
NCO User Guide
A suite of netCDF operators

Edition 5.0.1, for NCO Version 5.0.1
June 2021

by Charlie Zender
Departments of Earth System Science and Computer Science
University of California, Irvine

Copyright c© 1995–2021 Charlie Zender.

This is the first edition of the NCO User Guide,
and is consistent with version 2 of texinfo.tex.

Published by Charlie Zender
Department of Earth System Science
3200 Croul Hall
University of California, Irvine
Irvine, CA 92697-3100 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. The license is available online at http://www.gnu.org/copyleft/fdl.html

We gratefully acknowledge support for NCO development and maintenance provided by
these institutions and programs: DOE ACME DE-SC0012998, LLNL-B625903, LLNL-B632442,
NASA ACCESS NNX12AF48A and NNX14AH55A, and NSF SEI IIS-0431203, AGS-1541031,
and OAC-2004993. This research was supported as part of the Energy Exascale Earth
System Model (E3SM) project, formerly known as Accelerated Climate Modeling for Energy
(ACME), funded by the U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research. This material is based upon work supported by the National
Science Foundation.

The original author of this software, Charlie Zender, wants to improve it with the help of
your suggestions, improvements, bug-reports, and patches.
Charlie Zender <surname at uci dot edu> (yes, my surname is zender)
Department of Earth System Science
3200 Croul Hall
University of California, Irvine
Irvine, CA 92697-3100

http://www.gnu.org/copyleft/fdl.html

i

Table of Contents

Foreword . 1

Summary . 5

1 Introduction . 7
1.1 Availability . 7
1.2 How to Use This Guide . 7
1.3 Operating systems compatible with NCO . 8

1.3.1 Compiling NCO for Microsoft Windows OS 9
1.4 Symbolic Links . 10
1.5 Libraries . 11
1.6 netCDF2/3/4 and HDF4/5 Support . 11
1.7 Help Requests and Bug Reports . 15

2 Operator Strategies . 17
2.1 Philosophy . 17
2.2 Climate Model Paradigm . 17
2.3 Temporary Output Files . 17
2.4 Appending Variables . 19
2.5 Simple Arithmetic and Interpolation . 19
2.6 Statistics vs. Concatenation . 20

2.6.1 Concatenators ncrcat and ncecat . 20
2.6.2 Averagers nces, ncra, and ncwa . 21
2.6.3 Interpolator ncflint . 21

2.7 Large Numbers of Files . 21
2.8 Large Datasets . 23
2.9 Memory Requirements . 24

2.9.1 Single and Multi-file Operators . 24
2.9.2 Memory for ncap2 . 26

2.10 Performance . 26

3 Shared Features . 29
3.1 Internationalization . 29
3.2 Metadata Optimization . 29
3.3 OpenMP Threading . 30
3.4 Command Line Options . 31

3.4.1 Truncating Long Options . 32
3.4.2 Multi-arguments . 32

3.5 Sanitization of Input . 33
3.6 Specifying Input Files . 34
3.7 Specifying Output Files . 37
3.8 Accessing Remote Files . 37

ii NCO 5.0.1 User Guide

3.8.1 OPeNDAP . 39
3.9 Retaining Retrieved Files . 42
3.10 File Formats and Conversion . 42

3.10.1 File Formats . 43
3.10.2 Determining File Format . 44
3.10.3 File Conversion . 45
3.10.4 Autoconversion . 46

3.11 Large File Support . 47
3.12 Subsetting Files . 48
3.13 Subsetting Coordinate Variables . 52
3.14 Group Path Editing . 53

3.14.1 Deletion, Truncation, and Flattening of Groups 54
3.14.2 Moving Groups . 56
3.14.3 Dismembering Files . 56
3.14.4 Checking CF-compliance . 60

3.15 C and Fortran Index conventions . 63
3.16 Hyperslabs . 63
3.17 Stride . 65
3.18 Record Appending . 67
3.19 Subcycle . 68
3.20 Interleave . 69
3.21 Multislabs . 71
3.22 Wrapped Coordinates . 74
3.23 Auxiliary Coordinates . 74
3.24 Grid Generation . 77
3.25 Regridding . 86

Renormalization . 87
3.26 Climatology and Bounds Support . 96
3.27 UDUnits Support . 98
3.28 Rebasing Time Coordinate . 101
3.29 Multiple Record Dimensions . 102
3.30 Missing values . 103
3.31 Chunking . 104
3.32 Compression . 111

3.32.1 Linear Packing . 111
3.32.2 Precision-Preserving Compression . 112

3.33 Deflation . 121
3.34 MD5 digests . 122
3.35 Buffer sizes . 123
3.36 RAM disks . 124
3.37 Unbuffered I/O . 125
3.38 Packed data . 126

Standard Packing Algorithm . 126
Standard (Default) Unpacking Algorithm . 127
Non-Standard Packing and Unpacking Algorithms 127
Handling of Packed Data by Other Operators 128

3.39 Operation Types . 128
3.40 Type Conversion . 133

iii

3.40.1 Automatic type conversion . 134
3.40.2 Promoting Single-precision to Double 136
3.40.3 Manual type conversion . 142

3.41 Batch Mode . 142
3.42 Global Attribute Addition . 142
3.43 History Attribute . 143
3.44 File List Attributes . 144
3.45 CF Conventions . 145
3.46 ARM Conventions . 149
3.47 Operator Version . 150

4 Reference Manual . 151
4.1 ncap2 netCDF Arithmetic Processor . 152

4.1.1 Syntax of ncap2 statements . 153
4.1.2 Expressions . 154
4.1.3 Dimensions . 157
4.1.4 Left hand casting . 158
4.1.5 Arrays and hyperslabs . 160
4.1.6 Attributes . 163
4.1.7 Value List . 165
4.1.8 Number literals . 166
4.1.9 if statement . 167
4.1.10 Print & String methods . 168
4.1.11 Missing values ncap2 . 171
4.1.12 Methods and functions . 173
4.1.13 RAM variables . 176
4.1.14 Where statement . 177
4.1.15 Loops . 179
4.1.16 Include files . 180
4.1.17 sort methods . 180
4.1.18 UDUnits script . 185
4.1.19 Vpointer . 187
4.1.20 Irregular Grids . 189
4.1.21 Bilinear interpolation . 191
4.1.22 GSL special functions . 193
4.1.23 GSL interpolation . 201
4.1.24 GSL least-squares fitting . 202
4.1.25 GSL statistics . 204
4.1.26 GSL random number generation . 206
4.1.27 Examples ncap2 . 208
4.1.28 Intrinsic mathematical methods . 211
4.1.29 Operator precedence and associativity 213
4.1.30 ID Quoting . 213
4.1.31 make bounds() function . 214
4.1.32 solar zenith angle function . 215

4.2 ncatted netCDF Attribute Editor . 216
4.3 ncbo netCDF Binary Operator . 223
4.4 ncclimo netCDF Climatology Generator . 228

iv NCO 5.0.1 User Guide

Timeseries Reshaping mode, aka Splitting . 239
MPAS-O/I/L considerations . 240
Annual climos . 240
Regridding Climos and Other Files . 241
Extended Climatologies . 241
Coupled Runs . 244
Memory Considerations . 244
Single, Dedicated Nodes at LCFs . 245
12 node MPI-mode Jobs . 247
What does ncclimo do? . 248
Assumptions, Approximations, and Algorithms (AAA) Employed:

. 248
4.5 ncecat netCDF Ensemble Concatenator . 251
4.6 nces netCDF Ensemble Statistics . 254
4.7 ncflint netCDF File Interpolator . 258
4.8 ncks netCDF Kitchen Sink . 261

Options specific to ncks . 262
4.8.2 Filters for ncks . 281

4.9 ncpdq netCDF Permute Dimensions Quickly 287
Packing and Unpacking Functions . 287
Dimension Permutation . 291

4.10 ncra netCDF Record Averager . 296
4.11 ncrcat netCDF Record Concatenator . 300
4.12 ncremap netCDF Remapper . 302

Fields not regridded by ncremap . 303
Options specific to ncremap . 304
Limitations to ncremap . 334

4.13 ncrename netCDF Renamer . 339
4.14 ncwa netCDF Weighted Averager . 345

4.14.1 Mask condition . 346
4.14.2 Normalization and Integration . 347

5 Contributing . 351
5.1 Contributors . 351
5.2 Citation . 353
5.3 Proposals for Institutional Funding . 354

6 Quick Start . 355
6.1 Daily data in one file . 355
6.2 Monthly data in one file . 355
6.3 One time point one file . 356
6.4 Multiple files with multiple time points . 356

v

7 CMIP5 Example . 357
7.1 Combine Files . 357
7.2 Global Distribution of Long-term Average . 363
7.3 Annual Average over Regions . 366
7.4 Monthly Cycle . 373
7.5 Regrid MODIS Data . 376
7.6 Add Coordinates to MODIS Data . 379
7.7 Permute MODIS Coordinates . 380

8 Parallel . 383

9 CCSM Example . 385

10 References . 393

General Index . 395

Foreword 1

Foreword

NCO is the result of software needs that arose while I worked on projects funded by NCAR,
NASA, and ARM. Thinking they might prove useful as tools or templates to others, it
is my pleasure to provide them freely to the scientific community. Many users (most of
whom I have never met) have encouraged the development of NCO. Thanks espcially to Jan
Polcher, Keith Lindsay, Arlindo da Silva, John Sheldon, and William Weibel for stimulating
suggestions and correspondence. Your encouragment motivated me to complete the NCO
User Guide. So if you like NCO, send me a note! I should mention that NCO is not connected
to or officially endorsed by Unidata, ACD, ASP, CGD, or Nike.

Charlie Zender
May 1997
Boulder, Colorado

Major feature improvements entitle me to write another Foreword. In the last five years
a lot of work has been done to refine NCO. NCO is now an open source project and appears
to be much healthier for it. The list of illustrious institutions that do not endorse NCO

continues to grow, and now includes UCI.

Charlie Zender
October 2000
Irvine, California

The most remarkable advances in NCO capabilities in the last few years are due to con-
tributions from the Open Source community. Especially noteworthy are the contributions
of Henry Butowsky and Rorik Peterson.

Charlie Zender
January 2003
Irvine, California

NCO was generously supported from 2004–2008 by US National Science Foundation
(NSF) grant IIS-0431203. This support allowed me to maintain and extend core NCO code,
and others to advance NCO in new directions: Gayathri Venkitachalam helped implement

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0431203

2 NCO 5.0.1 User Guide

MPI; Harry Mangalam improved regression testing and benchmarking; Daniel Wang de-
veloped the server-side capability, SWAMP; and Henry Butowsky, a long-time contributor,
developed ncap2. This support also led NCO to debut in professional journals and meetings.
The personal and professional contacts made during this evolution have been immensely
rewarding.

Charlie Zender
March 2008
Grenoble, France

The end of the NSF SEI grant in August, 2008 curtailed NCO development. Fortunately
we could justify supporting Henry Butowsky on other research grants until May, 2010 while
he developed the key ncap2 features used in our climate research. And recently the NASA

ACCESS program commenced funding us to support netCDF4 group functionality. Thus
NCO will grow and evade bit-rot for the foreseeable future.

I continue to receive with gratitude the thanks of NCO users at nearly every scientific
meeting I attend. People introduce themselves, shake my hand and extol NCO, often effu-
sively, while I grin in stupid embarassment. These exchanges lighten me like anti-gravity.
Sometimes I daydream how many hours NCO has turned from grunt work to productive
research for researchers world-wide, or from research into early happy-hours. It’s a cool
feeling.

Charlie Zender
April, 2012
Irvine, California

The NASA ACCESS 2011 program generously supported (Cooperative Agreement
NNX12AF48A) NCO from 2012–2014. This allowed us to produce the first iteration of
a Group-oriented Data Analysis and Distribution (GODAD) software ecosystem. Shifting
more geoscience data analysis to GODAD is a long-term plan. Then the NASA ACCESS 2013
program agreed to support (Cooperative Agreement NNX14AH55A) NCO from 2014–2016.
This support permits us to implement support for Swath-like Data (SLD). Most recently,
the DOE has funded me to implement NCO re-gridding and parallelization in support of
their ACME program. After many years of crafting NCO as an after-hours hobby, I finally
have the cushion necessary to give it some real attention. And I’m looking forward to this
next, and most intense yet, phase of NCO development.

Charlie Zender
June, 2015

Foreword 3

Irvine, California

The DOE Energy Exascale Earth System Model (E3SM) project (formerly ACME) has
generously supported NCO development for the past four years. Supporting NCO for a
mission-driven, high-performance climate model development effort has brought unprece-
dented challenges and opportunities. After so many years of staid progress, the recent
development speed has been both exhilirating and terrifying.

Charlie Zender
May, 2019
Laguna Beach, California

Summary 5

Summary

This manual describes NCO, which stands for netCDF Operators. NCO is a suite of programs
known as operators. Each operator is a standalone, command line program executed at
the shell-level like, e.g., ls or mkdir. The operators take netCDF files (including HDF5

files constructed using the netCDF API) as input, perform an operation (e.g., averaging or
hyperslabbing), and produce a netCDF file as output. The operators are primarily designed
to aid manipulation and analysis of data. The examples in this documentation are typical
applications of the operators for processing climate model output. This stems from their
origin, though the operators are as general as netCDF itself.

Chapter 1: Introduction 7

1 Introduction

1.1 Availability

The complete NCO source distribution is currently distributed as a compressed tarfile from
http://sf.net/projects/nco and from http://dust.ess.uci.edu/nco/nco.tar.

gz. The compressed tarfile must be uncompressed and untarred before building NCO.
Uncompress the file with ‘gunzip nco.tar.gz’. Extract the source files from the resulting
tarfile with ‘tar -xvf nco.tar’. GNU tar lets you perform both operations in one step
with ‘tar -xvzf nco.tar.gz’.

The documentation for NCO is called the NCO User Guide. The User Guide is available
in PDF, Postscript, HTML, DVI, TEXinfo, and Info formats. These formats are included
in the source distribution in the files nco.pdf, nco.ps, nco.html, nco.dvi, nco.texi,
and nco.info*, respectively. All the documentation descends from a single source file,
nco.texi1. Hence the documentation in every format is very similar. However, some of the
complex mathematical expressions needed to describe ncwa can only be displayed in DVI,
Postscript, and PDF formats.

A complete list of papers and publications on/about NCO is available on the NCO home-
page. Most of these are freely available. The primary refereed publications are ZeM06 and
Zen08. These contain copyright restrictions which limit their redistribution, but they are
freely available in preprint form from the NCO.

If you want to quickly see what the latest improvements in NCO are (without downloading
the entire source distribution), visit the NCO homepage at http://nco.sf.net. The HTML

version of the User Guide is also available online through the World Wide Web at URL

http://nco.sf.net/nco.html. To build and use NCO, you must have netCDF installed.
The netCDF homepage is http://www.unidata.ucar.edu/software/netcdf.

New NCO releases are announced on the netCDF list and on the nco-announce mailing
list http://lists.sf.net/mailman/listinfo/nco-announce.

1.2 How to Use This Guide

Detailed instructions about how to download the newest version, and how to complie source
code, as well as a FAQ and descriptions of Known Problems etc. are on our homepage
(http://nco.sf.net/).

There are twelve operators in the current version (5.0.1). The function of each is ex-
plained in Chapter 4 [Reference Manual], page 151. Many of the tasks that NCO can accom-
plish are described during the explanation of common NCO Features (see Chapter 3 [Shared
features], page 29). More specific use examples for each operator can be seen by visiting the
operator-specific examples in the Chapter 4 [Reference Manual], page 151. These can be
found directly by prepending the operator name with the xmp_ tag, e.g., http://nco.sf.

1 To produce these formats, nco.texi was simply run through the freely available programs texi2dvi,
dvips, texi2html, and makeinfo. Due to a bug in TEX, the resulting Postscript file, nco.ps, contains
the Table of Contents as the final pages. Thus if you print nco.ps, remember to insert the Table of
Contents after the cover sheet before you staple the manual.

http://sf.net/projects/nco
http://dust.ess.uci.edu/nco/nco.tar.gz
http://dust.ess.uci.edu/nco/nco.tar.gz
http://nco.sf.net
http://nco.sf.net/nco.html
http://www.unidata.ucar.edu/software/netcdf
http://lists.sf.net/mailman/listinfo/nco-announce
http://nco.sf.net/#Source
http://nco.sf.net/#bld
http://nco.sf.net/#bld
http://nco.sf.net/#FAQ
http://nco.sf.net/#bug
http://nco.sf.net/
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks

8 NCO 5.0.1 User Guide

net/nco.html#xmp_ncks. Also, users can type the operator name on the shell command
line to see all the available options, or type, e.g., ‘man ncks’ to see a help man-page.

NCO is a command-line language. You may either use an operator after the prompt
(e.g., ‘$’ here), like,

$ operator [options] input [output]

or write all commands lines into a shell script, as in the CMIP5 Example (see Chapter 7
[CMIP5 Example], page 357).

If you are new to NCO, the Quick Start (see Chapter 6 [Quick Start], page 355) shows
simple examples about how to use NCO on different kinds of data files. More detailed “real-
world” examples are in the Chapter 7 [CMIP5 Example], page 357. The [General Index],
page 395 is presents multiple keyword entries for the same subject. If these resources do
not help enough, please see Section 1.7 [Help Requests and Bug Reports], page 15.

1.3 Operating systems compatible with NCO

In its time on Earth, NCO has been successfully ported and tested on so many 32- and 64-bit
platforms that if we did not write them down here we would forget their names: IBM AIX

4.x, 5.x, FreeBSD 4.x, GNU/Linux 2.x, LinuxPPC, LinuxAlpha, LinuxARM, LinuxSparc64,
LinuxAMD64, SGI IRIX 5.x and 6.x, MacOS X 10.x, DEC OSF, NEC Super-UX 10.x, Sun
SunOS 4.1.x, Solaris 2.x, Cray UNICOS 8.x–10.x, and Microsoft Windows (95, 98, NT, 2000,
XP, Vista, 7, 8, 10). If you port the code to a new operating system, please send me a note
and any patches you required.

The major prerequisite for installing NCO on a particular platform is the successful,
prior installation of the netCDF library (and, as of 2003, the UDUnits library). Unidata
has shown a commitment to maintaining netCDF and UDUnits on all popular UNIX plat-
forms, and is moving towards full support for the Microsoft Windows operating system (OS).
Given this, the only difficulty in implementing NCO on a particular platform is standard-
ization of various C-language API system calls. NCO code is tested for ANSI compliance
by compiling with C99 compilers including those from GNU (‘gcc -std=c99 -pedantic

-D_BSD_SOURCE -D_POSIX_SOURCE’ -Wall)2, Comeau Computing (‘como --c99’), Cray
(‘cc’), HP/Compaq/DEC (‘cc’), IBM (‘xlc -c -qlanglvl=extc99’), Intel (‘icc -std=c99’),
LLVM (‘clang’), NEC (‘cc’), PathScale (QLogic) (‘pathcc -std=c99’), PGI (‘pgcc -c9x’),
SGI (‘cc -c99’), and Sun (‘cc’). NCO (all commands and the libnco library) and
the C++ interface to netCDF (called libnco_c++) comply with the ISO C++ stan-
dards as implemented by Comeau Computing (‘como’), Cray (‘CC’), GNU (‘g++ -Wall’),
HP/Compaq/DEC (‘cxx’), IBM (‘xlC’), Intel (‘icc’), Microsoft (‘MVS’), NEC (‘c++’), Path-
Scale (Qlogic) (‘pathCC’), PGI (‘pgCC’), SGI (‘CC -LANG:std’), and Sun (‘CC -LANG:std’).
See nco/bld/Makefile and nco/src/nco_c++/Makefile.old for more details and exact
settings.

Until recently (and not even yet), ANSI-compliant has meant compliance with the 1989
ISO C-standard, usually called C89 (with minor revisions made in 1994 and 1995). C89 lacks
variable-size arrays, restricted pointers, some useful printf formats, and many mathemat-

2 The ‘_BSD_SOURCE’ token is required on some Linux platforms where gcc dislikes the network header
files like netinet/in.h).

http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks

Chapter 1: Introduction 9

ical special functions. These are valuable features of C99, the 1999 ISO C-standard. NCO

is C99-compliant where possible and C89-compliant where necessary. Certain branches in
the code are required to satisfy the native SGI and SunOS C compilers, which are strictly
ANSI C89 compliant, and cannot benefit from C99 features. However, C99 features are fully
supported by modern AIX, GNU, Intel, NEC, Solaris, and UNICOS compilers. NCO requires
a C99-compliant compiler as of NCO version 2.9.8, released in August, 2004.

The most time-intensive portion of NCO execution is spent in arithmetic operations,
e.g., multiplication, averaging, subtraction. These operations were performed in Fortran
by default until August, 1999. This was a design decision based on the relative speed of
Fortran-based object code vs. C-based object code in late 1994. C compiler vectorization ca-
pabilities have dramatically improved since 1994. We have accordingly replaced all Fortran
subroutines with C functions. This greatly simplifies the task of building NCO on nominally
unsupported platforms. As of August 1999, NCO built entirely in C by default. This al-
lowed NCO to compile on any machine with an ANSI C compiler. In August 2004, the first
C99 feature, the restrict type qualifier, entered NCO in version 2.9.8. C compilers can
obtain better performance with C99 restricted pointers since they inform the compiler when
it may make Fortran-like assumptions regarding pointer contents alteration. Subsequently,
NCO requires a C99 compiler to build correctly3.

In January 2009, NCO version 3.9.6 was the first to link to the GNU Scientific Library
(GSL). GSL must be version 1.4 or later. NCO, in particular ncap2, uses the GSL spe-
cial function library to evaluate geoscience-relevant mathematics such as Bessel functions,
Legendre polynomials, and incomplete gamma functions (see Section 4.1.22 [GSL special
functions], page 193).

In June 2005, NCO version 3.0.1 began to take advantage of C99 mathematical spe-
cial functions. These include the standarized gamma function (called tgamma() for “true
gamma”). NCO automagically takes advantage of some GNU Compiler Collection (GCC)
extensions to ANSI C.

As of July 2000 and NCO version 1.2, NCO no longer performs arithmetic operations
in Fortran. We decided to sacrifice executable speed for code maintainability. Since no
objective statistics were ever performed to quantify the difference in speed between the
Fortran and C code, the performance penalty incurred by this decision is unknown. Sup-
porting Fortran involves maintaining two sets of routines for every arithmetic operation.
The USE_FORTRAN_ARITHMETIC flag is still retained in the Makefile. The file containing
the Fortran code, nco_fortran.F, has been deprecated but a volunteer (Dr. Frankenstein?)
could resurrect it. If you would like to volunteer to maintain nco_fortran.F please contact
me.

1.3.1 Compiling NCO for Microsoft Windows OS

NCO has been successfully ported and tested on most Microsoft Windows operating systems
including: XP SP2/Vista/7/10. Support is provided for compiling either native Windows
executables, using the Microsoft Visual Studio Compiler (MVSC), or with Cygwin, the

3 NCO may still build with an ANSI or ISO C89 or C94/95-compliant compiler if the C pre-processor
undefines the restrict type qualifier, e.g., by invoking the compiler with ‘-Drestrict=’’’.

10 NCO 5.0.1 User Guide

UNIX-emulating compatibility layer with the GNU toolchain. The switches necessary to
accomplish both are included in the standard distribution of NCO.

With Microsoft Visual Studio compiler, one must build NCO with C++ since MVSC does
not support C99. Support for Qt, a convenient integrated development environment, was
deprecated in 2017. As of NCO version 4.6.9 (September, 2017) please build native Windows
executables with CMake:

cd ~/nco/cmake

cmake .. -DCMAKE_INSTALL_PREFIX=${HOME}

make install

The file nco/cmake/build.bat shows how deal with various path issues.

As of NCO version 4.7.1 (December, 2017) the Conda package for NCO is available from
the conda-forge channel on all three smithies: Linux, MacOS, and Windows.

Recommended install with Conda

conda config --add channels conda-forge # Permananently add conda-forge

conda install nco

Or, specify conda-forge explicitly as a one-off:

conda install -c conda-forge nco

Using the freely available Cygwin (formerly gnu-win32) development environment4, the
compilation process is very similar to installing NCO on a UNIX system. Set the PVM_ARCH
preprocessor token to WIN32. Note that defining WIN32 has the side effect of disabling
Internet features of NCO (see below). NCO should now build like it does on UNIX.

The least portable section of the code is the use of standard UNIX and Internet protocols
(e.g., ftp, rcp, scp, sftp, getuid, gethostname, and header files <arpa/nameser.h> and
<resolv.h>). Fortunately, these UNIX-y calls are only invoked by the single NCO subroutine
which is responsible for retrieving files stored on remote systems (see Section 3.8 [Remote
storage], page 37). In order to support NCO on the Microsoft Windows platforms, this
single feature was disabled (on Windows OS only). This was required by Cygwin 18.x—
newer versions of Cygwin may support these protocols (let me know if this is the case).
The NCO operators should behave identically on Windows and UNIX platforms in all other
respects.

1.4 Symbolic Links

NCO relies on a common set of underlying algorithms. To minimize duplication of source
code, multiple operators sometimes share the same underlying source. This is accomplished
by symbolic links from a single underlying executable program to one or more invoked
executable names. For example, nces and ncrcat are symbolically linked to the ncra

executable. The ncra executable behaves slightly differently based on its invocation name
(i.e., ‘argv[0]’), which can be nces, ncra, or ncrcat. Logically, these are three different
operators that happen to share the same executable.

4 The Cygwin package is available from
http://sourceware.redhat.com/cygwin

Currently, Cygwin 20.x comes with the GNU C/C++ compilers (gcc, g++. These GNU compilers may be
used to build the netCDF distribution itself.

Chapter 1: Introduction 11

For historical reasons, and to be more user friendly, multiple synonyms (or pseudonyms)
may refer to the same operator invoked with different switches. For example, ncdiff is
the same as ncbo and ncpack is the same as ncpdq. We implement the symbolic links and
synonyms by the executing the following UNIX commands in the directory where the NCO

executables are installed.

ln -s -f ncbo ncdiff # ncbo --op_typ=’-’

ln -s -f ncra nces # ncra --pseudonym=’nces’

ln -s -f ncra ncrcat # ncra --pseudonym=’ncrcat’

ln -s -f ncbo ncadd # ncbo --op_typ=’+’

ln -s -f ncbo ncsubtract # ncbo --op_typ=’-’

ln -s -f ncbo ncmultiply # ncbo --op_typ=’*’

ln -s -f ncbo ncdivide # ncbo --op_typ=’/’

ln -s -f ncpdq ncpack # ncpdq

ln -s -f ncpdq ncunpack # ncpdq --unpack

NB: Windows/Cygwin executable/link names have ’.exe’ suffix, e.g.,

ln -s -f ncbo.exe ncdiff.exe

...

The imputed command called by the link is given after the comment. As can be seen,
some these links impute the passing of a command line argument to further modify the
behavior of the underlying executable. For example, ncdivide is a pseudonym for ncbo

--op_typ=’/’.

1.5 Libraries

Like all executables, the NCO operators can be built using dynamic linking. This reduces
the size of the executable and can result in significant performance enhancements on mul-
tiuser systems. Unfortunately, if your library search path (usually the LD_LIBRARY_PATH

environment variable) is not set correctly, or if the system libraries have been moved, re-
named, or deleted since NCO was installed, it is possible NCO operators will fail with a
message that they cannot find a dynamically loaded (aka shared object or ‘.so’) library.
This will produce a distinctive error message, such as ‘ld.so.1: /usr/local/bin/nces:

fatal: libsunmath.so.1: can’t open file: errno=2’. If you received an error message
like this, ask your system administrator to diagnose whether the library is truly missing5,
or whether you simply need to alter your library search path. As a final remedy, you may
re-compile and install NCO with all operators statically linked.

1.6 netCDF2/3/4 and HDF4/5 Support

netCDF version 2 was released in 1993. NCO (specifically ncks) began soon after this
in 1994. netCDF 3.0 was released in 1996, and we were not exactly eager to convert all
code to the newer, less tested netCDF implementation. One netCDF3 interface call (nc_
inq_libvers) was added to NCO in January, 1998, to aid in maintainance and debugging.
In March, 2001, the final NCO conversion to netCDF3 was completed (coincidentally on

5 The ldd command, if it is available on your system, will tell you where the executable is looking for each
dynamically loaded library. Use, e.g., ldd ‘which nces‘.

12 NCO 5.0.1 User Guide

the same day netCDF 3.5 was released). NCO versions 2.0 and higher are built with the
-DNO_NETCDF_2 flag to ensure no netCDF2 interface calls are used.

However, the ability to compile NCO with only netCDF2 calls is worth maintaining
because HDF version 4, aka HDF4 or simply HDF,6 (available from HDF) supports only
the netCDF2 library calls (see http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#

47784). There are two versions of HDF. Currently HDF version 4.x supports the full
netCDF2 API and thus NCO version 1.2.x. If NCO version 1.2.x (or earlier) is built with
only netCDF2 calls then all NCO operators should work with HDF4 files as well as netCDF
files7. The preprocessor token NETCDF2_ONLY exists in NCO version 1.2.x to eliminate all
netCDF3 calls. Only versions of NCO numbered 1.2.x and earlier have this capability.

HDF version 5 became available in 1999, but did not support netCDF (or, for that matter,
Fortran) as of December 1999. By early 2001, HDF5 did support Fortran90. Thanks to an
NSF-funded “harmonization” partnership, HDF began to fully support the netCDF3 read
interface (which is employed by NCO 2.x and later). In 2004, Unidata and THG began a
project to implement the HDF5 features necessary to support the netCDF API. NCO version
3.0.3 added support for reading/writing netCDF4-formatted HDF5 files in October, 2005.
See Section 3.10 [File Formats and Conversion], page 42 for more details.

HDF support for netCDF was completed with HDF5 version version 1.8 in 2007. The
netCDF front-end that uses this HDF5 back-end was completed and released soon after as
netCDF version 4. Download it from the netCDF4 website.

NCO version 3.9.0, released in May, 2007, added support for all netCDF4 atomic data
types except NC_STRING. Support for NC_STRING, including ragged arrays of strings, was
finally added in version 3.9.9, released in June, 2009. Support for additional netCDF4
features has been incremental. We add one netCDF4 feature at a time. You must build
NCO with netCDF4 to obtain this support.

NCO supports many netCDF4 features including atomic data types, Lempel-Ziv com-
pression (deflation), chunking, and groups. The new atomic data types are NC_UBYTE,
NC_USHORT, NC_UINT, NC_INT64, and NC_UINT64. Eight-byte integer support is an espe-
cially useful improvement from netCDF3. All NCO operators support these types, e.g.,
ncks copies and prints them, ncra averages them, and ncap2 processes algebraic scripts
with them. ncks prints compression information, if any, to screen.

NCO version 3.9.1 (June, 2007) added support for netCDF4 Lempel-Ziv deflation.
Lempel-Ziv deflation is a lossless compression technique. See Section 3.33 [Deflation],
page 121 for more details.

NCO version 3.9.9 (June, 2009) added support for netCDF4 chunking in ncks and
ncecat. NCO version 4.0.4 (September, 2010) completed support for netCDF4 chunking in
the remaining operators. See Section 3.31 [Chunking], page 104 for more details.

6 The Hierarchical Data Format, or HDF, is another self-describing data format similar to, but more
elaborate than, netCDF. HDF comes in two flavors, HDF4 and HDF5. Often people use the shorthand
HDF to refer to the older format HDF4. People almost always use HDF5 to refer to HDF5.

7 One must link the NCO code to the HDF4 MFHDF library instead of the usual netCDF library. Apparently
‘MF’ stands for Multi-file not for Mike Folk. In any case, until about 2007 the MFHDF library only
supported netCDF2 calls. Most people will never again install NCO 1.2.x and so will never use NCO to
write HDF4 files. It is simply too much trouble.

http://hdfgroup.org
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4

Chapter 1: Introduction 13

NCO version 4.2.2 (October, 2012) added support for netCDF4 groups in ncks and
ncecat. Group support for these operators was complete (e.g., regular expressions to select
groups and Group Path Editing) as of NCO version 4.2.6 (March, 2013). See Section 3.14
[Group Path Editing], page 53 for more details. Group support for all other operators was
finished in the NCO version 4.3.x series completed in December, 2013.

Support for netCDF4 in the first arithmetic operator, ncbo, was introduced in NCO

version 4.3.0 (March, 2013). NCO version 4.3.1 (May, 2013) completed this support and
introduced the first example of automatic group broadcasting. See Section 4.3 [ncbo netCDF
Binary Operator], page 223 for more details.

netCDF4-enabled NCO handles netCDF3 files without change. In addition, it automag-
ically handles netCDF4 (HDF5) files: If you feed NCO netCDF3 files, it produces netCDF3
output. If you feed NCO netCDF4 files, it produces netCDF4 output. Use the handy-dandy
‘-4’ switch to request netCDF4 output from netCDF3 input, i.e., to convert netCDF3 to
netCDF4. See Section 3.10 [File Formats and Conversion], page 42 for more details.

When linked to a netCDF library that was built with HDF4 support8, NCO automatically
supports reading HDF4 files and writing them as netCDF3/netCDF4/HDF5 files. NCO can
only write through the netCDF API, which can only write netCDF3/netCDF4/HDF5 files.
So NCO can read HDF4 files, perform manipulations and calculations, and then it must
write the results in netCDF format.

NCO support for HDF4 has been quite functional since December, 2013. For best results
install NCO versions 4.4.0 or later on top of netCDF versions 4.3.1 or later. Getting to this
point has been an iterative effort where Unidata improved netCDF library capabilities in
response to our requests. NCO versions 4.3.6 and earlier do not explicitly support HDF4,
yet should work with HDF4 if compiled with a version of netCDF (4.3.2 or later?) that does
not unexpectedly die when probing HDF4 files with standard netCDF calls. NCO versions
4.3.7–4.3.9 (October–December, 2013) use a special flag to circumvent netCDF HDF4 issues.
The user must tell these versions of NCO that an input file is HDF4 format by using the
‘--hdf4’ switch.

When compiled with netCDF version 4.3.1 (20140116) or later, NCO versions 4.4.0 (Jan-
uary, 2014) and later more gracefully handle HDF4 files. In particular, the ‘--hdf4’ switch
is obsolete. Current versions of NCO use netCDF to determine automatically whether
the underlying file is HDF4, and then take appropriate precautions to avoid netCDF4 API

calls that fail when applied to HDF4 files (e.g., nc_inq_var_chunking(), nc_inq_var_

deflate()). When compiled with netCDF version 4.3.2 (20140423) or earlier, NCO will
report that chunking and deflation properties of HDF4 files as HDF4_UNKNOWN, because de-
termining those properties was impossible. When compiled with netCDF version 4.3.3-rc2
(20140925) or later, NCO versions 4.4.6 (October, 2014) and later fully support chunking
and deflation features of HDF4 files. Unfortunately, netCDF version 4.7.4 (20200327) intro-
duced a regression that breaks this functionality for all NCO versions until we first noticed
the regression a year later implemented a workaround to restore this functionality as of
4.9.9-alpha02 (20210327). The ‘--hdf4’ switch is supported (for backwards compatibility)
yet redundant (i.e., does no harm) with current versions of NCO and netCDF.

8 The procedure for doing this is documented at http://www.unidata.ucar.edu/software/netcdf/docs/
build_hdf4.html.

http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html
http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

14 NCO 5.0.1 User Guide

Converting HDF4 files to netCDF: Since NCO reads HDF4 files natively, it is now easy
to convert HDF4 files to netCDF files directly, e.g.,

ncks fl.hdf fl.nc # Convert HDF4->netCDF4 (NCO 4.4.0+, netCDF 4.3.1+)

ncks --hdf4 fl.hdf fl.nc # Convert HDF4->netCDF4 (NCO 4.3.7-4.3.9)

The most efficient and accurate way to convert HDF4 data to netCDF format is to
convert to netCDF4 using NCO as above. Many HDF4 producers (NASA!) love to use
netCDF4 types, e.g., unsigned bytes, so this procedure is the most typical. Conversion of
HDF4 to netCDF4 as above suffices when the data will only be processed by NCO and other
netCDF4-aware tools.

However, many tools are not fully netCDF4-aware, and so conversion to netCDF3 may
be desirable. Obtaining any netCDF file from an HDF4 is easy:

ncks -3 fl.hdf fl.nc # HDF4->netCDF3 (NCO 4.4.0+, netCDF 4.3.1+)

ncks -4 fl.hdf fl.nc # HDF4->netCDF4 (NCO 4.4.0+, netCDF 4.3.1+)

ncks -6 fl.hdf fl.nc # HDF4->netCDF3 64-bit (NCO 4.4.0+, ...)

ncks -7 -L 1 fl.hdf fl.nc # HDF4->netCDF4 classic (NCO 4.4.0+, ...)

ncks --hdf4 -3 fl.hdf fl.nc # HDF4->netCDF3 (netCDF 4.3.0-)

ncks --hdf4 -4 fl.hdf fl.nc # HDF4->netCDF4 (netCDF 4.3.0-)

ncks --hdf4 -6 fl.hdf fl.nc # HDF4->netCDF3 64-bit (netCDF 4.3.0-)

ncks --hdf4 -7 fl.hdf fl.nc # HDF4->netCDF4 classic (netCDF 4.3.0-)

As of NCO version 4.4.0 (January, 2014), these commands work even when the HDF4

file contains netCDF4 atomic types (e.g., unsigned bytes, 64-bit integers) because NCO can
autoconvert everything to atomic types supported by netCDF39.

As of NCO version 4.4.4 (May, 2014) both ncl_convert2nc and NCO have built-in,
automatic workarounds to handle element names that contain characters that are legal in
HDF though are illegal in netCDF. For example, slashes and leading special characters
are are legal in HDF and illegal in netCDF element (i.e., group, variable, dimension, and
attribute) names. NCO converts these forbidden characters to underscores, and retains the
original names of variables in automatically produced attributes named hdf_name10.

Finally, in February 2014, we learned that the HDF group has a project called H4CF

(described here) whose goal is to make HDF4 files accessible to CF tools and conventions.

