segmented addressspace of the Intel 16-bit processors.And the 32-bit format allows for the 32-bit linear address space of theIntel 32-bit processors.−−address−length=2“i8hex” 16-bit−−address−length=3“i16hex” 20-bit segmented−−address−length=4“i32hex” 32-bit linearThe hexadecimal representation of binary is coded in ASCII alphanumeric characters.Forexample, the8-bit binary value 0011-1111 is 3F in hexadecimal. Tocode this in ASCII, one 8-bit byte containing theASCII code for the character ’3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code forthe character ’F’ (0100-0110 or 0x46) are required.Foreach byte value, the high-order hexadecimal digitis always the first digit of the pair of hexadecimal digits.This representation (ASCII hexadecimal) requirestwice as manybytes as the binary representation.Ahexadecimal object file is blocked into records, each of which contains the record type, length, memoryload address and checksum in addition to the data.There are currently six (6) different types of records thatare defined, not all combinations of these records are meaningful, however. The record are:•Data Record (8-, 16-, or 32-bit formats)•End of File Record (8-, 16-, or 32-bit formats)•Extended Segment Address Record (16- or 32-bit formats)•Start Segment Address Record (16- or 32-bit formats)•Extended Linear Address Record (32-bit format only)•Start Linear Address Record (32-bit format only)General Record FormatDataRecordMarkRecordLengthLoadOffsetRecordTypeChecksumRecord Mark.Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon (“:”)character.Record LengthEach record has a Record Length field which specifies the number of bytes of information or datawhich follows the Record Type field of the record.This field is one byte, represented as twohexadecimal characters.The maximum value of the Record Length field is hexadecimal ’FF’ or255.Load OffsetEach record has a Load Offset field which specifies the 16-bit starting load offset of the databytes, therefore this field is only used for Data Records.In other records where this field is notused, it should be coded as four ASCII zero characters (“0000” or 0x30303030).This field is twoReference ManualSRecord 103

srec_intel(5) FileFormats Manualsrec_intel(5)byte, represented as four hexadecimal characters.Record TypeEach record has a Record Type field which specifies the record type of this record.The RecordType field is used to interpret the remaining information within the record.This field is one byte,represented as twohexadecimal characters.The encoding for all the current record types are:0Data Record1End of File Record2Extended Segment Address Record3Start Segment Address Record4Extended Linear Address Record5Start Linear Address RecordDataEach record has a variable length Data field, it consists of zero or more bytes encoded as pairs ofhexadecimal digits.The interpretation of this field depends on the Record Type field.ChecksumEach record ends with a Checksum field that contains the ASCII hexadecimal representation ofthe two’scomplement ofthe 8-bit bytes that result from converting each pair of ASCIIhexadecimal digits to one byte of binary,from and including the Record Length field to andincluding the last byte of the Data field. Therefore,the sum of all the ASCII pairs in a recordafter converting to binary,from the Record Length field to and including the Checksum field, iszero.Extended Linear Address Record(32-bit format only)RecordMark(“:”)RecordLength(2)LoadOffset(0)RecordType(4)ULBA(2bytes)ChecksumThe 32-bit Extended Linear Address Record is used to specify bits 16-31 of the Linear Base Address(LBA), where bits 0-15 of the LBAare zero.Bits 16-31 of the LBAare referred to as the Upper LinearBase Address (ULBA). Theabsolute memory address of a content byte in a subsequent Data Record is)obtained by adding the LBAtoanoffset calculated by adding the Load Offset field of the containing DataRecord to the indexofthe byte in the Data Record (0, 1, 2, ...n). Thisoffset addition is done) modulo 4G(i.e.32-bits from 0xFFFFFFFF to 0x00000000) results in wrapping around from the end to the beginning ofthe 4G linear address defined by the LBA. Thelinear address at which a particular byte is loaded iscalculated as:(LBA+DRLO + DRI) MOD 4Gwhere:DRLOis the Load Offset field of a Data Record.DRIis the data byte indexwithin the Data Record.When an Extended Linear Address Record defines the value of LBA, it may appear anywhere within a32-bit hexadecimal object file. This value remains in effect until another Extended Linear Address Recordis encountered.The LBAdefaults to zero until an Extended Linear Address Record is encountered.Thecontents of the individual fields within the record are:Record MarkThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is thelength, in bytes, of the ULBAdata information within this record.Reference ManualSRecord 104

srec_intel(5) FileFormats Manualsrec_intel(5)Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, sincethis field is not used for this record.Record TypeThis field contains 0x3034, the hexadecimal encoding of the ASCII character “04”, whichspecifies the record type to be an Extended Linear Address Record.ULBAThis field contains four ASCII hexadecimal digits that specify the 16-bit Upper Linear BaseAddress value. Thevalue is encoded big-endian (most significant digit first).ChecksumThis field contains the check sum on the Record Length, Load Offset, Record Type, and ULBAfields.Extended Segment Address Record(16- or 32-bit formats)RecordMark(“:”)RecordLength(2)LoadOffset(0)RecordType(2)USBA(2bytes)ChecksumThe 16-bit Extended Segment Address Record is used to specify bits 4-19 of the Segment Base Address(SBA), where bits 0-3 of the SBAare zero.Bits 4-19 of the SBAare referred to as the Upper SegmentBase Address (USBA). Theabsolute memory address of a content byte in a subsequent Data Record is)obtained by adding the SBAtoanoffset calculated by adding the Load Offset field of the containing DataRecord to the indexofthe byte in the Data Record (0, 1, 2, ...n). Thisoffset addition is done modulo 64K(i.e.16-bits from 0xFFFF to 0x0000 results in wrapping around from the end to the beginning of the 64Ksegment defined by the SBA. Theaddress at which a particular byte is loaded is calculated as:SBA+((DRLO + DRI) MOD 64K)where:DRLOis the LOAD OFFSET field of a Data Record.DRIis the data byte indexwithin the Data Record.When an Extended Segment Address Record defines the value of SBA, it may appear anywhere within a16-bit hexadecimal object file. Thisvalue remains in effect until another Extended Segment AddressRecord is encountered.The SBAdefaults to zero until an Extended Segment Address Record isencountered.The contents of the individual fields within the record are:Record MarkThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains 0x3032, the hexadecimal encoding of the ASCII characters ’02’, which is thelength, in bytes, of the USBAdata information within this record.Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters ’0000’, sincethis field is not used for this record.Record TypeThis field contains 0x3032, the hexadecimal encoding of the ASCII character “02”, whichspecifies the record type to be an Extended Segment Address Record.USBAThis field contains four ASCII hexadecimal digits that specify the 16-bit Upper Segment BaseAddress value. Thefield is encoded big-endian (most significant digit first).ChecksumThis field contains the check sum on the Record length, Load Offset, Record Type, and USBAfields.Reference ManualSRecord 105

srec_intel(5) FileFormats Manualsrec_intel(5)Data Record(8-, 16- or 32-bit formats)DataRecordMark(“:”)RecordLengthLoadOffsetRecordTypeChecksumThe Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes thatmakeupaportion of a memory image.The method for calculating the absolute address (linear in the 8-bitand 32-bit case and segmented in the 16-bit case) for each byte of data is described in the discussions of theExtended Linear Address Record and the Extended Segment Address Record.The contents of the individual fields within the record are:Record MarkThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains twoASCII hexadecimal digits that specify the number of data bytes in therecord. Themaximum value is 255 decimal.Load OffsetThis field contains four ASCII hexadecimal digits representing the offset from the LBA(seeExtended Linear Address Record see Extended Segment Address Record) defining the addresswhich the first byte of the data is to be placed.Record TypeThis field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, whichspecifies the record type to be a Data Record.DataThis field contains pairs of ASCII hexadecimal digits, one pair for each data byte.ChecksumThis field contains the check sum on the Record Length, Load Offset, Record Type, and Datafields.Note:Care must be taken when the addresses with an record span the end of addressing.The behaviour isdifferent for linear and segmented addressing modes.linearIf a record starts just short of 2**32, and would finish after 2**32, the later part of the recordwraps around to address 0.TP 8n segment If a record starts just for of a 2**16 boundary,andwould finish after that 2**16 boundary,the later part of the record wraps around to address 0within the same segment (notthe next segment).Thesrec_cat(1) program will neveroutput records such as these, it will always produce separate records onoutput.Start Linear Address Record(32-bit format only)RecordMark(“:”)RecordLength(4)Load.Offset(0)RecordType(5)EIP (4bytes)ChecksumThe Start Linear Address Record is used to specify the execution start address for the object file. Thevaluegivenisthe 32-bit linear address for the EIP register.Note that this record only specifies the code addresswithin the 32-bit linear address space of the 80386.If the code is to start execution in the real mode of the80386, then the Start Segment Address Record should be used instead, since that record specifies both theCS and IP register contents necessary for real mode.The Start Linear Address Record can appear anywhere in a 32-bit hexadecimal object file. Ifsuch a recordis not present in a hexadecimal object file, a loader is free to assign a default execution start address.The contents of the individual fields within the record are:Reference ManualSRecord 106

srec_intel(5) FileFormats Manualsrec_intel(5)Record markThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record lengthThe field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is thelength, in bytes, of the EIP register content within this record.Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, sincethis field is not used for this record.Record TypeThis field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, whichspecifies the record type to be a Start Linear Address Record.EIPThis field contains eight ASCII hexadecimal digits that specify the 32-bit EIP register contents.The field is encoded big-endian (most significant digit first).ChecksumThis field contains the check sum on the Record length, Load Offset, Record Type, and EIPfields.Start Segment Address Record(16- or 32-bit formats)RecordMark(“:”)RecordLength(4)Load.Offset(0)RecordType(3)CS (2bytes)IP (2bytes)ChecksumThe Start Segment Address Record is used to specify the execution start address for the object file. Thevalue givenisthe 20-bit segment address for the CS and IP registers. Notethat this record only specifiesthe code address within the 20-bit segmented address space of the 8086/80186.The Start Segment AddressRecord can appear anywhere in a 16-bit hexadecimal object file. Ifsuch a record is not present in ahexadecimal object file, a loader is free to assign a default start address.The contents of the individual fields within the record are:Record MarkThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is thelength, in bytes, of the CS and IP register contents within this record.Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, sincethis field is not used for this record.Record TypeThis field contains 0x3033, the hexadecimal encoding of the ASCII character ’03’, whichspecifies the record type to be a Start Segment Address Record.CSThis field contains four ASCII hexadecimal digits that specify the 16-bit CS register contents.The field is encoded big-endian (most significant digit first).IPThis field contains four ASCII hexadecimal digits that specify the 16-bit IP register contents.The field is encoded big-endian (most significant digit first).ChecksumThis field contains the check sum on the Record length, Load Offset, Record Type, CS, and IPfields.End of File Record(8-, 16-, or 32-bit formats)Reference ManualSRecord 107

srec_intel(5) FileFormats Manualsrec_intel(5)RecordMark(“:”)RecordLength(0)LoadOffset(0)RecordType(1)Checksum(0xFF)The End of File Record specifies the end of the hexadecimal object file.The contents of the individual fields within the record are:Record markThis field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.Record LengthThe field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”.Since thisrecord does not contain anyData bytes, the length is zero.Load OffsetThis field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, sincethis field is not used for this record.In ancient times, i8hexused this for the start address record.Record TypeThis field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, whichspecifies the record type to be an End of File Record.ChecksumThis field contains the check sum an the Record Length, Load Offset, and Record Type fields.Since all the fields are static, the check sum can also be calculated statically,and the value is0x4646, the hexadecimal encoding of the ASCII characters “FF”.Size MultiplierIn general, binary data will expand in sized by approximately 2.3 times when represented with this format.EXAMPLEHere is an example Intel hexfile. Itcontains the data “Hello, World” to be loaded at address 0.:0D00000048656C6C6F2C20576F726C640AA1:00000001FFREFERENCEThis information comes (very indirectly) fromMicroprocessorsand Programmed Logic,Second Edition,Kenneth L. Short, 1987, Prentice-Hall, ISBN 0-13-580606-2.http://en.wikipedia.org/wiki/Intel_HEXCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/DerivationThis manual page is derivedfrom a file marked as follows:Intel Hexadecimal Object File Format Specification; Revision A, 1/6/88Disclaimer: Intel makes no representation or warranties with respect to the contents hereof and specificallydisclaims anyimplied warranties of merchantability or fitness for anyparticular purpose.Further,Intelreserves the right to revise this publication from time to time in the content hereof without obligation ofIntel to notify anyperson of such revision or changes.The publication of this specification should not beconstrued as a commitment on Intel’spart to implement anyproduct.Reference ManualSRecord 108

srec_mem(5) FileFormats Manualsrec_mem(5)NAMEsrec_mem − Lattice Memory Initialization formatDESCRIPTIONALattice Memory Initialization format (.mem), by Lattice Semiconductor,file is an ASCII text file thatconsists of a header followed by lines of memory data.SyntaxThe data must be in one of the following formats: Bin (binary), Hex(hexadecimal), or Address-Hex(described below).Forhexadecimal values, both upper and lower case can be used.If the data has fewer bits than the specifieddata width, the most significant bits are filled with 0.Anyaddress not specified will be filled with 0.Comments can be added at anypoint after the header (defined below) by starting the comment with apound sign (#) or twoslashes (//).The comment then includes everything to the end of the line.Commentsmay be added to anyofthe data, but neveradd comments to the header.HeaderA.memfile starts with a header,which declares the file format, memory size, and address and data displayradix for Memory Generator.The syntax of the header is:#Format=Bin | Hex | AddrHex#Depth=1to65536#Width=1to256#AddrRadix=index-number#DataRadix=index-number#DataTheindex-numbercan be one of the following numbers.AddrRadix and DataRadix can have differentvalues.Binary: 0Octal: 1Decimal: 2Hexadecimal: 3Forexample, the following header says the .mem file is using the binary format for a 32x8 memory.Whendisplayed in Memory Generator,the address will be shown in hexadecimal and the data will be shown inbinary.#Format=Bin#Depth=32#Width=8#AddrRadix=3#DataRadix=0#DataBin and Hex FormatsThe data is represented in binary or hexadecimal format.Each line of data specifies the contents for onememory location, starting with address 0.That is, the first line is for address 0, the second line is foraddress 1, and so on.Foreach line, the data is interpreted as least significant bit on the right.Forexample, in the Bin format, the following lines will initialize address 0 to “00011011”, address 1 to“11111010” (assuming it is a 32x8 memory).#for a 32x8 memory1101111111010In the Hexformat, the following lines will initialize address 0 to “003B”, address 1 to “FB0A” (assuming itis a 32x16 memory).#for a 32x16 memory3BReference ManualSRecord 109

srec_mem(5) FileFormats Manualsrec_mem(5)FB0AAddrHexThe data is represented in hexadecimal format.Each line consists of an address followed by a colon andthen anynumber of data words, separated by spaces:address:data data> data...The data will be applied starting at <address> and filling in sequentially from there.Forexample:A0:03 F3 3E 4FB2:3B 9Fwill initialize A0 with 03, A1 with F3, A2 with 3E, A3 with 4F,B2with 3B, and B3 with 9F.The otheraddresses will be initialized to 0.So A4 through B1 will be set to 0.See Alsohttp://help.latticesemi.com/docs/webhelp/eng/wwhelp/wwhimpl/common/html/wwhelp.htm#href=Design%20Entry/memory_initialization_fSize MultiplierThe size multiplier depends on the width selected.As files growlarger,their size multipliers will approachthose in the table, from above.Width Linux Windows82.96 3.016 2.472.532 2.252.2864 2.132.15Byte OrderThis format is implicitly big-endian.Use a −byte-swap filter if you need something different.COPYRIGHTsrec_memversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_memprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_mem−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_mem −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 110

srec_mif(5) FileFormats Manualsrec_mif(5)NAMEsrec_mif − Memory Initialization File (MIF) formatDESCRIPTIONThis format was invented by Altera.An ASCII text file (with the extension .mif) that specifies the initial content of a memory block (CAM,RAM, or ROM), that is, the initial values for each address. This file is used during project compilationand/or simulation. You can create a Memory Initialization File in the Memory Editor,the In-SystemMemory Content Editor,orthe Quartus II TextEditor.AMemory Initialization File serves as an input file for memory initialization in the Compiler andSimulator.You can also use a Hexadecimal (Intel-Format) File (.hex) to provide memory initialization data.AMemory Initialization File contains the initial values for each address in the memory.Aseparate file isrequired for each memory block. In a Memory Initialization File, you must specify the memory depth andwidth values. In addition, you can specify data radixes as binary (BIN), hexadecimal (HEX), octal (OCT),signed decimal (DEC), or unsigned decimal (UNS) to display and interpret addresses and data values. Datavalues must match the specified data radix.When creating a Memory Initialization File in the Quartus II TextEditor,you must start with the DEPTH,WIDTH, ADDRESS_RADIX and DAT A_RADIX keywords. You can use Tab "" and Space " " charactersas separators, and insert multiple lines of comments with the percent "%" character,orasingle commentwith double dash "−−" characters.Address:data pairs represent data contained inside certain memoryaddresses and you must place them between the CONTENT BEGIN and END keywords, as shown in thefollowing examples.%multiple-line commentmultiple-line comment%−− single-line commentDEPTH = 32;−− The size of data in bitsWIDTH = 8;−− The size of memory in wordsADDRESS_RADIX = HEX;−− The radix for address valuesDATA_RADIX = BIN;−− The radix for data valuesCONTENT −−start of (address : data pairs)BEGIN00 : 00000000;−− memory address : data01 : 00000001;02 : 00000010;03 : 00000011;04 : 00000100;05 : 00000101;06 : 00000110;07 : 00000111;08 : 00001000;09 : 00001001;0A : 00001010;0B : 00001011;0C : 00001100;END;There are several ways to specify the address and data, as seen in the following table:Notation InterpretationExampleA:D;Addr[A] = D2:4Address: 01234567Data: 00400000Reference ManualSRecord 111

srec_mif(5) FileFormats Manualsrec_mif(5)[A0..A1] : D;(See note below.)Addr[A0] to [A1] containdata D[0..7] : 6Address: 01234567Data: 66666666[A0..A1] : D0 D1;(See note below.)Addr[A0] = D0,Addr[A0+1] = D1,Add [A0+2] = D0,Addr[A0+3] = D1,until A0+n = A1[0..7] : 5 6Address: 01234567Data: 56565656A:D0D1D2;Addr[A] = D0,Addr[A+1] = D1,Addr[A+2] = D22:456Address: 01234567Data: 00456000Note:The address range forms are limited in SRecord, the range must be less than 255 bytes.SRecord willneverwrite an address range.Note:When reading MIF file, SRecord will round up the number of bits in the WIDTH to be a multiple of8. Multi-bytevalues will be laid down in memory as big-endian.An ASCII text file (with the extension .mif) that specifies the initial content of a memory block (CAM,RAM, or ROM), that is, the initial values for each address.This file is used during project compilationand/or simulation.AMIF contains the initial values for each address in the memory.InaMIF,you arealso required to specify the memory depth and width values. Inaddition, you can specify the radixes usedto display and interpret addresses and data values.SIZE MULTIPLIERIn general, binary data will expand in sized by approximately 3.29 times when 8-bit data is representedwith this format (16 bit = 2.75, 32 bit = 2.47, 64 bit = 2.34).EXAMPLEFollowing is a sample MIF:DEPTH = 32; % Memory depth and width are required %%DEPTH is the number of addresses %WIDTH = 14; % WIDTH is the number of bits of data per word %%DEPTH and WIDTH should be entered as decimal numbers %ADDRESS_RADIX = HEX; % Address and value radixes are required %DATA_RADIX = HEX; % Enter BIN, DEC, HEX, OCT, or UNS; unless %%otherwise specified, radixes = HEX %−−Specify values for addresses, which can be single address or rangeCONTENTBEGIN[0..F]: 3FFF;%Range: Every address from 0 to F = 3FFF %6:F; %Single address: Address 6 = F %8:FE5;%Range starting from specific address %−− %Addr[8] = F, Addr[9] = E, Addr[A] = 5 %END;REFERENCEThe above information was gleaned from the following sources:http://www.altera.com/support/software/nativelink/quartus2/glossary/def_mif.htmlhttp://www.mil.ufl.edu/4712/docs/mif_help.pdfCOPYRIGHTsrec_mifversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_mifprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_mif−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_mif −VERSion License’command.Reference ManualSRecord 112

srec_mif(5) FileFormats Manualsrec_mif(5)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 113

srec_mips_flash.5(5) FileFormats Manualsrec_mips_flash.5(5)NAMEsrec_mips_flash − MIPS-Flash file formatDESCRIPTIONThe MIPS SDE tool chain has aconvertprogram that is able to output this format.Ihav eno idea whatreads it, some kind of flash programmer I suppose.FormatThe file must start with ’!R’ to reset the state machine.White space appears to be ignored, except as itserves to separate tokens.Data is presented as 32-bit hexadecimal numbers, in the normal big-endian text number format.To writethem to memory,you have toknowifthe target is big-endian or little-endian. for little endian targets,reverse the order of the bytes in this number.The eight bytes following a ’>’ are a sort of comment.The SDE code reads liketheyare displayed in theflash programmer as a kind of progress indicator.The number following ’@’ is a newaddress for the following data.Each segment must be erased before it can be written, this is done with the ’!E’ command.Each segment isassumed to be 128kB in size.Special segments must unlocked (with the ’!C’ command) and locked again (with the ’!S’ command).This file format contains no checksum mechanism.Command Line OptionsThis format is specified using one of the−Mips-Flash-Big_Endianor−Mips-Flash-Little_Endianoptions. Theendian-ness must be specified on the command line, because there is nothing in the filecontents to indicate the endian-ness of the data it contains.Size MultiplierIn general, binary data will expand in sized by approximately 2.3 times when represented with this format(worse if you use shorter lines).EXAMPLEHere is an example MIPS-Flash file. Itcontains the data “Hello, World” to be loaded at bytes address0x0000 (but remember,the file contents are always multiples of four bytes).!R>00000xxx @00000000 !E@00000000>0000000048656C6C 6F2C2057 6F726C64 210A0000>#DL_DONE>FINISHEDCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.Reference ManualSRecord 114

srec_mips_flash.5(5) FileFormats Manualsrec_mips_flash.5(5)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 115