9 Prior to NCO version 4.4.0 (January, 2014), we recommended the ncl_convert2nc tool to convert HDF

to netCDF3 when both these are true: 1. You must have netCDF3 and 2. the HDF file contains netCDF4
atomic types. More recent versions of NCO handle this problem fine, and include other advantages so we
no longer recommend ncl_convert2nc because ncks is faster and more space-efficient. Both automati-
cally convert netCDF4 types to netCDF3 types, yet ncl_convert2nc cannot produce full netCDF4 files.
In contrast, ncks will happily convert HDF straight to netCDF4 files with netCDF4 types. Hence ncks

can and does preserve the variable types. Unsigned bytes stay unsigned bytes. 64-bit integers stay 64-bit
integers. Strings stay strings. Hence, ncks conversions often result in smaller files than ncl_convert2nc

conversions. Another tool useful for converting netCDF3 to netCDF4 files, and whose functionality is,
we think, also matched or exceeded by ncks, is the Python script nc3tonc4 by Jeff Whitaker.

10 Two real-world examples: NCO translates the NASA CERES dimension (FOV) Footprints to _FOV_

Footprints, and Cloud & Aerosol, Cloud Only, Clear Sky w/Aerosol, and Clear Sky (yes, the dimen-
sion name includes whitespace and special characters) to Cloud & Aerosol, Cloud Only, Clear Sky w_

Aerosol, and Clear Sky ncl_convert2nc makes the element name netCDF-safe in a slightly different
manner, and also stores the original name in the hdf_name attribute.

http://hdfeos.org/software/h4cflib.php

Chapter 1: Introduction 15

Their project includes a tool named h4tonccf that converts HDF4 files to netCDF3 or
netCDF4 files. We are not yet sure what advantages or features h4tonccf has that are not
in NCO, though we suspect both methods have their own advantages. Corrections welcome.

As of 2012, netCDF4 is relatively stable software. Problems with netCDF4 and HDF

libraries have mainly been fixed. Binary NCO distributions shipped as RPMs and as debs
have used the netCDF4 library since 2010 and 2011, respectively.

One must often build NCO from source to obtain netCDF4 support. Typically, one
specifies the root of the netCDF4 installation directory. Do this with the NETCDF4_ROOT

variable. Then use your preferred NCO build mechanism, e.g.,

export NETCDF4_ROOT=/usr/local/netcdf4 # Set netCDF4 location

cd ~/nco;./configure --enable-netcdf4 # Configure mechanism -or-

cd ~/nco/bld;./make NETCDF4=Y allinone # Old Makefile mechanism

We carefully track the netCDF4 releases, and keep the netCDF4 atomic type support
and other features working. Our long term goal is to utilize more of the extensive new
netCDF4 feature set. The next major netCDF4 feature we are likely to utilize is parallel
I/O. We will enable this in the MPI netCDF operators.

1.7 Help Requests and Bug Reports

We generally receive three categories of mail from users: help requests, bug reports, and
feature requests. Notes saying the equivalent of “Hey, NCO continues to work great and it
saves me more time everyday than it took to write this note” are a distant fourth.

There is a different protocol for each type of request. The preferred etiquette for all
communications is via NCO Project Forums. Do not contact project members via personal
e-mail unless your request comes with money or you have damaging information about our
personal lives. Please use the Forums—they preserve a record of the questions and answers
so that others can learn from our exchange. Also, since NCO is both volunteer-driven and
government-funded, this record helps us provide program officers with information they
need to evaluate our project.

Before posting to the NCO forums described below, you might first register your name
and email address with SourceForge.net or else all of your postings will be attributed to
nobody. Once registered you may choose to monitor any forum and to receive (or not) email
when there are any postings including responses to your questions. We usually reply to the
forum message, not to the original poster.

If you want us to include a new feature in NCO, please consider implementing the feature
yourself and sending us the patch. If that is beyond your ken, then send a note to the NCO
Discussion forum.

Read the manual before reporting a bug or posting a help request. Sending questions
whose answers are not in the manual is the best way to motivate us to write more docu-
mentation. We would also like to accentuate the contrapositive of this statement. If you
think you have found a real bug the most helpful thing you can do is simplify the problem to
a manageable size and then report it. The first thing to do is to make sure you are running
the latest publicly released version of NCO.

https://sf.net/account/register.php
http://sf.net/p/nco/discussion/9829
http://sf.net/p/nco/discussion/9829

16 NCO 5.0.1 User Guide

Once you have read the manual, if you are still unable to get NCO to perform a docu-
mented function, submit a help request. Follow the same procedure as described below for
reporting bugs (after all, it might be a bug). That is, describe what you are trying to do,
and include the complete commands (run with ‘-D 5’), error messages, and version of NCO

(with ‘-r’). Some commands behave differently depending on the exact order and rank of
dimensions in the pertinent variables. In such cases we need you to provide that metadata,
e.g., the text results of ‘ncks -m’ on your input and/or output files. Post your help request
to the NCO Help forum.

If you think you used the right command when NCO misbehaves, then you might have
found a bug. Incorrect numerical answers are the highest priority. We usually fix those
within one or two days. Core dumps and sementation violations receive lower priority.
They are always fixed, eventually.

How do you simplify a problem that reveal a bug? Cut out extraneous variables, di-
mensions, and metadata from the offending files and re-run the command until it no longer
breaks. Then back up one step and report the problem. Usually the file(s) will be very
small, i.e., one variable with one or two small dimensions ought to suffice. Run the op-
erator with ‘-r’ and then run the command with ‘-D 5’ to increase the verbosity of the
debugging output. It is very important that your report contain the exact error messages
and compile-time environment. Include a copy of your sample input file, or place one on a
publicly accessible location, of the file(s). If you are sure it is a bug, post the full report to
the NCO Project buglist. Otherwise post all the information to NCO Help forum.

Build failures count as bugs. Our limited machine access means we cannot fix all build
failures. The information we need to diagnose, and often fix, build failures are the three files
output by GNU build tools, nco.config.log.${GNU_TRP}.foo, nco.configure.${GNU_

TRP}.foo, and nco.make.${GNU_TRP}.foo. The file configure.eg shows how to produce
these files. Here ${GNU_TRP} is the “GNU architecture triplet”, the chip-vendor-OS string
returned by config.guess. Please send us your improvements to the examples supplied in
configure.eg. The regressions archive at http://dust.ess.uci.edu/nco/rgr contains
the build output from our standard test systems. You may find you can solve the build
problem yourself by examining the differences between these files and your own.

http://sf.net/p/nco/discussion/9830
http://sf.net/p/nco/bugs
http://sf.net/p/nco/discussion/9830
http://dust.ess.uci.edu/nco/rgr

Chapter 2: Operator Strategies 17

2 Operator Strategies

2.1 Philosophy

The main design goal is command line operators which perform useful, scriptable operations
on netCDF files. Many scientists work with models and observations which produce too
much data to analyze in tabular format. Thus, it is often natural to reduce and massage
this raw or primary level data into summary, or second level data, e.g., temporal or spatial
averages. These second level data may become the inputs to graphical and statistical pack-
ages, and are often more suitable for archival and dissemination to the scientific community.
NCO performs a suite of operations useful in manipulating data from the primary to the
second level state. Higher level interpretive languages (e.g., IDL, Yorick, Matlab, NCL, Perl,
Python), and lower level compiled languages (e.g., C, Fortran) can always perform any task
performed by NCO, but often with more overhead. NCO, on the other hand, is limited to
a much smaller set of arithmetic and metadata operations than these full blown languages.

Another goal has been to implement enough command line switches so that frequently
used sequences of these operators can be executed from a shell script or batch file. Finally,
NCO was written to consume the absolute minimum amount of system memory required to
perform a given job. The arithmetic operators are extremely efficient; their exact memory
usage is detailed in Section 2.9 [Memory Requirements], page 24.

2.2 Climate Model Paradigm

NCO was developed at NCAR to aid analysis and manipulation of datasets produced by
General Circulation Models (GCMs). GCM datasets share many features with other gridded
scientific datasets and so provide a useful paradigm for the explication of the NCO operator
set. Examples in this manual use a GCM paradigm because latitude, longitude, time,
temperature and other fields related to our natural environment are as easy to visualize for
the layman as the expert.

2.3 Temporary Output Files

NCO operators are designed to be reasonably fault tolerant, so that a system failure or user-
abort of the operation (e.g., with C-c) does not cause loss of data. The user-specified output-
file is only created upon successful completion of the operation1. This is accomplished by
performing all operations in a temporary copy of output-file. The name of the temporary
output file is constructed by appending .pid<process ID>.<operator name>.tmp to the
user-specified output-file name. When the operator completes its task with no fatal errors,
the temporary output file is moved to the user-specified output-file. This imbues the pro-
cess with fault-tolerance since fatal error (e.g., disk space fills up) affect only the temporary
output file, leaving the final output file not created if it did not already exist. Note the con-
struction of a temporary output file uses more disk space than just overwriting existing files
“in place” (because there may be two copies of the same file on disk until the NCO operation
successfully concludes and the temporary output file overwrites the existing output-file).

1 The ncrename and ncatted operators are exceptions to this rule. See Section 4.13 [ncrename netCDF
Renamer], page 339.

18 NCO 5.0.1 User Guide

Also, note this feature increases the execution time of the operator by approximately the
time it takes to copy the output-file2. Finally, note this fault-tolerant feature allows the
output-file to be the same as the input-file without any danger of “overlap”.

Over time many “power users” have requested a way to turn-off the fault-tolerance safety
feature that automatically creates a temporary file. Often these users build and execute
production data analysis scripts that are repeated frequently on large datasets. Obviating
an extra file write can then conserve significant disk space and time. For this purpose NCO

has, since version 4.2.1 in August, 2012, made configurable the controls over temporary
file creation. The ‘--wrt_tmp_fl’ and equivalent ‘--write_tmp_fl’ switches ensure NCO

writes output to an intermediate temporary file. This is and has always been the default
behavior so there is currently no need to specify these switches. However, the default may
change some day, especially since writing to RAM disks (see Section 3.36 [RAM disks],
page 124) may some day become the default. The ‘--no_tmp_fl’ switch causes NCO to
write directly to the final output file instead of to an intermediate temporary file. “Power
users” may wish to invoke this switch to increase performance (i.e., reduce wallclock time)
when manipulating large files. When eschewing temporary files, users may forsake the
ability to have the same name for both output-file and input-file since, as described above,
the temporary file prevented overlap issues. However, if the user creates the output file in
RAM (see Section 3.36 [RAM disks], page 124) then it is still possible to have the same
name for both output-file and input-file.

ncks in.nc out.nc # Default: create out.pid.tmp.nc then move to out.nc

ncks --wrt_tmp_fl in.nc out.nc # Same as default

ncks --no_tmp_fl in.nc out.nc # Create out.nc directly on disk

ncks --no_tmp_fl in.nc in.nc # ERROR-prone! Overwrite in.nc with itself

ncks --create_ram --no_tmp_fl in.nc in.nc # Create in RAM, write to disk

ncks --open_ram --no_tmp_fl in.nc in.nc # Read into RAM, write to disk

There is no reason to expect the fourth example to work. The behavior of overwriting a
file while reading from the same file is undefined, much as is the shell command ‘cat foo

> foo’. Although it may “work” in some cases, it is unreliable. One way around this is
to use ‘--create_ram’ so that the output file is not written to disk until the input file is
closed, See Section 3.36 [RAM disks], page 124. However, as of 20130328, the behavior of
the ‘--create_ram’ and ‘--open_ram’ examples has not been thoroughly tested.

The NCO authors have seen compelling use cases for utilizing the RAM switches, though
not (yet) for combining them with ‘--no_tmp_fl’. NCO implements both options because
they are largely independent of eachother. It is up to “power users” to discover which best
fit their needs. We welcome accounts of your experiences posted to the forums.

Other safeguards exist to protect the user from inadvertently overwriting data. If the
output-file specified for a command is a pre-existing file, then the operator will prompt
the user whether to overwrite (erase) the existing output-file, attempt to append to it, or
abort the operation. However, in processing large amounts of data, too many interactive
questions slows productivity. Therefore NCO also implements two ways to override its own
safety features, the ‘-O’ and ‘-A’ switches. Specifying ‘-O’ tells the operator to overwrite
any existing output-file without prompting the user interactively. Specifying ‘-A’ tells the

2 The OS-specific system move command is used. This is mv for UNIX, and move for Windows.

Chapter 2: Operator Strategies 19

operator to attempt to append to any existing output-file without prompting the user inter-
actively. These switches are useful in batch environments because they suppress interactive
keyboard input.

2.4 Appending Variables

Adding variables from one file to another is often desirable. This is referred to as appending,
although some prefer the terminology merging3 or pasting. Appending is often confused
with what NCO calls concatenation. In NCO, concatenation refers to splicing a variable
along the record dimension. The length along the record dimension of the output is the
sum of the lengths of the input files. Appending, on the other hand, refers to copying a
variable from one file to another file which may or may not already contain the variable4.
NCO can append or concatenate just one variable, or all the variables in a file at the same
time.

In this sense, ncks can append variables from one file to another file. This capability is
invoked by naming two files on the command line, input-file and output-file. When output-
file already exists, the user is prompted whether to overwrite, append/replace, or exit from
the command. Selecting overwrite tells the operator to erase the existing output-file and
replace it with the results of the operation. Selecting exit causes the operator to exit—the
output-file will not be touched in this case. Selecting append/replace causes the operator
to attempt to place the results of the operation in the existing output-file, See Section 4.8
[ncks netCDF Kitchen Sink], page 261.

The simplest way to create the union of two files is

ncks -A fl_1.nc fl_2.nc

This puts the contents of fl_1.nc into fl_2.nc. The ‘-A’ is optional. On output,
fl_2.nc is the union of the input files, regardless of whether they share dimensions and
variables, or are completely disjoint. The append fails if the input files have differently
named record dimensions (since netCDF supports only one), or have dimensions of the
same name but different sizes.

2.5 Simple Arithmetic and Interpolation

Users comfortable with NCO semantics may find it easier to perform some simple mathe-
matical operations in NCO rather than higher level languages. ncbo (see Section 4.3 [ncbo
netCDF Binary Operator], page 223) does file addition, subtraction, multiplication, divi-
sion, and broadcasting. It even does group broadcasting. ncflint (see Section 4.7 [ncflint
netCDF File Interpolator], page 258) does file addition, subtraction, multiplication and in-
terpolation. Sequences of these commands can accomplish simple yet powerful operations
from the command line.

3 The terminology merging is reserved for an (unwritten) operator which replaces hyperslabs of a variable
in one file with hyperslabs of the same variable from another file

4 Yes, the terminology is confusing. By all means mail me if you think of a better nomenclature. Should
NCO use paste instead of append?

20 NCO 5.0.1 User Guide

2.6 Statistics vs. Concatenation

The most frequently used operators of NCO are probably the statisticians (i.e., tools that do
statistics) and concatenators. Because there are so many types of statistics like averaging
(e.g., across files, within a file, over the record dimension, over other dimensions, with or
without weights and masks) and of concatenating (across files, along the record dimension,
along other dimensions), there are currently no fewer than five operators which tackle these
two purposes: ncra, nces, ncwa, ncrcat, and ncecat. These operators do share many
capabilities5, though each has its unique specialty. Two of these operators, ncrcat and
ncecat, concatenate hyperslabs across files. The other two operators, ncra and nces,
compute statistics across (and/or within) files6. First, let’s describe the concatenators,
then the statistics tools.

2.6.1 Concatenators ncrcat and ncecat

Joining together independent files along a common record dimension is called concatena-
tion. ncrcat is designed for concatenating record variables, while ncecat is designed for
concatenating fixed length variables. Consider five files, 85.nc, 86.nc, . . . 89.nc each con-
taining a year’s worth of data. Say you wish to create from them a single file, 8589.nc
containing all the data, i.e., spanning all five years. If the annual files make use of the
same record variable, then ncrcat will do the job nicely with, e.g., ncrcat 8?.nc 8589.nc.
The number of records in the input files is arbitrary and can vary from file to file. See
Section 4.11 [ncrcat netCDF Record Concatenator], page 300, for a complete description of
ncrcat.

However, suppose the annual files have no record variable, and thus their data are all
fixed length. For example, the files may not be conceptually sequential, but rather members
of the same group, or ensemble. Members of an ensemble may have no reason to contain
a record dimension. ncecat will create a new record dimension (named record by default)
with which to glue together the individual files into the single ensemble file. If ncecat is
used on files which contain an existing record dimension, that record dimension is converted
to a fixed-length dimension of the same name and a new record dimension (named record)
is created. Consider five realizations, 85a.nc, 85b.nc, . . . 85e.nc of 1985 predictions from
the same climate model. Then ncecat 85?.nc 85_ens.nc glues together the individual
realizations into the single file, 85_ens.nc. If an input variable was dimensioned [lat,lon],
it will have dimensions [record,lat,lon] in the output file. A restriction of ncecat is that
the hyperslabs of the processed variables must be the same from file to file. Normally this
means all the input files are the same size, and contain data on different realizations of the
same variables. See Section 4.5 [ncecat netCDF Ensemble Concatenator], page 251, for a
complete description of ncecat.

ncpdq makes it possible to concatenate files along any dimension, not just the record
dimension. First, use ncpdq to convert the dimension to be concatenated (i.e., extended

5 Currently nces and ncrcat are symbolically linked to the ncra executable, which behaves slightly differ-
ently based on its invocation name (i.e., ‘argv[0]’). These three operators share the same source code,
and merely have different inner loops.

6 The third averaging operator, ncwa, is the most sophisticated averager in NCO. However, ncwa is in
a different class than ncra and nces because it operates on a single file per invocation (as opposed to
multiple files). On that single file, however, ncwa provides a richer set of averaging options—including
weighting, masking, and broadcasting.

Chapter 2: Operator Strategies 21

with data from other files) into the record dimension. Second, use ncrcat to concatenate
these files. Finally, if desirable, use ncpdq to revert to the original dimensionality. As
a concrete example, say that files x_01.nc, x_02.nc, . . . x_10.nc contain time-evolving
datasets from spatially adjacent regions. The time and spatial coordinates are time and x,
respectively. Initially the record dimension is time. Our goal is to create a single file that
contains joins all the spatially adjacent regions into one single time-evolving dataset.

for idx in 01 02 03 04 05 06 07 08 09 10; do # Bourne Shell

ncpdq -a x,time x_${idx}.nc foo_${idx}.nc # Make x record dimension

done

ncrcat foo_??.nc out.nc # Concatenate along x

ncpdq -a time,x out.nc out.nc # Revert to time as record dimension

Note that ncrcat will not concatenate fixed-length variables, whereas ncecat concate-
nates both fixed-length and record variables along a new record variable. To conserve system
memory, use ncrcat where possible.

2.6.2 Averagers nces, ncra, and ncwa

The differences between the averagers ncra and nces are analogous to the differences be-
tween the concatenators. ncra is designed for averaging record variables from at least one
file, while nces is designed for averaging fixed length variables from multiple files. ncra per-
forms a simple arithmetic average over the record dimension of all the input files, with each
record having an equal weight in the average. nces performs a simple arithmetic average
of all the input files, with each file having an equal weight in the average. Note that ncra
cannot average fixed-length variables, but nces can average both fixed-length and record
variables. To conserve system memory, use ncra rather than nces where possible (e.g., if
each input-file is one record long). The file output from nces will have the same dimensions
(meaning dimension names as well as sizes) as the input hyperslabs (see Section 4.6 [nces
netCDF Ensemble Statistics], page 254, for a complete description of nces). The file out-
put from ncra will have the same dimensions as the input hyperslabs except for the record
dimension, which will have a size of 1 (see Section 4.10 [ncra netCDF Record Averager],
page 296, for a complete description of ncra).

2.6.3 Interpolator ncflint

ncflint can interpolate data between or two files. Since no other operators have this ability,
the description of interpolation is given fully on the ncflint reference page (see Section 4.7
[ncflint netCDF File Interpolator], page 258). Note that this capability also allows ncflint
to linearly rescale any data in a netCDF file, e.g., to convert between differing units.

2.7 Large Numbers of Files

Occasionally one desires to digest (i.e., concatenate or average) hundreds or thousands of
input files. Unfortunately, data archives (e.g., NASA EOSDIS) may not name netCDF files
in a format understood by the ‘-n loop’ switch (see Section 3.6 [Specifying Input Files],
page 34) that automagically generates arbitrary numbers of input filenames. The ‘-n loop’
switch has the virtue of being concise, and of minimizing the command line. This helps keeps
output file small since the command line is stored as metadata in the history attribute (see
Section 3.43 [History Attribute], page 143). However, the ‘-n loop’ switch is useless when

22 NCO 5.0.1 User Guide

there is no simple, arithmetic pattern to the input filenames (e.g., h00001.nc, h00002.nc,
. . . h90210.nc). Moreover, filename globbing does not work when the input files are too
numerous or their names are too lengthy (when strung together as a single argument) to be
passed by the calling shell to the NCO operator7. When this occurs, the ANSI C-standard
argc-argv method of passing arguments from the calling shell to a C-program (i.e., an
NCO operator) breaks down. There are (at least) three alternative methods of specifying
the input filenames to NCO in environment-limited situations.

The recommended method for sending very large numbers (hundreds or more, typically)
of input filenames to the multi-file operators is to pass the filenames with the UNIX standard
input feature, aka stdin:

Pipe large numbers of filenames to stdin

/bin/ls | grep ${CASEID}_’......’.nc | ncecat -o foo.nc

This method avoids all constraints on command line size imposed by the operating
system. A drawback to this method is that the history attribute (see Section 3.43 [History
Attribute], page 143) does not record the name of any input files since the names were
not passed as positional arguments on the command line. This makes it difficult later to
determine the data provenance. To remedy this situation, multi-file operators store the
number of input files in the nco_input_file_number global attribute and the input file list
itself in the nco_input_file_list global attribute (see Section 3.44 [File List Attributes],
page 144). Although this does not preserve the exact command used to generate the file,
it does retains all the information required to reconstruct the command and determine the
data provenance.

A second option is to use the UNIX xargs command. This simple example selects as
input to xargs all the filenames in the current directory that match a given pattern. For
illustration, consider a user trying to average millions of files which each have a six character
filename. If the shell buffer cannot hold the results of the corresponding globbing operator,
??????.nc, then the filename globbing technique will fail. Instead we express the filename
pattern as an extended regular expression,\.nc (see Section 3.12 [Subsetting Files],
page 48). We use grep to filter the directory listing for this pattern and to pipe the results
to xargs which, in turn, passes the matching filenames to an NCO multi-file operator, e.g.,
ncecat.

Use xargs to transfer filenames on the command line

/bin/ls | grep ${CASEID}_’......’.nc | xargs -x ncecat -o foo.nc

The single quotes protect the only sensitive parts of the extended regular expression
(the grep argument), and allow shell interpolation (the ${CASEID} variable substitution)
to proceed unhindered on the rest of the command. xargs uses the UNIX pipe feature
to append the suitably filtered input file list to the end of the ncecat command options.
The -o foo.nc switch ensures that the input files supplied by xargs are not confused with
the output file name. xargs does, unfortunately, have its own limit (usually about 20,000
characters) on the size of command lines it can pass. Give xargs the ‘-x’ switch to ensure it

7 The exact length which exceeds the operating system internal limit for command line lengths varies
across OSs and shells. GNU bash may not have any arbitrary fixed limits to the size of command
line arguments. Many OSs cannot handle command line arguments (including results of file globbing)
exceeding 4096 characters.

Chapter 2: Operator Strategies 23

dies if it reaches this internal limit. When this occurs, use either the stdin method above,
or the symbolic link presented next.

Even when its internal limits have not been reached, the xargs technique may not
be sophisticated enough to handle all situations. A full scripting language like Perl or
Python can handle any level of complexity of filtering input filenames, and any number
of filenames. The technique of last resort is to write a script that creates symbolic links
between the irregular input filenames and a set of regular, arithmetic filenames that the ‘-n
loop’ switch understands. For example, the following Perl script creates a monotonically
enumerated symbolic link to up to one million .nc files in a directory. If there are 999,999
netCDF files present, the links are named 000001.nc to 999999.nc:

Create enumerated symbolic links

/bin/ls | grep \.nc | perl -e \

’$idx=1;while(<STDIN>){chop;symlink $_,sprintf("%06d.nc",$idx++);}’

ncecat -n 999999,6,1 000001.nc foo.nc

Remove symbolic links when finished

/bin/rm ??????.nc

The ‘-n loop’ option tells the NCO operator to automatically generate the filnames of
the symbolic links. This circumvents any OS and shell limits on command-line size. The
symbolic links are easily removed once NCO is finished. One drawback to this method is that
the history attribute (see Section 3.43 [History Attribute], page 143) retains the filename
list of the symbolic links, rather than the data files themselves. This makes it difficult to
determine the data provenance at a later date.

2.8 Large Datasets

Large datasets are those files that are comparable in size to the amount of random access
memory (RAM) in your computer. Many users of NCO work with files larger than 100 MB.
Files this large not only push the current edge of storage technology, they present special
problems for programs which attempt to access the entire file at once, such as nces and
ncecat. If you work with a 300 MB files on a machine with only 32 MB of memory then you
will need large amounts of swap space (virtual memory on disk) and NCO will work slowly,
or even fail. There is no easy solution for this. The best strategy is to work on a machine
with sufficient amounts of memory and swap space. Since about 2004, many users have
begun to produce or analyze files exceeding 2 GB in size. These users should familiarize
themselves with NCO’s Large File Support (LFS) capabilities (see Section 3.11 [Large File
Support], page 47). The next section will increase your familiarity with NCO’s memory
requirements. With this knowledge you may re-design your data reduction approach to
divide the problem into pieces solvable in memory-limited situations.

If your local machine has problems working with large files, try running NCO from a
more powerful machine, such as a network server. If you get a memory-related core dump
(e.g., ‘Error exit (core dumped)’) on a GNU/Linux system, or the operation ends before
the entire output file is written, try increasing the process-available memory with ulimit:

ulimit -f unlimited

24 NCO 5.0.1 User Guide

This may solve constraints on clusters where sufficient hardware resources exist yet where
system administrators felt it wise to prevent any individual user from consuming too much
of resource. Certain machine architectures, e.g., Cray UNICOS, have special commands
which allow one to increase the amount of interactive memory. On Cray systems, try to
increase the available memory with the ilimit command.

The speed of the NCO operators also depends on file size. When processing large files
the operators may appear to hang, or do nothing, for large periods of time. In order to see
what the operator is actually doing, it is useful to activate a more verbose output mode.
This is accomplished by supplying a number greater than 0 to the ‘-D debug-level’ (or
‘--debug-level’, or ‘--dbg_lvl’) switch. When the debug-level is non-zero, the operators
report their current status to the terminal through the stderr facility. Using ‘-D’ does
not slow the operators down. Choose a debug-level between 1 and 3 for most situations,
e.g., nces -D 2 85.nc 86.nc 8586.nc. A full description of how to estimate the actual
amount of memory the multi-file NCO operators consume is given in Section 2.9 [Memory
Requirements], page 24.

2.9 Memory Requirements

Many people use NCO on gargantuan files which dwarf the memory available (free RAM

plus swap space) even on today’s powerful machines. These users want NCO to consume
the least memory possible so that their scripts do not have to tediously cut files into smaller
pieces that fit into memory. We commend these greedy users for pushing NCO to its limits!

This section describes the memory NCO requires during operation. The required memory
depends on the underlying algorithms, datatypes, and compression, if any. The description
below is the memory usage per thread. Users with shared memory machines may use
the threaded NCO operators (see Section 3.3 [OpenMP Threading], page 30). The peak
and sustained memory usage will scale accordingly, i.e., by the number of threads. In all
cases the memory use refers to the uncompressed size of the data. The netCDF4 library
automatically decompresses variables during reads. The filesize can easily belie the true size
of the uncompressed data. In other words, the usage below can be taken at face value for
netCDF3 datasets only. Chunking will also affect memory usage on netCDF4 operations.
Memory consumption patterns of all operators are similar, with the exception of ncap2.

2.9.1 Single and Multi-file Operators

The multi-file operators currently comprise the record operators, ncra and ncrcat, and
the ensemble operators, nces and ncecat. The record operators require much less memory
than the ensemble operators. This is because the record operators operate on one single
record (i.e., time-slice) at a time, whereas the ensemble operators retrieve the entire variable
into memory. Let MS be the peak sustained memory demand of an operator, FT be the
memory required to store the entire contents of all the variables to be processed in an
input file, FR be the memory required to store the entire contents of a single record of
each of the variables to be processed in an input file, V R be the memory required to store
a single record of the largest record variable to be processed in an input file, V T be the
memory required to store the largest variable to be processed in an input file, V I be the
memory required to store the largest variable which is not processed, but is copied from
the initial file to the output file. All operators require MI = V I during the initial copying

Chapter 2: Operator Strategies 25

of variables from the first input file to the output file. This is the initial (and transient)
memory demand. The sustained memory demand is that memory required by the operators
during the processing (i.e., averaging, concatenation) phase which lasts until all the input
files have been processed. The operators have the following memory requirements: ncrcat
requiresMS <= V R. ncecat requiresMS <= V T . ncra requiresMS = 2FR+V R. nces
requiresMS = 2FT+V T . ncbo requiresMS <= 3V T (both input variables and the output
variable). ncflint requires MS <= 3V T (both input variables and the output variable).
ncpdq requires MS <= 2V T (one input variable and the output variable). ncwa requires
MS <= 8V T (see below). Note that only variables that are processed, e.g., averaged,
concatenated, or differenced, contribute toMS. Variables that do not appear in the output
file (see Section 3.12 [Subsetting Files], page 48) are never read and contribute nothing to
the memory requirements.

Further note that some operators perform internal type-promotion on some variables
prior to arithmetic (see Section 3.40 [Type Conversion], page 133). For example, ncra,
nces, and ncwa all promote integer types to double-precision floating-point prior to arith-
metic, then perform the arithmetic, then demote back to the original integer type after
arithmetic. This preserves the on-disk storage type while obtaining the precision advan-
tages of double-precision floating-point arithmetic. Since version 4.3.6 (released in Septem-
ber, 2013), NCO also by default converts single-precision floating-point to double-precision
prior to arithmetic, which incurs the same RAM penalty. Hence, the sustained memory
required for integer variables and single-precision floats are two or four-times their on-disk,
uncompressed, unpacked sizes if they meet the rules for automatic internal promotion. Put
another way, disabling auto-promotion of single-precision variables (with ‘--flt’) consid-
erably reduces the RAM footprint of arithmetic operators.

The ‘--open_ram’ switch (and switches that invoke it like ‘--ram_all’ and
‘--diskless_all’) incurs a RAM penalty. These switches cause each input file to be copied
to RAM upon opening. Hence any operator invoking these switches utilizes an additional
FT of RAM (i.e., MS+ = FT). See Section 3.36 [RAM disks], page 124 for further details.

ncwa consumes between two and eight times the memory of an NC_DOUBLE variable in
order to process it. Peak consumption occurs when storing simultaneously in memory one
input variable, one tally array, one input weight, one conformed/working weight, one weight
tally, one input mask, one conformed/working mask, and one output variable. NCO’s tally
arrays are of type C-type long, whose size is eight-bytes on all modern computers, the
same as NC_DOUBLE8. When invoked, the weighting and masking features contribute up to
three-eighths and two-eighths of these requirements apiece. If weights and masks are not
specified (i.e., no ‘-w’ or ‘-a’ options) then ncwa requirements drop to MS <= 3V T (one
input variable, one tally array, and the output variable). The output variable is the same size
as the input variable when averaging only over a degenerate dimension. However, normally
the output variable is much smaller than the input, and is often a simple scalar, in which
case the memory requirements drop by 1V T since the output array requires essentially no
memory.

8 By contrast NC_INT and its deprecated synonym NC_LONG are only four-bytes. Perhaps this is one reason
why the NC_LONG token is deprecated.

26 NCO 5.0.1 User Guide

All of this is subject to the type promotion rules mentioned above. For example, ncwa
averaging a variable of type NC_FLOAT requires MS <= 16V T (rather than MS <= 8V T)
since all arrays are (at least temporarily) composed of eight-byte elements, twice the size of
the values on disk. Without mask or weights, the requirements for NC_FLOAT are MS <=
6V T (rather than MS <= 3V T as for NC_DOUBLE) due to temporary internal promotion
of both the input variable and the output variable to type NC_DOUBLE. The ‘--flt’ option
that suppresses promotion reduces this to MS <= 4V T (the tally elements do not change
size), and to MS <= 3V T when the output array is a scalar.

The above memory requirements must be multiplied by the number of threads thr nbr
(see Section 3.3 [OpenMP Threading], page 30). If this causes problems then reduce (with
‘-t thr_nbr’) the number of threads.

2.9.2 Memory for ncap2

ncap2 has unique memory requirements due its ability to process arbitrarily long scripts
of any complexity. All scripts acceptable to ncap2 are ultimately processed as a sequence
of binary or unary operations. ncap2 requires MS <= 2V T under most conditions. An
exception to this is when left hand casting (see Section 4.1.4 [Left hand casting], page 158)
is used to stretch the size of derived variables beyond the size of any input variables. Let
V C be the memory required to store the largest variable defined by left hand casting. In
this case, MS <= 2V C.

ncap2 scripts are complete dynamic and may be of arbitrary length. A script that
contains many thousands of operations, may uncover a slow memory leak even though each
single operation consumes little additional memory. Memory leaks are usually identifiable
by their memory usage signature. Leaks cause peak memory usage to increase monotonically
with time regardless of script complexity. Slow leaks are very difficult to find. Sometimes a
malloc() (or new[]) failure is the only noticeable clue to their existence. If you have good
reasons to believe that a memory allocation failure is ultimately due to an NCO memory
leak (rather than inadequate RAM on your system), then we would be very interested in
receiving a detailed bug report.

2.10 Performance

An overview of NCO capabilities as of about 2006 is in Zender, C. S. (2008), “Analysis of Self-
describing Gridded Geoscience Data with netCDF Operators (NCO)”, Environ. Modell.
Softw., doi:10.1016/j.envsoft.2008.03.004. This paper is also available at http://dust.

ess.uci.edu/ppr/ppr_Zen08.pdf.

NCO performance and scaling for arithmetic operations is described in Zender, C.
S., and H. J. Mangalam (2007), “Scaling Properties of Common Statistical Opera-
tors for Gridded Datasets”, Int. J. High Perform. Comput. Appl., 21(4), 485-498,
doi:10.1177/1094342007083802. This paper is also available at http://dust.ess.uci.

edu/ppr/ppr_ZeM07.pdf.

It is helpful to be aware of the aspects of NCO design that can limit its performance:

1. No data buffering is performed during nc_get_var and nc_put_var operations. Hy-
perslabs too large to hold in core memory will suffer substantial performance penalties
because of this.

http://dust.ess.uci.edu/ppr/ppr_Zen08.pdf
http://dust.ess.uci.edu/ppr/ppr_Zen08.pdf
http://dust.ess.uci.edu/ppr/ppr_ZeM07.pdf
http://dust.ess.uci.edu/ppr/ppr_ZeM07.pdf

Chapter 2: Operator Strategies 27

2. Since coordinate variables are assumed to be monotonic, the search for bracketing the
user-specified limits should employ a quicker algorithm, like bisection, than the two-
sided incremental search currently implemented.

3. C format, FORTRAN format, signedness, scale format and add offset attributes are
ignored by ncks when printing variables to screen.

4. In the late 1990s it was discovered that some random access operations on large files
on certain architectures (e.g., UNICOS) were much slower with NCO than with similar
operations performed using languages that bypass the netCDF interface (e.g., Yorick).
This may have been a penalty of unnecessary byte-swapping in the netCDF interface.
It is unclear whether such problems exist in present day (2007) netCDF/NCO environ-
ments, where unnecessary byte-swapping has been reduced or eliminated.

Chapter 3: Shared Features 29

3 Shared Features

Many features have been implemented in more than one operator and are described here
for brevity. The description of each feature is preceded by a box listing the operators for
which the feature is implemented. Command line switches for a given feature are consistent
across all operators wherever possible. If no “key switches” are listed for a feature, then
that particular feature is automatic and cannot be controlled by the user.

3.1 Internationalization� �
Availability: All operators

 	
NCO support for internationalization of textual input and output (e.g., Warning mes-

sages) is nascent. We introduced the first foreign language string catalogues (French and
Spanish) in 2004, yet did not activate these in distributions because the catalogues were
nearly empty. We seek volunteers to populate our templates with translations for their
favorite languages.

3.2 Metadata Optimization� �
Availability: All operators
Short options: None
Long options: ‘--hdr_pad’, ‘--header_pad’

 	
NCO supports padding headers to improve the speed of future metadata operations. Use

the ‘--hdr_pad’ and ‘--header_pad’ switches to request that hdr pad bytes be inserted
into the metadata section of the output file. There is little downside to padding a header
with kilobyte of space, since subsequent manipulation of the file will annotate the history
attribute with all commands, let alone any explicit metadata additions with ncatted.

ncks --hdr_pad=1000 in.nc out.nc # Pad header with 1 kB space

ncks --hdr_pad=10000 in.nc out.nc # Pad header with 10 kB space

Future metadata expansions will not incur the netCDF3 performance penalty of copying
the entire output file unless the expansion exceeds the amount of header padding. This
can be beneficial when it is known that some metadata will be added at a future date.
The operators that benefit most from judicious use of header padding are ncatted and
ncrename, since they only alter metadata.

This optimization exploits the netCDF library nc__enddef() function. This function
behaves differently with different storage formats. It will improve speed of future metadata
expansion with CLASSIC and 64bit netCDF files, though not necessarily with NETCDF4

files, i.e., those created by the netCDF interface to the HDF5 library (see Section 3.10 [File
Formats and Conversion], page 42). netCDF3 formats use a simple sequential ordering that
requires copying the file if the size of new metadata exceeds the available padding. netCDF4

30 NCO 5.0.1 User Guide

files use internal file pointers that allow flexibility at inserting and removing data without
necessitating copying the whole file.