srec_mos_tech(5) FileFormats Manualsrec_mos_tech(5)NAMEsrec_mos_tech − MOS Technology file formatDESCRIPTIONThe MOS Technology format allows binary files to be uploaded and downloaded between between acomputer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board formicrocontrollers and microprocessors.The LinesEach line consists of 5 fields. Theseare the length field, address field, data field, and the checksum.Thelines always start with a semicolon (;) character.The Fields;Length Address Data Checksum CRLFLengthThe record length field is a 2 character (1 byte) field that specifies the number of data bytes in therecord. Typically this is 24 or less.AddressThis is a 2-byte address that specifies where the data in the record is to be loaded into memory,big-endian.DataThe data field contains the executable code, memory-loadable data or descriptive information tobe transferred.ChecksumThe checksum is an 2-byte field that represents the least significant twobytes of the the sum ofthe values represented by the pairs of characters making up the record’slength, address, and datafields, big-endian.End of FileThe final line should have a data length of zero, and the data line count in the address field. Thechecksumis not the usual checksum, it is instead a repeat of the data line count.Size MultiplierIn general, binary data will expand in sized by approximately 2.54 times when represented with this format.EXAMPLEHere is an example MOS Technology format file. Itcontains the data “Hello, World” to be loaded ataddress 0.;0C000048656C6C6F2C20576F726C640454;0000010001COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/KIM-1 User Manual − Appendix F − Paper Tape Format(The following information is reproduced from http://users.telenet.be/kim1-6502/6502/usrman.html#F justin case it vanishes from the Web.)The paper tape LOAD and DUMP routines store and retrieve data in a specific format designed to insureerror free recovery.Each byte of data to be stored is converted to twohalf bytes.The half bytes (whosepossible values are 0 to F HEX) are translated into their ASCII equivalents and written out onto paper tapeReference ManualSRecord 116

srec_mos_tech(5) FileFormats Manualsrec_mos_tech(5)in this form.Each record outputted begins with a “;” character (ASCII 3B) to mark the start of a valid record.The nextbyte transmitted (18HEX) or (24 decimal) is the number of data bytes contained in the record.The record’sstarting address High (1 byte, 2 characters), starting address Lo (1 byte, 2 characters), and data (24 bytes,48 characters) follow. Each record is terminated by the record’scheck-sum (2 bytes, 4 characters), acarriage return (ASCII 0D), line feed (ASCII 0A), and six “NULL” characters (ASCII 00).(NULLcharacters cause a blank area on the paper tape.)The last record transmitted has zero data bytes (indicated by ;00) The starting address field is replaced by afour digit Hexnumber representing the total number of data records contained in the transmission, followedby the records usual check-sum digits.An “XOFF” character ends the transmission.;180000FFEEDDCCBBAA0099887766554433221122334455667788990AFC;0000010001During a “LOAD” all incoming data is ignored until a “;” character is received. Thereceipt of non ASCIIdata or a mismatch between a records calculated check-sum and the check-sum read from tape will causean error condition to be recognized by KIM.The check-sum is calculated by adding all data in the recordexcept the “;” character.The paper tape format described is compatible with all other MOS Technology,Inc. software supportprograms.Reference ManualSRecord 117

srec_motorola(5) FileFormats Manualsrec_motorola(5)NAMEsrec_motorola − Motorola S-Record hexadecimal file formatDESCRIPTIONThis format is also known as theExorciser,ExormacsorExormaxformat.Motorola’sS-record format allows binary files to be uploaded and downloaded between twocomputersystems. Thistype of format is widely used when transferring programs and data between a computersystem (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for Motorolamicrocontrollers and microprocessors.The LinesMost S-Record file contain only S-Record lines (see the next section), which always start with a capital Scharacter.Some systems generate various “extensions[rq] which usually manifest as lines which start withsomething else.These “extension[rq] lines may or may not break other systems made by other vendors.Caveat emptor.The FieldsThe S-Record format consists of 5 fields. These are the type field, length field, address field, data field, andthe checksum.The lines always start with a capital S character.SType RecordLength Address Data ChecksumTypeThe type field is a 1 character field that specifies whether the record is an S0, S1, S2, S3, S5, S6,S7, S8 or S9 field.Record LengthThe record length field is a 2 character (1 byte) field that specifies the number of character pairs(bytes) in the record, excluding the type and record length fields.AddressThis is a 2-, 3- or 4-byte address that specifies where the data in the S-Record is to be loaded intomemory.DataThe data field contains the executable code, memory-loadable data or descriptive information tobe transferred.ChecksumThe checksum is an 8-bit field that represents the least significant byte of the one’scomplementof the sum of the values represented by the pairs of characters making up the record’slength,address, and data fields.Record TypesS0This type of record is the header record for each block of S-Records.The data field may containanydescriptive information identifying the following block of S-Records.(It is commonly“HDR[rq] on manysystems.) Theaddress field is normally zero.S1Arecord containing data and the 2-byte address at which the data is to reside.S2Arecord containing data and the 3-byte address at which the data is to reside.S3Arecord containing data and the 4-byte address at which the data is to reside.S5An optional record containing the number of S1, S2 and S3 records transmitted in a particularblock. Thecount appears in the two-byte address field. Thereis no data field.This record is optional, you do not have touse it.Nobody knows if you can have more than onein a file; and if you do, nobody knows whether or not the line count resets after each one.Thesrec_catcommand will only everuse one, provided the number of lines fits in 16 bits,otherwise it will use S6.S6An optional record containing the number of S1, S2 and S3 recordsReference ManualSRecord 118

srec_motorola(5) FileFormats Manualsrec_motorola(5)transmitted in a particular block.The count appears in the three-byte addressfield. Thereis no data field.This record is optional, you do not have touse it.Nobody knows if you canhave more than one in a file; and if you do, nobody knows whether or not theline count resets after each one.Nobody knows what happens if you mix S5 and S6 records in a file.Thesrec_catcommand will only everuse one, provided the number of linesfits in 24 bits.S7Atermination record for a block of S3 records.The address field may containthe 4-byte address of the instruction to which control is passed.There is nodata field.S8Atermination record for a block of S2 records.The address field mayoptionally contain the 3-byte address of the instruction to which control ispassed. Thereis no data field.S9Atermination record for a block of S1 records.The address field mayoptionally contain the 2-byte address of the instruction to which control ispassed. Ifnot specified, the first entry point specification encountered in theobject module input will be used.There is no data field.Size MultiplierIn general, binary data will expand in sized by approximately 2.4 times when represented with this format.EXAMPLEHere is an example S-Record file. Itcontains the data “Hello, World[rq] to be loaded at address 0.S00600004844521BS110000048656C6C6F2C20576F726C640A9DS5030001FBS9030000FCCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 119

srec_msbin(5) FileFormats Manualsrec_msbin(5)NAMEsrec_msbin − Windows CE Binary Image Data FormatDESCRIPTIONThis format is the output of the Microsoft WinCE Platform Builder.This is a binary (non-text) file format.File names in this format typically (ambiguously) use the.binsuffix.File FormatFiles in this format start with a header record.Then comes the data itself, organized into records.The file finishes with an execution start address record.This is mandatory.File Header RecordData in this format start with an optional header containing the magic “B000FF\n”, followed by the imagestart (four bytes, little endian) address and the span of the image (highest address − lowest address + 1)(four bytes, little endian).The file header does not have a checksum; it is therefore possible that a corruptfile header will go undetected.Magic“B000FF\n”(7 bytes)LeastAddress(4 bytes)GreatestAddress(4 bytes)There is no provision for a file comment of anykind.Data RecordEach record consists of a record start address (four bytes, little endian), a record length (four bytes, littleendian), a record checksum (four bytes, little endian), followed by the record data.The data part of eachrecord is rawbyte values, no encoding.Startaddress(4 bytes)Length(4 bytes)Checksum(4 bytes)DataThe checksum is calculated by a simple sum of unsigned bytes into a 32-bit accumulator.The 12 record header bytes are not included in the record checksums; it is therefore possible that a corruptrecord header will go undetected.It is not possible to place data at address zero with this format.Address zero is reserved for use by theexecution start address record.There is effectively no limit on the length of a record (2ˆ32−1).It is not uncommon for a MsBin file tocontain records with sizes in the tens of megabytes.Execution Start Address RecordLast comes a special record with the record address set to zero and record length set to the image executionstart address.According to specification the record describing the execution start address must be alwayspresent, and must always be the last record in the file.Zero(4 bytes)StartAddress(4 bytes)Checksum=0(4 bytes)CommentaryThe MsBin files produced by SRecord are valid and can be successfully parsed by the command lineutilitiesviewbinandcvrtbin(part of Windows CE platform).ForaMsBin file to be usable in Microsoft WinCE Platform Builder it has to contain a TOC meta-structure.This is data embedded in the file by Microsoft WinCE Platform Builder itself.The opposite conversion − from MsBin − comes in handy when analyzing a MsBin file (i.e.aWinCEimage).Reference ManualSRecord 120

srec_msbin(5) FileFormats Manualsrec_msbin(5)Size MultiplierIn general, binary data will expand in sized by approximately 1.0 times (approaching asymptotically fromabove)when represented with this format, as the 15-byte file header is averaged overthe data content.Holes in the data will also increase the size.SOURCEhttp://msdn.microsoft.com/en−us/library/ms924510.aspxCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 121

srec_needham(5) FileFormats Manualsrec_needham(5)NAMEsrec_needham − Needham EMP-series programmer ASCII file formatDESCRIPTIONThis format is understood by Needham Electronics’ EMP-series programmers.Seewww.needhams.com/winman.pdffor more information.(This format is very similar to the ASCII-Hexformat, but without the ˆB and ˆC guard characters.)Each data byte is represented as 2 hexadecimal characters, and is separated by white space from all otherdata bytes.The address for data bytes is set by using a sequence of$Annnn,characters, wherennnnis the8-character ascii representation of the address.The comma is required.There is no need for an addressrecord unless there are gaps. Implicitly,the file starts a address 0 if no address is set before the first databyte.Size MultiplierIn general, binary data will expand in sized by approximately 3.0 times when represented with this format.EXAMPLEHere is an example ascii-hexfile. Itcontains the data “Hello, World[rq] to be loaded at address 0x1000.$A1000,48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0ACOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 122

srec_os65v(5) FileFormats Manualsrec_os65v(5)NAMEsrec_os65v − OS65V Loader file formatDESCRIPTIONThis format is used by Ohio Scientific OS65V-compatible loaders.This family of machines includes theOSI C1P,Superboard II, C2, C4, C8, and Challenger III, as well as the UK101, and Elektor Junior.The file startes with a period ’.’(0x2E), to ensure address entry mode.then a 4-digit hexaddress, followedby a slash ’/’ (0X2F) to enter the data entry mode.The initial address is always present.There is no needfor an additional address record unless there are gaps.Each data byte is represented as 2 hexadecimal characters, and is separated by a carriage return character(0x0D) (advance address).The final return character may be omitted.The data is concluded with a period ’.’(0x2E) to re-enter address mode.If an address to start execution isspecified, then the last 5 bytes arennnnGwherennnnis the 4-digit execution address, and G is the ’Go’command.Size MultiplierIn general, binary data will expand in sized by approximately 3.0 times when represented with this format.EXAMPLEHere is an example ascii-hexfile. Itcontains the data “Hello, World[rq] to be loaded at address 0x1000,with execution at 0x1003.(On a 6502, this is the opcode for indirect jump to 0x2C6F.)1000/48ˆM65ˆM6CˆM6CˆM6FˆM2CˆM20ˆM57ˆM6FˆM72ˆM6CˆM64ˆM0AˆM.1010GCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 123