3.3 OpenMP Threading� �
Availability: ncclimo, ncks, ncremap
Short options: ‘-t’
Long options: ‘--thr_nbr’, ‘--threads’, ‘--omp_num_threads’

 	
NCO supports shared memory parallelism (SMP) when compiled with an OpenMP-

enabled compiler. Threads requests and allocations occur in two stages. First, users may
request a specific number of threads thr nbr with the ‘-t’ switch (or its long option equiva-
lents, ‘--thr_nbr’, ‘--threads’, and ‘--omp_num_threads’). If not user-specified, OpenMP
obtains thr nbr from the OMP_NUM_THREADS environment variable, if present, or from the
OS, if not.� �

Caveat: Unfortunately, threading does not improve NCO throughput (i.e., wallclock
time) because nearly all NCO operations are I/O-bound. This means that NCO spends
negligible time doing anything compared to reading and writing. The only exception is
regridding with ncremap which uses ncks under-the-hood. As of 2017, threading works
only for regridding, thus this section is relevant only to ncclimo, ncks, and ncremap. We
have seen some and can imagine other use cases where ncwa, ncpdq, and ncap2 (with long
scripts) will complete faster due to threading. The main benefits of threading so far have
been to isolate the serial from parallel portions of code. This parallelism is now exploited
by OpenMP but then runs into the I/O bottleneck during output. The bottleneck will be
ameliorated for large files by the use of MPI-enabled calls in the netCDF4 library when
the underlying filesystem is parallel (e.g., PVFS or JFS). Implementation of the parallel
output calls in NCO is not a goal of our current funding and would require new volunteers
or funding.
 	

NCO may modify thr nbr according to its own internal settings before it requests any
threads from the system. Certain operators contain hard-code limits to the number of
threads they request. We base these limits on our experience and common sense, and to
reduce potentially wasteful system usage by inexperienced users. For example, ncrcat is
extremely I/O-intensive so we restrict thr nbr <= 2 for ncrcat. This is based on the notion
that the best performance that can be expected from an operator which does no arithmetic
is to have one thread reading and one thread writing simultaneously. In the future (perhaps
with netCDF4), we hope to demonstrate significant threading improvements with operators
like ncrcat by performing multiple simultaneous writes.

Compute-intensive operators (ncremap) benefit most from threading. The greatest in-
creases in throughput due to threading occur on large datasets where each thread performs
millions, at least, of floating-point operations. Otherwise, the system overhead of setting up
threads probably outweighs the speed enhancements due to SMP parallelism. However, we
have not yet demonstrated that the SMP parallelism scales beyond four threads for these

Chapter 3: Shared Features 31

operators. Hence we restrict thr nbr <= 4 for all operators. We encourage users to play
with these limits (edit file nco_omp.c) and send us their feedback.

Once the initial thr nbr has been modified for any operator-specific limits, NCO requests
the system to allocate a team of thr nbr threads for the body of the code. The operating
system then decides how many threads to allocate based on this request. Users may keep
track of this information by running the operator with dbg lvl > 0.

By default, threaded operators attach one global attribute, nco_openmp_thread_number,
to any file they create or modify. This attribute contains the number of threads the op-
erator used to process the input files. This information helps to verify that the answers
with threaded and non-threaded operators are equal to within machine precision. This
information is also useful for benchmarking.

3.4 Command Line Options� �
Availability: All operators

 	
NCO achieves flexibility by using command line options. These options are implemented

in all traditional UNIX commands as single letter switches, e.g., ‘ls -l’. For many years
NCO used only single letter option names. In late 2002, we implemented GNU/POSIX

extended or long option names for all options. This was done in a backward compatible
way such that the full functionality of NCO is still available through the familiar single
letter options. Many features of NCO introduced since 2002 now require the use of long
options, simply because we have nearly run out of single letter options. More importantly,
mnemonics for single letter options are often non-intuitive so that long options provide a
more natural way of expressing intent.

Extended options, also called long options, are implemented using the system-supplied
getopt.h header file, if possible. This provides the getopt_long function to NCO1.

The syntax of short options (single letter options) is -key value (dash-key-space-value).
Here, key is the single letter option name, e.g., ‘-D 2’.

The syntax of long options (multi-letter options) is --long_name value (dash-dash-key-
space-value), e.g., ‘--dbg_lvl 2’ or --long_name=value (dash-dash-key-equal-value), e.g.,
‘--dbg_lvl=2’. Thus the following are all valid for the ‘-D’ (short version) or ‘--dbg_lvl’
(long version) command line option.

ncks -D 3 in.nc # Short option, preferred form

ncks -D3 in.nc # Short option, alternate form

ncks --dbg_lvl=3 in.nc # Long option, preferred form

ncks --dbg_lvl 3 in.nc # Long option, alternate form

1 If a getopt_long function cannot be found on the system, NCO will use the getopt_long from the
my_getopt package by Benjamin Sittler bsittler@iname.com. This is BSD-licensed software available
from http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt.

mailto:bsittler@iname.com
http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt

32 NCO 5.0.1 User Guide

The third example is preferred for two reasons. First, ‘--dbg_lvl’ is more specific and
less ambiguous than ‘-D’. The long option format makes scripts more self documenting
and less error-prone. Often long options are named after the source code variable whose
value they carry. Second, the equals sign = joins the key (i.e., long name) to the value
in an uninterruptible text block. Experience shows that users are less likely to mis-parse
commands when restricted to this form.

3.4.1 Truncating Long Options

GNU implements a superset of the POSIX standard. Their superset accepts any unambigu-
ous truncation of a valid option:

ncks -D 3 in.nc # Short option

ncks --dbg_lvl=3 in.nc # Long option, full form

ncks --dbg=3 in.nc # Long option, OK unambiguous truncation

ncks --db=3 in.nc # Long option, OK unambiguous truncation

ncks --d=3 in.nc # Long option, ERROR ambiguous truncation

The first four examples are equivalent and will work as expected. The final example will
exit with an error since ncks cannot disambiguate whether ‘--d’ is intended as a truncation
of ‘--dbg_lvl’, of ‘--dimension’, or of some other long option.

NCO provides many long options for common switches. For example, the debugging level
may be set in all operators with any of the switches ‘-D’, ‘--debug-level’, or ‘--dbg_lvl’.
This flexibility allows users to choose their favorite mnemonic. For some, it will be ‘--debug’
(an unambiguous truncation of ‘--debug-level’, and other will prefer ‘--dbg’. Interactive
users usually prefer the minimal amount of typing, i.e., ‘-D’. We recommend that re-usable
scripts employ long options to facilitate self-documentation and maintainability.

This manual generally uses the short option syntax in examples. This is for historical
reasons and to conserve space in printed output. Users are expected to pick the unambiguous
truncation of each option name that most suits their taste.

3.4.2 Multi-arguments

As of NCO version 4.6.2 (November, 2016), NCO accepts multiple key-value pair options for a
single feature to be joined together into a single extended argument called amulti-argument,
sometimes abbreviated MTA. Only four NCO features accept multiple key-value pairs that
can be aggregated into multi-arguments. These features are: Global Attribute Addition
options indicated via ‘--gaa’ (see Section 3.42 [Global Attribute Addition], page 142);
Image Manipulation indicated via ‘--trr’2, Precision-Preserving Compression options are
indicated via ‘--ppc’ (see Section 3.32.2 [Precision-Preserving Compression], page 112);
and Regridding options are indicated via ‘--rgr’ (see Section 3.25 [Regridding], page 86).
Arguments to these four indicator options take the form of key-value pairs, e.g., ‘--rgr
key=val’. These four features have so many options that making each key its own command
line option would pollute the namespace of NCO’s global options. Yet supplying multiple
options to each indicator option one-at-a-time can result in command lines overpopulated
with indicator switches (e.g., ‘--rgr’):

2 NCO supports decoding ENVI images in support of the DOE Terraref project. These options are indicated
via the ncks ‘--trr’ switch, and are otherwise undocumented. Please contact us if more support and
documentation of handling of ENVI BIL, BSQ, and BIP images would be helpful

Chapter 3: Shared Features 33

ncks --rgr grd_ttl=’Title’ --rgr grid=grd.nc --rgr latlon=129,256 \

--rgr lat_typ=fv --rgr lon_typ=grn_ctr ...

Multi-arguments combine all the indicator options into one option that receives a single
argument that comprises all the original arguments glued together by a delimiter, which is,
by default, ‘#’. Thus the multi-argument version of the above example is

ncks --rgr grd_ttl=’Title’#grid=grd.nc#latlon=129,256#lat_typ=fv#lon_typ=grn_ctr

Note the aggregation of all key=val pairs into a single argument. NCO simply splits this
argument at each delimiter, and processes the sub-arguments as if they had been passed
with their own indicator option. Multi-arguments produce the same results, and may be
mixed with, traditional indicator options supplied one-by-one.

As mentioned previously, the multi-argument delimiter string is, by default, the hash-sign
‘#’. When any key=val pair contains the default delimiter, the user must specify a custom
delimiter string so that options are parsed correctly. The options to change the multi-
argument delimiter string are ‘--mta_dlm=delim_string’ or ‘--dlm_mta=delim_string’,
where delim string can be any single or multi-character string that (1) is not contained
in any key or val string; and (2) will not confuse the shell. For example, to use multi-
arguments to pass a string that includes the hash symbol (the default delimiter is ‘#’), one
must also change the delimiter so something besides hash, e.g., a colon ‘:’:

ncks --dlm=":" --gaa foo=bar:foo2=bar2:foo3,foo4="hash # is in value"

ncks --dlm=":" --gaa foo=bar:foo2=bar2:foo3,foo4="Thu Sep 15 13\:03\:18 PDT 2016"

ncks --dlm="csz" --gaa foo=barcszfoo2=bar2cszfoo3,foo4="Long text"

In the second example, the colons that are escaped with the backslash become literal
characters. Many characters have special shell meanings and so must be escaped by a single
or double backslash or enclosed in single quotes to prevent interpolation. These special
characters include ‘:’, ‘$’, ‘%’, ‘*’, ‘@’, and ‘&’. If val is a long text string that could contain
the default delimiter, then delimit with a unique multi-character string such as ‘csz’ in the
third example.

As of NCO version 4.6.7 (May, 2017), multi-argument flags no longer need be specified
as key-value pairs. By definition a flag sets a boolean value to either True or False. Pre-
viously MTA flags had to employ key-value pair syntax, e.g., ‘--rgr infer=Y’ or ‘--rgr
no_cll_msr=anything’ in order to parse correctly. Now the MTA parser accepts flags
in the more intuitive syntax where they are listed by name, i.e., the flag name alone
indicates the flag to set, e.g., ‘--rgr infer’ or ‘--rgr no_cll_msr’ are valid. A conse-
quence of this is that flags in multi-argument strings appear as straightforward flag names,
e.g., ‘--rgr infer#no_cll_msr#latlon=129,256’. It is also valid to prefix flags in multi-
arument strings with single or double-dashes to make the flags more visible, e.g., ‘--rgr
latlon=129,256#--infer#-no_cll_msr’.

3.5 Sanitization of Input� �
Availability: All operators

 	

34 NCO 5.0.1 User Guide

NCO is often installed in system directories (although not with Conda), and on some
production machines it may have escalated privileges. Since NCO manipulates files by
using system() calls (e.g., to move and copy them with mv and cp) it makes sense to
audit it for vulnerabilities and protect it from malicious users trying to exploit security
gaps. Securing NCO against malicious attacks is multi-faceted, and involves careful memory
management and auditing of user-input. In versions 4.7.3–4.7.6 (March-September, 2018),
NCO implements a whitelist of characters allowed in user-specified filenames. This whitelist
proved unpopular mainly because it proscribed certain character combinations that could
appear in automatically generated files, and was therefore turned-off in 4.7.7 and following
versions. The whitelist is described here for posterity and for possible improvement and
re-introduction: The purpose of the whitelist was to prevent malicious users from injecting
filename strings that could be used for attacks. The whitelist allowed only these characters:

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890_-.@ :%/

The backslash character \ was also whitelisted for Windows only. This whitelist allows
filenames to be URLs, include username prefixes, and standard non-alphabetic characters.
The implied blacklist included these characters

;|<>[](),&*?’"

This blacklist rules-out strings that may contain dangerous commands and injection
attacks. If you would like any of these characters whitelisted, please contact us and include
a compelling real-world use-case.

The DAP protocol supports accessing files with so-called “constraint expressions”. NCO

allows access to a wider set of whitelisted characters for files whose names indicate the DAP

protocol. This is defined as any filename beginning with the string ‘http://’, ‘https://’,
or ‘dap4://’. The whitelist for these files is expanded to include these characters:

#=:[];|{}/<>

The whitelist method is straightforward, and does not interfere with NCO’s globbing
feature. The whitelist applies only to filenames because they are handled by shell commands
passed to the system() function. However, the whitelist method is applicable to other user-
input such as variable lists, hyperslab arguments, etc. Hence, the whitelist could be applied
to other user-input in the future.

3.6 Specifying Input Files� �
Availability (-n): nces, ncecat, ncra, ncrcat
Availability (-p): All operators
Short options: ‘-n’, ‘-p’
Long options: ‘--nintap’, ‘--pth’, ‘--path’

 	
It is important that users be able to specify multiple input files without typing every

filename in full, often a tedious task even by graduate student standards. There are four

Chapter 3: Shared Features 35

different ways of specifying input files to NCO: explicitly typing each, using UNIX shell wild-
cards, and using the NCO ‘-n’ and ‘-p’ switches (or their long option equivalents, ‘--nintap’
or ‘--pth’ and ‘--path’, respectively). Techniques to augment these methods to specify ar-
bitrary numbers (e.g., thousands) and patterns of filenames are discussed separately (see
Section 2.7 [Large Numbers of Files], page 21).

To illustrate these methods, consider the simple problem of using ncra to average five
input files, 85.nc, 86.nc, . . . 89.nc, and store the results in 8589.nc. Here are the four
methods in order. They produce identical answers.

ncra 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc

ncra 8[56789].nc 8589.nc

ncra 8?.nc 8589.nc

ncra -p input-path 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc

ncra -n 5,2,1 85.nc 8589.nc

The first method (explicitly specifying all filenames) works by brute force. The sec-
ond method relies on the operating system shell to glob (expand) the regular expression
8[56789].nc. The shell then passes the valid filenames (those which match the regular
expansion) to ncra. In this case ncra never knows that a regular expression was used,
because the shell intercepts and expands and matches the regular expression before ncra

is actually invoked. The third method is uses globbing with a different regular expression
that is less safe (it will also match unwanted files such as 81.nc and 8Z.nc if present). The
fourth method uses the ‘-p input-path’ argument to specify the directory where all the
input files reside. NCO prepends input-path (e.g., /data/username/model) to all input-files
(though not to output-file). Thus, using ‘-p’, the path to any number of input files need
only be specified once. Note input-path need not end with ‘/’; the ‘/’ is automatically
generated if necessary.

The last method passes (with ‘-n’) syntax concisely describing the entire set of filenames3.
This option is only available with the multi-file operators: ncra, ncrcat, nces, and ncecat.
By definition, multi-file operators are able to process an arbitrary number of input-files.
This option is very useful for abbreviating lists of filenames representable as alphanu-
meric prefix+numeric suffix+.+filetype where alphanumeric prefix is a string of arbitrary
length and composition, numeric suffix is a fixed width field of digits, and filetype is a
standard filetype indicator. For example, in the file ccm3_h0001.nc, we have alphanu-
meric prefix = ccm3_h, numeric suffix = 0001, and filetype = nc.

NCO decodes lists of such filenames encoded using the ‘-n’ syntax. The simpler (three-
argument) ‘-n’ usage takes the form -n file_number,digit_number,numeric_increment

where file number is the number of files, digit number is the fixed number of numeric dig-
its comprising the numeric suffix, and numeric increment is the constant, integer-valued
difference between the numeric suffix of any two consecutive files. The value of alphanu-
meric prefix is taken from the input file, which serves as a template for decoding the file-
names. In the example above, the encoding -n 5,2,1 along with the input file name 85.nc

3 The ‘-n’ option is a backward-compatible superset of the NINTAP option from the NCAR CCM Processor.
The CCM Processor was custom-written Fortran code maintained for many years by Lawrence Buja at
NCAR, and phased-out in the late 1990s. NCO copied some ideas, like NINTAP-functionality, from CCM

Processor capabilities.

36 NCO 5.0.1 User Guide

tells NCO to construct five (5) filenames identical to the template 85.nc except that the
final two (2) digits are a numeric suffix to be incremented by one (1) for each successive file.
Currently filetype may be either be empty, nc, h5, cdf, hdf, hd5, or he5. If present, these
filetype suffixes (and the preceding .) are ignored by NCO as it uses the ‘-n’ arguments to
locate, evaluate, and compute the numeric suffix component of filenames.

Recently the ‘-n’ option has been extended to allow convenient specification of file-
names with “circular” characteristics. This means it is now possible for NCO to auto-
matically generate filenames which increment regularly until a specified maximum value,
and then wrap back to begin again at a specified minimum value. The corresponding
‘-n’ usage becomes more complex, taking one or two additional arguments for a total of
four or five, respectively: -n file_number,digit_number,numeric_increment[,numeric_

max[,numeric_min]] where numeric max, if present, is the maximum integer-value of nu-
meric suffix and numeric min, if present, is the minimum integer-value of numeric suffix.
Consider, for example, the problem of specifying non-consecutive input files where the
filename suffixes end with the month index. In climate modeling it is common to create
summertime and wintertime averages which contain the averages of the months June–July–
August, and December–January–February, respectively:

ncra -n 3,2,1 85_06.nc 85_0608.nc

ncra -n 3,2,1,12 85_12.nc 85_1202.nc

ncra -n 3,2,1,12,1 85_12.nc 85_1202.nc

The first example shows that three arguments to the ‘-n’ option suffice to specify con-
secutive months (06, 07, 08) which do not “wrap” back to a minimum value. The second
example shows how to use the optional fourth and fifth elements of the ‘-n’ option to specify
a wrap value. The fourth argument to ‘-n’, when present, specifies the maximum integer
value of numeric suffix. In the example the maximum value is 12, and will be formatted as
12 in the filename string. The fifth argument to ‘-n’, when present, specifies the minimum
integer value of numeric suffix. The default minimum filename suffix is 1, which is format-
ted as 01 in this case. Thus the second and third examples have the same effect, that is,
they automatically generate, in order, the filenames 85_12.nc, 85_01.nc, and 85_02.nc as
input to NCO.

As of NCO version 4.5.2 (September, 2015), NCO supports an optional sixth argument to
‘-n’, the month-indicator. The month-indicator affirms to NCO that the right-most digits
being manipulated in the generated filenames correspond to month numbers (with January
formatted as 01 and December as 12). Moreover, it assumes digits to the left of the month
are the year. The full (six-argument) ‘-n’ usage takes the form -n file_number,digit_

number,month_increment,max_month,min_month,‘yyyymm’. The ‘yyyymm’ string is a
clunky way (can you think of a clearer way?) to tell NCO to enumerate files in year-
month mode. When present, ‘yyyymm’ string causes NCO to automatically generate series
of filenames whose right-most two digits increment from min month by month increment
up to max month and then the leftmost digits (i.e., the year) increment by one, and the
whole process is repeated until the file number filenames are generated.

ncrcat -n 3,6,1,12,1 198512.nc 198512_198502.nc

ncrcat -n 3,6,1,12,1,yyyymm 198512.nc 198512_198602.nc

ncrcat -n 3,6,1,12,12,yyyymm 198512.nc 198512_198712.nc

Chapter 3: Shared Features 37

The first command above concatenates three files (198512.nc, 198501.nc, 198502.nc)
into the output file. The second command above concatenates three files (198512.nc,
198601.nc, 198602.nc). The ‘yyyymm’-indicator causes the left-most digits to increment
each time the right-most two digits reach their maximum and then wrap. The first command
does not have the indicator so it is always 1985. The third command concatenates three
files (198512.nc, 198612.nc, 198712.nc).

3.7 Specifying Output Files� �
Availability: All operators
Short options: ‘-o’
Long options: ‘--fl_out’, ‘--output’

 	
NCO commands produce no more than one output file, fl out. Traditionally, users spec-

ify fl out as the final argument to the operator, following all input file names. This is the
positional argument method of specifying input and ouput file names. The positional ar-
gument method works well in most applications. NCO also supports specifying fl out using
the command line switch argument method, ‘-o fl_out’.

Specifying fl out with a switch, rather than as a positional argument, allows fl out to
precede input files in the argument list. This is particularly useful with multi-file operators
for three reasons. Multi-file operators may be invoked with hundreds (or more) filenames.
Visual or automatic location of fl out in such a list is difficult when the only syntactic
distinction between input and output files is their position. Second, specification of a long
list of input files may be difficult (see Section 2.7 [Large Numbers of Files], page 21). Making
the input file list the final argument to an operator facilitates using xargs for this purpose.
Some alternatives to xargs are heinous and undesirable. Finally, many users are more
comfortable specifying output files with ‘-o fl_out’ near the beginning of an argument list.
Compilers and linkers are usually invoked this way.

Users should specify fl out using either (not both) method. If fl out is specified twice
(once with the switch and once as the last positional argument), then the positional argu-
ment takes precedence.

3.8 Accessing Remote Files� �
Availability: All operators
Short options: ‘-p’, ‘-l’
Long options: ‘--pth’, ‘--path’, ‘--lcl’, ‘--local’

 	
All NCO operators can retrieve files from remote sites as well as from the local file system.

A remote site can be an anonymous FTP server, a machine on which the user has rcp, scp,
or sftp privileges, NCAR’s Mass Storage System (MSS), or an OPeNDAP server. Examples
of each are given below, following a brief description of the particular access protocol.

38 NCO 5.0.1 User Guide

To access a file via an anonymous FTP server, simply supply the remote file’s URL.
Anonymous FTP usually requires no further credentials, e.g., no .netrc file is necessary.
FTP is an intrinsically insecure protocol because it transfers passwords in plain text format.
Users should access sites using anonymous FTP, or better yet, secure FTP (SFTP, see
below) when possible. Some FTP servers require a login/password combination for a valid
user account. NCO allows transactions that require additional credentials so long as the
required information is stored in the .netrc file. Usually this information is the remote
machine name, login, and password, in plain text, separated by those very keywords, e.g.,

machine dust.ess.uci.edu login zender password bushlied

Eschew using valuable passwords for FTP transactions, since .netrc passwords are po-
tentially exposed to eavesdropping software4.

SFTP, i.e., secure FTP, uses SSH-based security protocols that solve the security issues
associated with plain FTP. NCO supports SFTP protocol access to files specified with a
homebrew syntax of the form

sftp://machine.domain.tld:/path/to/filename

Note the second colon following the top-level-domain, tld. This syntax is a hybrid
between an FTP URL and standard remote file syntax.

To access a file using rcp or scp, specify the Internet address of the remote file. Of course
in this case you must have rcp or scp privileges which allow transparent (no password entry
required) access to the remote machine. This means that ~/.rhosts or ~/ssh/authorized_
keys must be set accordingly on both local and remote machines.

To access a file on a High Performance Storage System (HPSS) (such as that at NCAR,
ECMWF, LANL, DKRZ, LLNL) specify the full HPSS pathname of the remote file and use
the ‘--hpss’ flag. Then NCO will attempt to detect whether the local machine has direct
(synchronous) HPSS access. If so, NCO attempts to use the Hierarchical Storage Interface
(HSI) command hsi get5.

The following examples show how one might analyze files stored on remote systems.

ncks -l . ftp://dust.ess.uci.edu/pub/zender/nco/in.nc

ncks -l . sftp://dust.ess.uci.edu:/home/ftp/pub/zender/nco/in.nc

ncks -l . dust.ess.uci.edu:/home/zender/nco/data/in.nc

ncks -l . /ZENDER/nco/in.nc # NCAR (broken old MSS path)

ncks -l . --hpss /home/zender/nco/in.nc # NCAR HPSS

ncks -l . http://thredds-test.ucar.edu/thredds/dodsC/testdods/in.nc

The first example works verbatim if your system is connected to the Internet and is not
behind a firewall. The second example works if you have sftp access to the machine

4 NCO does not implement command line options to specify FTP logins and passwords because copying
those data into the history global attribute in the output file (done by default) poses an unacceptable
security risk.

5 The hsi command must be in the user’s path in one of the following directories: /usr/local/bin,
/opt/hpss/bin, or /ncar/opt/hpss/hsi. Tell us if the HPSS installation at your site places the hsi

command in a different location, and we will add that location to the list of acceptable paths to search
for hsi.

Chapter 3: Shared Features 39

dust.ess.uci.edu. The third example works if you have rcp or scp access to the machine
dust.ess.uci.edu. The fourth and fifth examples work on NCAR computers with local
access to the HPSS hsi get command6. The sixth command works if your local version of
NCO is OPeNDAP-enabled (this is fully described in Section 3.8.1 [OPeNDAP], page 39), or
if the remote file is accessible via wget. The above commands can be rewritten using the
‘-p input-path’ option as follows:

ncks -p ftp://dust.ess.uci.edu/pub/zender/nco -l . in.nc

ncks -p sftp://dust.ess.uci.edu:/home/ftp/pub/zender/nco -l . in.nc

ncks -p dust.ess.uci.edu:/home/zender/nco -l . in.nc

ncks -p /ZENDER/nco -l . in.nc

ncks -p /home/zender/nco -l . --hpss in.nc # HPSS

ncks -p http://thredds-test.ucar.edu/thredds/dodsC/testdods \

-l . in.nc

Using ‘-p’ is recommended because it clearly separates the input-path from the filename
itself, sometimes called the stub. When input-path is not explicitly specified using ‘-p’,
NCO internally generates an input-path from the first input filename. The automatically
generated input-path is constructed by stripping the input filename of everything following
the final ‘/’ character (i.e., removing the stub). The ‘-l output-path’ option tells NCO

where to store the remotely retrieved file. It has no effect on locally-retrieved files, or on
the output file. Often the path to a remotely retrieved file is quite different than the path
on the local machine where you would like to store the file. If ‘-l’ is not specified then
NCO internally generates an output-path by simply setting output-path equal to input-
path stripped of any machine names. If ‘-l’ is not specified and the remote file resides on
a detected HPSS system, then the leading character of input-path, ‘/’, is also stripped from
output-path. Specifying output-path as ‘-l ./’ tells NCO to store the remotely retrieved
file and the output file in the current directory. Note that ‘-l .’ is equivalent to ‘-l ./’
though the latter is syntactically more clear.

3.8.1 OPeNDAP

The Distributed Oceanographic Data System (DODS) provides useful replacements for com-
mon data interface libraries like netCDF. The DODS versions of these libraries implement
network transparent access to data via a client-server data access protocol that uses the
HTTP protocol for communication. Although DODS-technology originated with oceanogra-
phy data, it applyies to virtually all scientific data. In recognition of this, the data access
protocol underlying DODS (which is what NCO cares about) has been renamed the Open-
source Project for a Network Data Access Protocol, OPeNDAP. We use the terms DODS

and OPeNDAP interchangeably, and often write OPeNDAP/DODS for now. In the future we
will deprecate DODS in favor of DAP or OPeNDAP, as appropriate7.

6 NCO supported the old NCAR Mass Storage System (MSS) until version 4.0.7 in April, 2011. NCO

supported MSS-retrievals via a variety of mechanisms including the msread, msrcp, and nrnet commands
invoked either automatically or with sentinels like ncks -p mss:/ZENDER/nco -l . in.nc. Once the MSS

was decommissioned in March, 2011, support for these retrieval mechanisms was replaced by support for
HPSS.

7 DODS is being deprecated because it is ambiguous, referring both to a protocol and to a collection of
(oceanography) data. It is superceded by two terms. DAP is the discipline-neutral Data Access Protocol
at the heart of DODS. The National Virtual Ocean Data System (NVODS) refers to the collection of

40 NCO 5.0.1 User Guide

NCO may be DAP-enabled by linking NCO to the OPeNDAP libraries. This is described in
the OPeNDAP documentation and automagically implemented in NCO build mechanisms8.
The ./configure mechanism automatically enables NCO as OPeNDAP clients if it can find
the required OPeNDAP libraries. Since about 2010 the netCDF library can be configured
(with --enable-dap) to build DAP directly into the netCDF library, which NCO automat-
ically links to, so DAP need not be installed as a third-party library. It has been so many
years since NCO has needed to support linking to DAP installed outside of the netCDF
library that is is unclear whether this configuration9. still works. The $DODS_ROOT envi-
ronment variable may be used to override the default OPeNDAP library location at NCO

compile-time. Building NCO with bld/Makefile and the command make DODS=Y adds the
(non-intuitive) commands to link to the OPeNDAP libraries installed in the $DODS_ROOT

directory. The file doc/opendap.sh contains a generic script intended to help users install
OPeNDAP before building NCO. The documentation at the OPeNDAP Homepage is vo-
luminous. Check there and on the DODS mail lists. to learn more about the extensive
capabilities of OPeNDAP10.

Once NCO is DAP-enabled the operators are OPeNDAP clients. All OPeNDAP clients have
network transparent access to any files controlled by a OPeNDAP server. Simply specify the
input file path(s) in URL notation and all NCO operations may be performed on remote
files made accessible by a OPeNDAP server. This command tests the basic functionality of
OPeNDAP-enabled NCO clients:

% ncks -O -o ~/foo.nc -C -H -v one -l /tmp \

-p http://thredds-test.ucar.edu/thredds/dodsC/testdods in.nc

% ncks -H -v one ~/foo.nc

one = 1

The one = 1 outputs confirm (first) that ncks correctly retrieved data via the OPeNDAP

protocol and (second) that ncks created a valid local copy of the subsetted remote file.
With minor changes to the above command, netCDF4 can be used as both the input and
output file format:

% ncks -4 -O -o ~/foo.nc -C -H -v one -l /tmp \

-p http://thredds-test.ucar.edu/thredds/dodsC/testdods in_4.nc

% ncks -H -v one ~/foo.nc

one = 1

oceanography data and oceanographic extensions to DAP. In other words, NVODS is implemented with
OPeNDAP. OPeNDAP is also the open source project which maintains, develops, and promulgates the
DAP standard. OPeNDAP and DAP really are interchangeable. Got it yet?

8 Automagic support for DODS version 3.2.x was deprecated in December, 2003 after NCO version 2.8.4.
NCO support for OPeNDAP versions 3.4.x commenced in December, 2003, with NCO version 2.8.5. NCO

support for OPeNDAP versions 3.5.x commenced in June, 2005, with NCO version 3.0.1. NCO support for
OPeNDAP versions 3.6.x commenced in June, 2006, with NCO version 3.1.3. NCO support for OPeNDAP

versions 3.7.x commenced in January, 2007, with NCO version 3.1.9.
9 The minimal set of libraries required to build NCO as OPeNDAP clients, where OPeNDAP is supplied

as a separate library apart from libnetcdf.a, are, in link order, libnc-dap.a, libdap.a, and libxml2

and libcurl.a.
10 We are most familiar with the OPeNDAP ability to enable network-transparent data access. OPeNDAP

has many other features, including sophisticated hyperslabbing and server-side processing via constraint
expressions. If you know more about this, please consider writing a section on “OPeNDAP Capabilities
of Interest to NCO Users” for incorporation in the NCO User Guide.

http://www.opendap.org
http://www.unidata.ucar.edu/software/dods/home/mailLists/

Chapter 3: Shared Features 41

And, of course, OPeNDAP-enabled NCO clients continue to support orthogonal features
such as UDUnits (see Section 3.27 [UDUnits Support], page 98):

% ncks -u -C -H -v wvl -d wvl,’0.4 micron’,’0.7 micron’ \

-p http://thredds-test.ucar.edu/thredds/dodsC/testdods in_4.nc

% wvl[0]=5e-07 meter

The next command is a more advanced example which demonstrates the real power
of OPeNDAP-enabled NCO clients. The ncwa client requests an equatorial hyperslab from
remotely stored NCEP reanalyses data of the year 1969. The NOAA OPeNDAP server (hope-
fully!) serves these data. The local ncwa client then computes and stores (locally) the
regional mean surface pressure (in Pa).

ncwa -O -C -a lat,lon,time -d lon,-10.,10. -d lat,-10.,10. \

http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface/pres.sfc.1969.nc ~/foo.nc

All with one command! The data in this particular input file also happen to be packed (see
Section 4.1.12 [Methods and functions], page 173), although this complication is transparent
to the user since NCO automatically unpacks data before attempting arithmetic.

NCO obtains remote files from the OPeNDAP server (e.g., www.cdc.noaa.gov) rather
than the local machine. Input files are first copied to the local machine, then processed.
The OPeNDAP server performs data access, hyperslabbing, and transfer to the local machine.
This allows the I/O to appear to NCO as if the input files were local. The local machine
performs all arithmetic operations. Only the hyperslabbed output data are transferred over
the network (to the local machine) for the number-crunching to begin. The advantages of
this are obvious if you are examining small parts of large files stored at remote locations.

Natually there are many versions of OPeNDAP servers supplying data and bugs in the
server can appear to be bugs in NCO. However, with very few exceptions11 an NCO command
that works on a local file must work across an OPeNDAP connection or else there is a bug
in the server. This is because NCO does nothing special to handle files served by OPeNDAP,
the whole process is (supposed to be) completely transparent to the client NCO software.
Therefore it is often useful to try NCO commands on various OPeNDAP servers in order
to isolate whether a problem may be due to a bug in the OPeNDAP server on a particular
machine. For this purpose, one might try variations of the following commands that access
files on public OPeNDAP servers:

Strided access to HDF5 file

ncks -v Time -d Time,0,10,2 http://eosdap.hdfgroup.uiuc.edu:8080/opendap/data/NASAFILES/hdf5/BUV-Nimbus04_L3zm_v01-00-2012m0203t144121.h5

Strided access to netCDF3 file

ncks -O -D 1 -d time,1 -d lev,0 -d lat,0,100,10 -d lon,0,100,10 -v u_velocity http://nomads.ncep.noaa.gov:9090/dods/rtofs/rtofs_global20140303/rtofs_glo_2ds_forecast_daily_prog ~/foo.nc

These servers were operational at the time of writing, March 2014. Unfortunately, admin-
istrators often move or rename path directories. Recommendations for additional public
OPeNDAP servers on which to test NCO are welcome.

11 For example, DAP servers do not like variables with periods (“.”) in their names even though this is
perfectly legal with netCDF. Such names may cause the DAP service to fail because DAP interprets the
period as structure delimiter in an HTTP query string.

42 NCO 5.0.1 User Guide

3.9 Retaining Retrieved Files� �
Availability: All operators
Short options: ‘-R’
Long options: ‘--rtn’, ‘--retain’

 	
In order to conserve local file system space, files retrieved from remote locations are

automatically deleted from the local file system once they have been processed. Many NCO

operators were constructed to work with numerous large (e.g., 200 MB) files. Retrieval of
multiple files from remote locations is done serially. Each file is retrieved, processed, then
deleted before the cycle repeats. In cases where it is useful to keep the remotely-retrieved
files on the local file system after processing, the automatic removal feature may be disabled
by specifying ‘-R’ on the command line.

Invoking -R disables the default printing behavior of ncks. This allows ncks to retrieve
remote files without automatically trying to print them. See Section 4.8 [ncks netCDF
Kitchen Sink], page 261, for more details.

Note that the remote retrieval features of NCO can always be used to retrieve any file,
including non-netCDF files, via SSH, anonymous FTP, or msrcp. Often this method is
quicker than using a browser, or running an FTP session from a shell window yourself. For
example, say you want to obtain a JPEG file from a weather server.

ncks -R -p ftp://weather.edu/pub/pix/jpeg -l . storm.jpg

In this example, ncks automatically performs an anonymous FTP login to the remote
machine and retrieves the specified file. When ncks attempts to read the local copy of
storm.jpg as a netCDF file, it fails and exits, leaving storm.jpg in the current directory.

If your NCO is DAP-enabled (see Section 3.8.1 [OPeNDAP], page 39), then you may use
NCO to retrieve any files (including netCDF, HDF, etc.) served by an OPeNDAP server to
your local machine. For example,

ncks -R -l . -p \

http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface \

pres.sfc.1969.nc

It may occasionally be useful to use NCO to transfer files when your other preferred
methods are not available locally.

3.10 File Formats and Conversion� �
Availability: ncap2, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-3’, ‘-4’, ‘-5’, ‘-6’, ‘-7’
Long options: ‘--3’, ‘--4’, ‘--5’, ‘--6’, ‘--64bit_offset’, ‘--7’, ‘--fl_fmt’, ‘--netcdf4’

 	

Chapter 3: Shared Features 43

All NCO operators support (read and write) all three (or four, depending on how one
counts) file formats supported by netCDF4. The default output file format for all operators
is the input file format. The operators listed under “Availability” above allow the user to
specify the output file format independent of the input file format. These operators allow
the user to convert between the various file formats. (The operators ncatted and ncrename

do not support these switches so they always write the output netCDF file in the same
format as the input netCDF file.)

3.10.1 File Formats

netCDF supports five types of files: CLASSIC, 64BIT_OFFSET, 64BIT_DATA, NETCDF4, and
NETCDF4_CLASSIC. The CLASSIC (aka CDF1) format is the traditional 32-bit offset written
by netCDF2 and netCDF3. As of 2005, nearly all netCDF datasets were in CLASSIC format.
The 64BIT_OFFSET (originally called plain old 64BIT) (aka CDF2) format was added in Fall,
2004. As of 2010, many netCDF datasets were in 64BIT_OFFSET format. As of 2013, an
increasing number of netCDF datasets were in NETCDF4_CLASSIC format. The 64BIT_DATA
(aka CDF5 or PNETCDF) format was added to netCDF in January, 2016.

The NETCDF4 format uses HDF5 as the file storage layer. The files are (usually) created,
accessed, and manipulated using the traditional netCDF3 API (with numerous extensions).
The NETCDF4_CLASSIC format refers to netCDF4 files created with the NC_CLASSIC_MODEL
mask. Such files use HDF5 as the back-end storage format (unlike netCDF3), though they
incorporate only netCDF3 features. Hence NETCDF4_CLASSIC files are entirely readable by
applications that use only the netCDF3 API (though the applications must be linked with
the netCDF4 library). NCO must be built with netCDF4 to write files in the new NETCDF4

and NETCDF4_CLASSIC formats, and to read files in these formats. Datasets in the default
CLASSIC or the newer 64BIT_OFFSET formats have maximum backwards-compatibility with
older applications. NCO has deep support for NETCDF4 formats. If backwards compatibility
is important, and your datasets are too large for netCDF3, use NETCDF4_CLASSIC instead
of CLASSIC format files. NCO support for the NETCDF4 format is complete and many high-
performance disk/RAM efficient workflows utilize this format.

As mentioned above, all operators write use the input file format for output files unless
told otherwise. Toggling the short option ‘-6’ or the long option ‘--6’ or ‘--64bit_offset’
(or their key-value equivalent ‘--fl_fmt=64bit_offset’) produces the netCDF3 64-bit
offset format named 64BIT_OFFSET. NCO must be built with netCDF 3.6 or higher to
produce a 64BIT_OFFSET file. As of NCO version 4.6.9 (September, 2017), toggling the short
option ‘-5’ or the long options ‘--5’, ‘--64bit_data’, ‘--cdf5’, or ‘--pnetcdf’ (or their
key-value equivalent ‘--fl_fmt=64bit_data’) produces the netCDF3 64-bit data format
named 64BIT_DATA. This format is widely used by MPI-enabled modeling codes because
of its long association with PnetCDF. NCO must be built with netCDF 4.4 or higher to
produce a 64BIT_DATA file.

Using the ‘-4’ switch (or its long option equivalents ‘--4’ or ‘--netcdf4’), or setting its
key-value equivalent ‘--fl_fmt=netcdf4’ produces a NETCDF4 file (i.e., with all supported
HDF5 features). Using the ‘-7’ switch (or its long option equivalent ‘--7’12, or setting its
key-value equivalent ‘--fl_fmt=netcdf4_classic’ produces a NETCDF4_CLASSIC file (i.e.,

12 The reason (and mnemonic) for ‘-7’ is that NETCDF4_CLASSIC files include great features of both netCDF3
(compatibility) and netCDF4 (compression, chunking) and, well, 3 + 4 = 7.

44 NCO 5.0.1 User Guide

with all supported HDF5 features like compression and chunking but without groups or new
atomic types). Operators given the ‘-3’ (or ‘--3’) switch without arguments will (attempt
to) produce netCDF3 CLASSIC output, even from netCDF4 input files.

Note that NETCDF4 and NETCDF4_CLASSIC are the same binary format. The latter simply
causes a writing application to fail if it attempts to write a NETCDF4 file that cannot be
completely read by the netCDF3 library. Conversely, NETCDF4_CLASSIC indicates to a
reading application that all of the file contents are readable with the netCDF3 library. NCO

has supported reading/writing basic NETCDF4 and NETCDF4_CLASSIC files since October,
2005.

3.10.2 Determining File Format

Input files often end with the generic .nc suffix that leaves (perhaps by intention) the
internal file format ambiguous. There are at least three ways to discover the internal format
of a netCDF-supported file. These methods determine whether it is a classic (32-bit offset)
or newer 64-bit offset netCDF3 format, or is a netCDF4 format. Each method returns
the information using slightly different terminology that becomes easier to understand with
practice.

First, examine the first line of global metadata output by ‘ncks -M’:

% ncks -M foo_3.nc

Summary of foo_3.nc: filetype = NC_FORMAT_CLASSIC, 0 groups ...

% ncks -M foo_6.nc

Summary of foo_6.nc: filetype = NC_FORMAT_64BIT_OFFSET, 0 groups ...

% ncks -M foo_5.nc

Summary of foo_5.nc: filetype = NC_FORMAT_CDF5, 0 groups ...

% ncks -M foo_7.nc

Summary of foo_7.nc: filetype = NC_FORMAT_NETCDF4_CLASSIC, 0 groups ...

% ncks -M foo_4.nc

Summary of foo_4.nc: filetype = NC_FORMAT_NETCDF4, 0 groups ...

This method requires a netCDF4-enabled NCO version 3.9.0+ (i.e., from 2007 or later).
As of NCO version 4.4.0 (January, 2014), ncks will also print the extended or underlying
format of the input file. The extended filetype will be one of the six underlying formats that
are accessible through the netCDF API. These formats are NC_FORMATX_NC3 (classic and 64-
bit versions of netCDF3 formats), NC_FORMATX_NC_HDF5 (classic and extended versions of
netCDF4, and “pure” HDF5 format), NC_FORMATX_NC_HDF4 (HDF4 format), NC_FORMATX_
PNETCDF (PnetCDF format), NC_FORMATX_DAP2 (accessed via DAP2 protocol), and NC_

FORMATX_DAP4 (accessed via DAP4 protocol). For example,

% ncks -D 2 -M hdf.hdf

Summary of hdf.hdf: filetype = NC_FORMAT_NETCDF4 (representation of \

extended/underlying filetype NC_FORMAT_HDF4), 0 groups ...

% ncks -D 2 -M http://thredds-test.ucar.edu/thredds/dodsC/testdods/in.nc

Summary of http://thredds-test.ucar.edu/thredds/dodsC/testdods/in.nc: \

filetype = NC_FORMAT_CLASSIC (representation of extended/underlying \

filetype NC_FORMATX_DAP2), 0 groups

% ncks -D 2 -M foo_4.nc

Chapter 3: Shared Features 45

Summary of foo_4.nc: filetype = NC_FORMAT_NETCDF4 (representation of \

extended/underlying filetype NC_FORMAT_HDF5), 0 groups

The extended filetype determines some of the capabilities that netCDF has to alter the
file.

Second, query the file with ‘ncdump -k’:

% ncdump -k foo_3.nc

classic

% ncdump -k foo_6.nc

64-bit offset

% ncdump -k foo_5.nc

cdf5

% ncdump -k foo_7.nc

netCDF-4 classic model

% ncdump -k foo_4.nc

netCDF-4

This method requires a netCDF4-enabled netCDF 3.6.2+ (i.e., from 2007 or later).

The third option uses the POSIX-standard od (octal dump) command:

% od -An -c -N4 foo_3.nc

C D F 001

% od -An -c -N4 foo_6.nc

C D F 002

% od -An -c -N4 foo_5.nc

C D F 005

% od -An -c -N4 foo_7.nc

211 H D F

% od -An -c -N4 foo_4.nc

211 H D F

This option works without NCO and ncdump. Values of ‘C D F 001’ and ‘C D F 002’
indicate 32-bit (classic) and 64-bit netCDF3 formats, respectively, while values of ‘211 H D

F’ indicate either of the newer netCDF4 file formats.

3.10.3 File Conversion

Let us demonstrate converting a file from any netCDF-supported input format into any
netCDF output format (subject to limits of the output format). Here the input file in.nc

may be in any of these formats: netCDF3 (classic, 64bit offset, 64bit data), netCDF4
(classic and extended), HDF4, HDF5, HDF-EOS (version 2 or 5), and DAP. The switch
determines the output format written in the comment:13

ncks --fl_fmt=classic in.nc foo_3.nc # netCDF3 classic

ncks --fl_fmt=64bit_offset in.nc foo_6.nc # netCDF3 64bit-offset

ncks --fl_fmt=64bit_data in.nc foo_5.nc # netCDF3 64bit-data

13 The switches ‘-5’, ‘--5’, and ‘pnetcdf’ are reserved for PnetCDF files, i.e., NC_FORMAT_CDF5. Such files
are similar to netCDF3 classic files, yet also support 64-bit offsets and the additional netCDF4 atomic
types.

46 NCO 5.0.1 User Guide

ncks --fl_fmt=cdf5 in.nc foo_5.nc # netCDF3 64bit-data

ncks --fl_fmt=netcdf4_classic in.nc foo_7.nc # netCDF4 classic

ncks --fl_fmt=netcdf4 in.nc foo_4.nc # netCDF4

ncks -3 in.nc foo_3.nc # netCDF3 classic

ncks --3 in.nc foo_3.nc # netCDF3 classic

ncks -6 in.nc foo_6.nc # netCDF3 64bit-offset

ncks --64 in.nc foo_6.nc # netCDF3 64bit-offset

ncks -5 in.nc foo_5.nc # netCDF3 64bit-data

ncks --5 in.nc foo_5.nc # netCDF3 64bit-data

ncks -4 in.nc foo_4.nc # netCDF4

ncks --4 in.nc foo_4.nc # netCDF4

ncks -7 in.nc foo_7.nc # netCDF4 classic

ncks --7 in.nc foo_7.nc # netCDF4 classic

Of course since most operators support these switches, the “conversions” can be done
at the output stage of arithmetic or metadata processing rather than requiring a separate
step. Producing (netCDF3) CLASSIC or 64BIT_OFFSET or 64BIT_DATA files from NETCDF4_

CLASSIC files always works.

3.10.4 Autoconversion

Because of the dearth of support for netCDF4 amongst tools and user communities (includ-
ing the CF conventions), it is often useful to convert netCDF4 to netCDF3 for certain appli-
cations. Until NCO version 4.4.0 (January, 2014), producing netCDF3 files from netCDF4
files only worked if the input files contained no netCDF4-specific features (e.g., atomic types,
multiple record dimensions, or groups). As of NCO version 4.4.0, ncks supports autoconver-
sion of many netCDF4 features to their closest netCDF3-compatible representations. Since
converting netCDF4 to netCDF3 results in loss of features, “automatic down-conversion”
may be a more precise description of what we term autoconversion.

NCO employs three algorithms to downconvert netCDF4 to netCDF3:

1. Autoconversion of atomic types: Autoconversion automatically promotes NC_UBYTE to
NC_SHORT, and NC_USHORT to NC_INT. It automatically demotes the three types NC_

UINT, NC_UINT64, and NC_INT64 to NC_INT. And it converts NC_STRING to NC_CHAR.
All numeric conversions work for attributes and variables of any rank. Two numeric
types (NC_UBYTE and NC_USHORT) are promoted to types with greater range (and greater
storage). This extra range is often not used so promotion perhaps conveys the wrong
impression. However, promotion never truncates values or loses data (this perhaps
justifies the extra storage). Three numeric types (NC_UINT, NC_UINT64 and NC_INT64)
are demoted. Since the input range is larger than the output range, demotion can result
in numeric truncation and thus loss of data. In such cases, it would possible to convert
the data to floating-point values instead. If this feature interests you, please be the
squeaky wheel and let us know.

String conversions (to NC_CHAR) work for all attributes, but not for variables. This is
because attributes are at most one-dimensional and may be of any size whereas variables
require gridded dimensions that usually do not fit the ragged sizes of text strings. Hence
scalar NC_STRING attributes are correctly converted to and stored as NC_CHAR attributes

Chapter 3: Shared Features 47

in the netCDF3 output file, but NC_STRING variables are not correctly converted. If
this limitation annoys or enrages you, please let us know by being the squeaky wheel.

2. Convert multiple record dimensions to fixed-size dimensions. Many netCDF4 and HDF5

datasets have multiple unlimited dimensions. Since a netCDF3 file may have at most
one unlimited dimension, all but possibly one unlimited dimension from the input
file must be converted to fixed-length dimensions prior to storing netCDF4 input as
netCDF3 output. By invoking --fix_rec_dmn all the user ensures the output file will
adhere to netCDF3 conventions and the user need not know the names of the specific
record dimensions to fix. See Section 4.8 [ncks netCDF Kitchen Sink], page 261 for a
description of the ‘--fix_rec_dmn’ option.

3. Flattening (removal) of groups. Many netCDF4 and HDF5 datasets have group hierar-
chies. Since a netCDF3 file may not have any groups, groups in the input file must be
removed. This is also called “flattening” the hierarchical file. See Section 3.14 [Group
Path Editing], page 53 for a description of the GPE option ‘-G :’ to flatten files.

Putting the three algorithms together, one sees that the recipe to convert netCDF4 to
netCDF4 becomes increasingly complex as the netCDF4 features in the input file become
more elaborate:

Convert file with netCDF4 atomic types

ncks -3 in.nc4 out.nc3

Convert file with multiple record dimensions + netCDF4 atomic types

ncks -3 --fix_rec_dmn=all in.nc4 out.nc3

Convert file with groups, multiple record dimensions + netCDF4 atomic types

ncks -3 -G : --fix_rec_dmn=all in.nc4 out.nc3

Future versions of NCO may automatically invoke the record dimension fixation and
group flattening when converting to netCDF3 (rather than requiring it be specified manu-
ally). If this feature would interest you, please let us know.

3.11 Large File Support� �
Availability: All operators
Short options: none
Long options: none

 	
NCO has Large File Support (LFS), meaning that NCO can write files larger than 2 GB on

some 32-bit operating systems with netCDF libraries earlier than version 3.6. If desired, LFS
support must be configured when both netCDF and NCO are installed. netCDF versions 3.6
and higher support 64-bit file addresses as part of the netCDF standard. We recommend
that users ignore LFS support which is difficult to configure and is implemented in NCO only
to support netCDF versions prior to 3.6. This obviates the need for configuring explicit LFS
support in applications (such as NCO) that now support 64-bit files directly through the
netCDF interface. See Section 3.10 [File Formats and Conversion], page 42 for instructions
on accessing the different file formats, including 64-bit files, supported by the modern
netCDF interface.

48 NCO 5.0.1 User Guide

If you are still interested in explicit LFS support for netCDF versions prior to 3.6, know
that LFS support depends on a complex, interlocking set of operating system14 and netCDF
support issues. The netCDF LFS FAQ describes the various file size limitations imposed
by different versions of the netCDF standard. NCO and netCDF automatically attempt to
configure LFS at build time.

3.12 Subsetting Files� �
Options -g grp

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-g’
Long options: ‘--grp’ and ‘--group’
Options -v var and -x

Availability: (ncap2), ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-v’, ‘-x’
Long options: ‘--variable’, ‘--exclude’ or ‘--xcl’
Options --unn
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options:
Long options: ‘--unn’ and ‘--union’
Options --grp_xtr_var_xcl
Availability: ncks
Short options:
Long options: ‘--gxvx’ and ‘--grp_xtr_var_xcl’

 	
Subsetting variables refers to explicitly specifying variables and groups to be included

or excluded from operator actions. Subsetting is controlled by the ‘-v var[,...]’ and ‘-x’
options for directly specifying variables. Specifying groups, whether in addition to or instead
of variables, is quite similar and is controlled by the ‘-g grp[,...]’ and ‘-x’ options. A list
of variables or groups to extract is specified following the ‘-v’ and ‘-g’ options, e.g., ‘-v
time,lat,lon’ or ‘-g grp1,grp2’. Both options may be specified simultaneously and NCO

will extract the intersection of the lists, i.e., only variables of the specified names found in
groups of the specified names. The ‘--unn’ option causes NCO to extract the union, rather
than the intersection, of the specified groups and variables. Not using the ‘-v’ or ‘-g’ option
is equivalent to specifying all variables or groupp, respectively.

The ‘-x’ option causes the list of variables specified with ‘-v’ to be excluded rather than
extracted. Thus ‘-x’ saves typing when you only want to extract fewer than half of the
variables in a file.

ncks -x -v v1,v2 in.nc out.nc # Extract all variables except v1, v2

ncks -C -x -v lat,lon in.nc out.nc # Extract all except lat, lon

The first example above shows the typical use of ‘-x’ to subset all variables except a few
into the output. Note that v1 and v2 will be retained in the output if they are coordinate-like

14 Linux and AIX do support LFS.

http://my.unidata.ucar.edu/content/software/netcdf/faq-lfs.html

Chapter 3: Shared Features 49

variables (see Section 3.13 [Subsetting Coordinate Variables], page 52) associated with any
extracted variable. If one wishes to exclude coordinate-like variables despite their being
referenced by extracted variables, one must use the ‘-C’ (or synonym ‘--xcl_ass_var’)
option as shown in the second example.

Variables or groups explicitly specified for extraction with ‘-v var[,...]’ or ‘-g
grp[,...]’ must be present in the input file or an error will result. Variables explic-
itly specified for exclusion with ‘-x -v var[,...]’ need not be present in the input file. To
accord with the sophistication of the underlying hierarchy, group subsetting is controlled by
a few powerful yet subtle syntactical distinctions. When learning this syntax it is helpful
to keep in mind the similarity between group hierarchies and directory structures.

As of NCO 4.4.4 (June, 2014), ncks (alone) supports an option to include specified
groups yet exclude specified variables. The ‘--grp_xtr_var_xcl’ switch (with long option
equivalent ‘--gxvx’) extracts all contents of groups given as arguments to ‘-g grp[,...]’,
except for variables given as arguments to ‘-v var[,...]’. Use this when one or a few
variables in hierarchical files are not to be extracted, and all other variables are. This is
useful when coercing netCDF4 files into netCDF3 files such as with converting, flattening,
or dismembering files (see Section 3.14.1 [Flattening Groups], page 54).

ncks --grp_xtr_var_xcl -g g1 -v v1 # Extract all of group g1 except v1

Two properties of subsetting, recursion and anchoring, are best illustrated by reminding
the user of their UNIX equivalents. The UNIX command mv src dst moves src and all its
subdirectories (and all their subdirectories etc.) to dst. In other words mv is, by default,
recursive. In contrast, the UNIX command cp src dst moves src, and only src, to dst, If
src is a directory, not a file, then that command fails. One must explicitly request to copy
directories recursively, i.e., with cp -r src dst. In NCO recursive extraction (and copying)
of groups is the default (like with mv, not with cp). Recursion is turned off by appending a
trailing slash to the path.

These UNIX commands also illustrate a property we call anchoring. The command mv

src dst moves (recursively) the source directory src to the destination directory dst. If
src begins with the slash character then the specified path is relative to the root directory,
otherwise the path is relative to the current working directory. In other words, an initial
slash character anchors the subsequent path to the root directory. In NCO an initial slash
anchors the path at the root group. Paths that begin and end with slash characters (e.g.,
//, /g1/, and /g1/g2/) are both anchored and non-recursive.

Consider the following commands, all of which may be assumed to end with ‘in.nc
out.nc’:

ncks -g g1 # Extract, recursively, all groups with a g1 component

ncks -g g1/ # Extract, non-recursively, all groups terminating in g1

ncks -g /g1 # Extract, recursively, root group g1

ncks -g /g1/ # Extract, non-recursively root group g1

ncks -g // # Extract, non-recursively the root group

The first command is probably the most useful and common. It would extract these
groups, if present, and all their direct ancestors and children: /g1, /g2/g1, and /g3/g1/g2.
In other words, the simplest form of ‘-g grp’ grabs all groups that (and their direct ancestors

50 NCO 5.0.1 User Guide

and children, recursively) that have grp as a complete component of their path. A simple
string match is insufficient, grp must be a complete component (i.e., group name) in the
path. The option ‘-g g1’ would not extract these groups because g1 is not a complete
component of the path: /g12, /fg1, and /g1g1. The second command above shows how
a terminating slash character / cancels the recursive copying of groups. An argument to
‘-g’ which terminates with a slash character extracts the group and its direct ancestors,
but none of its children. The third command above shows how an initial slash character /
anchors the argument to the root group. The third command would not extract the group
/g2/g1 because the g1 group is not at the root level, but it would extract, any group /g1

at the root level and all its children, recursively. The fourth command is the non-recursive
version of the third command. The fifth command is a special case of the fourth command.

As mentioned above, both ‘-v’ and ‘-g’ options may be specified simultaneously and
NCO will, by default, extract the intersection of the lists, i.e., the specified variables found
in the specified groups15. The ‘--unn’ option causes NCO to extract the union, rather than
the intersection, of the specified groups and variables. Consider the following commands
(which may be assumed to end with ‘in.nc out.nc’):

Intersection-mode subsetting (default)

ncks -g g1 -v v1 # Yes: /g1/v1, /g2/g1/v1. No: /v1, /g2/v1

ncks -g /g1 -v v1 # Yes: /g1/v1, /g1/g2/v1. No: /v1, /g2/v1, /g2/g1/v1

ncks -g g1/ -v v1 # Yes: /g1/v1, /g2/g1/v1. No: /v1, /g2/v1, /g1/g2/v1

ncks -v g1/v1 # Yes: /g1/v1, /g2/g1/v1. No: /v1, /g2/v1, /g1/g2/v1

ncks -g /g1/ -v v1 # Yes: /g1/v1. No: /g2/g1/v1, /v1, /g2/v1 ...

ncks -v /g1/v1 # Yes: /g1/v1. No: /g2/g1/v1, /v1, /g2/v1 ...

Union-mode subsetting (invoke with --unn or --union)

ncks -g g1 -v v1 --unn # All variables in g1 or progeny, or named v1

ncks -g /g1 -v v1 --unn # All variables in /g1 or progeny, or named v1

ncks -g g1/ -v v1 --unn # All variables in g1 or named v1

ncks -g /g1/ -v v1 --unn # All variables in /g1 or named v1

The first command (‘-g g1 -v v1’) extracts the variable v1 from any group named g1

or descendent g1. The second command extracts v1 from any root group named g1 and
any descendent groups as well. The third and fourth commands are equivalent ways of
extracting v1 only from the root group named g1 (not its descendents). The fifth and sixth
commands are equivalent ways of extracting the variable v1 only from the root group named
g1. Subsetting in union-mode (with ‘--unn’) causes all variables to be extracted which meet
either one or both of the specifications of the variable and group specifications. Union-mode
subsetting is simply the logical “OR” of intersection-mode subsetting. As discussed below,
the group and variable specifications may be comma separated lists of regular expressions
for added control over subsetting.

Remember, if averaging or concatenating large files stresses your systems memory or
disk resources, then the easiest solution is often to subset (with ‘-g’ and/or ‘-v’) to retain
only the most important variables (see Section 2.9 [Memory Requirements], page 24).

15 Intersection-mode can also be explicitly invoked with the ‘--nsx’ or ‘--intersection’ switches. These
switches are supplied for clarity and consistency and do absolutely nothing since intersection-mode is
the default.

Chapter 3: Shared Features 51

ncks in.nc out.nc # Extract all groups and variables

ncks -v scl # Extract variable scl from all groups

ncks -g g1 # Extract group g1 and descendents

ncks -x -g g1 # Extract all groups except g1 and descendents

ncks -g g2,g3 -v scl # Extract scl from groups g2 and g3

Overwriting and appending work as expected:

Replace scl in group g2 in out.nc with scl from group g2 from in.nc

ncks -A -g g2 -v scl in.nc out.nc

Due to its special capabilities, ncap2 interprets the ‘-v’ switch differently (see Section 4.1
[ncap2 netCDF Arithmetic Processor], page 152). For ncap2, the ‘-v’ switch takes no
arguments and indicates that only user-defined variables should be output. ncap2 neither
accepts nor understands the -x and -g switches.

Regular expressions the syntax that NCO use pattern-match object names in netCDF file
against user requests. The user can select all variables beginning with the string ‘DST’ from
an input file by supplying the regular expression ‘^DST’ to the ‘-v’ switch, i.e., ‘-v ’^DST’’.
The meta-characters used to express pattern matching operations are ‘^$+?.*[]{}|’. If
the regular expression pattern matches any part of a variable name then that variable is
selected. This capability is also called wildcarding, and is very useful for sub-setting large
data files.

Extended regular expressions are defined by the POSIX grep -E (aka egrep) command.
As of NCO 2.8.1 (August, 2003), variable name arguments to the ‘-v’ switch may contain
extended regular expressions. As of NCO 3.9.6 (January, 2009), variable names arguments
to ncatted may contain extended regular expressions. As of NCO 4.2.4 (November, 2012),
group name arguments to the ‘-g’ switch may contain extended regular expressions.

Because of its wide availability, NCO uses the POSIX regular expression library regex.
Regular expressions of arbitary complexity may be used. Since netCDF variable names are
relatively simple constructs, only a few varieties of variable wildcards are likely to be useful.
For convenience, we define the most useful pattern matching operators here:

‘^’ Matches the beginning of a string

‘$’ Matches the end of a string

‘.’ Matches any single character

The most useful repetition and combination operators are

‘?’ The preceding regular expression is optional and matched at most once

‘*’ The preceding regular expression will be matched zero or more times

‘+’ The preceding regular expression will be matched one or more times

‘|’ The preceding regular expression will be joined to the following regular ex-
pression. The resulting regular expression matches any string matching either
subexpression.

52 NCO 5.0.1 User Guide

To illustrate the use of these operators in extracting variables and groups, consider file
in_grp.nc with groups g0–g9, and subgroups s0–s9, in each of those groups, and file in.nc
with variables Q, Q01–Q99, Q100, QAA–QZZ, Q_H2O, X_H2O, Q_CO2, X_CO2.

ncks -v ’.+’ in.nc # All variables (default)

ncks -v ’Q.?’ in.nc # Variables that contain Q

ncks -v ’^Q.?’ in.nc # Variables that start with Q

ncks -v ’^Q+.?.’ in.nc # Q, Q0--Q9, Q01--Q99, QAA--QZZ, etc.

ncks -v ’^Q..’ in.nc # Q01--Q99, QAA--QZZ, etc.

ncks -v ’^Q[0-9][0-9]’ in.nc # Q01--Q99, Q100

ncks -v ’^Q[[:digit:]]{2}’ in.nc # Q01--Q99

ncks -v ’H2O$’ in.nc # Q_H2O, X_H2O

ncks -v ’H2O$|CO2$’ in.nc # Q_H2O, X_H2O, Q_CO2, X_CO2

ncks -v ’^Q[0-9][0-9]$’ in.nc # Q01--Q99

ncks -v ’^Q[0-6][0-9]|7[0-3]’ in.nc # Q01--Q73, Q100

ncks -v ’(Q[0-6][0-9]|7[0-3])$’ in.nc # Q01--Q73

ncks -v ’^[a-z]_[a-z]{3}$’ in.nc # Q_H2O, X_H2O, Q_CO2, X_CO2

ncks -g ’g.’ in_grp.nc # 10 Groups g0-g9

ncks -g ’s.’ in_grp.nc # 100 sub-groups g0/s0, g0/s1, ... g9/s9

ncks -g ’g.’ -v ’v.’ in_grp.nc # All variables ’v.’ in groups ’g.’

Beware—two of the most frequently used repetition pattern matching operators, ‘*’ and
‘?’, are also valid pattern matching operators for filename expansion (globbing) at the shell-
level. Confusingly, their meanings in extended regular expressions and in shell-level filename
expansion are significantly different. In an extended regular expression, ‘*’ matches zero
or more occurences of the preceding regular expression. Thus ‘Q*’ selects all variables,
and ‘Q+.*’ selects all variables containing ‘Q’ (the ‘+’ ensures the preceding item matches
at least once). To match zero or one occurence of the preceding regular expression, use
‘?’. Documentation for the UNIX egrep command details the extended regular expressions
which NCO supports.

One must be careful to protect any special characters in the regular expression specifica-
tion from being interpreted (globbed) by the shell. This is accomplish by enclosing special
characters within single or double quotes

ncra -v Q?? in.nc out.nc # Error: Shell attempts to glob wildcards

ncra -v ’^Q+..’ in.nc out.nc # Correct: NCO interprets wildcards

ncra -v ’^Q+..’ in*.nc out.nc # Correct: NCO interprets, Shell globs

The final example shows that commands may use a combination of variable wildcarding
and shell filename expansion (globbing). For globbing, ‘*’ and ‘?’ have nothing to do with
the preceding regular expression! In shell-level filename expansion, ‘*’ matches any string,
including the null string and ‘?’ matches any single character. Documentation for bash and
csh describe the rules of filename expansion (globbing).

3.13 Subsetting Coordinate Variables

Chapter 3: Shared Features 53

� �
Availability: ncap2, ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-C’, ‘-c’
Long options: ‘--no_coords’, ‘--no_crd’, ‘--xcl_ass_var’, ‘--crd’, ‘--coords’,
‘--xtr_ass_var’

 	
By default, coordinates variables associated with any variable appearing in the input-

file will be placed in the output-file, even if they are not explicitly specified, e.g., with
the ‘-v’ switch. Thus variables with a latitude coordinate lat always carry the values
of lat with them into the output-file. This automatic inclusion feature can be disabled
with ‘-C’, which causes NCO to exclude (or, more precisely, not to automatically include)
coordinates and associated variables from the extraction list. However, using ‘-C’ does not
preclude the user from including some coordinates in the output files simply by explicitly
selecting the coordinates and associated variables with the -v option. The ‘-c’ option, on
the other hand, is a shorthand way of automatically specifying that all coordinate and
associated variables in input-files should appear in output-file. The user can thereby select
all coordinate variables without even knowing their names.

The meaning of “coordinates” in these two options has expanded since about 2009 from
simple one dimensional coordinates (per the NUG) definition) to any and all associated
variables. This includes multi-dimensional coordinates as well as a menagerie of associated
variables defined by the CF metadata conventions: As of NCO version 4.4.5 (July, 2014)
both ‘-c’ and ‘-C’ honor the CF ancillary_variables convention described in Section 3.45
[CF Conventions], page 145. As of NCO version 4.0.8 (April, 2011) both ‘-c’ and ‘-C’ honor
the CF bounds convention described in Section 3.45 [CF Conventions], page 145. As of NCO

version 4.6.4 (January, 2017) both ‘-c’ and ‘-C’ honor the CF cell_measures convention
described in Section 3.45 [CF Conventions], page 145. As of NCO version 4.4.9 (May, 2015)
both ‘-c’ and ‘-C’ honor the CF climatology convention described in Section 3.45 [CF
Conventions], page 145. As of NCO version 3.9.6 (January, 2009) both ‘-c’ and ‘-C’ honor
the CF coordinates convention described in Section 3.45 [CF Conventions], page 145. As of
NCO version 4.6.4 (January, 2017) both ‘-c’ and ‘-C’ honor the CF formula_terms conven-
tion described in Section 3.45 [CF Conventions], page 145. As of NCO version 4.6.0 (May,
2016) both ‘-c’ and ‘-C’ honor the CF grid_mapping convention described in Section 3.45
[CF Conventions], page 145.

The expanded categories of variables controlled by ‘-c’ and ‘-C’ justified adding a more
descriptive switch. As of NCO version 4.8.0 (May, 2019) the switch ‘--xcl_ass_var’, which
stands for “exclude associated variables”, is synonymous with ‘-C’ and ‘--xtr_ass_var’,
which stands for “extract associated variables”, is synonymous with ‘-c’.

3.14 Group Path Editing� �
Options -G gpe_dsc

Availability: ncbo, ncecat, nces, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-G’
Long options: ‘--gpe’

 	

54 NCO 5.0.1 User Guide

Group Path Editing, or GPE, allows the user to restructure (i.e., add, remove, and
rename groups) in the output file relative to the input file based on the instructions they
provide. As of NCO 4.2.3 (November, 2012), all operators that accept netCDF4 files with
groups accept the ‘-G’ switch, or its long-option equivalent ‘--gpe’. To master GPE one
must understand the meaning of the required gpe dsc structure/argument that specifies the
transformation of input-to-output group paths.

Each gpe dsc contains up to three elements (two are optional) in the following order:
gpe dsc = grp pth:lvl nbr or grp pth@lvl nbr

grp pth Group Path. This (optional) component specifies the output group path that
should be appended after any editing (i.e., deletion or truncation) of the input
path is performed.

lvl nbr The number of levels to delete (from the head) or truncate (from the tail) of
the input path.

If both components of the argument are present, then a single character, either the colon
or at-sign (: or @), must separate them. If only grp pth is specifed, the separator character
may be omitted, e.g., ‘-G g1’. If only lvl nbr is specifed, the separator character is still
required to indicate it is a lvl nbr arugment and not a grp pth, e.g., ‘-G :-1’ or ‘-G @1’.

If the at-sign separator character @ is used instead of the colon separator character :,
then the following lvl nbr arugment must be positive and it will be assumed to refer to
Truncation-Mode. Hence, ‘-G :-1’ is the same as ‘-G @1’. This is simply a way of making
the lvl nbr argument positive-definite.

3.14.1 Deletion, Truncation, and Flattening of Groups

GPE has three editing modes: Delete, Truncate, and Flatten. Select one of GPE’s three
editing modes by supplying a lvl nbr that is positive, negative, or zero for Delete-, Truncate-
and Flatten-mode, respectively.

In Delete-mode, lvl nbr is a positive integer which specifies the maximum number of
group path components (i.e., groups) that GPE will try to delete from the head of grp pth.
For example lvl nbr = 3 changes the input path /g1/g2/g3/g4/g5 to the output path
/g4/g5. Input paths with lvl nbr or fewer components (groups) are completely erased and
the output path commences from the root level.

In other words, GPE is tolerant of specifying too many group components to delete. It
deletes as many as possible, without complaint, and then begins to flatten the file (which
fails if namespace conflicts arise).

In Truncate-mode, lvl nbr is a negative integer which specifies the maximum number of
group path components (i.e., groups) that GPE will try to truncate from the tail of grp pth.
For example lvl nbr = −3 changes the input path /g1/g2/g3/g4/g5 to the output path
/g1/g2. Input paths with lvl nbr or fewer components (groups) are completely erased and
the output path commences from the root level.

In Flatten-mode, indicated by the separator character alone or with lvl nbr = 0, GPE

removes the entire group path from the input file and constructs the output path beginning
at the root level. For example -G :0 and -G : are identical and change the input path

Chapter 3: Shared Features 55

/g1/g2/g3/g4/g5 to the output path / whereas -G g1:0 and -G g1: are identical and
result in the output path /g1 for all variables.

Subsequent to the alteration of the input path by the specified editing mode, if any, GPE

prepends (in Delete Mode) or Appends (in Truncate-mode) any specifed grp pth to the out-
put path. For example -G g2 changes the input paths / and /g1 to /g2 and /g1/g2, respec-
tively. Likewise, -G g2/g3 changes the input paths / and /g1 to /g2/g3 and /g1/g2/g3,
respectively. When grp pth and lvl nbr are both specified, the editing actions are taken in
sequence so that, e.g., -G g1/g2:2 changes the input paths / and /h1/h2/h3/h4 to /g1/g2

and /g1/g2/h3/h4, respectively. Likewise, -G g1/g2:-2 changes the input paths / and
/h1/h2/h3/h4 to /g1/g2 and /h1/h2/g1/g2, respectively.

Combining GPE with subsetting (see Section 3.12 [Subsetting Files], page 48) yields
powerful control over the extracted (or excluded) variables and groups and their placement
in the output file as shown by the following commands. All commands below may be
assumed to end with ‘in.nc out.nc’.

Prepending paths without editing:

ncks # /g?/v? -> /g?/v?

ncks -v v1 # /g?/v1 -> /g?/v1

ncks -g g1 # /g1/v? -> /g1/v?

ncks -G o1 # /g?/v? -> /o1/g?/v?

ncks -G o1 -g g1 # /g1/v? -> /o1/g1/v?

ncks -g g1 -v v1 # /g1/v1 -> /g1/v1

ncks -G o1 -v v1 # /g?/v1 -> /o1/g?/v1

ncks -G o1 -g g1 -v v1 # /g1/v1 -> /o1/g1/v1

ncks -G g1 -g / -v v1 # /v1 -> /g1/v1

ncks -G g1/g2 -v v1 # /g?/v1 -> /g1/g2/g?/v1

Delete-mode: Delete from and Prepend to path head

Syntax: -G [ppn]:lvl_nbr = # of levels to delete

ncks -G :1 -g g1 -v v1 # /g1/v1 -> /v1

ncks -G :1 -g g1/g1 -v v1 # /g1/g1/v1 -> /g1/v1

ncks -G :2 -g g1/g1 -v v1 # /g1/g1/v1 -> /v1

ncks -G :2 -g g1 -v v1 # /g1/v1 -> /v1

ncks -G g2:1 -g g1 -v v1 # /g1/v1 -> /g2/v1

ncks -G g2:2 -g g1/g1 -v v1 # /g1/g1/v1 -> /g2/v1

ncks -G g2:1 -g / -v v1 # /v1 -> /g2/v1

ncks -G g2:1 -v v1 # /v1 -> /g2/v1

ncks -G g2:1 -g g1/g1 -v v1 # /g1/g1/v1 -> /g2/g1/v1

Flatten-mode: Remove all input path components

Syntax: -G [apn]: colon without numerical argument

ncks -G : -v v1 # /g?/v1 -> /v1

ncks -G : -g g1 -v v1 # /g1/v1 -> /v1

ncks -G : -g g1/g1 -v v1 # /g1/g1/v1 -> /v1

ncks -G g2: -v v1 # /g?/v1 -> /g2/v1

ncks -G g2: # /g?/v? -> /g2/v?

ncks -G g2: -g g1/g1 -v v1 # /g1/g1/v1 -> /g2/v1

Truncate-mode: Truncate from and Append to path tail

56 NCO 5.0.1 User Guide

Syntax: -G [apn]:-lvl_nbr = # of levels to truncate

NB: -G [apn]:-lvl_nbr is equivalent to -G [apn]@lvl_nbr

ncks -G :-1 -g g1 -v v1 # /g1/v1 -> /v1

ncks -G :-1 -g g1/g2 -v v1 # /g1/g2/v1 -> /g1/v1

ncks -G :-2 -g g1/g2 -v v1 # /g1/g2/v1 -> /v1

ncks -G :-2 -g g1 -v v1 # /g1/v1 -> /v1

ncks -G g2:-1 -v v1 # /g?/v1 -> /g2/v1

ncks -G g2:-1 -g g1 -v v1 # /g1/v1 -> /g2/v1

ncks -G g1:-1 -g g1/g2 -v v1 # /g1/g2/v1 -> /g1/g1/v1

3.14.2 Moving Groups

Until fall 2013 (netCDF version 4.3.1-pre1), netCDF contained no library function for re-
naming groups, and therefore ncrename cannot rename groups. However, NCO built on
earlier versions of netCDF than 4.3.1 can use a GPE-based workaround mechanism to “re-
name” groups. The GPE mechanism actually moves (i.e., copies to a new location) groups,
a more arduous procedure than simply renaming them. GPE applies to all selected groups,
so, in the general case, one must move only the desired group to a new file, and then merge
that new file with the original to obtain a file where the desired group has been “renamed”
and all else is unchanged. Here is how to “rename” group /g4 to group /f4 with GPE

instead of ncrename

ncks -O -G f4:1 -g g4 ~/nco/data/in_grp.nc ~/tmp.nc # Move /g4 to /f4

ncks -O -x -g g4 ~/nco/data/in_grp.nc ~/out.nc # Excise /g4

ncks -A ~/tmp.nc ~/out.nc # Add /f4 to new file

If the original group g4 is not excised from out.nc (step two above), then the final
output file would contain both g4 and a copy named f4. Thus GPE can be used to both
“rename” and copy groups. The recommended way to rename groups when when netCDF
version 4.3.1 is availale is to use ncrename (see Section 4.13 [ncrename netCDF Renamer],
page 339).