srec_ppb(5) FileFormats Manualsrec_ppb(5)NAMEsrec_ppb − Stag Prom Programmer binary formatDESCRIPTIONThis is the native binary format of the Stag Prom Programmer.FormatThe format is packet based.The packet is somposed of an 0x01 byte, the packet payload size (4 bytes, big-endian), the packet address size (4 bytes, big-endian), the packet data, and a one-byte simple sum of thepayload data.If the packet payload is more than 1024 bytes, there is an intermediate checksum after each 1024th payloadpyte.The end of file is indicated by a packet with a zero-length payload.Command Line OptionThis format is specified using the−PPBcommand line option.Size MultiplierIn general, binary data will expand in sized by approximately 1.002 times when represented with thisformat (worse if there are manyshort data regions).SEE ALSOhttp://www.stag.co.uk/COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 124

srec_ppx(5) FileFormats Manualsrec_ppx(5)NAMEsrec_ppx − Stag Prom Programmer hexadecimal formatDESCRIPTIONThis is the native hexadecimal format of the Stag Prom Programmer.FormatThe file must start with an asterisk ’*’ on a line by itself.Each line has a 16-bit address, followed by 8-bit bytes.The end is indicated by ’$S’ folloowed by a 16-bit checksum of the data bytes as 4 hexdigits.Command Line OptionThis format is specified using the−PPXcommand line option.Size MultiplierIn general, binary data will expand in sized by approximately 3 times when represented with this format(worse if you use shorter lines).EXAMPLEHere is an example PPX file. Itcontains the data “Hello, World” to be loaded at bytes address 0x0000 (butremember,the file contents are always multiples of four bytes).*0000 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A $S0473SEE ALSOhttp://matthieu.benoit.free.fr/pdf/pp39.pdf http://www.stag.co.uk/COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 125

srec_signetics(5) FileFormats Manualsrec_signetics(5)NAMEsrec_signetics − Signetics file formatDESCRIPTIONThe Signetics file format is not often used.The major disadvantage in modern applications is that theaddressing range is limited to only 64kb.RecordsAll data lines are called records, and each record contains the following 5 fields::aaaa cc as dd ssThe field are defined as follows::Every record starts with this identifier.aaaaThe address field. Afour digit (2 byte) number representing the first address to be used by thisrecord.ccThe byte-count.Atwo digit value (1 byte), counting the actual data bytes in the record.asAddress checksum.Covers 2 address bytes and the byte count.ddThe actual data of this record.There can be 1 to 255 data bytes per record (see cc)ssData Checksum.Covers only all the data bytes of this record.Record BeginEvery record begins with a colon “:[rq] character.Records contain only ASCII characters.No spaces ortabs are allowed in a record.In fact, apart from the 1st colon, no other characters than 0..9 and A..F areallowed in a record.Interpretation of a record should be case less, it does not matter if you use a..f or A..F.Unfortunately the colon was chosen for the Signetics file format, similar to the Intel format (seesrec_intel(5) for more information).However, SRecord is able to automatically detect the dofferencebetween the twoformat, when you use the−Guessformat specifier.Address FieldThis is the address where the first data byte of the record should be stored.After storing that data byte, theaddress is incremented by 1 to point to the address for the next data byte of the record.And so on, until alldata bytes are stored.The address is represented by a 4 digit hexnumber (2 bytes), with the MSD first.The order of addresses in the records of a file is not important.The file may also contain address gaps, toskip a portion of unused memory.Byte CountThe byte count cc counts the actual data bytes in the current record.Usually records have 32data bytes,butany number between 1 and 255 is possible.Avalue of 0x00 for cc indicates the end of the file. Inthis case not eventhe address checksum will follow!The record (and file) are terminated immediately.It is not recommended to send too manydata bytes in a record for that may increase the transmission timein case of errors.Also avoid sending only a fewdata bytes per record, because the address overhead will betoo heavy in comparison to the payload.Address ChecksumThis is not really a checksum anymore, it looks more likeaCRC. Thechecksum can not only detect errorsin the values of the bytes, but also bytes out of order can be detected.The checksum is calculated by this algorithm:checksum = 0for i = 1 to 3checksum = checkum XOR byteROLchecksumnext iForthe Address Checksum we only need 2 Address bytes and 1 Byte Count byte to be added.That’swhyReference ManualSRecord 126

srec_signetics(5) FileFormats Manualsrec_signetics(5)we count to 3 in the loop.Every byte is XORed with the previous result.Then the intermediate result isrolled left (carry rolls back into b0).This results in a very reliable checksum, and that for only 3 bytes!The last record of the file does not contain anychecksums! Sothe file ends right after the Byte Count of 0.Data FieldThe payload of the record is formed by the Data field. Thenumber of data bytes expected is givenbytheByte Count field. Thelast record of the file may not contain a Data field.Data ChecksumThis checksum uses the same algorithm as used for the Address Checksum.This time we calculate thechecksum with only the data bytes of this record.checksum = 0for i = 1 to ccchecksum = checksum XOR byteROLchecksumnext iNote that we count to the Byte Count cc this time.Size MultiplierIn general, binary data will expand in sized by approximately 2.4 times when represented with this format.EXAMPLEHere is an example Signetics file:B00010A5576F77212044696420796F75207265617B:B01010E56C6C7920676F207468726F756768206136:B02010256C6C20746861742074726F75626C652068:B0300D5F746F207265616420746869733FD1:B03D00In the example above you can see a piece of code in Signetics format.The first 3 lines have 16bytes ofdata each, which can be seen by the byte count.The 4th line has only 13 bytes, because the program is atit’send there.Notice that the last record of the file contains no data bytes, and not evenanAddress Checksum.SEE ALSOhttp://sbprojects.fol.nl/knowledge/fileformats/signetics.htmAUTHORThis man page was taken from the above Web page.It was written by San Bergmans<sanmail@bigfoot.com>Reference ManualSRecord 127

srec_spasm(5) FileFormats Manualsrec_spasm(5)NAMEsrec_spasm − SPASM file formatDESCRIPTIONThis format is the output of the Paralax SPASM assembler (nowdefunct, I’m told).The file contains twocolumns of 16-bit hexadecimal coded values. Thefirst column is the word address, the second column isthe word data.By default, SRecord treats this is big-endian data (the most significant byte first). Ifyou want little endianorder,use the −spasm-le argument instead.Size MultiplierIn general, binary data will expand in sized by approximately 5.0 times when represented with this format(5.5 times in Windows).EXAMPLEHere is an example SPASM file. Itcontains the data “Hello, World[rq] to be loaded at bytes address0x0100 (but remember,the file contents are word addressed).0080 65480081 6C6C0082 2C6F0083 57200084 726F0085 646CCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 128

srec_spectrum(5) FileFormats Manualsrec_spectrum(5)NAMEsrec_spectrum − Spectrum file formatDESCRIPTIONIn this format, bytes are recorded as ASCII code with binary digits represented by 1s and 0s.Each byte ispreceded by a decimal address.The file ends with a Control-C character (0x03).Size MultiplierIn general, binary data will expand in sized by approximately 14 times when represented with this format(or 15 times on DOS or Windows).EXAMPLEHere is an example Spectrum file. Itcontains the data “Hello, World[rq] to be loaded at address 0x0.ˆB0000 010010000001 011001010002 011011000003 011011000004 011011110005 001011000006 001000000007 010101110008 011011110009 011100100010 011011000011 011001000012 001000010013 00001010ˆCCOPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 129

srec_stewie(5) FileFormats Manualsrec_stewie(5)NAMEsrec_stewie − Stewie’sbinary file formatDESCRIPTIONIf you have a URL for documentation of this format, please let me know.Anyresemblance to the Motorola S-Record is superficial, and extends only to the data records.The headerrecords and termination records are completely different. Noneof the other Motorola S-Records recordtype are available.The RecordsAll records start with an ASCII capital S character,value 0x53, followed by a type specifier byte.Allrecords consist of binary bytes.The Header RecordEach file starts with a fixed four byte header record.0x53 0x30 0x30 0x33The Data RecordsEach data record consists of 5 fields. These are the type field, length field, address field, data field, and thechecksum. Thelines always start with a capital S character.0x53Type RecordLength Address Data ChecksumTypeThe type field is a one byte field that specifies whether the record has a two-byte address field(0x31), a three-byte address field (0x32) or a four-byte address field (0x33).The address is big-endian.Record LengthThe record length field is a one byte field that specifies the number of bytes in the recordfollowing this byte.AddressThis is a 2-, 3- or 4-byte address that specifies where the data in the record is to be loaded intomemory.DataThe data field contains the executable code, memory-loadable data or descriptive information tobe transferred.ChecksumThe checksum is a one byte field that represents the least significant byte of the one’scomplement of the sum of the values represented by the bytes making up the record’slength,address, and data fields.The Termination RecordEach file ends with a fixed twobyte termination record.0x53 0x38Size MultiplierIn general, binary data will expand in sized by approximately 1.2 times when represented with this format.Reference ManualSRecord 130

srec_stewie(5) FileFormats Manualsrec_stewie(5)EXAMPLEHere is an hex-dump example file. Itcontains the data “Hello, World[rq] to be loaded at address 0.0000: 53 30 30 33 53 31 10 00 00 48 65 6C 6C 6F 2C 20S003S1...Hello,0010: 57 6F 72 6C 64 0A 9D 53 38World..S8COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 131

srec_tektronix(5) FileFormats Manualsrec_tektronix(5)NAMEsrec_tektronix − Tektronix hexadecimal file formatDESCRIPTIONThe Tektronix hexadecimal file format is no longer very common.It serves a similar purpose to theMotorola and Intel formats, usually used to transfer data into EPROM programmers.The LinesMost Tektronix hexfiles contain only Tektronix hexlines (see the next section), which always start with aslash (“/[rq]) character.There are only twotypes of lines − data lines and a termination line.Data LinesData lines have fiv efields: address, length, checksum 1, data and checksum 2.The lines always start with aslash (“/[rq]) character./Address Length Checksum1 Data Checksum2AddressThis is a 4 character (2 byte) address that specifies where the data in the record is to be loadedinto memory.Data LengthThe data length field is a 2 character (1 byte) field that specifies the number of character pairs(bytes) in the data field. Thisfield neverhas a value of zero.Checksum 1The checksum 1 field is a 2 character (1 byte) field. Itsvalue is the 8-bit sum of the six 4-bitvalues which makeupthe address and length fields.DataThe data field contains character pairs (bytes); the number of character pairs (bytes) is indicatedby the length field.Checksum 2The checksum 2 field is a 2 character (1 byte) field. Itsvalue is the least significant byte of thesum of the all the 4-bit values of the data field.Termination LineTermination lines have three fields: address, zero and checksum.The lines always start with a slash (“/[rq])character./Address Zero ChecksumAddressThis is a 4 character (2 byte) address that specifies where to begin execution.ZeroThe data length field is a 2 character (1 byte) field of value zero.ChecksumThe checksum 1 field is a 2 character (1 byte) field. Itsvalue is the 8-bit sum of the six 4-bitvalues which makeupthe address and zero fields.Size MultiplierIn general, binary data will expand in sized by approximately 2.4 times when represented with this format.Reference ManualSRecord 132

srec_tektronix(5) FileFormats Manualsrec_tektronix(5)EXAMPLEHere is an example Tektronix hexfile. Itcontains the data “Hello, World[rq] to be loaded at address 0./00000D0D48656C6C6F2C20576F726C640A52/00000000COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 133

srec_tektronix_extended(5) FileFormats Manualsrec_tektronix_extended(5)NAMEsrec_tektronix_extended − Tektronix Extended hexadecimal file formatDESCRIPTIONThis format allows binary files to be uploaded and downloaded between twocomputer systems, typicallybetween a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation boardfor microcontrollers and microprocessors.The LinesLines always start with a percent (%) character.Each line consists of 5 fields. Theseare the length field,the type field, the checksum, the address field (including address length), and the data field.The Fields%Length Type Checksum Address DataRecord LengthThe record length field is a 2 character (1 byte) field that specifies the number of characters (notbytes) in the record, excluding the percent, the length field, the type field and the checksum.TypeThe type field is a 1 character field that specifies whether the record is data (6) or termination (8).ChecksumThe checksum is an 2 character (1 byte) field that represents the sum of all the nibbles on the line,excluding the checksum.AddressThis is a 9 character field. Thefirst character is the address size; it is always 8.The remaining 8chgaracters are the 4-byte address that specifies where the data is to be loaded into memory.DataThe data field contains the executable code, memory-loadable data or descriptive information tobe transferred.Record Types6Arecord containing data.The data is placed at the address specified.8Atermination record.The address field may optionally contain the address of the instruction towhich control is passed.There is no data field.Size MultiplierIn general, binary data will expand in sized by approximately 2.5 times when represented with this format.EXAMPLEHere is an example Tektronix extended file. Itcontains the data “Hello, World[rq] to be loaded at address0x006B.%256D980000006B48656C6C6F2C20576F726C64210A%09819800000000COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 134

srec_ti_tagged_16(5) FileFormats Manualsrec_ti_tagged_16(5)NAMEsrec_ti_tagged_16 − Texas Instruments Tagged (SDSMAC320) file formatDESCRIPTIONThis format is also known as theTI-TaggedorTe xas Instruments SDSMAC(320)format.This format allows binary files to be uploaded and downloaded between twocomputer systems, typicallybetween a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation boardfor 16-bit microcontrollers and microprocessors.The LinesUnlikemanyother object formats, the lines themselves are not especially significant. Theformat consits ofanumber oftaggedfields, and lines are composed of a series of these fields.TagDescription*Data byte.:End of file.0File header (optional).7Checksum.8Dummy checksum (ignored).9Word Address.BData word.FEnd of data record.KProgram identifier (optional).Data ByteBnnOne byte of data.Thennis 8-bit big-endian hexadecimal.End of File:CRLFThe end of data is indicated by this tag.The end of line sequence (LF on Unix systems, CRLF on PCs)follows this tag.File Header0length filenameThe optional start-of-file record begins with a tag character (’0’) and a 12-character file header.The firstfour characters are the count (in hex) of the 16-bit data word values (B) which follow, not including databyte values (*). The remaining file header characters are the name of the file and may be anyASCIIcharacters, blank padded.Checksum7nnnnThe checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the firsttag character and ending with the checksum tag character (7).Thennnnis 16-bit big-endian hexadecimal.Reference ManualSRecord 135

srec_ti_tagged_16(5) FileFormats Manualsrec_ti_tagged_16(5)Dummy Checksum8nnnnThe checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the firsttag character and ending with the checksum tag character (8).Thennnnis 16-bit big-endian hexadecimal.Address9nnnnAddresses may be givenfor anydata byte, but none is mandatory.The file begins at 0000 if no address isgivenbefore the first data field. Thennnnis 16-bit big-endian hexadecimal.Data WordBaabbTw obytes of data.Theaaandbbare each 8-bit big-endian hexadecimal.End of RecordFCRLFThe end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag.The checksum isreset to zero at this point.Program IdentifierKnnnntextThe program identifier can contain a brief description of the program, or can be empty (i.e.the text portionis optional).Thennnnlength (hex) of the field includes the ‘K’, the length and the text; it is at least 5.Size MultiplierIn general, binary data will expand in sized by approximately 2.9 times when represented with this format.EXAMPLEHere is an example TI-Tagged file. Itcontains the data “Hello, World[rq] to be loaded at address 0x0100.K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0A7F641F:Here is another example from the reference below00028 7FDCFF90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F90008BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F8F90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF90018BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F7F90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF:SEE ALSOhttp://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-7)COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.Reference ManualSRecord 136

srec_ti_tagged_16(5) FileFormats Manualsrec_ti_tagged_16(5)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 137

srec_ti_tagged(5) FileFormats Manualsrec_ti_tagged(5)NAMEsrec_ti_tagged − Texas Instruments Tagged (SDSMAC) file formatDESCRIPTIONThis format is also known as theTI-TaggedorTI-SDSMACformat.This format allows binary files to be uploaded and downloaded between twocomputer systems, typicallybetween a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation boardfor microcontrollers and microprocessors.The LinesUnlikemanyother object formats, the lines themselves are not especially significant. Theformat consits ofanumber oftaggedfields, and lines are composed of a series of these fields.TagDescription*Data byte.:End of file.0File header (optional).7Checksum.8Dummy checksum (ignored).9Address.BData word.FEnd of data record.KProgram identifier (optional).Data ByteBnnOne byte of data.Thennis 8-bit big-endian hexadecimal.End of File:CRLFThe end of data is indicated by this tag.The end of line sequence (LF on Unix systems, CRLF on PCs)follows this tag.File Header0length filenameThe optional start-of-file record begins with a tag character (’0’) and a 12-character file header.The firstfour characters are the byte count of the file data.The remaining 8 characters are the name of the file andmay be anyASCII characters, blank padded.Checksum7nnnnThe checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the firsttag character and ending with the checksum tag character (7).Thennnnis 16-bit big-endian hexadecimal.Reference ManualSRecord 138

srec_ti_tagged(5) FileFormats Manualsrec_ti_tagged(5)Dummy Checksum8nnnnThe checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the firsttag character and ending with the checksum tag character (8).Thennnnis 16-bit big-endian hexadecimal.Address9nnnnAddresses may be givenfor anydata byte, but none is mandatory.The file begins at 0000 if no address isgivenbefore the first data field. Thennnnis 16-bit big-endian hexadecimal.Data WordBaabbTw obytes of data.Theaaandbbare each 8-bit big-endian hexadecimal.End of RecordFCRLFThe end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag.The checksum isreset to zero at this point.Program IdentifierKnnnntextThe program identifier can contain a brief description of the program, or can be empty (i.e.the text portionis optional).Thennnnlength (hex) of the field includes the ‘K’, the length and the text; it is at least 5.Size MultiplierIn general, binary data will expand in sized by approximately 2.9 times when represented with this format.EXAMPLEHere is an example TI-Tagged file. Itcontains the data “Hello, World[rq] to be loaded at address 0x0100.K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0A7F648F:and here is another example from the reference below00050 7FDD4F90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF90030BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FDF90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FCF:SEE ALSOhttp://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-33)COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.Reference ManualSRecord 139

srec_ti_tagged(5) FileFormats Manualsrec_ti_tagged(5)AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 140

srec_ti_txt(5) FileFormats Manualsrec_ti_txt(5)NAMEsrec_ti_txt − Texas Instruments ti-txt (MSP430) file formatDESCRIPTIONThe ti-TXT format is used by the Texas Instruments MSP430 familty programming adapter.The TI-TXT hexformat supports 16-bit hexadecimal data.It consists of one or more sections, followed bythe end-of-file indicator.Each section consistes of an at (@) sign followed a execution start address (in hexadecimal), and newline,and then data bytes (in hexadecimal). Thesection address is followed by a newline. Thereare to be 16data bytes per line, except for the last line in a section.The end-of-file indicator is the letterqfollowed by a newline. Theend-of-file indicator mandatory.Size MultiplierIn general, binary data will expand in sized by approximately 3.0 times when represented with this format.EXAMPLEHere is an example ti-txt file taken from the reference below:@F00031 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E321 00 3F 40 E8 FD 1F 83 FE 23 F9 3F@FFFE00 F0qSEE ALSOhttp://www.ti.com/lit/pdf/slau101, section A.2.Note:the portion which says addresses must be even, andthe number of data bytes in a section must be even, is wrong.COPYRIGHTsrec_ti_txtversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_ti_txtprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_ti_txt−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_ti_txt −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 141

srec_trs80(5) FileFormats Manualsrec_trs80(5)NAMEsrec_trs80 − Radio Shack TRS-80 object file format specificationDESCRIPTIONThis document describes the binary object file format for the Z80-based Radio Shack TRS-80microcomputers, such as the Model I, II, III, 4, 4D, and 4P.The binary format is generated by the disk-based Assembler/Editor,and used for TRS-DOS program files.The object file is blocked into records, each of which contains the record type, length, and payload data.ForData and End of File records, the payload starts with twobytes of address in little-endian format.There are four main types of records that are defined. Therecord types are:•Data Record•End of File Record with Execution Transfer•End of File Record without Execution Transfer•Comment•Start Linear Address Record (32-bit format only)General Record FormatRecordTypeRecordLengthLoadAddressDataRecord Type.Each record begins with a single byte Record Type field which specifies the record type of thisrecord. TheRecord Type field is used to interpret the remaining information within the record.This field is one byte, represented as twohexadecimal characters.The encoding for all thecurrent record types are:1Data Record2End of File Record with Execution Transfer3End of File Record without Execution Transfer5Comment RecordRecord LengthEach record has a single byte Record Length field which specifies the number of bytes ofinformation or data which follows the Record Length field of the record.The maximum value ofthe Record Length field is hexadecimal “FF” or 255.In the case of Data Records only,RecordLength byte values of zero to twoare considered to be lengths of 256 to 258, respectively.AddressData and End records have a two-byte Address field in little-endian byte order.For Data records,this is the starting address at which to load the remaining payload of the record.In End records,this is the address for the start of execution of the file, or zero if not applicable.DataEach record has a variable length Data field, it consists of zero or more bytes.The interpretationof this field depends on the Record Type field.Reference ManualSRecord 142

srec_trs80(5) FileFormats Manualsrec_trs80(5)REFERENCEThis information comes from the "Program Files" section ofTRSDOS-II Reference Manual,TandyCorporation, 1982.COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 143