One may wish to flatten hierarchical group files for many reasons. These include 1. To
obtain flat netCDF3 files for use with tools that do not work with netCDF4 files, 2. To
split-apart hierarchies to re-assemble into different hierarchies, and 3. To provide a subset
of a hierarchical file with the simplest possible storage structure.

ncks -O -G : -g cesm -3 ~/nco/data/cmip5.nc ~/cesm.nc # Extract /cesm to /

The -3 switch16 specifies the output dataset should be in netCDF3 format, the -G :

option flattens all extracted groups, and the -g cesm option extracts only the cesm group
and leaves all other groups (e.g., ecmwf, giss).

3.14.3 Dismembering Files

Let us show how to completely disaggregate (or, more memorably) dismember a hierarchical
dataset. For now we take this to mean: store each group as a standalone flat dataset in
netCDF3 format. This can be accomplished by looping the previous example over all groups.

16 Note that the -3 switch should appear after the -G and -g switches. This is due to an artifact of the
GPE implementation which we wish to remove in the future.

Chapter 3: Shared Features 57

This script ncdismember dismembers the input file fl in specified in the first argument and
places the resulting files in the directory drc out specified by the second argument:

cat > ~/ncdismember << ’EOF’

#!/bin/sh

Purpose: Dismember netCDF4/HDF5 hierarchical files. CF-check them.

Place each input file group in separate netCDF3 output file

Described in NCO User Guide at http://nco.sf.net/nco.html#dismember

Requirements: NCO 4.3.x+, UNIX shell utilities awk, grep, sed

Optional: Decker CFchecker https://bitbucket.org/mde_/cfchecker

Usage:

ncdismember <fl_in> <drc_out> [cf_chk] [cf_vrs] [opt]

where fl_in is input file/URL to dismember, drc_out is output directory

CF-compliance check is performed when optional third argument is not ’0’

Default checker is Decker’s cfchecker installed locally

Specify cf_chk=nerc for smallified uploads to NERC checker

Optional fourth argument cf_vrs is CF version to check

Optional fifth argument opt passes straight-through to ncks

Arguments must not use shell expansion/globbing

NB: ncdismember does not clean-up output directory, so user must

chmod a+x ~/sh/ncdismember

Examples:

ncdismember ~/nco/data/mdl_1.nc /data/zender/tmp

ncdismember http://dust.ess.uci.edu/nco/mdl_1.nc /tmp

ncdismember http://thredds-test.ucar.edu/thredds/dodsC/testdods/foo.nc /tmp

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp nerc

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf 1.3

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf 1.5 --fix_rec_dmn=all

Command-line argument defaults

fl_in="${HOME}/nco/data/mdl_1.nc" # [sng] Input file to dismember/check

drc_out="${DATA}/nco/tmp" # [sng] Output directory

cf_chk=’0’ # [flg] Perform CF-compliance check? Which checker?

cf_vrs=’1.5’ # [sng] Compliance-check this CF version (e.g., ’1.5’)

opt=’’ # [flg] Additional ncks options (e.g., ’--fix_rec_dmn=all’)

Use single quotes to pass multiple arguments to opt=${5}

Otherwise arguments would be seen as ${5}, ${6}, ${7} ...

Command-line argument option parsing

if [-n "${1}"]; then fl_in=${1}; fi

if [-n "${2}"]; then drc_out=${2}; fi

if [-n "${3}"]; then cf_chk=${3}; fi

if [-n "${4}"]; then cf_vrs=${4}; fi

if [-n "${5}"]; then opt=${5}; fi

58 NCO 5.0.1 User Guide

Prepare output directory

echo "NCO dismembering file ${fl_in}"

fl_stb=$(basename ${fl_in})

drc_out=${drc_out}/${fl_stb}

mkdir -p ${drc_out}

cd ${drc_out}

chk_dck=’n’

chk_nrc=’n’

if [${cf_chk} = ’nerc’]; then

chk_nrc=’y’

fi # chk_nrc

if [${cf_chk} != ’0’] && [${cf_chk} != ’nerc’]; then

chk_dck=’y’

hash cfchecker 2>/dev/null || { echo >&2 "Local cfchecker command not found, will smallify and upload to NERC checker instead"; chk_nrc=’y’; chk_dck=’n’; }

fi # !cf_chk

Obtain group list

grp_lst=‘ncks -m ${fl_in} | grep ’// group’ | awk ’{$1=$2=$3="";sub(/^ */,"",$0);print}’‘

IFS=$’\n’ # Change Internal-Field-Separator from <Space><Tab><Newline> to <Newline>

for grp_in in ${grp_lst} ; do

Replace slashes by dots for output group filenames

grp_out=‘echo ${grp_in} | sed ’s/\///’ | sed ’s/\//./g’‘

if ["${grp_out}" = ’’]; then grp_out=’root’ ; fi

Tell older NCO/netCDF if HDF4 with --hdf4 switch (signified by .hdf/.HDF suffix)

hdf4=‘echo ${fl_in} | awk ’{if(match(tolower($1),".hdf$")) hdf4="--hdf4"; print hdf4}’‘

Flatten to netCDF3, anchor, no history, no temporary file, padding, HDF4 flag, options

cmd="ncks -O -3 -G : -g ${grp_in}/ -h --no_tmp_fl --hdr_pad=40 ${hdf4} ${opt} ${fl_in} ${drc_out}/${grp_out}.nc"

Use eval in case ${opt} contains multiple arguments separated by whitespace

eval ${cmd}

if [${chk_dck} = ’y’]; then

Decker checker needs Conventions <= 1.6

no_bck_sls=‘echo ${drc_out}/${grp_out} | sed ’s/\\\ / /g’‘

ncatted -h -a Conventions,global,o,c,CF-${cf_vrs} ${no_bck_sls}.nc

else # !chk_dck

echo ${drc_out}/${grp_out}.nc

fi # !chk_dck

done

if [${chk_dck} = ’y’]; then

echo ’Decker CFchecker reports CF-compliance of each group in flat netCDF3 format’

cfchecker -c ${cf_vrs} *.nc

fi

if [${chk_nrc} = ’y’]; then

Smallification and NERC upload from qdcf script by Phil Rasch (PJR)

echo ’Using remote CFchecker http://puma.nerc.ac.uk/cgi-bin/cf-checker.pl’

cf_lcn=’http://puma.nerc.ac.uk/cgi-bin/cf-checker.pl’

for fl in ${drc_out}/*.nc ; do

fl_sml=${fl}

Chapter 3: Shared Features 59

cf_out=${fl%.nc}.html

dmns=‘ncdump -h ${fl_in} | sed -n -e ’/dimensions/,/variables/p’ | grep = | sed -e ’s/=.*//’‘

hyp_sml=’’

for dmn in ${dmns}; do

dmn_lc=‘echo ${dmn} | tr "[:upper:]" "[:lower:]"‘

if [${dmn_lc} = ’lat’] || [${dmn_lc} = ’latitude’] || [${dmn_lc} = ’lon’] || [${dmn_lc} = ’longitude’] || [${dmn_lc} = ’time’]; then

hyp_sml=‘echo ${hyp_sml}" -d ${dmn},0"‘

fi # !dmn_lc

done

Create small version of input file by sampling only first element of lat, lon, time

ncks -O ${hyp_sml} ${fl} ${fl_sml}

Send small file to NERC checker

curl --form cfversion=1.6 --form upload=@${fl_sml} --form press="Check%20file" ${cf_lcn} -o ${cf_out}

Strip most HTML to improve readability

cat ${cf_out} | sed -e "s/<[^>]*>//g" -e "/DOCTYPE/,/\]\]/d" -e "s/CF-Convention//g" -e "s/Output of//g" -e "s/Compliance Checker//g" -e "s/Check another//g" -e "s/CF-Checker follows//g" -e "s/Received//g" -e "s/for NetCDF//g" -e "s/NetCDF format//g" -e "s/against CF version 1//g" -e "s/\.\.\.//g"

echo "Full NERC compliance-check log for ${fl} in ${cf_out}"

done

fi # !nerc

EOF

chmod 755 ~/ncdismember # Make command executable

/bin/mv -f ~/ncdismember ~/sh # Store in location on $PATH, e.g., /usr/local/bin

zender@roulee:~$ ncdismember ~/nco/data/mdl_1.nc ${DATA}/nco/tmp

NCO dismembering file /home/zender/nco/data/mdl_1.nc

/data/zender/nco/tmp/mdl_1.nc/cesm.cesm_01.nc

/data/zender/nco/tmp/mdl_1.nc/cesm.cesm_02.nc

/data/zender/nco/tmp/mdl_1.nc/cesm.nc

/data/zender/nco/tmp/mdl_1.nc/ecmwf.ecmwf_01.nc

/data/zender/nco/tmp/mdl_1.nc/ecmwf.ecmwf_02.nc

/data/zender/nco/tmp/mdl_1.nc/ecmwf.nc

/data/zender/nco/tmp/mdl_1.nc/root.nc

A (potentially more portable) binary executable could be written to dismember all groups
with a single invocation, yet dismembering without loss of information is possible now with
this simple script on all platforms with UNIXy utilities. Note that all dimensions inherited
by groups in the input file are correctly placed by ncdismember into the flat files. Moreover,
each output file preserves the group metadata of all ancestor groups, including the global
metadata from the input file. As written, the script could fail on groups that contain
advanced netCDF4 features because the user requests (with the ‘-3’ switch) that output be
netCDF3 classic format. However, ncks detects many format incompatibilities in advance
and works around them. For example, ncks autoconverts netCDF4-only atomic-types (such
as NC_STRING and NC_UBYTE) to corresponding netCDF3 atomic types (NC_CHAR and NC_

SHORT) when the output format is netCDF3.

60 NCO 5.0.1 User Guide

3.14.4 Checking CF-compliance

One application of dismembering is to check the CF-compliance of each group in a file. When
invoked with the optional third argumnt ‘cf’, ncdismember passes each file it generates to
freely available compliance checkers, such as cfchecker17.

zender@roulee:~$ ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf

NCO dismembering file /home/zender/nco/data/mdl_1.nc

CFchecker reports CF-compliance of each group in flat netCDF3 format

WARNING: Using the default (non-CF) Udunits database

cesm.cesm_01.nc:

INFO: INIT: running CFchecker version 1.5.15

INFO: INIT: checking compliance with convention CF-1.5

INFO: INIT: using standard name table version: 25, last modified: 2013-07-05T05:40:30Z

INFO: INIT: using area type table version: 2, date: 10 July 2013

INFO: 2.4: no axis information found in dimension variables, not checking dimension order

WARNING: 3: variable "tas1" contains neither long_name nor standard_name attribute

WARNING: 3: variable "tas2" contains neither long_name nor standard_name attribute

INFO: 3.1: variable "tas1" does not contain units attribute

INFO: 3.1: variable "tas2" does not contain units attribute

--

cesm.cesm_02.nc:

...

By default the CF version checked is determined automatically by cfchecker. The user
can override this default by supplying a supported CF version, e.g., ‘1.3’, as an optional
fourth argument to ncdismember. Current valid CF options are ‘1.0’, ‘1.1’, ‘1.2’, ‘1.3’,
‘1.4’, and ‘1.5’.

Our development and testing of ncdismember is funded by our involvement in NASA’s
Dataset Interoperability Working Group (DIWG), though our interest extends beyond
NASA datasets. Taken together, NCO’s features (autoconversion to netCDF3 atomic types,
fixing multiple record dimensions, autosensing HDF4 input, scoping rules for CF conven-
tions) make ncdismember reliable and friendly for both dismembering hierarchical files and
for CF-compliance checks. Most HDF4 and HDF5 datasets can be checked for CF-compliance
with a one-line command. Example compliance checks of common NASA datasets are at
http://dust.ess.uci.edu/diwg. Our long-term goal is to enrich the hierarchical data
model with the expressivity and syntactic power of CF conventions.

NASA asked the DIWG to prepare a one-page summary of the procedure necessary to
check HDF files for CF-compliance:

cat > ~/ncdismember.txt << ’EOF’

Preparing an RPM-based OS to Test HDF & netCDF Files for CF-Compliance

By Charlie Zender, UCI & NASA Dataset Interoperability Working Group (DIWG)

Installation Summary:

17 CFchecker is developed by Michael Decker and Martin Schultz at Forschungszentrum Jülich and dis-
tributed at https://bitbucket.org/mde_/cfchecker.

https://wiki.earthdata.nasa.gov/display/ESDSWG/Dataset+Interoperability+Working+Group
http://dust.ess.uci.edu/diwg
https://bitbucket.org/mde_/cfchecker

Chapter 3: Shared Features 61

1. HDF4 [with internal netCDF support _disabled_]

2. HDF5

3. netCDF [with external HDF4 support _enabled_]

4. NCO

5. numpy

6. netcdf4-python

7. python-lxml

8. CFunits-python

9. CFChecker

10. ncdismember

All 10 packages can use default installs _except_ HDF4 and netCDF.

Following instructions for Fedora Core 20 (FC20), an RPM-based Linux OS

Feedback and changes for other Linux-based OS’s welcome to zender at uci.edu

${H4DIR}, ${H5DIR}, ${NETCDFDIR}, ${NCODIR}, may all be different

For simplicity CZ sets them all to /usr/local

1. HDF4. Build in non-default manner. Turn-off its own netCDF support.

Per http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

HDF4 support not necessary though it makes ncdismember more comprehensive

wget -c http://www.hdfgroup.org/ftp/HDF/HDF_Current/src/hdf-4.2.9.tar.gz

tar xvzf hdf-4.2.9.tar.gz

cd hdf-4.2.9

./configure --enable-shared --disable-netcdf --disable-fortran --prefix=${H4DIR}

make && make check && make install

2. HDF5. Build normally. RPM may work too. Please let me know if so.

HDF5 is a necessary pre-requisite for netCDF4

wget -c ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4/hdf5-1.8.11.tar.gz

tar xvzf hdf5-1.8.11.tar.gz

cd hdf5-1.8.11

./configure --enable-shared --prefix=${H5DIR}

make && make check && make install

3. netCDF version 4.3.1 or later. Build in non-default manner with HDF4.

Per http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

Earlier versions of netCDF may fail checking some HDF4 files

wget -c ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.3.2.tar.gz

tar xvzf netcdf-4.3.2.tar.gz

cd netcdf-4.3.2

CPPFLAGS="-I${H5DIR}/include -I${H4DIR}/include" \

LDFLAGS="-L${H5DIR}/lib -L${H4DIR}/lib" \

./configure --enable-hdf4 --enable-hdf4-file-tests

make && make check && make install

4. NCO version 4.4.0 or later. Some RPMs available. Or install by hand.

Later versions of NCO have much better support for ncdismember

62 NCO 5.0.1 User Guide

wget http://nco.sourceforge.net/src/nco-4.4.4.tar.gz .

tar xvzf nco-4.4.4.tar.gz

cd nco-4.4.4

./configure --prefix=${NCODIR}

make && make install

5. numpy

sudo yum install numpy -y

6. netcdf4-python

sudo yum install netcdf4-python -y

7. python-lxml

sudo yum install python-lxml -y

8. CFunits-python. No RPM available. Must install by hand.

http://code.google.com/p/cfunits-python/

wget http://cfunits-python.googlecode.com/files/cfunits-0.9.6.tar.gz .

tar xvzf cfunits-0.9.6.tar.gz

cd cfunits-0.9.6

sudo python setup.py install

9. CFChecker. No RPM available. Must install by hand.

https://bitbucket.org/mde_/cfchecker

wget https://bitbucket.org/mde_/cfchecker/downloads/CFchecker-1.5.15.tar.bz2 .

tar xvjf CFchecker-1.5.15.tar.bz2

cd CFchecker

sudo python setup.py install

10. ncdismember. Copy script from http://nco.sf.net/nco.html#ncdismember

Store dismembered files somewhere, e.g., ${DATA}/nco/tmp/hdf

mkdir -p ${DATA}/nco/tmp/hdf

Many datasets work with a simpler command...

ncdismember ~/nco/data/in.nc ${DATA}/nco/tmp/hdf cf 1.5

ncdismember ~/nco/data/mdl_1.nc ${DATA}/nco/tmp/hdf cf 1.5

ncdismember ${DATA}/hdf/AMSR_E_L2_Rain_V10_200905312326_A.hdf \

${DATA}/nco/tmp/hdf cf 1.5

ncdismember ${DATA}/hdf/BUV-Nimbus04_L3zm_v01-00-2012m0203t144121.h5 \

${DATA}/nco/tmp/hdf cf 1.5

ncdismember ${DATA}/hdf/HIRDLS-Aura_L3ZAD_v06-00-00-c02_2005d022-2008d077.he5 ${DATA}/nco/tmp/hdf cf 1.5

Some datasets, typically .h5, require the --fix_rec_dmn=all argument

ncdismember_${DATA}/hdf/GATMO_npp_d20100906_t1935191_e1935505_b00012_c20110707155932065809_noaa_ops.h5 ${DATA}/nco/tmp/hdf cf 1.5 --fix_rec_dmn=all

ncdismember ${DATA}/hdf/mabel_l2_20130927t201800_008_1.h5 \

${DATA}/nco/tmp/hdf cf 1.5 --fix_rec_dmn=all

EOF

A PDF version of these instructions is available here.

http://dust.ess.uci.edu/diwg/ncdismember.pdf

Chapter 3: Shared Features 63

3.15 C and Fortran Index conventions� �
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-F’
Long options: ‘--fortran’

 	
The ‘-F’ switch changes NCO to read and write with the Fortran index convention. By

default, NCO uses C-style (0-based) indices for all I/O. In C, indices count from 0 (rather
than 1), and dimensions are ordered from slowest (inner-most) to fastest (outer-most) vary-
ing. In Fortran, indices count from 1 (rather than 0), and dimensions are ordered from
fastest (inner-most) to slowest (outer-most) varying. Hence C and Fortran data storage
conventions represent mathematical transposes of eachother. Note that record variables
contain the record dimension as the most slowly varying dimension. See Section 4.9 [ncpdq
netCDF Permute Dimensions Quickly], page 287 for techniques to re-order (including trans-
pose) dimensions and to reverse data storage order.

Consider a file 85.nc containing 12 months of data in the record dimension time. The
following hyperslab operations produce identical results, a June-July-August average of the
data:

ncra -d time,5,7 85.nc 85_JJA.nc

ncra -F -d time,6,8 85.nc 85_JJA.nc

Printing variable three dmn var in file in.nc first with the C indexing convention, then
with Fortran indexing convention results in the following output formats:

% ncks --trd -v three_dmn_var in.nc

lat[0]=-90 lev[0]=1000 lon[0]=-180 three_dmn_var[0]=0

...

% ncks --trd -F -v three_dmn_var in.nc

lon(1)=0 lev(1)=100 lat(1)=-90 three_dmn_var(1)=0

...

3.16 Hyperslabs� �
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim,[min][,[max][,[stride]]]’
Long options: ‘--dimension dim,[min][,[max][,[stride]]]’,
‘--dmn dim,[min][,[max][,[stride]]]’

 	
A hyperslab is a subset of a variable’s data. The coordinates of a hyperslab are specified

with the -d dim,[min][,[max][,[stride]]] short option (or with the same arguments to
the ‘--dimension’ or ‘--dmn’ long options). At least one hyperslab argument (min, max,
or stride) must be present. The bounds of the hyperslab to be extracted are specified by
the associated min and max values. A half-open range is specified by omitting either the

64 NCO 5.0.1 User Guide

min or max parameter. The separating comma must be present to indicate the omission of
one of these arguments. The unspecified limit is interpreted as the maximum or minimum
value in the unspecified direction. A cross-section at a specific coordinate is extracted by
specifying only the min limit and omitting a trailing comma. Dimensions not mentioned
are passed with no reduction in range. The dimensionality of variables is not reduced (in
the case of a cross-section, the size of the constant dimension will be one).

First and second longitudes

ncks -F -d lon,1,2 in.nc out.nc

Second and third longitudes

ncks -d lon,1,2 in.nc out.nc

As of version 4.2.1 (August, 2012), NCO allows one to extract the last N elements of a
hyperslab. Negative integers as min or max elements of a hyperslab specification indicate
offsets from the end (Python also uses this convention). Consistent with this convention,
the value ‘-1’ (negative one) indicates the last element of a dimension, and negative zero is
algebraically equivalent to zero and so indicates the first element of a dimension. Previously,
for example, ‘-d time,-2,-1’ caused a domain error. Now it means select the penultimate
and last timesteps, independent of the size of the time dimension. Select only the first and
last timesteps, respectively, with ‘-d time,0’ and ‘-d time,-1’. Negative integers work for
min and max indices, though not for stride.

Second through penultimate longitudes

ncks -d lon,1,-2 in.nc out.nc

Second through last longitude

ncks -d lon,1,-1 in.nc out.nc

Second-to-last to last longitude

ncks -d lon,-3,-1 in.nc out.nc

Second-to-last to last longitude

ncks -d lon,-3, in.nc out.nc

The ‘-F’ argument, if any, applies the Fortran index convention only to indices specified as
positive integers:

First through penultimate longitudes

ncks -F -d lon,1,-2 in.nc out.nc (-F affects only start index)

First through last longitude

ncks -F -d lon,1,-1 in.nc out.nc

Second-to-last to penultimate longitude (-F has no effect)

ncks -F -d lon,-3,-1 in.nc out.nc

Second-to-last to last longitude (-F has no effect)

ncks -F -d lon,-3, in.nc out.nc

Coordinate values should be specified using real notation with a decimal point required in
the value, whereas dimension indices are specified using integer notation without a decimal
point. This convention serves only to differentiate coordinate values from dimension indices.
It is independent of the type of any netCDF coordinate variables. In other words, even if
coordinates are defined as integers, specify them with decimal points to have the command
interpret them as values, rather than indices. For a given dimension, the specified limits

Chapter 3: Shared Features 65

must both be coordinate values (with decimal points) or dimension indices (no decimal
points).

If values of a coordinate-variable are used to specify a range or cross-section, then the
coordinate variable must be monotonic (values either increasing or decreasing). In this case,
command-line values need not exactly match coordinate values for the specified dimension.
Ranges are determined by seeking the first coordinate value to occur in the closed range
[min,max] and including all subsequent values until one falls outside the range. The coor-
dinate value for a cross-section is the coordinate-variable value closest to the specified value
and must lie within the range or coordinate-variable values. The stride argument, if any,
must be a dimension index, not a coordinate value. See Section 3.17 [Stride], page 65, for
more information on the stride option.

All longitude values between 1 and 2 degrees

ncks -d lon,1.0,2.0 in.nc out.nc

All longitude values between 1 and 2 degrees

ncks -F -d lon,1.0,2.0 in.nc out.nc

Every other longitude value between 0 and 90 degrees

ncks -F -d lon,0.0,90.0,2 in.nc out.nc

As shown, we recommend using a full floating-point suffix of .0 instead of simply . in
order to make obvious the selection of hyperslab elements based on coordinate value rather
than index.

User-specified coordinate limits are promoted to double-precision values while searching
for the indices which bracket the range. Thus, hyperslabs on coordinates of type NC_CHAR

are computed numerically rather than lexically, so the results are unpredictable.

The relative magnitude of min and max indicate to the operator whether to expect a
wrapped coordinate (see Section 3.22 [Wrapped Coordinates], page 74), such as longitude.
If min > max, the NCO expects the coordinate to be wrapped, and a warning message will
be printed. When this occurs, NCO selects all values outside the domain [max < min], i.e.,
all the values exclusive of the values which would have been selected if min and max were
swapped. If this seems confusing, test your command on just the coordinate variables with
ncks, and then examine the output to ensure NCO selected the hyperslab you expected
(coordinate wrapping is currently only supported by ncks).

Because of the way wrapped coordinates are interpreted, it is very important to make
sure you always specify hyperslabs in the monotonically increasing sense, i.e., min < max
(even if the underlying coordinate variable is monotonically decreasing). The only exception
to this is when you are indeed specifying a wrapped coordinate. The distinction is crucial
to understand because the points selected by, e.g., -d longitude,50.,340., are exactly the
complement of the points selected by -d longitude,340.,50..

Not specifying any hyperslab option is equivalent to specifying full ranges of all dimen-
sions. This option may be specified more than once in a single command (each hyperslabbed
dimension requires its own -d option).

3.17 Stride

66 NCO 5.0.1 User Guide

� �
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim,[min][,[max][,[stride]]]’
Long options: ‘--dimension dim,[min][,[max][,[stride]]]’,
‘--dmn dim,[min][,[max][,[stride]]]’

 	
All data operators support specifying a stride for any and all dimensions at the same

time. The stride is the spacing between consecutive points in a hyperslab. A stride of 1
picks all the elements of the hyperslab, and a stride of 2 skips every other element, etc.. ncks
multislabs support strides, and are more powerful than the regular hyperslabs supported
by the other operators (see Section 3.21 [Multislabs], page 71). Using the stride option for
the record dimension with ncra and ncrcat makes it possible, for instance, to average or
concatenate regular intervals across multi-file input data sets.

The stride is specified as the optional fourth argument to the ‘-d’ hyperslab specification:
-d dim,[min][,[max][,[stride]]]. Specify stride as an integer (i.e., no decimal point)
following the third comma in the ‘-d’ argument. There is no default value for stride. Thus
using ‘-d time,,,2’ is valid but ‘-d time,,,2.0’ and ‘-d time,,,’ are not. When stride
is specified but min is not, there is an ambiguity as to whether the extracted hyperslab
should begin with (using C-style, 0-based indexes) element 0 or element ‘stride-1’. NCO

must resolve this ambiguity and it chooses element 0 as the first element of the hyperslab
when min is not specified. Thus ‘-d time,,,stride’ is syntactically equivalent to ‘-d
time,0,,stride’. This means, for example, that specifying the operation ‘-d time,,,2’
on the array ‘1,2,3,4,5’ selects the hyperslab ‘1,3,5’. To obtain the hyperslab ‘2,4’
instead, simply explicitly specify the starting index as 1, i.e., ‘-d time,1,,2’.

For example, consider a file 8501_8912.nc which contains 60 consecutive months of data.
Say you wish to obtain just the March data from this file. Using 0-based subscripts (see
Section 3.15 [C and Fortran Index Conventions], page 63) these data are stored in records
2, 14, . . . 50 so the desired stride is 12. Without the stride option, the procedure is very
awkward. One could use ncks five times and then use ncrcat to concatenate the resulting
files together:

for idx in 02 14 26 38 50; do # Bourne Shell

ncks -d time,${idx} 8501_8912.nc foo.${idx}

done

foreach idx (02 14 26 38 50) # C Shell

ncks -d time,${idx} 8501_8912.nc foo.${idx}

end

ncrcat foo.?? 8589_03.nc

rm foo.??

With the stride option, ncks performs this hyperslab extraction in one operation:

ncks -d time,2,,12 8501_8912.nc 8589_03.nc

See Section 4.8 [ncks netCDF Kitchen Sink], page 261, for more information on ncks.

Applying the stride option to the record dimension in ncra and ncrcatmakes it possible,
for instance, to average or concatenate regular intervals across multi-file input data sets.

ncra -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8589_03.nc

Chapter 3: Shared Features 67

ncrcat -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8503_8903.nc

3.18 Record Appending� �
Availability: ncra, ncrcat
Short options: None
Long options: ‘--rec_apn’, ‘--record_append’

 	
As of version 4.2.6 (March, 2013), NCO allows both Multi-File, Multi-Record operators

(ncra and ncrcat) to append their output directly to the end of an existing file. This feature
may be used to augment a target file, rather than construct it from scratch. This helps,
for example, when a timeseries is concatenated from input data that becomes available in
stages rather than all at once. In such cases this switch significantly speeds writing.

Consider the use case where one wishes to preserve the contents of fl_1.nc, and add to
them new records contained in fl_2.nc. Previously the output had to be placed in a third
file, fl_3.nc (which could also safely be named fl_2.nc), via

ncrcat -O fl_1.nc fl_2.nc fl_3.nc

Under the hood this operation copies all information in fl_1.nc and fl_2.nc not once
but twice. The first copy is performed through the netCDF interface, as all data from
fl_1.nc and fl_2.nc are extracted and placed in the output file. The second copy occurs
(usually much) more quickly as the (by default) temporary output file is copied (sometimes
a quick re-link suffices) to the final output file (see Section 2.3 [Temporary Output Files],
page 17). All this copying is expensive for large files.

The ‘--record_append’ switch appends all records in fl_2.nc to the end (after the last
record) of fl_1.nc:

ncrcat --rec_apn fl_2.nc fl_1.nc

The ordering of the filename arguments may seem non-intuitive. If the record variable
represents time in these files, then the values in fl_1.nc precede those in fl_2.nc, so why
do the files appear in the reverse order on the command line? fl_1.nc is the last file named
because it is the pre-existing output file to which we will append all the other input files listed
(in this case only fl_2.nc). The contents of fl_1.nc are completely preserved, and only
values in fl_2.nc (and any other input files) are copied. This switch avoids the necessity of
copying all of fl_1.nc through the netCDF interface to a new output file. The ‘--rec_apn’
switch automatically puts NCO into append mode (see Section 2.4 [Appending Variables],
page 19), so specifying ‘-A’ is redundant, and simultaneously specifying overwrite mode
with ‘-O’ causes an error. By default, NCO works in an intermediate temporary file. Power
users may combine ‘--rec_apn’ with the ‘--no_tmp_fl’ switch (see Section 2.3 [Temporary
Output Files], page 17):

ncrcat --rec_apn --no_tmp_fl fl_2.nc fl_1.nc

68 NCO 5.0.1 User Guide

This avoids creating an intermediate file, and copies only the minimal amount of data
(i.e., all of fl_2.nc). Hence, it is fast. We recommend users try to understand the safety
trade-offs involved.

One side-effect of ‘--rec_apn’ to be aware of is how attributes are handled. When ap-
pending files, NCO typically overwrites attributes for existing variables in the destination file
with the corresponding attributes from the same variable in the source file. The exception
to this rule is when ‘--rec_apn’ is invoked. As of version 4.7.9 (January, 2019), NCO leaves
unchanged the attributes for existing variables in the destination file. This is primarily to
ensure that calendar attributes (e.g., units, calendar) of the record coordinate, if any,
are maintained, so that the data appended to them can be re-based to the existing units.
Otherwise rebasing would fail or require rewriting the entire file which is counter to the
purpose of ‘--rec_apn’.

3.19 Subcycle� �
Availability: ncra, ncrcat
Short options: ‘-d dim,[min][,[max][,[stride][,[subcycle]]]]’
Long options: ‘--mro’ ‘--dimension dim,[min][,[max][,[stride][,[subcycle]]]]’
‘--dmn dim,[min][,[max][,[stride][,[subcycle]]]]’

 	
As of version 4.2.1 (August, 2012), NCO allows both Multi-File, Multi-Record operators,

ncra and ncrcat, to extract and operate on multiple groups of records. These groups may
be connected to physical sub-cycles of a periodic nature, e.g., months of a year, or hours
of a day. Or they may be thought of as groups of a specifed duration. We call this the
subcycle feature, sometimes abbreviated SSC18.

The subcycle feature allows processing of groups of records separated by regular intervals
of records. It is perhaps best illustrated by an extended example that describes how to solve
the same problem both with and without the SSC feature.

Creating seasonal cycles is a common task in climate data processing. Suppose a 150-
year climate simulation produces 150 output files, each comprising 12 records, each record
a monthly mean: 1850.nc, 1851.nc, ... 1999.nc. Our goal is to create a single file that
contains the climatological summertime (June, July, and August, aka JJA) mean. Tradi-
tionally, we would first compute the climatological monthly mean for each month of summer.
Each of these is a 150-year mean, i.e.,

Step 1: Create climatological monthly files clm06.nc..clm08.nc

for mth in {6..8}; do

mm=‘printf "%02d" $mth‘

ncra -O -F -d time,${mm},,12 -n 150,4,1 1850.nc clm${mm}.nc

done

Step 2: Average climatological monthly files into summertime mean

ncra -O clm06 clm07.nc clm08.nc clm_JJA.nc

18 When originally released in 2012 this was called the duration feature, and was abbreviated DRN.

Chapter 3: Shared Features 69

So far, nothing is unusual and this task can be performed by any NCO version. The SSC

feature makes obsolete the need for the shell loop used in Step 1 above.

The new SSC option aggregates more than one input record at a time before performing
arithmetic operations, and, with an additional switch, allows archival of those results in
multiple-record output (MRO) files. This reduces the task of producing the climatological
summertime mean to one step:

Step 1: Compute climatological summertime mean

ncra -O -F -d time,6,,12,3 -n 150,4,1 1850.nc clm_JJA.nc

The SSC option instructs ncra (or ncrcat) to process files in groups of three records. To
better understand the meaning of each argument to the ‘-d’ hyperslab option, read it this
way: “for the time dimension start with the sixth record, continue without end, repeat the
process every twelfth record, and define a sub-cycle as three consecutive records”.

A separate option, ‘--mro’, instructs ncra to output its results from each sub-group,
and to produce a Multi-Record Output (MRO) file rather than a Single-Record Output
(SRO) file. Unless Multi-Record-Output is indicated (either with ‘--mro’ or implicitly, as
with interleave-mode), ncra collects together all sub-groups, operates on their ensemble,
and produces a single output record. Adding ‘--mro’ to the above example causes ncra to
archive all (150) annual summertime means to one file:

Step 1: Archive all 150 summertime means in one file

ncra --mro -O -F -d time,6,,12,3 -n 150,4,1 1850.nc 1850_2009_JJA.nc

...or all (150) annual means...

ncra --mro -O -d time,,,12,12 -n 150,4,1 1850.nc 1850_2009.nc

These operations generate and require no intermediate files. This contrasts to previous
NCO methods, which require generating, averaging, then catenating 150 files. The ‘--mro’
option only works on ncra and has no effect on (or rather is redundant for) ncrcat, since
ncrcat always outputs all selected records.

3.20 Interleave� �
Availability: ncra, ncrcat
Short options: ‘-d dim,[min][,[max][,[stride][,[subcycle][,[interleave]]]]]’
Long options: ‘--mro’ ‘--dimension
dim,[min][,[max][,[stride][,[subcycle][,[interleave]]]]]’
‘--dmn dim,[min][,[max][,[stride][,[subcycle][,[interleave]]]]]’

 	
As of version 4.9.4 (September, 2020), NCO allows both Multi-File, Multi-Record oper-

ators, ncra and ncrcat, to extract, interleave, and operate on multiple groups of records.
Interleaving (or de-interleaving, depending on one’s perspective) means altering the order
of records in a group to be processed. Specifically, the interleaving feature (sometimes ab-
breviated ILV) causes the operator to treat as sequential records those that are separated
by multiples of the specified interleave parameter within a group or sub-cycle of records.

70 NCO 5.0.1 User Guide

The interleave feature sequences records with respect to their position relative to the
beginning of each sub-cycle. Records a multiple of interleave from sub-cycle beginning are
first extracted (ncrcat) or reduced (ncra), then records offset from these by one, two, et
cetera up to interleave − 1. In this manner interleaving extracts an inner (intra-sub-cycle)
loop that preserves high-frequency signals relative to the longer stride between sub-cycles.
Thus interleaving allows deconvolution of periodic phenomena within a time-series.

Processing simple arithmetic sequences is a helpful way to understand what interleaving
does. Here are some examples to reify the abstract. Let in1.nc contain the record-array
[1..10], in2.nc contain [11..20], and in12.nc contain [1..20].

ncra -d time,,,,10,5 in1.nc ~/foo.nc # 3.5, 4.5, 5.5, 6.5, 7.5

ncrcat -d time,0,4,,6,2 in1.nc ~/foo.nc # 1, 3, 5, 2, 4, 6 (+WARNING)

ncrcat -d time,2,,10,4,2 in12.nc ~/foo.nc # 3, 5, 4, 6, 13, 15, 14, 16

ncra -d time,2,,10,4,2 in12.nc ~/foo.nc # 4, 5, 14, 15

ncra -d time,,,,10,2 in1.nc in2.nc ~/foo.nc # 5, 6, 15, 16

ncra -d time,,,,10,2 in12.nc ~/foo.nc # 5, 6, 15, 16

Interleaving is perhaps best illustrated by an extended example that describes how to
solve the same problem both with and without the ILV feature. Consider as an example an
interannual timeseries archived at a high-enough temporal frequency to resolve the diurnal
cycle with tpd timesteps-per-day. Many climate models and re-analyses are archived at
hourly, tri-hourly, or six-hourly resolution yielding tpd = 24, 8, or 6, respectively. Our goal
is to extract a monthly mean diurnal cycle from this timeseries.

Suppose a 150-year climate simulation produces 150 output files, each comprising 365
days of hourly data, or 8760 records, each record an hourly mean: 1850.nc, 1851.nc, ...
1999.nc. Our goal is to create a single file that contains the climatological monthly mean
diurnal cycle for, say, March, which contains 31 days or 744 hourly records that commence
on the 60th day of the 356-day year, with record index 1416. Traditionally, we might first
compute the climatological monthly mean for hour of the day, then combine those into a
full diurnal cycle:

Step 1: Create climatological hourly files hr00.nc..hr23.nc

for hr in {0..23}; do

hh=‘printf "%02d" $hr‘

let srt=${hr}+1416

Alternatively, use UDUnits by setting srt=1850-03-01T00:00:01

ncra -O -d time,${srt},,8760 -n 150,4,1 1850.nc hr${hh}.nc

done

Step 2: Concatenate climatological hourly files into diurnal cycle

ncrcata -O hr??.nc clm_drn.nc

So far, nothing is unusual and this task can be performed by any NCO version. The ILV

feature obsoletes the need for the shell loop used in Step 1 above.

The new ILV option aggregates more than one input record at a time before performing
arithmetic operations, and, with an additional switch, allows archival of those results in
multiple-record output (MRO) files. This reduces the task of producing the climatological
summertime mean to one step:

Chapter 3: Shared Features 71

Step 1: Archive all 150 March-mean diurnal cycles in one file

ncra -O -d time,1850-03-01T00:00:01,,8760,744,24 -n 150,4,1 1850.nc clm_drn.nc

The ILV option instructs ncra (or ncrcat) to process files in groups of 31 days (744 hourly
records) interleaved with a 24-record cycle. The end result will have 150 sets of 24-timesteps
representing the diurnal cycle of March in every year. A given timestep is the mean of the
same hour of the day for every day in March of that year.