srec_vmem(5) FileFormats Manualsrec_vmem(5)NAMEsrec_vmem − vmem file formatDESCRIPTIONThis format is the Verilog VMEM format.This is a hexformat suitable for loading into Verilog simulationsusing the$readmemhcall.The text file to be read shall contain only the following:White space (spaces, newlines, tabs, and form-feeds)Comments (both types of C++ comment are allowed)Hexadecimal numbersWhite space and/or comments shall be used to separate the numbers.In the following discussion, the term "address" refers to an indexinto the array that models the memory.As the file is read, each number encountered is assigned to a successive word element of the memory.Addressing is controlled both by specifying start and/or finish addresses in the system task invocation andby specifying addresses in the data file.When addresses appear in the data file, the format is an "at" character (@)followed by a hexadecimalnumber as follows:@hh...hBoth uppercase and lowercase digits are allowed in the number.Nowhite space is allowed between the@and the number.Asmanyaddress specifications as needed within the data file can be used.When thesystem task encounters an address specification, it loads subsequent data starting at that memory address.CommentaryThere is no checksum in this format, which can generate false positiveswhen guessing file formats oninput.There is no indication of the word size in the file, since it is dependent on the word type of the Verilogmemory it is being read into.SRecord will guess the word size based on the number of digits it sees in thenumbers, but this is only a guess.SRecord will also assume that the numbers are to be loaded big-endian; that is, most significant byte (firstbyte seen) into the lowest address covered by the word.Youcan use the−byte-swapfilter to change the byte order; it takes an optional width of bytes to swapwithin.Size MultiplierIn general, binary data will expand in sized by approximately 2.9 times (32-bit), 3.1 times (16-bit) or 3.6times (8-bit) when represented with this format.EXAMPLEHere is an example Verilog VMEM file. Itcontains the data “Hello, World[rq] to be loaded at address0x1000.@00000400 48656C6C 6F2C2057 6F726C64 0AFFFFFFREFERENCEIEEE P1364-2005/D2, Standard for Verilog Hardware Description Language (Draft), section 17.2.8"Loading memory data from a file", p. 295.Copyright © 2003 IEEEhttp://www.boyd.com/1364/http://www.boyd.com/1364/1364-2005-d2.pdf.gzReference ManualSRecord 144

srec_vmem(5) FileFormats Manualsrec_vmem(5)COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 145

srec_wilson(5) FileFormats Manualsrec_wilson(5)NAMEsrec_wilson − wilson file formatDESCRIPTIONThis is a mystery format, added to support a mysery EPROM loader used by Alan Wilson<dvdsales@dvdlibrary.co.uk>If you knowthe true name of this format, please let me know! Itbears a remarkable similarity to theMotorola S-Record format, howeverIcan find no reference to a "compressed" Motorola format.The LinesEach line contains normal ASCII characters, and “high bit on[rq] characters, but the ASCII controlcharacters are avoided (the high-bit-on con characters are not avoided). Normalline termination characters(CRLF or LF,depending on your system) are used.The presence of high-bit-on characters makes this format unattractive tosend via email, as it must bewrapped as a binary attachment, increasing its size.In general, a single byte per byte is used to encode values, howeversome values use twobytes, according tothe following table:Byte Value Encoding(1 or 2 chars)0x00 .. 0x9F0x40 .. 0xDF0xA0 .. 0xAF0x3A 0x30 .. 0x3A 0x3F0xB0 .. 0xBF0x3B 0x30 .. 0x3B 0x3F0xC0 .. 0xCF0x3C 0x30 .. 0x3C 0x3F0xD0 .. 0xDF0x3D 0x30 .. 0x3D 0x3FoxE0 .. 0xFF0xE0 .. 0xFFThe rest of this description, when refering to “bytes[rq] means byte values encoded using the above table.The FieldsEach line consists of 5 fields. These are the type field, length field, address field, data field, and thechecksum.TypeRecord LengthAddress Data ChecksumTypeThe type field is a 1 character field that specifies whether the record is data (0x43), or termination(0x47).Record LengthThe record length field is a 1 byte field that specifies the number of bytes in the record, excludingthe type and record length fields.AddressThis is a 4-byte address that specifies where the data is to be loaded into memory.DataThe data field contains the executable code, memory-loadable data or descriptive information tobe transferred.ChecksumThe checksum is an 1-byte field that represents the least significant byte of the one’scomplementof the sum of the values represented by the bytes making up the length, address, and data fields.Reference ManualSRecord 146

srec_wilson(5) FileFormats Manualsrec_wilson(5)Record Types0x43 (#)Arecord containing data and the 4-byte address at which the data is to reside.0x47 (’)Atermination record.The address field may contain the 4-byte address of the instruction towhich control is passed.There is no data field.Size MultiplierIn general, binary data will expand in sized by approximately 1.5 times when represented with this format.COPYRIGHTsrec_catversion 1.62Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,2013 Peter MillerThesrec_catprogram comes with ABSOLUTELYNOWARRANTY;for details use the ’srec_cat−VERSion License’command. Thisis free software and you are welcome to redistribute it under certainconditions; for details use the ’srec_cat −VERSion License’command.AUTHORPeter MillerE-Mail: pmiller@opensource.org.au/\/* WWW:http://miller.emu.id.au/pmiller/Reference ManualSRecord 147

srec_wilson(5) FileFormats Manualsrec_wilson(5)Reference ManualSRecord 1000

Table of Contents(SRecord)Table of Contents(SRecord)The README file 1Release Notes................... 5Howtobuild SRecord................. 15Howtoadd a newfile format............... 19Howtoadd a newfilter 23srec_cat(1) ManipulateEPROM load files 26srec_cmp(1) ComparetwoEPROM load files for equality.......... 34srec_examples(1) Examplesof howtouse SRecord............. 37srec_info(1) Informationabout EPROM load files 50srec_input(1) Inputfile specifications 52srec_license(1) GNUGeneral Public License............... 66srecord_license(3) GNULesser General Public License............ 76srec_aomf(5) IntelAbsolute Object Module Format 79srec_ascii_hex(5) Ascii-Hexfile format................. 81srec_atmel_generic(5) AtmelGeneric file format................ 82srec_binary(5) Binaryfile format.................. 83srec_brecord(5) FreescaleMC68EZ328 Dragonball bootstrap record format..... 85srec_coe(5) XilinxCoefficient File Format 86srec_cosmac(5) RCACosmac Elf file format............... 87srec_dec_binary(5) DECBinary (XXDP) file format.............. 88srec_emon52(5) ElektorMonitor (EMON52) file format........... 89srec_fairchild(5) Fairchild Fairbug file format............... 91srec_fastload(5) LSILogic Fast Load file format.............. 92srec_formatted_binary(5) Formatted Binary file format............... 93srec_forth(5) FORTH file format.................. 94srec_fpc(5) Four Packed Code (FPC) file format............ 95srec_idt(5) IDT/simbinary file format............... 98srec_intel16(5) IntelHexadecimal 16-bit file format specification 99srec_intel(5) IntelHexadecimal object file format specification103srec_mem(5) LatticeMemory Initialization format............109srec_mif(5) MemoryInitialization File (MIF) format...........111srec_mips_flash(5) MIPS-Flashfile format.................114srec_mos_tech(5) MOSTechnology file format...............116srec_motorola(5) MotorolaS-Record hexadecimal file format..........118srec_msbin(5) Windows CE Binary Image Data Format120srec_needham(5) NeedhamEMP-series programmer ASCII file format.......122srec_os65v(5) OS65VLoader file format................123srec_ppb(5) StagProm Programmer binary format............124srec_ppx(5) StagProm Programmer hexadecimal format..........125srec_signetics(5) Signeticsfile format..................126srec_spasm(5) SPASM file format..................128srec_spectrum(5) Spectrumfile format.................129srec_stewie(5) Stewie’sbinary file format................130srec_tektronix(5) Tektronix hexadecimal file format.............132srec_tektronix_extended(5) Tektronix Extended hexadecimal file format..........134srec_ti_tagged_16(5) Texas Instruments Tagged (SDSMAC320) file format.......135srec_ti_tagged(5) Texas Instruments Tagged (SDSMAC) file format........138srec_ti_txt(5) Texas Instruments ti-txt (MSP430) file format.........141srec_trs80(5) RadioShack TRS-80 object file format specification142srec_vmem(5) VMEMfile format..................144srec_wilson(5) Wilson file format..................146Reference ManualSRecord iii

Table of Contents(SRecord)Table of Contents(SRecord)srec_info(1) 50srec info - informationabout EPROM load filessrec_aomf(5) 79srec aomf - IntelAbsolute Object Module Formatsrec_aomf(5) 79srecaomf - Intel Absolute Object Module Formatsrec_needham(5) 122srec needham - Needham EMP-seriesprogrammerASCII file formatsrec_ascii_hex(5) 81srecascii hex-Ascii-Hexfile formatsrec_ascii_hex(5) 81srec ascii hex-Ascii-Hexfile formatsrec_atmel_generic(5) 82srecatmel generic - Atmel Generic file formatsrec_atmel_generic(5) 82srec atmel generic -Atmel Generic file formatsrec_binary(5) 83srecbinary - binary file formatsrec_dec_binary(5) 88srec decbinary - DEC Binary (XXDP) file formatsrec_binary(5) 83srec binary -binary file formatsrec_formatted_binary(5) 93srec formatted binary - FormattedBinary file formatsrec_idt(5) 98srec idt - IDT/simbinary file formatsrec_stewie(5) 130srec stewie - Stewie’sbinary file formatsrec_ppb(5) 124srec ppb - Stag Prom Programmerbinary formatsrec_formatted_binary(5) 93srec formattedbinary - Formatted Binary file formatsrec_msbin(5) 120srec msbin - Windows CEBinary Image Data Formatsrec_dec_binary(5) 88srec dec binary - DECBinary (XXDP) file formatsrec_intel16(5) 99srec intel16 - Intel Hexadecimal 16-bit file format specificationsrec_brecord(5) 85srec brecord - Freescale MC68EZ328Dragonballbootstrap record formatsrec_brecord(5) 85srecbrecord - Freescale MC68EZ328 Dragonballbootstrap record formatsrec_cat(1) 26sreccat - manipulate EPROM load filessrec_msbin(5) 120srec msbin - WindowsCE Binary Image Data Formatsrec_cmp(1) 34sreccmp - compare twoEPROM load files forequalitysrec_fpc(5) 95srec fpc - four packedcode file formatsrec_coe(5) 86srec coe - XilinxCoefficient File Formatsrec_coe(5) 86sreccoe - Xilinx Coefficient File Formatsrec_cmp(1) 34srec cmp -compare twoEPROM load files for equalitysrec_cosmac(5) 87srec cosmac - RCACosmac Elf file formatsrec_cosmac(5) 87sreccosmac - RCA Cosmac Elf file formatsrec_msbin(5) 120srec msbin - Windows CE Binary ImageData Formatsrec_dec_binary(5) 88srecdec binary - DEC Binary (XXDP) fileformatsrec_dec_binary(5) 88srec dec binary -DEC Binary (XXDP) file formatsrec_brecord(5) 85srec brecord - Freescale MC68EZ328Dragonball bootstrap record formatsrec_emon52(5) 89srec emon52 -Elektor Monitor (EMON52) file formatsrec_cosmac(5) 87srec cosmac - RCA CosmacElf file formatsrec_emon52(5) 89srecemon52 - Elektor Monitor (EMON52) fileformatsrec_emon52(5) 89srec emon52 - Elektor Monitor (EMON52) file formatsrec_needham(5) 122srec needham - NeedhamEMP-series programmer ASCII file formatsrec_cat(1) 26srec cat - manipulateEPROM load filessrec_info(1) 50srec info - information aboutEPROM load filessrecord(3)srecord - library to manipulateEPROM load filessrec_cmp(1) 34srec cmp - compare twoEPROM load files for equalitysrec_cmp(1) 34srec cmp - compare twoEPROM load filesforequalitysrec_examples(1) 37srecexamples - examples of howtouse SRecordsrec_examples(1) 37srec examples -examples of howtouse SRecordReference ManualSRecord iv