3.21 Multislabs� �
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat
Short options: ‘-d dim,[min][,[max][,[stride]]]’
Long options: ‘--dimension dim,[min][,[max][,[stride]]]’,
‘--dmn dim,[min][,[max][,[stride]]]’
‘--msa_usr_rdr’, ‘--msa_user_order’

 	
A multislab is a union of one or more hyperslabs. One defines multislabs by chaining

together hyperslab commands, i.e., -d options (see Section 3.16 [Hyperslabs], page 63).
Support for specifying amulti-hyperslab ormultislab for any variable was first added to ncks
in late 2002. The other operators received these capabilities in April 2008. Multi-slabbing
is often referred to by the acronym MSA, which stands for “Multi-Slabbing Algorithm”. As
explained below, the user may additionally request that the multislabs be returned in the
user-specified order, rather than the on-disk storage order. Although MSA user-ordering
has been available in all operators since 2008, most users were unaware of it since the
documentation (below, and in the man pages) was not written until July 2013.

Multislabs overcome many restraints that limit simple hyperslabs. A single -d op-
tion can only specify a contiguous and/or a regularly spaced multi-dimensional data ar-
ray. Multislabs are constructed from multiple -d options and may therefore have non-
regularly spaced arrays. For example, suppose it is desired to operate on all longitudes
from 10.0 to 20.0 and from 80.0 to 90.0 degrees. The combined range of longitudes is
not selectable in a single hyperslab specfication of the form ‘-d dimension,min,max’ or
‘-d dimension,min,max,stride’ because its elements are irregularly spaced in coordinate
space (and presumably in index space too). The multislab specification for obtaining these
values is simply the union of the hyperslabs specifications that comprise the multislab, i.e.,

ncks -d lon,10.,20. -d lon,80.,90. in.nc out.nc

ncks -d lon,10.,15. -d lon,15.,20. -d lon,80.,90. in.nc out.nc

Any number of hyperslabs specifications may be chained together to specify the multislab.
MSA creates an output dimension equal in size to the sum of the sizes of the multislabs.
This can be used to extend and or pad coordinate grids.

Users may specify redundant ranges of indices in a multislab, e.g.,

ncks -d lon,0,4 -d lon,2,9,2 in.nc out.nc

This command retrieves the first five longitudes, and then every other longitude value
up to the tenth. Elements 0, 2, and 4 are specified by both hyperslab arguments (hence

72 NCO 5.0.1 User Guide

this is redundant) but will count only once if an arithmetic operation is being performed.
This example uses index-based (not coordinate-based) multislabs because the stride option
only supports index-based hyper-slabbing. See Section 3.17 [Stride], page 65, for more
information on the stride option.

Multislabs are more efficient than the alternative of sequentially performing hyperslab
operations and concatenating the results. This is because NCO employs a novel multislab
algorithm to minimize the number of I/O operations when retrieving irregularly spaced
data from disk. The NCO multislab algorithm retrieves each element from disk once and
only once. Thus users may take some shortcuts in specifying multislabs and the algorithm
will obtain the intended values. Specifying redundant ranges is not encouraged, but may
be useful on occasion and will not result in unintended consequences.

Suppose the Q variable contains three dimensional arrays of distinct chemical con-
stituents in no particular order. We are interested in the NOy species in a certain geographic
range. Say that NO, NO2, and N2O5 are elements 0, 1, and 5 of the species dimension of
Q. The multislab specification might look something like

ncks -d species,0,1 -d species,5 -d lon,0,4 -d lon,2,9,2 in.nc out.nc

Multislabs are powerful because they may be specified for every dimension at the same
time. Thus multislabs obsolete the need to execute multiple ncks commands to gather the
desired range of data.

The MSA user-order switch ‘--msa_usr_rdr’ (or ‘--msa_user_order’, both of which
shorten to ‘--msa’) requests that the multislabs be output in the user-specified order from
the command-line, rather than in the input-file on-disk storage order. This allows the
user to perform complex data re-ordering in one operation that would otherwise require
cumbersome steps of hyperslabbing, concatenating, and permuting. Consider the example
of converting datasets stored with the longitude coordinate Lon ranging from [−180,180) to
datasets that follow the [0,360) convention.

% ncks -H -v Lon in.nc

Lon[0]=-180

Lon[1]=-90

Lon[2]=0

Lon[3]=90

What is needed is a simple way to rotate longitudes. Although simple in theory, this task
requires both mathematics to change the numerical value of the longitude coordinate, data
hyperslabbing to split the input on-disk arrays at Greenwich, and data re-ordering within
to stitch the western hemisphere onto the eastern hemisphere at the date-line. The ‘--msa’
user-order switch overrides the default that data are output in the same order in which
they are stored on-disk in the input file, and instead stores them in the same order as the
multi-slabs are given to the command line. This default is intuitive and is not important
in most uses. However, the MSA user-order switch allows users to meet their output order
needs by specifying multi-slabs in a certain order. Compare the results of default ordering
to user-ordering for longitude:

% ncks -O -H -v Lon -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc

Lon[0]=-180

Chapter 3: Shared Features 73

Lon[1]=-90

Lon[2]=0

Lon[3]=90

% ncks -O -H --msa -v Lon -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc

Lon[0]=0

Lon[1]=90

Lon[2]=-180

Lon[3]=-90

The two multi-slabs are the same but they can be presented to screen, or to an output file,
in either order. The second example shows how to place the western hemisphere after the
eastern hemisphere, although they are stored in the opposite order in the input file.

With this background, one sees that the following commands suffice to rotate the input
file by 180 degrees longitude:

% ncks -O -v LatLon --msa -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc out.nc

% ncap2 -O -s ’where(Lon < 0) Lon=Lon+360’ out.nc out.nc

% ncks --trd -C -H -v LatLon ~/nco/data/in.nc

Lat[0]=-45 Lon[0]=-180 LatLon[0]=0

Lat[0]=-45 Lon[1]=-90 LatLon[1]=1

Lat[0]=-45 Lon[2]=0 LatLon[2]=2

Lat[0]=-45 Lon[3]=90 LatLon[3]=3

Lat[1]=45 Lon[0]=-180 LatLon[4]=4

Lat[1]=45 Lon[1]=-90 LatLon[5]=5

Lat[1]=45 Lon[2]=0 LatLon[6]=6

Lat[1]=45 Lon[3]=90 LatLon[7]=7

% ncks --trd -C -H -v LatLon ~/out.nc

Lat[0]=-45 Lon[0]=0 LatLon[0]=2

Lat[0]=-45 Lon[1]=90 LatLon[1]=3

Lat[0]=-45 Lon[2]=180 LatLon[2]=0

Lat[0]=-45 Lon[3]=270 LatLon[3]=1

Lat[1]=45 Lon[0]=0 LatLon[4]=6

Lat[1]=45 Lon[1]=90 LatLon[5]=7

Lat[1]=45 Lon[2]=180 LatLon[6]=4

Lat[1]=45 Lon[3]=270 LatLon[7]=5

The analogous commands to rotate all fields in a global dataset by 180 degrees in the other
direction, i.e., from [0,360) to [−180,180), are:

ncks -O --msa -d lon,181.,360. -d lon,0.,180.0 in.nc out.nc

ncap2 -O -s ’where(lon > 180) lon=lon-360’ out.nc out.nc

There are other workable, valid methods to rotate data, yet none are simpler nor more
efficient than utilizing MSA user-ordering. Some final comments on applying this algorithm:
Be careful to specify hemispheres that do not overlap, e.g., by inadvertently specifying
coordinate ranges that both include Greenwich or the date-line. Some users will find using
index-based rather than coordinate-based hyperslabs makes this clearer.

74 NCO 5.0.1 User Guide

3.22 Wrapped Coordinates� �
Availability: ncks
Short options: ‘-d dim,[min][,[max][,[stride]]]’
Long options: ‘--dimension dim,[min][,[max][,[stride]]]’,
‘--dmn dim,[min][,[max][,[stride]]]’

 	
A wrapped coordinate is a coordinate whose values increase or decrease monotonically

(nothing unusual so far), but which represents a dimension that ends where it begins (i.e.,
wraps around on itself). Longitude (i.e., degrees on a circle) is a familiar example of a
wrapped coordinate. Longitude increases to the East of Greenwich, England, where it is
defined to be zero. Halfway around the globe, the longitude is 180 degrees East (or West).
Continuing eastward, longitude increases to 360 degrees East at Greenwich. The longitude
values of most geophysical data are either in the range [0,360), or [−180,180). In either case,
the Westernmost and Easternmost longitudes are numerically separated by 360 degrees,
but represent contiguous regions on the globe. For example, the Saharan desert stretches
from roughly 340 to 50 degrees East. Extracting the hyperslab of data representing the
Sahara from a global dataset presents special problems when the global dataset is stored
consecutively in longitude from 0 to 360 degrees. This is because the data for the Sahara
will not be contiguous in the input-file but is expected by the user to be contiguous in the
output-file. In this case, ncks must invoke special software routines to assemble the desired
output hyperslab from multiple reads of the input-file.

Assume the domain of the monotonically increasing longitude coordinate lon is 0 <
lon < 360. ncks will extract a hyperslab which crosses the Greenwich meridian simply by
specifying the westernmost longitude as min and the easternmost longitude as max. The
following commands extract a hyperslab containing the Saharan desert:

ncks -d lon,340.,50. in.nc out.nc

ncks -d lon,340.,50. -d lat,10.,35. in.nc out.nc

The first example selects data in the same longitude range as the Sahara. The second
example further constrains the data to having the same latitude as the Sahara. The coor-
dinate lon in the output-file, out.nc, will no longer be monotonic! The values of lon will
be, e.g., ‘340, 350, 0, 10, 20, 30, 40, 50’. This can have serious implications should you
run out.nc through another operation which expects the lon coordinate to be monotoni-
cally increasing. Fortunately, the chances of this happening are slim, since lon has already
been hyperslabbed, there should be no reason to hyperslab lon again. Should you need to
hyperslab lon again, be sure to give dimensional indices as the hyperslab arguments, rather
than coordinate values (see Section 3.16 [Hyperslabs], page 63).

3.23 Auxiliary Coordinates

Chapter 3: Shared Features 75

� �
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat
Short options: ‘-X lon_min,lon_max,lat_min,lat_max’
Long options: ‘--auxiliary lon_min,lon_max,lat_min,lat_max’

 	
Utilize auxiliary coordinates specified in values of the coordinate variable’s standard_

name attributes, if any, when interpreting hyperslab and multi-slab options. Also
‘--auxiliary’. This switch supports hyperslabbing cell-based grids (aka unstructured
grids) over coordinate ranges. When these grids are stored as 1D-arrays of cell data, this
feature is helpful at hyperslabbing and/or performing arithmetic on selected geographic
regions. This feature cannot be used to select regions of 2D grids (instead use the ncap2

where statement for such grids Section 4.1.14 [Where statement], page 177). This fea-
ture works on datasets that associate coordinate variables to grid-mappings using the CF-
convention (see Section 3.45 [CF Conventions], page 145) coordinates and standard_

name attributes described here. Currently, NCO understands auxiliary coordinate variables
pointed to by the standard_name attributes for latitude and longitude. Cells that con-
tain a value within the user-specified West-East-South-North (aka WESN) bounding box
[lon min,lon max,lat min,lat max] are included in the output hyperslab.

The sides of the WESN) bounding box must be specified in degrees (not radians). The
specified coordinates must be within the valid data range. This includes boxes that wrap
the origin of the longitude coordinate. For example, if the longitude coordinate is stored
in [0,360], then a bounding box that straddles the Greenwich meridian in Africa would be
specified as, e.g., [350, 10,−20, 20], not as [350, 370,−20, 20].

A cell-based or unstructured grid collapses the horizontal spatial information (latitude
and longitude) and stores it along a one-dimensional coordinate that has a one-to-one map-
ping to both latitude and longitude coordinates. Rectangular (in longitude and latitude)
horizontal hyperslabs cannot be selected using the typical procedure (see Section 3.16 [Hy-
perslabs], page 63) of separately specifying ‘-d’ arguments for longitude and latitude. In-
stead, when the ‘-X’ is used, NCO learns the names of the latitude and longitude coordinates
by searching the standard_name attribute of all variables until it finds the two variables
whose standard_name’s are “latitude” and “longitude”, respectively. This standard_name
attribute for latitude and longitude coordinates follows the CF-convention (see Section 3.45
[CF Conventions], page 145).

Putting it all together, consider a variable gds 3dvar output from simulations on a cell-
based geodesic grid. Although the variable contains three dimensions of data (time, latitude,
and longitude), it is stored in the netCDF file with only two dimensions, time and gds_crd.

% ncks -m -C -v gds_3dvar ~/nco/data/in.nc

gds_3dvar: type NC_FLOAT, 2 dimensions, 4 attributes, chunked? no, \

compressed? no, packed? no, ID = 41

gds_3dvar RAM size is 10*8*sizeof(NC_FLOAT) = 80*4 = 320 bytes

gds_3dvar dimension 0: time, size = 10 NC_DOUBLE, dim. ID = 20 \

(CRD)(REC)

gds_3dvar dimension 1: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)

gds_3dvar attribute 0: long_name, size = 17 NC_CHAR, value = \

Geodesic variable

http://cfconventions.org/cf-conventions/cf-conventions.html#coordinate-system

76 NCO 5.0.1 User Guide

gds_3dvar attribute 1: units, size = 5 NC_CHAR, value = meter

gds_3dvar attribute 2: coordinates, size = 15 NC_CHAR, value = \

lat_gds lon_gds

gds_3dvar attribute 3: purpose, size = 64 NC_CHAR, value = \

Test auxiliary coordinates like those that define geodesic grids

The coordinates attribute lists the names of the latitude and longitude coordinates,
lat_gds and lon_gds, respectively. The coordinates attribute is recommended though
optional. With it, the user can immediately identify which variables contain the latitude
and longitude coordinates. Without a coordinates attribute it would be unclear at first
glance whether a variable resides on a cell-based grid. In this example, time is a normal
record dimension and gds_crd is the cell-based dimension.

The cell-based grid file must contain two variables whose standard_name attributes are
“latitude”, and “longitude”:

% ncks -m -C -v lat_gds,lon_gds ~/nco/data/in.nc

lat_gds: type NC_DOUBLE, 1 dimensions, 4 attributes, \

chunked? no, compressed? no, packed? no, ID = 37

lat_gds RAM size is 8*sizeof(NC_DOUBLE) = 8*8 = 64 bytes

lat_gds dimension 0: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)

lat_gds attribute 0: long_name, size = 8 NC_CHAR, value = Latitude

lat_gds attribute 1: standard_name, size = 8 NC_CHAR, value = latitude

lat_gds attribute 2: units, size = 6 NC_CHAR, value = degree

lat_gds attribute 3: purpose, size = 62 NC_CHAR, value = \

1-D latitude coordinate referred to by geodesic grid variables

lon_gds: type NC_DOUBLE, 1 dimensions, 4 attributes, \

chunked? no, compressed? no, packed? no, ID = 38

lon_gds RAM size is 8*sizeof(NC_DOUBLE) = 8*8 = 64 bytes

lon_gds dimension 0: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)

lon_gds attribute 0: long_name, size = 9 NC_CHAR, value = Longitude

lon_gds attribute 1: standard_name, size = 9 NC_CHAR, value = longitude

lon_gds attribute 2: units, size = 6 NC_CHAR, value = degree

lon_gds attribute 3: purpose, size = 63 NC_CHAR, value = \

1-D longitude coordinate referred to by geodesic grid variables

In this example lat_gds and lon_gds represent the latitude or longitude, respectively,
of cell-based variables. These coordinates (must) have the same single dimension (gds_crd,
in this case) as the cell-based variables. And the coordinates must be one-dimensional—
multidimensional coordinates will not work.

This infrastructure allows NCO to identify, interpret, and process (i.e., hyperslab) the
variables on cell-based grids as easily as it works with regular grids. To time-average all
the values between zero and 180 degrees longitude and between plus and minus 30 degress
latitude, we use

ncra -O -X 0.,180.,-30.,30. -v gds_3dvar in.nc out.nc

Chapter 3: Shared Features 77

NCO accepts multiple ‘-X’ arguments for cell-based grid multi-slabs, just as it accepts
multiple ‘-d’ arguments for multi-slabs of regular coordinates.

ncra -O -X 0.,180.,-30.,30. -X 270.,315.,45.,90. in.nc out.nc

The arguments to ‘-X’ are always interpreted as floating-point numbers, i.e., as coordi-
nate values rather than dimension indices so that these two commands produce identical
results

ncra -X 0.,180.,-30.,30. in.nc out.nc

ncra -X 0,180,-30,30 in.nc out.nc

By contrast, arguments to ‘-d’ require decimal places to be recognized as coordinates
not indices (see Section 3.16 [Hyperslabs], page 63). We recommend always using decimal
points with ‘-X’ arguments to avoid confusion.

3.24 Grid Generation� �
Availability: ncks
Short options: None
Long options: ‘--rgr key=val’ (multiple invocations allowed)

 	
As of NCO version 4.5.2 (August, 2015), ncks generates accurate and complete SCRIP-

format gridfiles for select grid types, including uniform, capped and Gaussian rectangular,
latitude/longitude grids, global or regional. The grids are stored in an external grid-file.

All options pertinent to the grid geometry and metadata are passed to NCO via key-value
pairs prefixed by the ‘--rgr’ option, or its synonym, ‘--regridding’. The option ‘--rgr’
(and its long option equivalents such as ‘--regridding’) indicates the argument syntax
will be key=val. As such, ‘--rgr’ and its synonyms are indicator options that accept
arguments supplied one-by-one like ‘--rgr key1=val1 --rgr key2=val2’, or aggregated
together in multi-argument format like ‘--rgr key1=val1#key2=val2’ (see Section 3.4.2
[Multi-arguments], page 32).

The text strings that describe the grid and name the file are important aids to convey the
grid geometry to other users. These arguments, and their corresponding keys, are the grid
title (grd ttl), and grid filename (grid), respectively. The numbers of latitudes (lat nbr)
and longitudes (lon nbr) are independent, and together determine the grid storage size.
These four options should be considered mandatory, although NCO provides defaults for
any arguments omitted.

The remaining arguments depend on the whether the grid is global or regional. For global
grids, one should specify only two more arguments, the latitude (lat typ) and longitude
(lon typ) grid-types. These types are chosen as described below from a small selection of
options that together define the most common rectangular global grids. For regional grids,
one must specify the bounding box, i.e., the edges of the rectangular grid on the North
(lat nrt), South (lat sth), East (lat est), and West (lat nrt) sides. Specifying a bounding
box for global grids is redundant and will cause an error to ensure the user intends a global
grid. NCO assumes that regional grids are uniform, though it will attempt to produce

78 NCO 5.0.1 User Guide

regional grids of other types if the user specifies other latitude (lat typ) and longitude
(lon typ) grid-types, e.g., Gaussian or Cap. Edges of a regional bounding box may be
specified individually, or in the single-argument forms.

The full description of grid-generation arguments, and their corresponding keys, is:

Grid Title: grd ttl
It is surprisingly difficult to discern the geometric configuration of a grid from
the coordinates of a SCRIP-format gridfile. A human-readable grid description
should be placed in grd ttl. Examples include “CAM-FV scalar grid 129x256”
and “T42 Gaussian grid”.

Grid File: scrip grid
The grid-generation API was bolted-on to NCO and contains some tempo-
rary kludges. For example, the output grid filename is distinct from the out-
put filename of the host ncks command. Specify the output gridfile name
scrip grid with keywords grid or scrip, e.g., ‘--rgr grid=scrip_grid’ or
‘--rgr scrip=t42_SCRIP.20150901.nc’. It is conventional to include a dates-
tamp in the gridfile name. This helps users identify up-to-date and out-of-date
grids. Any valid netCDF file may be named as the source (e.g., in.nc). It
will not be altered. The destination file (e.g., foo.nc) will be overwritten. Its
contents are immaterial.

Grid Types: lat typ, lon typ
The keys that hold the longitude and latitude gridtypes (which are, by the
way, independent of eachother) are lon typ and lat typ. The lat typ options
for global grids are ‘uni’ for Uniform, ‘cap’ (or ‘fv’) for Cap19, and ‘gss’ for
Gaussian.

These values are all case-independent, so ‘Gss’ and ‘gss’ both work. As of
version 4.7.7 (September, 2018), NCO generates perfectly symmetric interface
latitudes for Gaussian grids. Previously the interface latitude generation mech-
anism could accumulate small rounding errors (~1.0e-14). Now symmetry prop-
erties are used to ensure perfect symmetry. All other Gaussian grids we have
seen compute interfaces as the arithmetic mean of the adjacent Gaussian lati-
tudes, which is patently wrong. To our knowledge NCO is the only map soft-
ware that generates accurate interface latitudes for a Gaussian grid. We use
a Newton-Raphson iteration technique to identify the interface latitudes that
enclose the area indicated by the Gaussian weight.

As its name suggests, the latitudes in a Uniform-latitude grid are uniformly
spaced20. The Uniform-latitude grid may have any number of latitudes. NCO

19 The term FV confusing because it is correct to call any Finite Volume grid (including arbitrary polygons)
an FV grid. However, an FV grid has also been used for many years to described the particular type
of rectangular grid with caps at the poles used to discretize global model grids for use with the Lin-
Rood dynamical core. To reduce confusion, we use “Cap grid” to refer to the latter and reserv FV as a
straightforward acronym for Finite Volume.

20 A Uniform grid in latitude could be called “equi-angular” in latitude, but NCO reserves the term Equi-
angular or “eqa” for grids that have the same uniform spacing in both latitude and longitude, e.g., 1◦x1◦

or 2◦x2◦. NCO reserves the term Regular to refer to grids that are monotonic and rectangular grids.
Confusingly, the angular spacing in a Regular grid need not be uniform, it could be irregular, such as in a

Chapter 3: Shared Features 79

can only generate longitude grids (below) that are uniformly spaced, so the
Uniform-latitude grids we describe are also uniform in the 2D sense. Uni-
form grids are intuitive, easy to visualize, and simple to program. Hence their
popularity in data exchange, visualization, and archives. Moreover, regional
grids (unless they include the poles), are free of polar singularities, and thus
are well-suited to storage on Uniform grids. Theoretically, a Uniform-latitude
grid could have non-uniform longitudes, but NCO currently does not implement
non-uniform longitude grids.

Their mathematical properties (convergence and excessive resolution at the
poles, which can appear as singularities) make Uniform grids fraught for use
in global models. One purpose Uniform grids serve in modeling is as “offset”
or “staggered” grids, meaning grids whose centers are the interfaces of another
grid. The Finite-Volume (FV) method is often used to represent and solve
the equations of motion in climate-related fields. Many FV solutions (includ-
ing the popular Lin-Rood method as used in the CESM CAM-FV atmospheric
model) evaluate scalar (i.e., non-vector) fields (e.g., temperature, water vapor)
at gridcell centers of what is therefore called the scalar grid. FV methods (like
Lin-Rood) that employ an Arakawa C-grid or D-grid formulation define veloc-
ities on the edges of the scalar grid. This CAM-FV velocity grid is therefore
“staggered” or “offset” from the CAM-FV scalar grid by one-half gridcell. The
CAM-FV scalar latitude grid has gridpoints (the “caps”) centered on each pole
to avoid singularities. The offset of a Cap-grid is a Uniform-grid, so the Uni-
form grid is often called an FV-”offset” or “staggered” grid. Hence an NCO

Uniform grid is equivalent to an NCL “Fixed Offset” grid. For example, a
128x256 Uniform grid is the offset or staggered version of a 129x256 Cap grid
(aka FV-grid).

Referring the saucer-like cap-points at the poles, NCO uses the term “Cap grid”
to describe the latitude portion of the FV-scalar grid as used by the CAM-FV

Lin-Rood dynamics formulation. NCO accepts the shorthand FV, and the more
descriptive “Yarmulke”, as synonyms for Cap. A Cap-latitude grid differs from
a Uniform-latitude grid in many ways:

Most importantly, Cap grids are 2D-representations of numerical grids with
cap-midpoints instead of zonal-teeth convergence at the poles. The rectangular
2D-representation of each cap contains gridcells shaped like sharp teeth that
converge at the poles similar to the Uniform grid, but the Cap gridcells are
meant to be aggregated into a single cell centered at the pole in a dynamical
transport algorithm. In other words, the polar teeth are a convenient way
to encode a non-rectangular grid in memory into a rectangular array on disk.
Hence Cap grids have the unusual property that the poles are labeled as being
both the centers and the outer interfaces of all polar gridcells. Second, Cap
grids are uniform in angle except at the poles, where the latitudes span half the
meridional range of the rest of the gridcells. Even though in the host dynamical
model the Cap grid polar points are melded into caps uniform (in angle) with
the rest of the grid, the disk representation on disk is not uniform. Nevertheless,

Gaussian grid. The term Regular is not too useful in grid-generation, because so many other parameters
(spacing, centering) are necessary to disambiguate it.

80 NCO 5.0.1 User Guide

some call the Cap grid a uniform-angle grid because the information contained
at the poles is aggregated in memory to span twice the range of a single polar
gridcell (which has half the normal width). NCL uses the term “Fixed grid” for
a Cap grid. The “Fixed” terminology seems broken.

Finally, Gaussian grids are the Cartesian representation of global spectral trans-
form models. Gaussian grids typically have an even number of latitudes and so
do not have points at the poles. All three latitude grid-type supported by NCO

(Uniform, Cap, and Gaussian) are Regular grids in that they are monotonic.

The lon typ options for global grids are ‘grn_ctr’ and ‘180_ctr’ for the first
gridcell centered at Greenwich or 180 degrees, respecitvely. And ‘grn_wst’ and
‘180_wst’ for Greenwich or 180 degress lying on the western edge of the first
gridcell. Many global models use the ‘grn_ctr’ longitude grid as their “scalar
grid” (where, e.g., temperature, humidity, and other scalars are defined). The
“staggered” or “offset” grid (where often the dynamics variables are defined)
then must have the ‘grn_wst’ longitude convention. That way the centers of
the scalar grid are the vertices of the offset grid, and visa versa.

Grid Resolution: lat nbr, lon nbr
The number of gridcells in the horizontal spatial dimensions are lat nbr and
lon nbr, respectively. There are no restrictions on lon nbr for any gridtype.
Latitude grids do place some restrictions on lat nbr (see above). As of NCO

version 4.5.3, released in October, 2015, the ‘--rgr latlon=lat_nbr,lon_nbr’
switch may be used to simultaneously specify both latitude and longitude, e.g.,
‘--rgr latlon=180,360’.

Latitude Direction: lat drc
The lat drc option is specifies whether latitudes monotonically increase or de-
crease in rectangular grids. The two possible values are ‘s2n’ for grids that
begin with the most southerly latitude and end with the most northerly, and
‘n2s’ for grids that begin with the most northerly latitude and end with the
most southerly. By default NCO creates grids whose latitudes run south-to-
north. Hence this option is only necessary to create a grid whose latitudes run
north-to-south.

Grid Edges: lon wst, lon est, lat sth, lat nrt
The outer edges of a regional rectangular grid are specified by the North
(lat nrt), South (lat sth), East (lat est), and West (lat nrt) sides. Latitudes
and longigudes must be specified in degrees (not radians). Latitude edges must
be between -90 and 90. Longitude edges may be positive or negative and sep-
arated by no more than 360 degrees. The edges may be specified individually
with four arguments, consecutively separated by the multi-argument delimiter
(‘#’ by default), or together in a short list to the pre-ordered options ‘wesn’ or
‘snwe’. These three specifications are equivalent:

ncks ... --rgr lat_sth=30.0 --rgr lat_nrt=70.0 --rgr lon_wst=-120.0 --rgr lon_est=-90.0 ...

ncks ... --rgr lat_sth=30.0#lat_nrt=70.0#lon_wst=-120.0#lon_est=-90.0 ...

ncks ... --rgr snwe=30.0,70.0,-120.0,-90.0 ...

The first example above supplies the bounding box with four key=val pairs. The second
example above supplies the bounding box with a single option in multi-argument format

Chapter 3: Shared Features 81

(see Section 3.4.2 [Multi-arguments], page 32). The third example uses a convenience switch
introduced to reduce typing.

Generating common grids:

Through version 4.7.5 (August, 2018), ncks performed grid-generation

180x360 (1x1 degree) Equi-Angular grid, first longitude centered at Greenwich

ncks --rgr ttl=’Equi-Angular grid 180x360’#latlon=180,360#lat_typ=uni#lon_typ=grn_ctr \

--rgr scrip=${DATA}/grids/180x360_SCRIP.20150901.nc \

~zender/nco/data/in.nc ~/foo.nc

As of version 4.7.6 (August, 2018), ncremap supports more concise commands

ncremap -G ttl=’Equi-Angular grid 180x360’#latlon=180,360#lat_typ=uni#lon_typ=grn_ctr \

-g ${DATA}/grids/180x360_SCRIP.20180901.nc

180x360 (1x1 degree) Equi-Angular grid, first longitude west edge at Greenwich

ncremap -G ttl=’Equi-Angular grid 180x360’#latlon=180,360#lat_typ=uni#lon_typ=grn_wst \

-g ${DATA}/grids/180x360wst_SCRIP.20180301.nc

129x256 CAM-FV grid, first longitude centered at Greenwich

ncremap -G ttl=’CAM-FV scalar grid 129x256’#latlon=129,256#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/129x256_SCRIP.20150901.nc

192x288 CAM-FV grid, first longitude centered at Greenwich

ncremap -G ttl=’CAM-FV scalar grid 192x288’#latlon=192,288#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/192x288_SCRIP.20160301.nc

361x576 NASA MERRA2 FV grid, first longitude centered at DateLine

ncremap -G ttl=’NASA MERRA2 Cap grid 361x576’#latlon=361,576#lat_typ=cap#lon_typ=180_ctr \

-g ${DATA}/grids/merra2_361x576.20201001.nc

1441x2880 CAM-FV grid, first longitude centered at Greenwich

ncremap -G ttl=’CAM-FV scalar grid 1441x2880’#latlon=1441,2880#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/1441x2880_SCRIP.20170901.nc

1440x2880 MOSART grid, first longitude west edge at DateLine

ncremap -7 -L 1 \

-G ttl=’MOSART 1440x2880’#latlon=1440,2880#lat_typ=uni#lon_typ=180_wst \

-g ${DATA}/grids/r0125_1440x2880.20210401.nc

91x180 CAM-FV grid, first longitude centered at Greenwich (2 degree grid)

ncremap -G ttl=’CAM-FV scalar grid 91x180’#latlon=91,180#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/91x180_SCRIP.20170401.nc

25x48 CAM-FV grid, first longitude centered at Greenwich (7.5 degree grid)

ncremap -G ttl=’CAM-FV scalar grid 25x48’#latlon=25,48#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/25x48_SCRIP.20170401.nc

82 NCO 5.0.1 User Guide

128x256 Equi-Angular grid, Greenwich west edge of first longitude

CAM-FV offset grid for 129x256 CAM-FV scalar grid above

ncremap -G ttl=’Equi-Angular grid 128x256’#latlon=128,256#lat_typ=uni#lon_typ=grn_wst \

-g ${DATA}/grids/128x256_SCRIP.20150901.nc

T42 Gaussian grid, first longitude centered at Greenwich

ncremap -G ttl=’T42 Gaussian grid’#latlon=64,128#lat_typ=gss#lon_typ=grn_ctr \

-g ${DATA}/grids/t42_SCRIP.20180901.nc

T62 Gaussian grid, first longitude centered at Greenwich, NCEP2 T62 Gaussian grid

ncremap -G ttl=’NCEP2 T62 Gaussian grid’#latlon=94,192#lat_typ=gss#lon_typ=grn_ctr#lat_drc=n2s \

-g ${DATA}/grids/ncep2_t62_SCRIP.20191001.nc

F256 Full Gaussian grid, first longitude centered at Greenwich

ncremap -7 -L 1 \

-G ttl=’ECMWF IFS F256 Full Gaussian grid 512x1024’#latlon=512,1024#lat_typ=gss#lon_typ=grn_ctr#lat_drc=n2s \

-g ${DATA}/grids/f256_scrip.20201001.nc

513x1024 FV grid, first longitude centered at Greenwich

ncremap -7 -L 1 \

-G ttl=’FV scalar grid 513x1024’#latlon=513,1024#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/513x1024_SCRIP.20201001.nc

1025x2048 FV grid, first longitude centered at Greenwich

ncremap -7 -L 1 \

-G ttl=’FV scalar grid 1025x2048’#latlon=1025,2048#lat_typ=fv#lon_typ=grn_ctr \

-g ${DATA}/grids/1025x2048_SCRIP.20201001.nc

F640 Full Gaussian grid, first longitude centered at Greenwich

ncremap -7 -L 1 \

-G ttl=’ECMWF IFS F640 Full Gaussian grid 1280x2560’#latlon=1280,2560#lat_typ=gss#lon_typ=grn_ctr#lat_drc=n2s \

-g ${DATA}/grids/f640_scrip.20190601.nc

NASA Climate Modeling Grid (CMG) 3600x7200 (0.05x0.05 degree) Equi-Angular grid

Date-line west edge of first longitude, east edge of last longitude

Write to compressed netCDF4-classic file to reduce filesize ~140x from 2.2 GB to 16 MB

ncremap -7 -L 1 \

-G ttl=’Equi-Angular grid 3600x7200 (NASA CMG)’#latlon=3600,7200#lat_typ=uni#lon_typ=180_wst \

-g ${DATA}/grids/3600x7200_SCRIP.20160301.nc

DOE E3SM/ACME High Resolution Topography (1 x 1 km grid) for Elevation Classes

Write to compressed netCDF4-classic file to reduce filesize from ~85 GB to 607 MB

ncremap -7 -L 1 \

-G ttl=’Global latxlon = 18000x36000 ~1 x 1 km’#latlon=18000,36000#lat_typ=uni#lon_typ=grn_ctr \

-g ${DATA}/grids/grd_18000x36000_SCRIP.nc

1x1 degree Equi-Angular Regional grid over Greenland, centered longitudes

Chapter 3: Shared Features 83

ncremap -G ttl=’Equi-Angular Greenland 1x1 degree grid’#latlon=30,90#snwe=55.0,85.0,-90.0,0.0#lat_typ=uni#lon_typ=grn_ctr \

-g ${HOME}/greenland_1x1.nc

721x1440 ECMWF ERA5 resolution

ncremap -7 --dfl_lvl=1 -G ttl=’Cap/FV ECMWF ERA5 grid 0.25x0.25 degree, dimensions 721x1440, cell centers on Poles/Equator and Prime Meridian/Date Line’#latlon=721,1440#lat_drc=n2s#lat_typ=cap#lon_typ=grn_ctr \

-g ${DATA}/grids/era5.nc

105x401 Greenland ERA5

ncremap -G ttl=’Equi-Angular Greenland 0.25x0.25 degree ERA5 north-to-south grid’#latlon=105,401#snwe=58.875,85.125,-87.125,13.125#lat_typ=uni#lat_drc=n2s#lon_typ=grn_ctr \

-g ${DATA}/grids/greenland_0.25x0.25_era5.nc

Greenland r025 with SNWE = 59,84,-73,-11 (in round numbers) with RACMO ice mask

ncremap -G ttl=’Equi-Angular Greenland 0.25x0.25 degree r025 south-to-north grid’#latlon=100,250#snwe=58.875,83.875,-73.25,-10.75#lat_typ=uni#lat_drc=s2n#lon_typ=grn_ctr \

-g ${DATA}/grids/greenland_r025_100x250.nc

NASA Climate Modeling Grid (CMG) 3600x7200 (0.05x0.05 degree, 3’x3’) Equi-Angular grid

With land mask derived mainly from GLOBE 30" topography and anywhere Gardner 30" land ice data is valid

Date-line west edge of first longitude, east edge of last longitude

Write to compressed netCDF4-classic file to reduce filesize ~140x from 2.2 GB to 16 MB

ncremap -7 -L 1 \

-G ttl=’Equi-Angular grid 3-minute=0.05 degree resolution = 3600x7200, NASA CMG boundaries, with land mask derived mainly from GLOBE 30" topography and anywhere Gardner 30" land ice data is valid’#latlon=3600,7200#lat_typ=uni#lon_typ=180_wst \

-g ${DATA}/grids/r005_3600x7200_globe_gardner_landmask.20210501.nc

Often researchers face the problem not of generating a known, idealized grid but of
understanding an unknown, possibly irregular or curvilinear grid underlying a dataset pro-
duced elsewhere. NCO will infer the grid of a datafile by examining its coordinates (and
boundaries, if available), reformat that information as necessary to diagnose gridcell areas,
and output the results in SCRIP format. As of NCO version 4.5.3, released in October,
2015, the ‘--rgr infer’ flag activates the machinery to infer the grid rather than construct
the grid from other user-specified switches. To infer the grid properties, NCO interrogates
input-file for horizontal coordinate information, such as the presence of dimension names
rooted in latitude/longitude-naming traditions and conventions. Once NCO identifies the
likely horizontal dimensions it looks for horizontal coordinates and bounds. If bounds are
not found, NCO assumes the underlying grid comprises quadrilateral cells whose edges are
midway between cell centers, for both rectilinear and curvilinear grids.

Infer AIRS swath grid from input, write it to grd_scrip.nc

ncks --rgr infer --rgr scrip=${DATA}/sld/rgr/grd_scrip.nc \

${DATA}/sld/raw/AIRS.2014.10.01.202.L2.TSurfStd.Regrid010.1DLatLon.nc ~/foo.nc

When inferring grids, the grid file (grd_scrip.nc) is written in SCRIP format, the
input file (AIRS...nc) is read, and the output file (foo.nc) is overwritten (its contents are
immaterial).

As of NCO version 4.6.6, released in April, 2017, inferred 2D rectangular grids may also
be written in UGRID-format (defined here). Request a UGRID mesh with the option ‘--rgr
ugrid=fl_ugrid’. Currently both UGRID and SCRIP grids must be requested in order to
produce the UGRID output, e.g.,

http://ugrid-conventions.github.io/ugrid-conventions

84 NCO 5.0.1 User Guide

ncks --rgr infer --rgr ugrid=${HOME}/grd_ugrid.nc \

--rgr scrip=${HOME}/grd_scrip.nc ~/skl_180x360.nc ~/foo.nc

The SCRIP gridfile and UGRID meshfile metadata produced for the equiangular
1-by-1 degree global grid are:

zender@aerosol:~$ ncks -m ~/grd_scrip.nc

netcdf grd_scrip {

dimensions:

grid_corners = 4 ;

grid_rank = 2 ;

grid_size = 64800 ;

variables:

double grid_area(grid_size) ;

grid_area:units = "steradian" ;

double grid_center_lat(grid_size) ;

grid_center_lat:units = "degrees" ;

double grid_center_lon(grid_size) ;

grid_center_lon:units = "degrees" ;

double grid_corner_lat(grid_size,grid_corners) ;

grid_corner_lat:units = "degrees" ;

double grid_corner_lon(grid_size,grid_corners) ;

grid_corner_lon:units = "degrees" ;

int grid_dims(grid_rank) ;

int grid_imask(grid_size) ;

} // group /

zender@aerosol:~$ ncks -m ~/grd_ugrid.nc

netcdf grd_ugrid {

dimensions:

maxNodesPerFace = 4 ;

nEdges = 129240 ;

nFaces = 64800 ;

nNodes = 64442 ;

two = 2 ;

variables:

int mesh ;

mesh:cf_role = "mesh_topology" ;

mesh:standard_name = "mesh_topology" ;

mesh:long_name = "Topology data" ;

Chapter 3: Shared Features 85

mesh:topology_dimension = 2 ;

mesh:node_coordinates = "mesh_node_x mesh_node_y" ;

mesh:face_node_connectivity = "mesh_face_nodes" ;

mesh:face_coordinates = "mesh_face_x mesh_face_y" ;

mesh:face_dimension = "nFaces" ;

mesh:edge_node_connectivity = "mesh_edge_nodes" ;

mesh:edge_coordinates = "mesh_edge_x mesh_edge_y" ;

mesh:edge_dimension = "nEdges" ;

int mesh_edge_nodes(nEdges,two) ;

mesh_edge_nodes:cf_role = "edge_node_connectivity" ;

mesh_edge_nodes:long_name = "Maps every edge to the two nodes that it connects" ;

mesh_edge_nodes:start_index = 0 ;

double mesh_edge_x(nEdges) ;

mesh_edge_x:standard_name = "longitude" ;

mesh_edge_x:long_name = "Characteristic longitude of 2D mesh face" ;

mesh_edge_x:units = "degrees_east" ;

double mesh_edge_y(nEdges) ;

mesh_edge_y:standard_name = "latitude" ;

mesh_edge_y:long_name = "Characteristic latitude of 2D mesh face" ;

mesh_edge_y:units = "degrees_north" ;

int mesh_face_nodes(nFaces,maxNodesPerFace) ;

mesh_face_nodes:cf_role = "face_node_connectivity" ;

mesh_face_nodes:long_name = "Maps every face to its corner nodes" ;

mesh_face_nodes:start_index = 0 ;

mesh_face_nodes:_FillValue = -2147483648 ;

double mesh_face_x(nFaces) ;

mesh_face_x:standard_name = "longitude" ;

mesh_face_x:long_name = "Characteristic longitude of 2D mesh edge" ;

mesh_face_x:units = "degrees_east" ;

double mesh_face_y(nFaces) ;

mesh_face_y:standard_name = "latitude" ;

mesh_face_y:long_name = "Characteristic latitude of 2D mesh edge" ;

mesh_face_y:units = "degrees_north" ;

double mesh_node_x(nNodes) ;

mesh_node_x:standard_name = "longitude" ;

mesh_node_x:long_name = "Longitude of mesh nodes" ;

mesh_node_x:units = "degrees_east" ;

double mesh_node_y(nNodes) ;

mesh_node_y:standard_name = "latitude" ;

86 NCO 5.0.1 User Guide

mesh_node_y:long_name = "Latitude of mesh nodes" ;

mesh_node_y:units = "degrees_north" ;

} // group /

Another task that arises in regridding is characterizing new grids. In such cases it can
be helpful to have a “skeleton” version of a dataset on the grid, so that grid center and
interfaces locations can be assessed, continental outlines can be examined, or the skeleton
can be manually populated with data rather than relying on a model. SCRIP files can be
difficult to visualize and manipulate, so NCO will provide, if requested, a so-called skeleton
file on the user-specified grid. As of NCO version 4.5.3, released in October, 2015, the
‘--rgr skl=fl_skl’ switch outputs the skeleton file to fl skl. The skeleton file may then
be examined in a dataset viewer, populated with data, and generally serve as a template
for what to expect from datasets of the same geometry.

Generate T42 Gaussian grid file t42_SCRIP.nc and skeleton file t42_skl.nc

ncks --rgr skl=${DATA}/grids/t42_skl.nc --rgr scrip=${DATA}/grids/t42_SCRIP.nc \

--rgr latlon=64,128#lat_typ=gss#lon_typ=Grn_ctr \

~zender/nco/data/in.nc ~/foo.nc

When generating skeleton files, both the grid file (t42_SCRIP.nc) and the skeleton file
(t42_skl.nc) are written, the input file (in.nc) is ignored, and the output file (foo.nc) is
overwritten (its contents are immaterial).

3.25 Regridding� �
Availability: ncclimo, ncks, ncremap
Short options: None
Long options: ‘--map map-file’ or ‘--rgr_map map-file’
‘--rgr key=val’ (multiple invocations allowed)
‘--rnr=rnr_thr’ or ‘--rgr_rnr=rnr_thr’ or ‘--renormalize=rnr_thr’ or
‘--renormalization_threshold=rnr_thr’

 	
NCO includes extensive regridding features in ncclimo (as of version 4.6.0 in May, 2016),

ncremap (as of version 4.5.4 in November, 2015) and ncks (since version 4.5.0 in June,
2015). Regridding can involve many choices, options, inputs, and outputs. The appropriate
operator for this workflow is the ncremap script which automatically handles many details of
regridding and passes the required commands to ncks and external programs. Occasionally
users need access to lower-level remapping functionality present in ncks and not exposed
to direct manipulation through ncremap or ncclimo. This section describes the lower-level
functionality and switches as implemented in ncks. Knowing what these features are will
help ncremap and ncclimo users understand the full potential of these operators.

ncks supports horizontal regridding of datasets where the grids and weights are all
stored in an external map-file. Use the ‘--map’ or ‘--rgr_map’ options to specify the
map-file, and NCO will regrid the input-file to a new (or possibly the same, aka, an
identity mapping) horizontal grid in the output-file, using the input and output grids
and mapping weights specified in the ESMF- or SCRIP-format map-file. Currently NCO

Chapter 3: Shared Features 87

understands the mapfile formats pioneered by SCRIP (http: / /oceans11 .lanl .gov /
svn/SCRIP/trunk/SCRIP) and later extended by ESMF (http://www.earthsystemcog.
org/projects/regridweightgen), and adopted (along with Exodus) by TempestRemap
(https://github.com/ClimateGlobalChange/tempestremap.git). Those references doc-
ument quirks in their respectively weight-generation algorithms as to map formats, grid
specification, and weight generation. NCO itself produces map-files in the format recom-
mended by CMIP6 and described here. This format differs from ESMF map-file format
chiefly in that its metadata are slightly more evolved, self-descriptive, and standardized.

Originally NCO supported only weight-application, which is what most people mean by
“regridding”. As of version 4.9.0, released in December, 2019, NCO also supports weight-
generation. Thus NCO can now apply weights generated by ESMF, NCO, SCRIP, and
TempestRemap. NCO reads-in pre-stored weights from the map-file and applies them to
(almost) every variable, thereby creating a regridded output-file. Specify regridding with a
standard ncks command and options along with the additional specification of a map-file:

Regrid entire file, same output format as input:

ncks --map=map.nc in.nc out.nc

Entire file, netCDF4 output:

ncks -4 --map=map.nc in.nc out.nc

Deflated netCDF4 output

ncks -4 -L 1 --map=map.nc in.nc out.nc

Selected variables

ncks -v FS.?,T --map=map.nc in.nc out.nc

Threading

ncks -t 8 --map=map.nc in.nc out.nc

Deflated netCDF4 output, threading, selected variables:

ncks -4 -L 1 -t 8 -v FS.?,T --map=map.nc in.nc out.nc

OpenMP threading works well with regridding large datasets. Threading improves
throughput of regridding 1–10 GB files by factors of 2–5. Options specific to regridding
are described below.

NCO supports 1D⇒1D, 1D⇒2D, 2D⇒1D, and 2D⇒2D regridding for any unstructured
1D-grid and any rectangular 2D-grid. This has been tested by converting among and
between Gaussian, equiangular, FV, unstructured cubed-sphere grids, and regionally refined
grids. Support for irregular 2D- and regional grids (e.g., swath-like data) is planned.

Renormalization

Conservative regridding is, for first-order accurate algorithms, a straightforward procedure
of identifying gridcell overlap and apportioning values correctly from source to destination.
The presence of missing values forces a decision on how to handle destination gridcells where
some but not all source cells are valid. NCO allows the user to choose between two distinct
weight-application algorithms: “conservative” and “renormalized”. The “conservative” al-
gorithm uses all valid data from the input grid on the output grid once and only once.
Destination cells receive the weighted valid values of the source cells. This is conservative
because the global integrals of the source and destination fields are equal. Another name
for the “conservative” weight-application method is therefore “integral-preserving”. The
“renormalized” algorithm divides the destination value by the sum of the valid weights.

http://oceans11.lanl.gov/svn/SCRIP/trunk/SCRIP
http://oceans11.lanl.gov/svn/SCRIP/trunk/SCRIP
http://www.earthsystemcog.org/projects/regridweightgen
http://www.earthsystemcog.org/projects/regridweightgen
https://github.com/ClimateGlobalChange/tempestremap.git
https://docs.google.com/document/d/1BfVVsKAk9MAsOYstwFSWI2ZBt5mrO_Nmcu7rLGDuL08

88 NCO 5.0.1 User Guide

This produces values equal to the mean of the valid input values, but extended to the entire
destination gridcell. Thus renormalization is equivalent to extrapolating valid data to miss-
ing regions. Another name for the “renormalized” weight-application method is therefore
“mean-preserving”. Input and output integrals are unequal and renormalized regridding is
not conservative. Both algorithms produce identical answers when no missing data maps
to the destination gridcell.

The renormalized algorithm is useful because it solves some problems, like producing
physically unrealistic temperature values, at the expense of incurring others, like non-
conservation. Many land and ocean modelers eschew unrealistic gridpoint values, and con-
servative weight-application often produces “weird” values along coastlines or missing data
gaps where state variables are regridded to/from small fractions of a gridcell. Renormaliza-
tion ensures the output values are physically consistent, although the integral of their value
times area is not preserved.

By default, NCO implements the “conservative” algorithm because it has useful proper-
ties, is simpler to understand, and requires no additional parameters. To employ the “renor-
malized” algorithm instead, use the ‘--rnr’, ‘--rgr_rnr’, ‘--rnr_thr’, or ‘--renormalize’
options to supply rnr thr, the threshold weight for valid destination values. Valid values
must cover at least the fraction rnr thr of the destination gridcell to meet the threshold for
a non-missing destination value. When rnr thr is exceeded, the mean valid value is renor-
malized by the valid area and placed in the destination gridcell. If the valid area covers
less than rnr thr, then the destination gridcell is assigned the missing value. Valid values
of rnr thr range from zero to one. Keep in mind though, that this threshold is potentially
a divisor, and values of zero or very near to zero can lead to floating-point underflow and
divide-by-zero errors. For convenience NCO permits users to specify a rnr thr = 0.0 thresh-
old weight. This indicates that any valid data should be represented and renormalized on
the output grid. Also, renormalization can be explicitly prevented or turned-off by setting
rnr thr to either of the values ‘off’ or ‘none’:

ncks --map=map.nc in.nc out.nc # Conservative (integral-preserving)

ncks --rnr=off --map=map.nc in.nc out.nc # Conservative (integral-preserving)

ncks --rnr=0.1 --map=map.nc in.nc out.nc # Renormalized (mean-preserving with threshold)

ncks --rnr=0.0 --map=map.nc in.nc out.nc # Renormalized (mean-preserving)

The first example uses the default conservative algorithm. The second example specifies
that valid values must cover at least 10% of the destination gridcell to meet the threshold
for a non-missing destination value. With valid destination areas of, say 25% or 50%,
the renormalized algorithm would produce destination values greater than the conservative
algorithm by factors of four or two, respectively.

In practice, it may make sense to use the default “conservative” algorithm when per-
forming conservative regridding, and the “renormalized” algorithm when performing other
regridding such as bilinear interpolation or nearest-neighbor. Another consideration is
whether the fields being regridded are fluxes or state variables. For example, temperature
(unlike heat) and concentrations (amount per unit volume) are not physically conserved
quantities under areal-regridding so it often makes sense to interpolate them in a non-
conservative fashion, to preserve their fine-scale structure. Few researchers can digest the
unphysical values of temperature that the “conservative” option will produce in regions rife

Chapter 3: Shared Features 89

with missing values. A counter-example is fluxes, which should be physically conserved
under areal-regridding. One should consider both the type of field and its conservation
properties when choosing a regridding strategy.

The regridded value of a variable x at a destination location d can be generally repre-
sented as

xd =

∑s=N
s=1 µsσs,dxs∑s=N
s=1 µsσs,d

where xd is the d’th element of the regridded variable, xs is the s’th element of the raw
(native grid) variable, µs = 1 if xs is valid and µs = 0 if xs is the missing value, and σs,d
is the overlap weight of s’th source gridcell with the d’th destination gridcell, and N is
the total number of source gridcells that overlap (partially or fully) with the destination
gridcell.

The number of overlap gridcells N is a property of the source and destination grids and
the regridding algorithm. The weight-generation software determines N by “intersecting”
the grids, taking into account higher-order (e.g., local gradient) contributions if the algo-
rithm so-demands, and then generates the overlap weights σs,d accordingly. Both source and
destination grids may indicate valid gridcells with a mask flag that is binary-valued, zero or
one, such that ms = 1 (i.e., unmasked) for source gridcells allowed to contribute to the des-
tination grid, and ms = 0 (i.e., masked) for gridcells that are forbidden from contributing
to the destination grid. There are subtle distinctions between the mask flag ms, and the
missing value flag µs. The mask flag ms does not appear in the formula above because the
weight-generator produces no weights for masked source gridcells. Doing otherwise would
waste storage space in the map-file, because such weights are, by definition, zero. Further-
more the masks ms and md are time-invariant properties of the grids, whereas missing value
fields µs (and thus µd) are potentially time-varying characteristics of the fields. Although
µs should in theory be treated the same as ms when computing mapping weights σs,d, in
practice this is not done. Different fields may have different patterns of missing values, and
managing per-field map-files would be difficult, so traditionally all fields are remapped with
the same map-file. That said, it can make sense to treat flux fields and state-variable fields
with distinct algorithms, so that a different map-file might be employed for each class of
fields.

The weight-generation software normalizes σs,d such that
∑s=N
s=1 σs,d = 1 when unmasked

(ms = 1) source gridcells completely overlap the destination gridcell. In this case we also
have

∑s=N
s=1 ms = N . Furthermore, if all contributing gridpoints are valid values (i.e., not

missing values) then µs = 1 so that
∑s=N
s=1 µs = N . For complete overlap with no masked

values and no missing values, then µs = ms =
∑
σs,d = 1 and the generic averaging

expression above reduces to a simple weighted mean xd =
∑s=N
s=1 σs,dxs.

xd =

∑s=N
s=1 µsssσs,dxs∑s=N
s=1 µsssσs,d

NCO automatically annotates the output with relevant metadata such as coordinate
bounds, axes, and vertices (à la CF). These annotations include

90 NCO 5.0.1 User Guide

Horizontal Dimension Names: lat dmn, lon dmn
The name of the horizontal spatial dimensions assumed to represent latitude
and longitude in 2D rectangular input files are lat dmn nm and lon dmn nm,
which default to lat and lon, respectively. Variables that contain a
lat dmn nm-dimension and a lon dmn nm-dimension on a 2D-rectangular in-
put grid will be regridded, and variables regridded to a 2D-rectangular out-
put grid will all contain the lat dmn nm- and lon dmn nm-dimensions. To
treat different dimensions as latitude and longitude, use the options ‘--rgr
lat_dmn_nm=lat_dmn_nm’ and ‘--rgr lon_dmn_nm=lon_dmn_nm’. These op-
tions applied only to inferring and generating grids until NCO version 4.7.9
(February, 2019). Since then, these options also determine the dimension names
in regridded output files.

Horizontal Coordinate Names: lat, lon
The name of the horizontal spatial coordinates that represent latitude and lon-
gitude in input files are lat nm and lon nm, and default to lat and lon, re-
spectively. Variables that contain a lat dmn nm-dimension and a lon dmn nm-
dimension on a 2D input grid will be regridded, and output regridded variables
will all contain the lat nm- and lon nm-variables. Unless the lat dmn nm- and
lon dmn nm-dimensions are explicitly configured otherwise, they will share the
same name as the lat nm- and lon nm-variables. Thus variables regridded
to a 2D-rectangular output grid usually have lat nm- and lon nm as coordi-
nate variables. Variables regridded to a 1D-unstructured output grid will have
lat nm and lon nm as auxiliary coordinate variables. Variables regridded to a
2D-curvilinear output grid will have lat nm and lon nm as multi-dimensional
auxiliary coordinate variables. To treat different variables as latitude and lon-
gitude, use the options ‘--rgr lat_nm=lat_nm’ and ‘--rgr lon_nm=lon_nm’.
Before NCO version 4.7.9 (February, 2019), lat nm and lon nm specified both
the variable names and, where applicable (i.e., on 2D-grids), the dimensions
of the horizontal coordinates in output files. Now the horizontal variable and
dimension names in output files may be separately specified.

Unstructured Dimension Name: col
The name of the horizontal spatial dimension assumed to delineate an unstruc-
tured grid is col nm, which defaults to ncol (number of columns), the name
CAM employs. Other common names for the columns in an unstructured grid
include lndgrid (used by CLM), and nCells (used by MPAS-O). Variables that
contain the col nm-dimension on an unstructured input grid will be regridded,
and regridded variables written to an unstructured output grid will all contain
the col nm-dimension. To treat a different dimension as unstructured, use the
option ‘--rgr col_nm=col_nm’. Note: Often there is no coordinate variable for
the col nm-dimension, i.e., there is no variable named col nm, although such a
coordinate could contain useful information about the unstructured grid.

Structured Grid Standard Names and Units
Longitude and latitude coordinates (both regular and auxiliary, i.e., for unstruc-
tured grids) receive CF standard_name values of latitude and longitude, CF
axes attributes with values X and Y, and units attributes with values degrees_
east and degrees_north, respectively.

Chapter 3: Shared Features 91

Unstructured Grid Auxiliary Coordinates
Unstructured grid auxiliary coordinates for longitude and latitude receive CF

coordinates attributes with values lon and lat, respectively.

Structured Grid Bounds Variables: bnd, lat bnd, lon bnd
Structured grids with 1D-coordinates use the dimension bnd nm (which de-
faults to nbnd) with the spatial bounds variables in lat bnd nm and lon bnd nm
which default to lon_bnds and lat_bnds, respectively. By default spatial
bounds for such structured grids parallel the oft-used temporal bounds dimen-
sion (nbnd=2) and variable (time_bnds). Bounds are attached to the hor-
izontal spatial dimensions via their bounds attributes. Change the spatial
bounds dimension with the option ‘--rgr bnd_nm=bnd_nm’. Rename the spatial
bounds variables with the options ‘--rgr lat_bnd_nm=lat_bnd_nm’ and ‘--rgr
lon_bnd_nm=lon_bnd_nm’.

Unstructured Grid Bounds Variables: bnd, lat bnd, lon bnd
Unstructured grids with 1D-coordinates use the dimension bnd nm (which de-
faults to nv, number of vertices) for the spatial bounds variables lat bnd nm and
lon bnd nm which default to lat_vertices and lon_vertices, respectively. It
may be impossible to re-use the temporal bounds dimension (often nbnd) for un-
structure grids, because the gridcells are not rectangles, and thus require speci-
fication of all vertices for each gridpoint, rather than only two parallel interfaces
per dimension. These bounds are attached to the horizontal spatial dimensions
via their bounds attributes. Change the spatial bounds dimension with the op-
tion ‘--rgr bnd_nm=bnd_nm’. Rename the spatial bounds variables with the op-
tions ‘--rgr lat_bnd_nm=lat_bnd_nm’ and ‘--rgr lon_bnd_nm=lon_bnd_nm’.
The temporal bounds dimension in unstructured grid output remains as in the
input-file, usually nbnd.

Vertical Dimension Names: lev dmn, ilev dmn
The name of the dimension(s) associated with the vertical coordinate(s) in
multi-level input files are lev dmn nm and ilev dmn nm, which default to
lev and ilev, respectively. Variables that contain a lev dmn nm-dimension
or an ilev dmn nm-dimension will be vertically interpolated to the speci-
fied (with ‘vrt_fl=vrt_fl’) vertical output grid, and will all contain the
lev dmn nm- and, for hybrid-sigma/pressure interface variables, ilev dmn nm-
dimensions. To treat different dimensions as the midlayer and interface
level dimensions, use the options ‘--rgr lev_dmn_nm=lev_dmn_nm’ and ‘--rgr
ilev_dmn_nm=ilev_dmn_nm’ options. Pure-pressure grids should use the ‘--rgr
lev_dmn_nm=lev_dmn_nm’ option (to reduce option proliferation, there is no
plev dmn nm option). These options were introduced in NCO version 4.9.0
(December, 2019). These options also determine the vertical dimension names
in vertically interpolated output files.

Vertical Coordinate Names: lev, ilev, plev
The name of the vertical coordinate variables that represent midpoint lev-
els and interface levels in hybrid-sigma/pressuure input files are lev nm and
ilev nm, and default to lev and ilev, respectively. While the vertical coor-
dinate in pure-pressure vertical grid files (i.e., the template-file to which data

92 NCO 5.0.1 User Guide

will be interpolated) must be named plev, the vertical coordinate in pure-
pressure data files (i.e., the files to be interpolated) may be changed with
the ‘--rgr plev_nm=plev_nm’ option. The name of the vertical coordinate
variable that represents pressure levels in pure-pressure grid input data files
is plev nm, and it defaults to plev. To reduce proliferation of command-
line options and internal code complexity, the variable and dimension op-
tions for pure-pressure vertical coordinate output names re-use the “lev” op-
tions, i.e., ‘--rgr lev_nm_out=lev_nm_out’ option. Variables that contain a
lev dmn nm-dimension or a ilev dmn nm-dimension on hybrid-sigma/pressure
input grid, or a plev dmn nm-dimension on a pure pressure grid, will be re-
gridded, and output in vertically interpolated files on a hybrid-sigma/pressure
grid will all contain the lev nm- and ilev nm-variables, and output on a pure-
pressure grid will contain the lev nm coordinate. Unless the lev dmn nm and
ilev dmn nm dimensions are explicitly configured otherwise, they will share the
same name as the lev nm/plev nm and ilev nm-variables, respectively. Thus
variables regridded to a hybrid-sigma/pressure output grid usually have lev nm-
and ilev nm as coordinate variables. Variables regridded to a pure-pressure out-
put grid will only have a single vertical coordinate variable, lev nm, which will
be an associated coordinate variable if lev dmn nm differs from lev nm. To
treat different variables as level and interface-level coordinates, use the options
‘--rgr lev_nm=lev_nm’ and ‘--rgr ilev_nm=ilev_nm’. Before NCO version
4.9.0 (December, 2019), lev nm and ilev nm specified both the variable names
and, where applicable (i.e., on 2D-grids), the dimensions of the vertical coordi-
nates in output files. Now the vertical variable and dimension names in output
files may be separately specified.

Gridcell Area: area
The variable area nm (which defaults to area) is, by default, (re-)created in the
output file to hold the gridcell area in steradians. To store the area in a different
variable, use the option ‘--rgr area=area_nm’. The area nm variable receives
a standard_name attribute of cell_area, a units attribute of steradian (the
SI unit of solid angle), and a cell_methods attribute with value lat, lon: sum,
which indicates that area nm is extensive, meaning that its value depends on the
gridcell boundaries. Since area nm is a property of the grid, it is read directly
from the map-file rather than regridded itself. To omit the area variable from
the output file, set the no area out flag. The --no_cll_msr switch to ncremap

and ncclimo does this automatically.

Gridcell Fraction: frc
The variable frc nm (which defaults to frac_b) is automatically copied to the
output file to hold the valid fraction of each gridcell when certain conditions are
met. First, the regridding method must be conservative. Second, at least one
value of frc nm must be non-unity. These conditions ensure that whenever frac-
tional gridcells affect the regridding, they are also placed in the output file. To
store the fraction in a different variable, use the option ‘--rgr frc_nm=frc_nm’.
The frc nm variable receives a cell_methods attribute with value lat, lon:

sum, which indicates that frc nm is extensive, meaning that its value depends

Chapter 3: Shared Features 93

on the gridcell boundaries. Since frc nm is a property of the grid, it is read
directly from the map-file rather than regridded itself.

Gridcell Mask: mask
The variable msk nm (which defaults to mask) can, if present, be copied from
the map-file to hold the gridcell mask on the destination grid in output-file. To
store the mask in a different variable, use the option ‘--rgr msk_nm=msk_nm’.
Since msk nm is a property of the grid, it is read directly from the map-file
rather than regridded itself. To include the mask variable in the output file,
set the msk out flag. To omit the mask variable from the output file, set the
no msk out flag. In grid inferral and map-generation modes, this option tells
the regridder to generate an integer mask map from the variable msk nm. The
mask will be one (i.e., points at that location will contribute to regridding
weights) where msk nm has valid values. The mask will be zero (i.e., points
at that location will not contribute to regridding weights) where msk nm has
a missing value. This feature is useful when creating weights between masked
grids, e.g., ocean-only points or land-only points.

Latitude weights: lat wgt
Rectangular 2D-grids use the variable lat wgt nm, which defaults to gw (orig-
inally for “Gaussian weight”), to store the 1D-weight appropriate for area-
weighting the latitude grid. To store the latitude weight in a different variable,
use the option ‘--rgr lat_wgt=lat_wgt_nm’. The lat wgt nm variable will not
appear in 1D-grid output. Weighting statistics by latitude (i.e., by lat wgt nm
will produce the same answers (up-to round-off error) as weighting by area (i.e.,
by area nm) in grids that have both variables. The former requires less memory
because lat wgt nm is 1D), whereas the latter is more general because area nm
works on any grid.

Provenance Attributes
The map-file and input-file names are stored in the output-file global attributes
mapping_file and source_file, respectively.

Staggered Grid Coordinates and Weights
Owing to its heritage as an early CCM analysis tool, NCO tries to create output
interoperable with other CESM analysis tools. Like many models, CAM com-
putes and archives thermodynamic state variables on gridcell centers, and com-
putes dynamics variables (zonal and meridional winds U and V, respectively)
on gridcell edges (interfaces). The dual-grid, sometimes called the “staggered
grid”, formed by connecting edge centers is thus the natural location for storing
output dynamics variables. Most dynamical cores of CAM archives horizontal
winds at gridcell centers under the names U, and V. For CAM-FV, these are
interpolated from the computed interface winds archived as US, and VS (which
are on the staggered grid coordinate system). Some analysis packages, such as
the AMWG diagnostics, require access to these dual-grid coordinates with the
names slat and slon (for “staggered” latitude and longitude). Until NCO ver-
sion 4.9.8 (released March, 2021), the NCO regridder output these coordinates,
along with the latitude weights (called w_stag), by default when the input was
on a cap (aka FV) grid so that the result could be processed by AMWG diag-

94 NCO 5.0.1 User Guide

nostics. Setting the no stagger flag turns-off archiving the staggered grid (i.e.,
slat, slon, and w_stag). Do this with the --no_stg_grd flag in ncremap.
ncclimo always sets this --no_stagger flag. As of NCO version 4.9.8 (released
March, 2021), the default ncremap and ncclimo behavior is to omit the stag-
gered grid. The new flag --stg_grd turns-on outputting the staggered grid,
and thus recovers the previous default behavior.

One may supply muliple ‘--rgr key=value’ options to simultaneously customize multi-
ple grid-field names. The following examples may all be assumed to end with the standard
options ‘--map=map.nc in.nc out.nc’.

ncks --rgr lat_nm=latitude --rgr lon_nm=longitude

ncks --rgr col_nm=column --rgr lat_wgt=lat_wgt

ncks --rgr bnd_nm=bounds --rgr lat_bnd_nm=lat_bounds --rgr lon_bnd_nm=lon_bounds

ncks --rgr bnd_nm=vertices --rgr lat_bnd_nm=lat_vrt --rgr lon_bnd_nm=lon_vrt

The first command causes the regridder to associate the latitude and longitude dimen-
sions with the dimension names latitude and longitude (instead of the defaults, lat and
lon). The second command causes the regridder to associate the independent columns in an
unstructured grid with the dimension name column (instead of the default, ncol) and the
variable containing latitude weights to be named lat_wgt (instead of the default, gw). The
third command associates the latitude and longitude bounds with the dimension bounds

(instead of the default, nbnd) and the variables lat_bounds and lon_bounds (instead of the
defaults, lat_bnds and lon_bnds, respectively). The fourth command associates the lati-
tude and longitude bounds with the dimension vertices (instead of the default, nv) and the
variables lat_vrt and lon_vrt (instead of the defaults, lat_vertices and lon_vertices,
respectively).

When used with an identity remapping files, regridding can signficantly enhance the
metadata and therefore the dataset usability. Consider these selected metadata (those
unchanged are not shown for brevity) associated with the variable FSNT from typical un-
structured grid (CAM-SE cubed-sphere) output before and after an identity regridding:

Raw model output before regridding

netcdf ne30_FSNT {

dimensions:

nbnd = 2 ;

ncol = 48602 ;

time = UNLIMITED ; // (1 currently)

variables:

float FSNT(time,ncol) ;

FSNT:long_name = "Net solar flux at top of model" ;

double time(time) ;

time:long_name = "time" ;

time:bounds = "time_bnds" ;

double time_bnds(time,nbnd) ;

Chapter 3: Shared Features 95

time_bnds:long_name = "time interval endpoints" ;

} // group /

Same model output after identity regridding

netcdf dogfood {

dimensions:

nbnd = 2 ;

ncol = 48602 ;

nv = 5 ;

time = 1 ;

variables:

float FSNT(time,ncol) ;

FSNT:long_name = "Net solar flux at top of model" ;

FSNT:coordinates = "lat lon" ;

double lat(ncol) ;

lat:long_name = "latitude" ;

lat:standard_name = "latitude" ;

lat:units = "degrees_north" ;

lat:axis = "Y" ;

lat:bounds = "lat_vertices" ;

lat:coordinates = "lat lon" ;

double lat_vertices(ncol,nv) ;

lat_vertices:long_name = "gridcell latitude vertices" ;

double lon(ncol) ;

lon:long_name = "longitude" ;

lon:standard_name = "longitude" ;

lon:units = "degrees_east" ;

lon:axis = "X" ;

lon:bounds = "lon_vertices" ;

lon:coordinates = "lat lon" ;

double lon_vertices(ncol,nv) ;

lon_vertices:long_name = "gridcell longitude vertices" ;

double time(time) ;

time:long_name = "time" ;

time:bounds = "time_bnds" ;

double time_bnds(time,nbnd) ;

time_bnds:long_name = "time interval endpoints" ;

} // group /

96 NCO 5.0.1 User Guide

The raw model output lacks the CF coordinates and bounds attributes that the re-
gridder adds. The metadata turns lat and lon into auxiliary coordinate variables (see
Section 3.23 [Auxiliary Coordinates], page 74) which can then be hyperslabbed (with ‘-X’)
using latitude/longitude coordinates bounding the region of interest:

% ncks -u -H -X 314.6,315.3,-35.6,-35.1 -v FSNT dogfood.nc

time[0]=31 ncol[0] FSNT[0]=344.575 W/m2

ncol[0] lat[0]=-35.2643896828 degrees_north

ncol[0] nv[0] lat_vertices[0]=-35.5977213708

ncol[0] nv[1] lat_vertices[1]=-35.5977213708

ncol[0] nv[2] lat_vertices[2]=-35.0972113817

ncol[0] nv[3] lat_vertices[3]=-35.0972113817

ncol[0] nv[4] lat_vertices[4]=-35.0972113817

ncol[0] lon[0]=315 degrees_east

ncol[0] nv[0] lon_vertices[0]=315

ncol[0] nv[1] lon_vertices[1]=315

ncol[0] nv[2] lon_vertices[2]=315.352825437

ncol[0] nv[3] lon_vertices[3]=314.647174563

ncol[0] nv[4] lon_vertices[4]=314.647174563

time[0]=31 days since 1979-01-01 00:00:00

time[0]=31 nbnd[0] time_bnds[0]=0

time[0]=31 nbnd[1] time_bnds[1]=31

Thus auxiliary coordinate variables help to structure unstructured grids. The expanded
metadata annotations from an identity regridding may obviate the need to place unstruc-
tured data on a rectangular grid. For example, statistics for regions that can be expressed
as unions of rectangular regions can now be performed on the native (unstructured) grid.

Here are some quick examples of regridding from common models. All examples require
‘in.nc out.nc’ at the end.

Identity re-map E3SM/ACME CAM-SE Cubed-Sphere output (to improve metadata)

ncks --map=${DATA}/maps/map_ne30np4_to_ne30np4_aave.20150603.nc

Convert E3SM/ACME CAM-SE Cubed Sphere output to rectangular lat/lon

ncks --map=${DATA}/maps/map_ne30np4_to_fv129x256_aave.150418.nc

Convert CAM3 T42 output to Cubed-Sphere grid

ncks --map=${DATA}/maps/map_ne30np4_to_t42_aave.20150601.nc

3.26 Climatology and Bounds Support

Availability: nces, ncra, ncrcat
Short options: None
Long options: ‘--cb=yr_srt,yr_end,mth_srt,mth_end,tpd’

Chapter 3: Shared Features 97

‘--clm_bnd=yr_srt,yr_end,mth_srt,mth_end,tpd’
‘--clm_nfo=yr_srt,yr_end,mth_srt,mth_end,tpd’
‘--climatology_information=yr_srt,yr_end,mth_srt,mth_end,tpd’

(NB: This section describes support for generating CF-compliant bounds variables and
attributes, i.e., metadata. For instructions on constructing climatologies themselves, see the
ncclimo documentation). As of NCO version 4.9.4 (September, 2020) ncra introduces the
‘--clm_bnd’ option, a powerful method to fully implement the CF bounds, climatology,
and cell_methods attributes defined by Section 3.45 [CF Conventions], page 145. The
new method updates the previous ‘--cb’ and ‘--c2b’ methods introduced in version 4.6.0
which only worked for monthly mean data. The newer --cb method also works for cli-
matological diurnally resolved input, and for datasets that contain more than more than
one record. This option takes as argument a comma-separated list of five relevant input
parameters: ‘--cb=yr_srt,yr_end,mth_srt,mth_end,tpd’, where yr srt is the climatol-
ogy start-year, yr end is the climatology end-year, mth srt is the climatology start-month
(in [1..12] format), mth end is the climatology end-month (in [1..12] format), and tpd
is the number of timestpes per day (with the special exception that tpd = 0 indicates
monthly data, not diurnally-resolved data). For example, a seasonal summer climatology
created from monthly mean input data spanning June, 2000 to August, 2020 should call
ncra with ‘--clm_bnd=2000,2020,6,8,0’, whereas a diurnally resolved climatology of the
same period with 6-hourly input data resolution would use ‘--clm_bnd=2000,2020,6,8,4’.
The ncclimo command internally uses --clm_bnd extensively.

Average monthly means into a climatological month

ncra --cb=2014,2016,1,1,0 2014_01.nc 2015_01.nc 2016_01.nc clm_JAN.nc

Average seasonally contiguous climatological monthly means into NH winter

ncra --cb=2013,2016,12,2,0 -w 31,31,28 DEC.nc JAN.nc FEB.nc DJF.nc

Average seasonally discontiguous climatological means into NH winter

ncra --cb=2014,2016,1,12,0 -w 31,28,31 JAN.nc FEB.nc DEC.nc JFD.nc

Reduce four climatological seasons to make an annual climatology

ncra --cb=2014,2016,1,12,0 -w 92,92,91,90 MAM.nc JJA.nc SON.nc DJF.nc ANN.nc

Reduce twelve monthly climatologies to make into an annual climatology

ncra --cb=2014,2016,1,12,0 -w 31,28,31,30,31,30,31,31,30,31,30,31 clm_??.nc ANN.nc

In the fourth and fifth examples, NCO uses the number of input files (3 and 4, respec-
tively) to discriminate between seasonal and annual climatologies since the other arguments
to ‘--cb’ are identical.

When using this option, NCO expects each output file to contain max(1,tpd) records.
nces and ncra both accept the ‘--cb’ option. While ncra almost always reduces the input
dataset over the record dimension, nces never does. This makes it easy to use nces to
combine and create climatologies of diurnally resolved input files.

Average diurnally resolved monthly means into a climatology

nces --cb=2014,2016,1,1,8 2014_01.nc 2015_01.nc 2016_01.nc clm_JAN.nc

Average seasonally contiguous diurnally resolved means into a season

nces --cb=2013,2016,12,2,8 -w 31,31,28 DEC.nc JAN.nc FEB.nc DJF.nc

Average seasonally discontiguous diurnally resolved means into a season

98 NCO 5.0.1 User Guide

nces --cb=2014,2016,1,12,8 -w 31,28,31 JAN.nc FEB.nc DEC.nc JFD.nc

Reduce four diurnally resolved seasons to make an annual climatology

nces --cb=2014,2016,1,12,8 -w 92,92,91,90 MAM.nc JJA.nc SON.nc DJF.nc ANN.nc

Reduce twelve diurnally resolved months to make into an annual climatology

nces --cb=2014,2016,1,12,8 -w 31,28,31,30,31,30,31,31,30,31,30,31 clm_??.nc ANN.nc

Every input in the above set of examples must have eight records, and that number will
appear in the output as well.

3.27 UDUnits Support� �
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim,[min][,[max][,[stride]]]’
Long options: ‘--dimension dim,[min][,[max][,[stride]]]’,
‘--dmn dim,[min][,[max][,[stride]]]’

 	
There is more than one way to hyperskin a cat. The UDUnits package provides a library

which, if present, NCO uses to translate user-specified physical dimensions into the physical
dimensions of data stored in netCDF files. Unidata provides UDUnits under the same terms
as netCDF, so sites should install both. Compiling NCO with UDUnits support is currently
optional but may become required in a future version of NCO.