Table of Contents(SRecord)Table of Contents(SRecord)srec_tektronix_extended(5) 134srec tektronix extended - TektronixExtended hexadecimal file formatsrec_tektronix_extended(5) 134srec tektronixextended - Tektronix Extended hexadecimalfile formatsrec_brecord(5) 85srec brecord - Freescale MC68EZ328 Dragonball bootstrap record formatsrec_fairchild(5) 91srec fairchild - FairchildFairbug file formatsrec_fairchild(5) 91srec fairchild -Fairchild Fairbug file formatsrec_fairchild(5) 91srecfairchild - Fairchild Fairbug file formatsrec_fastload(5) 92srec fastload - LSI LogicFast Load file formatsrec_fastload(5) 92srecfastload - LSI Logic Fast Load file formatsrec_ascii_hex(5) 81srec ascii hex-Ascii-Hexfile formatsrec_atmel_generic(5) 82srec atmel generic - Atmel Genericfile formatsrec_binary(5) 83srec binary - binaryfile formatsrec_coe(5) 86srec coe - Xilinx CoefficientFile Formatsrec_cosmac(5) 87srec cosmac - RCA Cosmac Elffile formatsrec_dec_binary(5) 88srec dec binary - DEC Binary (XXDP)file formatsrec_emon52(5) 89srec emon52 - Elektor Monitor (EMON52)file formatsrec_fairchild(5) 91srec fairchild - Fairchild Fairbugfile formatsrec_fastload(5) 92srec fastload - LSI Logic Fast Loadfile formatsrec_formatted_binary(5) 93srec formatted binary - Formatted Binaryfile formatsrec_forth(5) 94srec forth - FORTHfile formatsrec_fpc(5) 95srec fpc - four packed codefile formatsrec_idt(5) 98srec idt - IDT/sim binaryfile formatsrec_mips_flash(5) 114srec mips flash - MIPS-Flashfile formatsrec_mos_tech(5) 116srec mos tech - MOS Technologyfile formatsrec_motorola(5) 118srec motorola - Motorola S-Recordhexadecimalfile formatsrec_needham(5) 122srec needham - Needham EMP-seriesprogrammer ASCIIfile formatsrec_os65v(5) 123srec os65v - OS65V Loaderfile formatsrec_signetics(5) 126srec signetics - Signeticsfile formatsrec_spasm(5) 128srec spasm - SPASMfile formatsrec_spectrum(5) 129srec spectrum - Spectrumfile formatsrec_stewie(5) 130srec stewie - Stewie’sbinaryfile formatsrec_tektronix_extended(5) 134srec tektronix extended - TektronixExtended hexadecimalfile formatsrec_tektronix(5) 132srec tektronix - Tektronix hexadecimalfile formatsrec_ti_tagged_16(5) 135srec ti tagged 16 - Texas Instruments Tagged(SDSMAC320)file formatsrec_ti_tagged(5) 138srec ti tagged - Texas Instruments Tagged(SDSMAC)file formatsrec_ti_txt(5) 141srec ti txt - Texas Instruments ti-txt(MSP430)file formatsrec_vmem(5) 144srec vmem - vmemfile formatsrec_wilson(5) 146srec wilson - wilsonfile formatsrec_intel16(5) 99srec intel16 - Intel Hexadecimal 16-bitfile format specificationsrec_intel(5) 103srec intel - Intel Hexadecimal objectfile format specificationsrec_trs80(5) 142srec trs80 - Radio Shack TRS-80 objectfile format specificationsrec_mif(5) 111srec mif - Memory InitializationFile (MIF) formatsrec_cat(1) 26srec cat - manipulate EPROM loadfilessrec_info(1) 50srec info - information about EPROM loadfilessrecord(3)srecord - library to manipulate EPROM loadfilessrec_cmp(1) 34srec cmp - compare twoEPROM loadfiles for equalitysrec_input(1) 52SRecord - inputfile specificationsReference ManualSRecord v

Table of Contents(SRecord)Table of Contents(SRecord)srec_mips_flash(5) 114srec mips flash - MIPS-Flash file formatsrec_mips_flash(5) 114srec mipsflash - MIPS-Flash file formatsrec_cmp(1) 34srec cmp - compare twoEPROM load filesfor equalitysrec_aomf(5) 79srec aomf - Intel Absolute Object ModuleFormatsrec_ascii_hex(5) 81srec ascii hex-Ascii-Hexfileformatsrec_atmel_generic(5) 82srec atmel generic - Atmel Generic fileformatsrec_binary(5) 83srec binary - binary fileformatsrec_brecord(5) 85srec brecord - Freescale MC68EZ328Dragonball bootstrap recordformatsrec_coe(5) 86srec coe - Xilinx Coefficient FileFormatsrec_cosmac(5) 87srec cosmac - RCA Cosmac Elf fileformatsrec_dec_binary(5) 88srec dec binary - DEC Binary (XXDP) fileformatsrec_emon52(5) 89srec emon52 - Elektor Monitor (EMON52)fileformatsrec_fairchild(5) 91srec fairchild - Fairchild Fairbug fileformatsrec_fastload(5) 92srec fastload - LSI Logic Fast Load fileformatsrec_formatted_binary(5) 93srec formatted binary - Formatted Binaryfileformatsrec_forth(5) 94srec forth - FORTH fileformatsrec_fpc(5) 95srec fpc - four packed code fileformatsrec_idt(5) 98srec idt - IDT/sim binary fileformatsrec_mem(5) 109srec mem - Lattice Memory Initializationformatsrec_mif(5) 111srec mif - Memory Initialization File (MIF)formatsrec_mips_flash(5) 114srec mips flash - MIPS-Flash fileformatsrec_mos_tech(5) 116srec mos tech - MOS Technology fileformatsrec_motorola(5) 118srec motorola - Motorola S-Recordhexadecimal fileformatsrec_msbin(5) 120srec msbin - Windows CE Binary ImageDataFormatsrec_needham(5) 122srec needham - Needham EMP-seriesprogrammer ASCII fileformatsrec_os65v(5) 123srec os65v - OS65V Loader fileformatsrec_ppb(5) 124srec ppb - Stag Prom Programmer binaryformatsrec_ppx(5) 125srec ppx - Stag Prom Programmerhexadecimalformatsrec_signetics(5) 126srec signetics - Signetics fileformatsrec_spasm(5) 128srec spasm - SPASM fileformatsrec_spectrum(5) 129srec spectrum - Spectrum fileformatsrec_stewie(5) 130srec stewie - Stewie’sbinary fileformatsrec_tektronix_extended(5) 134srec tektronix extended - TektronixExtended hexadecimal fileformatsrec_tektronix(5) 132srec tektronix - Tektronix hexadecimal fileformatsrec_ti_tagged_16(5) 135srec ti tagged 16 - Texas Instruments Tagged(SDSMAC320) fileformatsrec_ti_tagged(5) 138srec ti tagged - Texas Instruments Tagged(SDSMAC) fileformatsrec_ti_txt(5) 141srec ti txt - Texas Instruments ti-txt(MSP430) fileformatsrec_vmem(5) 144srec vmem - vmem fileformatsrec_wilson(5) 146srec wilson - wilson fileformatsrec_intel16(5) 99srec intel16 - Intel Hexadecimal 16-bit fileformat specificationsrec_intel(5) 103srec intel - Intel Hexadecimal object fileformat specificationsrec_trs80(5) 142srec trs80 - Radio Shack TRS-80 object fileformat specificationReference ManualSRecord vi

Table of Contents(SRecord)Table of Contents(SRecord)srec_formatted_binary(5) 93srec formatted binary -Formatted Binary file formatsrec_formatted_binary(5) 93srecformatted binary - Formatted Binary fileformatsrec_forth(5) 94srec forth -FORTH file formatsrec_forth(5) 94srecforth - FORTH file formatsrec_fpc(5) 95srec fpc -four packed code file formatsrec_fpc(5) 95srecfpc - four packed code file formatsrec_brecord(5) 85srec brecord -Freescale MC68EZ328 Dragonballbootstrap record formatsrecord_license(3) 76LGPG - GNU LesserGeneral Public Licensesrec_atmel_generic(5) 82srec atmelgeneric - Atmel Generic file formatsrec_atmel_generic(5) 82srec atmel generic - AtmelGeneric file formatsrecord_license(3) 76LGPG -GNU Lesser General Public Licensesrec_intel16(5) 99srec intel16 - IntelHexadecimal 16-bit file format specificationsrec_motorola(5) 118srec motorola - Motorola S-Recordhexadecimal file formatsrec_tektronix_extended(5) 134srec tektronix extended - TektronixExtendedhexadecimal file formatsrec_tektronix(5) 132srec tektronix - Tektronixhexadecimal file formatsrec_ppx(5) 125srec ppx - Stag Prom Programmerhexadecimal formatsrec_intel(5) 103srec intel - IntelHexadecimal object file format specificationsrec_ascii_hex(5) 81srec asciihex-Ascii-Hexfile formatsrec_ascii_hex(5) 81srec ascii hex-Ascii-Hexfile formatsrec_examples(1) 37srec examples - examples ofhowtouse SRecordsrec_idt(5) 98srecidt - IDT/sim binary file formatsrec_idt(5) 98srec idt -IDT/sim binary file formatsrec_msbin(5) 120srec msbin - Windows CE BinaryImage Data Formatsrec_info(1) 50srecinfo - information about EPROM load filessrec_info(1) 50srec info -information about EPROM load filessrec_mif(5) 111srec mif - MemoryInitialization File (MIF) formatsrec_mem(5) 109srec mem - Lattice MemoryInitialization formatsrec_input(1) 52SRecord -input file specificationssrec_ti_tagged_16(5) 135srec ti tagged 16 - TexasInstruments Tagged (SDSMAC320) fileformatsrec_ti_tagged(5) 138srec ti tagged - TexasInstruments Tagged (SDSMAC) file formatsrec_ti_txt(5) 141srec ti txt - TexasInstruments ti-txt (MSP430) file formatsrec_intel16(5) 99srecintel16 - Intel Hexadecimal 16-bit fileformat specificationsrec_aomf(5) 79srec aomf -Intel Absolute Object Module Formatsrec_intel16(5) 99srec intel16 -Intel Hexadecimal 16-bit file formatspecificationsrec_intel(5) 103srec intel -Intel Hexadecimal object file formatspecificationsrec_intel(5) 103srecintel - Intel Hexadecimal object file formatspecificationsrec_mem(5) 109srec mem -Lattice Memory Initialization formatsrecord_license(3) 76LGPG - GNULesser General Public Licensesrecord_license(3) 76LGPG - GNU Lesser General PublicLicensesrecord(3)srecord -library to manipulate EPROM load filessrecord_license(3) 76LGPG - GNU Lesser General PublicLicensesrec_os65v(5) 123srec os65v - OS65VLoader file formatsrec_fastload(5) 92srec fastload - LSI Logic FastLoad file formatsrec_cat(1) 26srec cat - manipulate EPROMload filesReference ManualSRecord vii

Table of Contents(SRecord)Table of Contents(SRecord)srec_info(1) 50srec info - information about EPROMload filessrecord(3)srecord - library to manipulate EPROMload filessrec_cmp(1) 34srec cmp - compare twoEPROMload files for equalitysrec_fastload(5) 92srec fastload - LSILogic Fast Load file formatsrec_fastload(5) 92srec fastload -LSI Logic Fast Load file formatsrec_cat(1) 26srec cat -manipulate EPROM load filessrecord(3)srecord - library tomanipulate EPROM load filessrec_brecord(5) 85srec brecord - FreescaleMC68EZ328 Dragonball bootstrap recordformatsrec_mem(5) 109srecmem - Lattice Memory Initialization formatsrec_mif(5) 111srec mif -Memory Initialization File (MIF) formatsrec_mem(5) 109srec mem - LatticeMemory Initialization formatsrec_mif(5) 111srec mif - Memory Initialization File (MIF) formatsrec_mif(5) 111srecmif - Memory Initialization File (MIF)formatsrec_mips_flash(5) 114srec mips flash -MIPS-Flash file formatsrec_mips_flash(5) 114srecmips flash - MIPS-Flash file formatsrec_aomf(5) 79srec aomf - Intel Absolute ObjectModule Formatsrec_emon52(5) 89srec emon52 - ElektorMonitor (EMON52) file formatsrec_mos_tech(5) 116srecmos tech - MOS Technology file formatsrec_mos_tech(5) 116srec mos tech -MOS Technology file formatsrec_motorola(5) 118srecmotorola - Motorola S-Record hexadecimalfile formatsrec_motorola(5) 118srec motorola -Motorola S-Record hexadecimal file formatsrec_msbin(5) 120srecmsbin - Windows CE Binary Image DataFormatsrec_ti_txt(5) 141srec ti txt - Texas Instruments ti-txt (MSP430) file formatsrec_needham(5) 122srec needham -Needham EMP-series programmer ASCIIfile formatsrec_needham(5) 122srecneedham - Needham EMP-seriesprogrammer ASCII file formatsrec_intel(5) 103srec intel - Intel Hexadecimalobject file format specificationsrec_trs80(5) 142srec trs80 - Radio Shack TRS-80object file format specificationsrec_aomf(5) 79srec aomf - Intel AbsoluteObject Module Formatsrec_os65v(5) 123srec os65v -OS65V Loader file formatsrec_os65v(5) 123srecos65v - OS65V Loader file formatsrec_fpc(5) 95srec fpc - fourpacked code file formatsrec_ppb(5) 124srecppb - Stag Prom Programmer binary formatsrec_ppx(5) 125srecppx - Stag Prom Programmer hexadecimalformatsrec_needham(5) 122srec needham - Needham EMP-seriesprogrammer ASCII file formatsrec_ppb(5) 124srec ppb - Stag PromProgrammer binary formatsrec_ppx(5) 125srec ppx - Stag PromProgrammer hexadecimal formatsrec_ppb(5) 124srec ppb - StagProm Programmer binary formatsrec_ppx(5) 125srec ppx - StagProm Programmer hexadecimal formatsrecord_license(3) 76LGPG - GNU Lesser GeneralPublic Licensesrec_trs80(5) 142srec trs80 -Radio Shack TRS-80 object file formatspecificationsrec_cosmac(5) 87srec cosmac -RCA Cosmac Elf file formatsrec_brecord(5) 85srec brecord - Freescale MC68EZ328Dragonball bootstraprecord formatsrec_motorola(5) 118srec motorola - Motorola S-Record hexadecimal file formatsrec_stewie(5) 130srec stewie - Stewie’sbinary file formatReference ManualSRecord viii

Table of Contents(SRecord)Table of Contents(SRecord)srec_ti_tagged_16(5) 135srec ti tagged 16 - Texas Instruments Tagged(SDSMAC320) file formatsrec_ti_tagged(5) 138srec ti tagged - Texas Instruments Tagged (SDSMAC) file formatsrec_needham(5) 122srec needham - Needham EMP-series programmer ASCII file formatsrec_trs80(5) 142srec trs80 - RadioShack TRS-80 object file formatspecificationsrec_signetics(5) 126srec signetics -Signetics file formatsrec_signetics(5) 126srecsignetics - Signetics file formatsrec_idt(5) 98srec idt - IDT/sim binary file formatsrec_spasm(5) 128srec spasm -SPASM file formatsrec_spasm(5) 128srecspasm - SPASM file formatsrec_intel16(5) 99srec intel16 - Intel Hexadecimal 16-bit fileformatspecificationsrec_intel(5) 103srec intel - Intel Hexadecimal object fileformatspecificationsrec_trs80(5) 142srec trs80 - Radio Shack TRS-80 object fileformatspecificationsrec_input(1) 52SRecord - input filespecificationssrec_spectrum(5) 129srec spectrum -Spectrum file formatsrec_spectrum(5) 129srecspectrum - Spectrum file formatsrec_aomf(5) 79srec aomf - Intel Absolute Object ModuleFormatsrec_ascii_hex(5) 81srec ascii hex-Ascii-Hexfile formatsrec_atmel_generic(5) 82srec atmel generic - Atmel Generic fileformatsrec_binary(5) 83srec binary - binary file formatsrec_brecord(5) 85srec brecord - Freescale MC68EZ328Dragonball bootstrap record formatsrec_cat(1) 26srec cat - manipulate EPROM load filessrec_cmp(1) 34srec cmp - compare twoEPROM load filesfor equalitysrec_coe(5) 86srec coe - Xilinx Coefficient File Formatsrec_cosmac(5) 87srec cosmac - RCA Cosmac Elf file formatsrec_dec_binary(5) 88srec dec binary - DEC Binary (XXDP) fileformatsrec_emon52(5) 89srec emon52 - Elektor Monitor (EMON52)file formatsrec_examples(1) 37srec examples - examples of howtouseSRecordsrec_fairchild(5) 91srec fairchild - Fairchild Fairbug file formatsrec_fastload(5) 92srec fastload - LSI Logic Fast Load fileformatsrec_formatted_binary(5) 93srec formatted binary - Formatted Binaryfile formatsrec_forth(5) 94srec forth - FORTH file formatsrec_fpc(5) 95srec fpc - four packed code file formatsrec_idt(5) 98srec idt - IDT/sim binary file formatsrec_info(1) 50srec info - information about EPROM loadfilessrec_intel16(5) 99srec intel16 - Intel Hexadecimal 16-bit fileformat specificationsrec_intel(5) 103srec intel - Intel Hexadecimal object fileformat specificationReference ManualSRecord ix

Table of Contents(SRecord)Table of Contents(SRecord)srec_mem(5) 109srec mem - Lattice Memory Initializationformatsrec_mif(5) 111srec mif - Memory Initialization File (MIF)formatsrec_mips_flash(5) 114srec mips flash - MIPS-Flash file formatsrec_mos_tech(5) 116srec mos tech - MOS Technology file formatsrec_motorola(5) 118srec motorola - Motorola S-Recordhexadecimal file formatsrec_msbin(5) 120srec msbin - Windows CE Binary ImageData Formatsrec_needham(5) 122srec needham - Needham EMP-seriesprogrammer ASCII file formatsrec_examples(1) 37srec examples - examples of howtouseSRecordsrec_motorola(5) 118srec motorola - MotorolaS-Record hexadecimal file formatsrec_input(1) 52SRecord - input file specificationssrecord(3)srecord - library to manipulate EPROM loadfilessrec_os65v(5) 123srec os65v - OS65V Loader file formatsrec_ppb(5) 124srec ppb - Stag Prom Programmer binaryformatsrec_ppx(5) 125srec ppx - Stag Prom Programmerhexadecimal formatsrec_signetics(5) 126srec signetics - Signetics file formatsrec_spasm(5) 128srec spasm - SPASM file formatsrec_spectrum(5) 129srec spectrum - Spectrum file formatsrec_stewie(5) 130srec stewie - Stewie’sbinary file formatsrec_tektronix_extended(5) 134srec tektronix extended - TektronixExtended hexadecimal file formatsrec_tektronix(5) 132srec tektronix - Tektronix hexadecimal fileformatsrec_ti_tagged_16(5) 135srec ti tagged 16 - Texas Instruments Tagged(SDSMAC320) file formatsrec_ti_tagged(5) 138srec ti tagged - Texas Instruments Tagged(SDSMAC) file formatsrec_ti_txt(5) 141srec ti txt - Texas Instruments ti-txt(MSP430) file formatsrec_trs80(5) 142srec trs80 - Radio Shack TRS-80 object fileformat specificationsrec_vmem(5) 144srec vmem - vmem file formatsrec_wilson(5) 146srec wilson - wilson file formatsrec_ppb(5) 124srec ppb -Stag Prom Programmer binary formatsrec_ppx(5) 125srec ppx -Stag Prom Programmer hexadecimal formatsrec_stewie(5) 130srec stewie -Stewie’sbinary file formatsrec_stewie(5) 130srecstewie - Stewie’sbinary file formatsrec_ti_tagged_16(5) 135srec titagged 16 - Texas Instruments Tagged(SDSMAC320) file formatsrec_ti_tagged_16(5) 135srec ti tagged 16 - Texas InstrumentsTagged (SDSMAC320) file formatsrec_ti_tagged(5) 138srec ti tagged - Texas InstrumentsTagged (SDSMAC) file formatsrec_ti_tagged(5) 138srec titagged - Texas Instruments Tagged(SDSMAC) file formatsrec_mos_tech(5) 116srec mostech - MOS Technology file formatsrec_mos_tech(5) 116srec mos tech - MOSTechnology file formatsrec_tektronix_extended(5) 134srec tektronix extended -Tektronix Extended hexadecimal file formatReference ManualSRecord x

Table of Contents(SRecord)Table of Contents(SRecord)srec_tektronix_extended(5) 134srectektronix extended - Tektronix Extendedhexadecimal file formatsrec_tektronix(5) 132srec tektronix -Tektronix hexadecimal file formatsrec_tektronix(5) 132srectektronix - Tektronix hexadecimal fileformatsrec_ti_tagged_16(5) 135srec ti tagged 16 -Te xas Instruments Tagged (SDSMAC320)file formatsrec_ti_tagged(5) 138srec ti tagged -Te xas Instruments Tagged (SDSMAC) fileformatsrec_ti_txt(5) 141srec ti txt -Te xas Instruments ti-txt (MSP430) fileformatsrec_ti_tagged_16(5) 135srecti tagged 16 - Texas Instruments Tagged(SDSMAC320) file formatsrec_ti_tagged(5) 138srecti tagged - Texas Instruments Tagged(SDSMAC) file formatsrec_ti_txt(5) 141srec ti txt - Texas Instrumentsti-txt (MSP430) file formatsrec_ti_txt(5) 141srecti txt - Texas Instruments ti-txt (MSP430)file formatsrec_trs80(5) 142srec trs80 - Radio ShackTRS-80 object file format specificationsrec_trs80(5) 142srectrs80 - Radio Shack TRS-80 object fileformat specificationsrec_cmp(1) 34srec cmp - comparetwoEPROM load files for equalitysrec_ti_txt(5) 141srec ti txt - Texas Instruments ti-txt (MSP430) file formatsrec_ti_txt(5) 141srec titxt - Texas Instruments ti-txt (MSP430) fileformatsrec_examples(1) 37srec examples - examples of howtouse SRecordsrec_os65v(5) 123srec os65v - OS65VLoader file formatsrec_vmem(5) 144srec vmem -vmem file formatsrec_vmem(5) 144srecvmem - vmem file formatsrec_os65v(5) 123srec os65v-OS65V Loader file formatsrec_wilson(5) 146srec wilson -wilson file formatsrec_wilson(5) 146srecwilson - wilson file formatsrec_msbin(5) 120srec msbin -Windows CE Binary Image Data Formatsrec_coe(5) 86srec coe -Xilinx Coefficient File Formatsrec_dec_binary(5) 88srec dec binary - DEC Binary (XXDP) file formatReference ManualSRecord xi