Two examples suffice to demonstrate the power and convenience of UDUnits support.
First, consider extraction of a variable containing non-record coordinates with physical
dimensions stored in MKS units. In the following example, the user extracts all wavelengths
in the visible portion of the spectrum in terms of the units very frequently used in visible
spectroscopy, microns:

% ncks --trd -C -H -v wvl -d wvl,"0.4 micron","0.7 micron" in.nc

wvl[0]=5e-07 meter

The hyperslab returns the correct values because the wvl variable is stored on disk with
a length dimension that UDUnits recognizes in the units attribute. The automagical
algorithm that implements this functionality is worth describing since understanding it
helps one avoid some potential pitfalls. First, the user includes the physical units of the
hyperslab dimensions she supplies, separated by a simple space from the numerical values of
the hyperslab limits. She encloses each coordinate specifications in quotes so that the shell
does not break the value-space-unit string into separate arguments before passing them to
NCO. Double quotes ("foo") or single quotes (’foo’) are equally valid for this purpose.
Second, NCO recognizes that units translation is requested because each hyperslab argument
contains text characters and non-initial spaces. Third, NCO determines whether the wvl is
dimensioned with a coordinate variable that has a units attribute. In this case, wvl itself is
a coordinate variable. The value of its units attribute is meter. Thus wvl passes this test
so UDUnits conversion is attempted. If the coordinate associated with the variable does not
contain a units attribute, then NCO aborts. Fourth, NCO passes the specified and desired
dimension strings (microns are specified by the user, meters are required by NCO) to the
UDUnits library. Fifth, the UDUnits library that these dimension are commensurate and

http://www.unidata.ucar.edu/software/udunits

Chapter 3: Shared Features 99

it returns the appropriate linear scaling factors to convert from microns to meters to NCO.
If the units are incommensurate (i.e., not expressible in the same fundamental MKS units),
or are not listed in the UDUnits database, then NCO aborts since it cannot determine
the user’s intent. Finally, NCO uses the scaling information to convert the user-specified
hyperslab limits into the same physical dimensions as those of the corresponding cooridinate
variable on disk. At this point, NCO can perform a coordinate hyperslab using the same
algorithm as if the user had specified the hyperslab without requesting units conversion.

The translation and dimensional interpretation of time coordinates shows a more power-
ful, and probably more common, UDUnits application. In this example, the user prints all
data between 4 PM and 7 PM on December 8, 1999, from a variable whose time dimension
is hours since the year 1900:

% ncks -u -H -C -v time_udunits -d time_udunits,"1999-12-08 \

16:00:0.0","1999-12-08 19:00:0.0" in.nc

time_udunits[1]=876018 hours since 1900-01-01 00:00:0.0

Here, the user invokes the stride (see Section 3.17 [Stride], page 65) capability to obtain every
other timeslice. This is possible because the UDUnits feature is additive, not exclusive—it
works in conjunction with all other hyperslabbing (see Section 3.16 [Hyperslabs], page 63)
options and in all operators which support hyperslabbing. The following example shows
how one might average data in a time period spread across multiple input files

ncra -d time,"1939-09-09 12:00:0.0","1945-05-08 00:00:0.0" \

in1.nc in2.nc in3.nc out.nc

Note that there is no excess whitespace before or after the individual elements of the ‘-d’
argument. This is important since, as far as the shell knows, ‘-d’ takes only one command-
line argument. Parsing this argument into its component dim,[min][,[max][,[stride]]]
elements (see Section 3.16 [Hyperslabs], page 63) is the job of NCO. When unquoted
whitespace is present between these elements, the shell passes NCO arugment fragments
which will not parse as intended.

NCO implemented support for the UDUnits2 library with version 3.9.2 (August, 2007).
The UDUnits2 package supports non-ASCII characters and logarithmic units. We are in-
terested in user-feedback on these features.

One aspect that deserves mention is that UDUnits, and thus NCO, supports run-time
definition of the location of the relevant UDUnits databases. UDUnits2 (specifically, the
function ut_read_xml()) uses the environment variable UDUNITS2_XML_PATH, if any, to find
its all-important XML database, named udunits2.xml by default. If UDUNITS2_XML_PATH is
undefined, then UDUnits2 looks in the fall-back default initial location that was hardcoded
when the UDUnits2 library was built. This location varies depending upon your operating
system and UDUnits2 ncompilation settings. If UDUnits2 is correctly linked yet cannot
find the XML database in either of these locations, then NCO will report that the UDUnits2
library has failed to initialize. To fix this, export the full location (path+name) of the
UDUnits2 XML database file udunits2.xml to the shell:

export UDUNITS2_XML_PATH=’/opt/local/share/udunits/udunits2.xml’

http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2.html

100 NCO 5.0.1 User Guide

One can then invoke (without recompilation) NCO again, and UDUnit2 should work.
This run-time flexibility can enable the full functionality of pre-built binaries on machines
with libraries in different locations.

The UDUnits package documentation describes the supported formats of time dimen-
sions. Among the metadata conventions that adhere to these formats are the Climate and
Forecast (CF) Conventions and the Cooperative Ocean/Atmosphere Research Data Ser-
vice (COARDS) Conventions. The following ‘-d arguments’ extract the same data using
commonly encountered time dimension formats:

-d time,’1918-11-11 00:00:0.0’,’1939-09-09 00:00:0.0’

-d time,’1918-11-11 00:00:0.0’,’1939-09-09 00:00:0.0’

-d time,’1918-11-11T00:00:0.0Z’,’1939-09-09T00:00:0.0Z’

-d time,’1918-11-11’,’1939-09-09’

-d time,’1918-11-11’,’1939-9-9’

All of these formats include at least one dash - in a non-leading character position (a dash
in a leading character position is a negative sign). NCO assumes that a space, colon, or
non-leading dash in a limit string indicates that a UDUnits units conversion is requested.
Some date formats like YYYYMMDD that are valid in UDUnits are ambiguous to NCO

because it cannot distinguish a purely numerical date (i.e., no dashes or text characters in
it) from a coordinate or index value:

-d time,1918-11-11 # Interpreted as the date November 11, 1918

-d time,19181111 # Interpreted as time-dimension index 19181111

-d time,19181111. # Interpreted as time-coordinate value 19181111.0

Hence, use the YYYY-MM-DD format rather than YYYYMMDD for dates.

As of version 4.0.0 (January, 2010), NCO supports some calendar attributes specified by the
CF conventions.

Supported types:
"365 day"/"noleap", "360 day", "gregorian", "standard"

Unsupported types:
"366 day"/"all leap","proleptic gregorian","julian","none"

Unsupported types default to mixed Gregorian/Julian as defined by UDUnits.

An Example: Consider the following netCDF variable

variables:

double lon_cal(lon_cal) ;

lon_cal:long_name = "lon_cal" ;

lon_cal:units = "days since 1964-2-28 0:0:0" ;

lon_cal:calendar = "365_day" ;

data:

lon_cal = 1,2,3,4,5,6,7,8,9,10;

‘ncks -v lon_cal -d lon_cal,’1964-3-1 0:00:0.0’,’1964-3-4 00:00:0.0’’ results
in lon_cal=1,2,3,4.

http://www.unidata.ucar.edu/software/udunits
http://cf-pcmdi.llnl.gov
http://cf-pcmdi.llnl.gov
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

Chapter 3: Shared Features 101

netCDF variables should always be stored with MKS (i.e., God’s) units, so that appli-
cation programs may assume MKS dimensions apply to all input variables. The UDUnits
feature is intended to alleviate NCO users’ pain when handling MKS units. It connects
users who think in human-friendly units (e.g., miles, millibars, days) to extract data which
are always stored in God’s units, MKS (e.g., meters, Pascals, seconds). The feature is not
intended to encourage writers to store data in esoteric units (e.g., furlongs, pounds per
square inch, fortnights).

3.28 Rebasing Time Coordinate� �
Availability: ncra, ncrcat Short options: None

 	
Time rebasing is invoked when numerous files share a common record coordinate, and

the record coordinate basetime (not the time increment, e.g., days or hours) changes among
input files. The rebasing is performed automatically if and only if UDUnits is installed.
Rebasing occurs when the record coordinate is a time-based variable, and times are recorded
in units of a time-since-basetime, and the basetime changes from file to file. Since the output
file can have only one unit (i.e., one basetime) for the record coordinate, NCO, in such cases,
chooses the units of the first input file to be the units of the output file. It is necessary to
“rebase” all the input record variables to this output time unit in order for the output file
to have the correct values.

For example suppose the time coordinate is in hours and each day in January is stored
in its own daily file. Each daily file records the temperature variable tpt(time) with an
(unadjusted) time coordinate value between 0–23 hours, and uses the units attribute to
advance the base time:

file01.nc time:units="hours since 1990-1-1"

file02.nc time:units="hours since 1990-1-2"

...

file31.nc time:units="hours since 1990-1-31"

// Mean noontime temperature in January

ncra -v tpt -d time,"1990-1-1 12:00:00","1990-1-31 23:59:59",24 \

file??.nc noon.nc

// Concatenate day2 noon through day3 noon records

ncrcat -v tpt -d time,"1990-1-2 12:00:00","1990-1-3 11:59:59" \

file01.nc file02.nc file03.nc noon.nc

// Results: time is "re-based" to the time units in "file01.nc"

time=36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, \

51, 52, 53, 54, 55, 56, 57, 58, 59 ;

// If we repeat the above command but with only two input files...

ncrcat -v tpt -d time,"1990-1-2 12:00:00","1990-1-3 11:59:59" \

102 NCO 5.0.1 User Guide

file02.nc file03 noon.nc

// ...then output time coordinate is based on time units in "file02.nc"

time = 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, \

26, 27, 28, 29, 30, 31, 32, 33, 34, 35 ;

As of NCO version 4.2.1 (August, 2012), NCO automatically rebases not only the record
coordinate (time, here) but also any cell boundaries associated with the record coordinate
(e.g., time_bnds) (see Section 3.45 [CF Conventions], page 145).

As of NCO version 4.4.9 (May, 2015), NCO also rebases any climatology boundaries
associated with the record coordinate (e.g., climatology_bounds) (see Section 3.45 [CF
Conventions], page 145).

As of NCO version 4.6.3 (December, 2016), NCO also rebases the time coordinate when
the units differ between files. For example the first file may have units="days since

2014-03-01" and the second file units="hours since 2014-03-10 00:00".

3.29 Multiple Record Dimensions� �
Availability: ncecat, ncpdq Short options: None
Long options: ‘--mrd’

 	
The netCDF3 file format allows only one record dimension, and that dimension must

be the first dimension (i.e., the least rapidly varying dimension) of any variable in which it
appears. This imposes certain rules on how operators must perform operations that alter
the ordering of dimensions or the number of record variables. The netCDF4 file format
has no such restrictions. Files and variables may have any number of record dimensions
in any order. This additional flexibility of netCDF4 can only be realized by selectively
abandoning the constraints that would make operations behave completely consistently
between netCDF3 and netCDF4 files.

NCO chooses, by default, to impose netCDF3-based constraints on netCDF4 files. This
reduces the number of unanticipated consequences and keeps the operators functioning in
a familiar way. Put another way, NCO limits production of additional record dimensions so
processing netCDF4 files leads to the same results as processing netCDF3 files. Users can
override this default with the ‘--mrd’ (or ‘--multiple_record_dimension’) switch, which
enables netCDF4 variables to accumulate additional record dimensions.

How can additional record dimensions be produced? Most commonly ncecat (in record-
aggregate mode) defines a new leading record dimension. In netCDF4 files this becomes
an additional record dimension unless the original record dimension is changed to a fixed
dimension (as must be done in netCDF3 files). Also when ncpdq reorders dimensions it
can preserve the “record” property of record variables. ncpdq tries to define as a record
dimension whichever dimension ends up first in a record variable, and, in netCDF4 files,
this becomes an additional record dimension unless the original record dimension is changed
to a fixed dimension (as must be done in netCDF3 files). It it easier if ncpdq and ncecat

Chapter 3: Shared Features 103

do not increase the number of record dimensions in a variable so that is the default. Use
‘--mrd’ to override this.

3.30 Missing values� �
Availability: ncap2, ncbo, ncclimo, nces, ncflint, ncpdq, ncra, ncremap, ncwa
Short options: None

 	
The phrase missing data refers to data points that are missing, invalid, or for any reason

not intended to be arithmetically processed in the same fashion as valid data. All NCO

arithmetic operators attempt to handle missing data in an intelligent fashion. There are
four steps in the NCO treatment of missing data:

1. Identifying variables that may contain missing data.

NCO follows the convention that missing data should be stored with the FillValue
specified in the variable’s _FillValue attributes. The only way NCO recognizes that
a variable may contain missing data is if the variable has a _FillValue attribute. In
this case, any elements of the variable which are numerically equal to the FillValue
are treated as missing data.

NCO adopted the behavior that the default attribute name, if any, assumed to specify
the value of data to ignore is _FillValue with version 3.9.2 (August, 2007). Prior to
that, the missing_value attribute, if any, was assumed to specify the value of data
to ignore. Supporting both of these attributes simultaneously is not practical. Hence
the behavior NCO once applied to missing value it now applies to any FillValue. NCO

now treats any missing value as normal data21.

It has been and remains most advisable to create both _FillValue and missing_

value attributes with identical values in datasets. Many legacy datasets contain only
missing_value attributes. NCO can help migrating datasets between these conven-
tions. One may use ncrename (see Section 4.13 [ncrename netCDF Renamer], page 339)
to rename all missing_value attributes to _FillValue:

ncrename -a .missing_value,_FillValue inout.nc

Alternatively, one may use ncatted (see Section 4.2 [ncatted netCDF Attribute Editor],
page 216) to add a _FillValue attribute to all variables

ncatted -O -a _FillValue,,o,f,1.0e36 inout.nc

2. Converting the FillValue to the type of the variable, if neccessary.

Consider a variable var of type var type with a _FillValue attribute of type att type
containing the value FillValue. As a guideline, the type of the _FillValue attribute
should be the same as the type of the variable it is attached to. If var type equals
att type then NCO straightforwardly compares each value of var to FillValue to de-
termine which elements of var are to be treated as missing data. If not, then NCO

21 The old functionality, i.e., where the ignored values are indicated by missing_value not _FillValue,
may still be selected at NCO build time by compiling NCO with the token definition CPPFLAGS=’-

UNCO_USE_FILL_VALUE’.

104 NCO 5.0.1 User Guide

converts FillValue from att type to var type by using the implicit conversion rules
of C, or, if att type is NC_CHAR22, by typecasting the results of the C function strtod(_

FillValue). You may use the NCO operator ncatted to change the _FillValue at-
tribute and all data whose data is FillValue to a new value (see Section 4.2 [ncatted
netCDF Attribute Editor], page 216).

3. Identifying missing data during arithmetic operations.

When an NCO arithmetic operator processes a variable var with a _FillValue at-
tribute, it compares each value of var to FillValue before performing an operation.
Note the FillValue comparison imposes a performance penalty on the operator. Arith-
metic processing of variables which contain the _FillValue attribute always incurs this
penalty, even when none of the data are missing. Conversely, arithmetic processing of
variables which do not contain the _FillValue attribute never incurs this penalty. In
other words, do not attach a _FillValue attribute to a variable which does not contain
missing data. This exhortation can usually be obeyed for model generated data, but it
may be harder to know in advance whether all observational data will be valid or not.

4. Treatment of any data identified as missing in arithmetic operators.

NCO averagers (ncra, nces, ncwa) do not count any element with the value FillValue
towards the average. ncbo and ncflint define a FillValue result when either of the
input values is a FillValue. Sometimes the FillValue may change from file to file in a
multi-file operator, e.g., ncra. NCO is written to account for this (it always compares
a variable to the FillValue assigned to that variable in the current file). Suffice it to
say that, in all known cases, NCO does “the right thing”.

It is impossible to determine and store the correct result of a binary operation in a single
variable. One such corner case occurs when both operands have differing FillValue
attributes, i.e., attributes with different numerical values. Since the output (result)
of the operation can only have one FillValue, some information may be lost. In this
case, NCO always defines the output variable to have the same FillValue as the first
input variable. Prior to performing the arithmetic operation, all values of the second
operand equal to the second FillValue are replaced with the first FillValue. Then
the arithmetic operation proceeds as normal, comparing each element of each operand
to a single FillValue. Comparing each element to two distinct FillValue’s would be
much slower and would be no likelier to yield a more satisfactory answer. In practice,
judicious choice of FillValue values prevents any important information from being
lost.

3.31 Chunking

22 For example, the DOE ARM program often uses att type = NC_CHAR and FillValue = ‘-99999.’.

Chapter 3: Shared Features 105

� �
Availability: ncap2, ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: none
Long options: ‘--cnk_byt sz_byt’, ‘--chunk_byte sz_byt’
‘--cnk_csh sz_byt’, ‘--chunk_cache sz_byt’
‘--cnk_dmn dmn_nm,sz_lmn’, ‘--chunk_dimension dmn_nm,sz_lmn’
, ‘--cnk_map cnk_map’, ‘--chunk_map cnk_map’,
‘--cnk_min sz_byt’, ‘--chunk_min sz_byt’,
‘--cnk_plc cnk_plc’, ‘--chunk_policy cnk_plc’,
‘--cnk_scl sz_lmn’, ‘--chunk_scalar sz_lmn’

 	
All netCDF4-enabled NCO operators that define variables support a plethora of chunk-

size options. Chunking can significantly accelerate or degrade read/write access to large
datasets. Dataset chunking issues are described by THG and Unidata here, here, and here.
NCO authors are working on generalized algorithms and applications of chunking strategies
(stay tuned for more in 2018).

As of NCO version 4.6.5 (March, 2017), NCO supports run-time alteration of the chunk
cache size. By default, the cache size is set (by the --with-chunk-cache-size option
to configure) at netCDF compile time. The --cnk_csh sz option sets the cache size to
sz bytes for all variables. When the debugging level is set (with -D dbg_lvl) to three or
higher, NCO prints the current value of the cache settings for informational purposes. Also
‘--chunk_cache’.

Increasing cache size from the default can dramatically accelerate time to aggregate and
rechunk multiple large input datasets, e.g.,

ncrcat -4 -L 1 --cnk_csh=1000000000 --cnk_plc=g3d --cnk_dmn=time,365 \

--cnk_dmn=lat,1800 --cnk_dmn=lon,3600 in*.nc4 out.nc

In this example all 3D variables the input datasets (which may or may not be chunked
already) are re-chunked to a size of 365 along the time dimension. Because the default
chunk cache size of about 4 MB is too small to manipulate the large chunks, we reset the
cache to 1 GB. The operation completes much faster, and subsequent reads along the time
dimension will be much more rapid.

The NCO chunking implementation is designed to be flexible. Users control four aspects
of the chunking implementation. These are the chunking policy, chunking map, chunksize,
and minimum chunksize. The chunking policy determines which variables to chunk, and
the chunking map determines how (with what exact sizes) to chunk those variables. These
are high-level mechanisms that apply to an entire file and all variables and dimensions. The
chunksize option allows per-dimension specification of sizes that will override the selected
(or default) chunking map.

The distinction between elements and bytes is subtle yet crucial to understand. Elements
refers to values of an array, whereas bytes refers to the memory size required to hold the
elements. These measures differ by a factor of four or eight for NC_FLOAT or NC_DOUBLE,
respectively. The option ‘--cnk_scl’ takes an argument sz lmn measured in elements.
The options ‘--cnk_byt’, ‘--cnk_csh’, and ‘--cnk_min’ take arguments sz byt measured
in bytes.

http://www.hdfgroup.org/HDF5/doc/H5.user/Chunking.html
http://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_why_it_matters
http://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_choosing_shapes

106 NCO 5.0.1 User Guide

Use the ‘--cnk_min=sz_byt’ option to set the minimum size in bytes (not elements)
of variables to chunk. This threshold is intended to restrict use of chunking to variables
for which it is efficient. By default this minimum variable size for chunking is twice the
system blocksize (when available) and is 8192 bytes otherwise. Users may set this to any
value with the ‘--cnk_min=sz_byt’ switch. To guarantee that chunking is performed on all
arrays, regardless of size, set the minimum size to one byte (not to zero bytes).

The chunking implementation is similar to a hybrid of the ncpdq packing policies (see
Section 4.9 [ncpdq netCDF Permute Dimensions Quickly], page 287) and hyperslab specifi-
cations (see Section 3.16 [Hyperslabs], page 63). Each aspect is intended to have a sensible
default, so that many users only need to set one switch to obtain sensible chunking. Power
users can tune chunking with the three switches in tandem to obtain optimal performance.

By default, NCO preserves the chunking characteristics of the input file in the output
file23. In other words, preserving chunking requires no switches or user intervention.

Users specify the desired chunking policy with the ‘-P’ switch (or its long option equiv-
alents, ‘--cnk_plc’ and ‘--chunk_policy’) and its cnk plc argument. As of August, 2014,
six chunking policies are implemented:

Chunk All Variables
Definition: Chunk all variables possible. For obvious reasons, scalar variables
cannot be chunked.
Alternate invocation: ncchunk
cnk plc key values: ‘all’, ‘cnk_all’, ‘plc_all’
Mnemonic: All

Chunk Variables with at least Two Dimensions [default]
Definition: Chunk all variables possible with at least two dimensions
Alternate invocation: none
cnk plc key values: ‘g2d’, ‘cnk_g2d’, ‘plc_g2d’
Mnemonic: Greater than or equal to 2 D imensions

Chunk Variables with at least Three Dimensions
Definition: Chunk all variables possible with at least three dimensions
Alternate invocation: none
cnk plc key values: ‘g3d’, ‘cnk_g3d’, ‘plc_g3d’
Mnemonic: Greater than or equal to 3 D imensions

Chunk One-Dimensional Record Variables
Definition: Chunk all 1-D record variables
Alternate invocation: none
Any specified (with ‘--cnk_dmn’) record dimension chunksizes will be applied

23 This behavior became the default in November 2014 with NCO version 4.4.7. Prior versions would
always use netCDF default chunking in the output file when no NCO chunking switches were activated,
regardless of the chunking in the input file.

Chapter 3: Shared Features 107

only to 1-D record variables (and to no other variables). Other dimensions may
be chunked with their own ‘--cnk_dmn’ options that will apply to all variables.
cnk plc key values: ‘r1d’, ‘cnk_r1d’, ‘plc_r1d’
Mnemonic: Record 1-D variables

Chunk Variables Containing Explicitly Chunked Dimensions
Definition: Chunk all variables possible that contain at least one dimension
whose chunksize was explicitly set with the ‘--cnk_dmn’ option. Alternate
invocation: none
cnk plc key values: ‘xpl’, ‘cnk_xpl’, ‘plc_xpl’
Mnemonic: EXPLicitly specified dimensions

Chunk Variables that are already Chunked
Definition: Chunk only variables that are already chunked in the input file.
When used in conjunction with ‘cnk_map=xst’ this option preserves and copies
the chunking parameters from the input to the output file. Alternate invocation:
none
cnk plc key values: ‘xst’, ‘cnk_xst’, ‘plc_xst’
Mnemonic: EX iST ing chunked variables

Chunk Variables with NCO recommendations
Definition: Chunk all variables according to NCO best practices. This is a
virtual option that ensures the chunking policy is (in the subjective opinion
of the authors) the best policy for typical usage. As of NCO version 4.4.8
(February, 2015), this virtual policy implements ‘map_rew’ for 3-D variables
and ‘map_lfp’ for all other variables.
Alternate invocation: none
cnk plc key values: ‘nco’, ‘cnk_nco’, ‘plc_nco’
Mnemonic: N etCDFOperator

Unchunking
Definition: Unchunk all variables possible. The HDF5 storge layer requires
that record variables (i.e., variables that contain at least one record dimension)
must be chunked. Also variables that are compressed or use checksums must
be chunked. Such variables cannot be unchunked.
Alternate invocation: ncunchunk
cnk plc key values: ‘uck’, ‘cnk_uck’, ‘plc_uck’, ‘none’, ‘unchunk’
Mnemonic: UnChunK

Equivalent key values are fully interchangeable. Multiple equivalent options are provided to
satisfy disparate needs and tastes of NCO users working with scripts and from the command
line.

The chunking algorithms must know the chunksizes of each dimension of each variable
to be chunked. The correspondence between the input variable shape and the chunksizes is

108 NCO 5.0.1 User Guide

called the chunking map. The user specifies the desired chunking map with the ‘-M’ switch
(or its long option equivalents, ‘--cnk_map’ and ‘--chunk_map’) and its cnk map argument.
Nine chunking maps are currently implemented:

Chunksize Equals Dimension Size
Definition: Chunksize defaults to dimension size. Explicitly specify chunksizes
for particular dimensions with ‘--cnk_dmn’ option. In most cases this chunk-
size will be applied in all variables that contain the specified dimension. Some
chunking policies noted above allow (fxm), and others (fxm) prevent this chunk-
size from applying to all variables.
cnk map key values: ‘dmn’, ‘cnk_dmn’, ‘map_dmn’
Mnemonic: D iM eN sion

Chunksize Equals Dimension Size except Record Dimension
Definition: Chunksize equals dimension size except record dimension has size
one. Explicitly specify chunksizes for particular dimensions with ‘--cnk_dmn’
option.
cnk map key values: ‘rd1’, ‘cnk_rd1’, ‘map_rd1’
Mnemonic: Record D imension size 1

Chunksize Equals Scalar Size Specified
Definition: Chunksize for all dimensions is set with the ‘--cnk_scl=sz_lmn’
option. For this map sz lmn itself becomes the chunksize of each dimension.
This is in contrast to the cnk prd map, where the rth root of sz lmn) becomes
the chunksize of each dimension.
cnk map key values: ‘scl’, ‘cnk_scl’, ‘map_scl’
Mnemonic: SCaLar
cnk map key values: ‘xpl’, ‘cnk_xpl’, ‘map_xpl’
Mnemonic: EXPLicitly specified dimensions

Chunksize Product Matches Scalar Size Specified
Definition: The product of the chunksizes for each variable matches (approx-
imately equals) the size specified with the ‘--cnk_scl=sz_lmn’ option. A di-
mension of size one is said to be degenerate. For a variable of rank R (i.e., with
R non-degenerate dimensions), the chunksize in each non-degenerate dimension
is (approximately) the Rth root of sz lmn. This is in contrast to the cnk scl
map, where sz lmn itself becomes the chunksize of each dimension.
cnk map key values: ‘prd’, ‘cnk_prd’, ‘map_prd’
Mnemonic: PRoDuct

Chunksize Lefter Product Matches Scalar Size Specified
Definition: The product of the chunksizes for each variable (approximately)
equals the size specified with the ‘--cnk_byt=sz_byt’ (not ‘--cnk_dfl’) op-
tion. This is accomplished by using dimension sizes as chunksizes for the right-
most (most rapidly varying) dimensions, and then “flexing” the chunksize of the

Chapter 3: Shared Features 109

leftmost (least rapidly varying) dimensions such that the product of all chunk-
sizes matches the specified size. All L-dimensions to the left of and including
the first record dimension define the left-hand side. To be precise, if the total
size (in bytes) of the variable is var sz, and if the specified (with ‘--cnk_byt’)
product of the R “righter” dimensions (those that vary more rapidly than the
first record dimension) is sz byt, then chunksize (in bytes) of each of the L
lefter dimensions is (approximately) the Lth root of var sz/sz byt. This map
was first proposed by Chris Barker.
cnk map key values: ‘lfp’, ‘cnk_lfp’, ‘map_lfp’
Mnemonic: LeF ter Product

Chunksize Equals Existing Chunksize
Definition: Chunksizes are copied from the input to the output file for every
variable that is chunked in the input file. Variables not chunked in the input
file will be chunked with default mappings.
cnk map key values: ‘xst’, ‘cnk_xst’, ‘map_xst’
Mnemonic: EX iST

Chunksize Balances 1D and (N-1)-D Access to N-D Variable [default for netCDF4 input]
Definition: Chunksizes are chosen so that 1-D and (N-1)-D hyperslabs of 3-D
variables (e.g., point-timeseries orn latitude/longitude surfaces of 3-D fields)
both require approximately the number of chunks. Hence their access time
should be balanced. Russ Rew explains the motivation and derivation for this
strategy here.
cnk map key values: ‘rew’, ‘cnk_rew’, ‘map_rew’
Mnemonic: Russ REW

Chunksizes use netCDF4 defaults
Definition: Chunksizes are determined by the underlying netCDF library. All
variables selected by the current chunking policy have their chunksizes deter-
mined by netCDF library defaults. The default algorithm netCDF uses to
determine chunksizes has changed through the years, and thus depends on the
netCDF library version. This map can be used to reset (portions of) previously
chunked files to default chunking values.
cnk map key values: ‘nc4’, ‘cnk_nc4’, ‘map_nc4’
Mnemonic: N etCDF4

Chunksizes use NCO recommendations [default for netCDF3 input]
Definition: Chunksizes are determined by the currently recommended NCO

map. This is a virtual option that ensures the chunking map is (in the subjective
opinion of the authors) the best map for typical usage. As of NCO version 4.4.9
(May, 2015), this virtual map calls ‘map_lfp’.
cnk map key values: ‘nco’, ‘cnk_nco’, ‘map_nco’
Mnemonic: N etCDFOperator

http://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_choosing_shapes

110 NCO 5.0.1 User Guide

It is possible to combine the above chunking map algorithms with user-specified per-
dimension (though not per-variable) chunksizes that override specific chunksizes determined
by the maps above. The user specifies the per-dimension chunksizes with the (equivalent)
long options ‘--cnk_dmn’ or ‘--chunk_dimension’). The option takes two comma-separated
arguments, dmn nm,sz lmn, which are the dimension name and its chunksize (in elements,
not bytes), respectively. The ‘--cnk_dmn’ option may be used as many times as necessary.

The default behavior of chunking depends on several factors. As mentioned above,
when no chunking options are explicitly specified by the user, then NCO preserves the
chunking characteristics of the input file in the output file. This is equivalent to specifying
both cnk plc and cnk map as “existing”, i.e., ‘--cnk_plc=xst --cnk_map=xst’. If output
netCDF4 files are chunked with the default behavior of the netCDF4 library.

When any chunking parameter except ‘cnk_plc’ or ‘cnk_map’ is specified (such as
‘cnk_dmn’ or ‘cnk_scl’), then the “existing” policy and map are retained and the out-
put chunksizes are modified where necessary in accord with the user-specified parameter.
When ‘cnk_map’ is specified and ‘cnk_plc’ is not, then NCO picks (what it thinks is) the
optimal chunking policy. This has always been policy ‘map_g2d’. When ‘cnk_plc’ is spec-
ified and ‘cnk_map’ is not, then NCO picks (what it thinks is) the optimal chunking map.
This has always been map ‘map_rd1’.

To start afresh and return to netCDF4 chunking defaults, select ‘cnk_map=nc4’.

Simple chunking and unchunking

ncks -O -4 --cnk_plc=all in.nc out.nc # Chunk in.nc

ncks -O -4 --cnk_plc=unchunk in.nc out.nc # Unchunk in.nc

Chunk data then unchunk it, printing informative metadata

ncks -O -4 -D 4 --cnk_plc=all ~/nco/data/in.nc ~/foo.nc

ncks -O -4 -D 4 --cnk_plc=uck ~/foo.nc ~/foo.nc

Set total chunksize to 8192 B

ncks -O -4 -D 4 --cnk_plc=all --cnk_byt=8192 ~/nco/data/in.nc ~/foo.nc

More complex chunking procedures, with informative metadata

ncks -O -4 -D 4 --cnk_scl=8 ~/nco/data/in.nc ~/foo.nc

ncks -O -4 -D 4 --cnk_scl=8 dstmch90_clm.nc ~/foo.nc

ncks -O -4 -D 4 --cnk_dmn lat,64 --cnk_dmn lon,128 dstmch90_clm.nc \

~/foo.nc

ncks -O -4 -D 4 --cnk_plc=uck ~/foo.nc ~/foo.nc

ncks -O -4 -D 4 --cnk_plc=g2d --cnk_map=rd1 --cnk_dmn lat,32 \

--cnk_dmn lon,128 dstmch90_clm_0112.nc ~/foo.nc

Chunking works with all operators...

ncap2 -O -4 -D 4 --cnk_scl=8 -S ~/nco/data/ncap2_tst.nco \

~/nco/data/in.nc ~/foo.nc

ncbo -O -4 -D 4 --cnk_scl=8 -p ~/nco/data in.nc in.nc ~/foo.nc

ncecat -O -4 -D 4 -n 12,2,1 --cnk_dmn lat,32 \

-p /data/zender/dstmch90 dstmch90_clm01.nc ~/foo.nc

Chapter 3: Shared Features 111

ncflint -O -4 -D 4 --cnk_scl=8 ~/nco/data/in.nc ~/foo.nc

ncpdq -O -4 -D 4 -P all_new --cnk_scl=8 -L 5 ~/nco/data/in.nc ~/foo.nc

ncrcat -O -4 -D 4 -n 12,2,1 --cnk_dmn lat,32 \

-p /data/zender/dstmch90 dstmch90_clm01.nc ~/foo.nc

ncwa -O -4 -D 4 -a time --cnk_plc=g2d --cnk_map=rd1 --cnk_dmn lat,32 \

--cnk_dmn lon,128 dstmch90_clm_0112.nc ~/foo.nc

Chunking policy ‘r1d’ changes the chunksize of 1-D record variables (and no other vari-
ables) to that specified (with ‘--cnk_dmn’) chunksize. Any specified record dimension chunk-
sizes will be applied to 1-D record variables only. Other dimensions may be chunked with
their own ‘--cnk_dmn’ options that will apply to all variables. For example,

ncks --cnk_plc=r1d --cnk_dmn=time,1000. in.nc out.nc

This sets time chunks to 1000 only in 1-D record variables. Without the ‘r1d’ policy,
time chunks would change in all variables.

It is appropriate to conclude by informing users about an aspect of chunking that may
not be expected. Three types of variables are always chunked: Record variables, Deflated
(compressed) variables, and Checksummed variables. Hence all variables that contain a
record dimension are also chunked (since data must be chunked in all dimensions, not just
one). Unless otherwise specified by the user, the other (fixed, non-record) dimensions of
record variables are assigned default chunk sizes. The HDF5 layer does all this automati-
cally to optimize the on-disk variable/file storage geometry of record variables. Do not be
surprised to learn that files created without any explicit instructions to activate chunking
nevertheless contain chunked variables.

3.32 Compression� �
Availability: ncbo, ncecat, nces, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: None
Long options: ‘--ppc var1[,var2[,...]]=prc’,
‘--precision_preserving_compression var1[,var2[,...]]=prc’,
‘--quantize var1[,var2[,...]]=prc’

 	
NCO implements or accesses four different compression algorithms, the standard lossless

DEFLATE algorithm and three lossy compression algorithms. All four algorithms reduce
the on-disk size of a dataset while sacrificing no (lossless) or a tolerable amount (lossy) of
precision. First, NCO can access the lossless DEFLATE algorithm, a combination of Lempel-
Ziv encoding and Huffman coding, algorithm on any netCDF4 dataset (see Section 3.33
[Deflation], page 121). Because it is lossless, this algorithm re-inflates deflated data to their
full original precision. This algorithm is accessed via the HDF5 library layer (which itself
calls the zlib library also used by gzip), and is unavailable with netCDF3.

3.32.1 Linear Packing

The three lossy compression algorithms are Linear Packing (see Section 3.38 [Packed data],
page 126), and two precision-preserving algorithms. Linear packing quantizes data of a

112 NCO 5.0.1 User Guide

higher precision type into a lower precision type (often NC_SHORT) that thus stores a fewer
(though constant) number of bytes per value. Linearly packed data unpacks into a (much)
smaller dynamic range than the floating-point data can represent. The type-conversion and
reduced dynamic range of the data allows packing to eliminate bits typically used to store
an exponent, thus improving its packing efficiency. Packed data also can also be deflated
for additional space savings.

A limitation of linear packing is that unpacking data stored as integers into the linear
range defined by scale_factor and add_offset rapidly loses precision outside of a narrow
range of floating-point values. Variables packed as NC_SHORT, for example, can represent
only about 64000 discrete values in the range −32768 ∗ scalefactor+ addoffset to 32767 ∗
scalefactor + addoffset. The precision of packed data equals the value of scale_factor,
and scale_factor is usually chosen to span the range of valid data, not to represent the
intrinsic precision of the variable. In other words, the precision of packed data cannot be
specified in advance because it depends on the range of values to quantize.

3.32.2 Precision-Preserving Compression

NCO implemented the final two lossy compression algorithms in version 4.4.8 (February,
2015). These are both Precision-Preserving Compression (PPC) algorithms and since stan-
dard terminology for precision is remarkably imprecise, so is our nomenclature. The op-
erational definition of “significant digit” in our precision preserving algorithms is that the
exact value, before rounding or quantization, is within one-half the value of the decimal
place occupied by the Least Significant Digit (LSD) of the rounded value. For example, the
value pi = 3.14 correctly represents the exact mathematical constant pi to three significant
digits because the LSD of the rounded value (i.e., 4) is in the one-hundredths digit place,
and the difference between the exact value and the rounded value is less than one-half of
one one-hundredth, i.e., (3.14159265358979323844− 3.14 = 0.00159 < 0.005).

One PPC algorithm preserves the specified total Number of Signifcant Digits (NSD) of the
value. For example there is only one significant digit in the weight of most “eight-hundred
pound gorillas” that you will encounter, i.e., so nsd = 1. This is the most straightforward
measure of precision, and thus NSD is the default PPC algorithm.

The other PPC algorithm preserves the number of Decimal Significant Digits (DSD), i.e.,
the number of significant digits following (positive, by convention) or preceding (negative)
the decimal point. For example, ‘0.008’ and ‘800’ have, respectively, three and negative
two digits digits following the decimal point, corresponding to dsd = 3 and dsd = −2.

The only justifiable NSD for a given value depends on intrinsic accuracy and error char-
acteristics of the model or measurements, and not on the units with which the value is
stored. The appropriate DSD for a given value depends on these intrinsic characteristics
and, in addition, the units of storage. This is the fundamental difference between the NSD

and DSD approaches. The eight-hundred pound gorilla always has nsd = 1 regardless of
whether the value is stored in pounds or in some other unit. DSD corresponding to this
weight is dsd = −2 if the value is stored in pounds, dsd = 4 if stored in megapounds.

Users may wish to express the precision to be preserved as either NSD or DSD. Invoke
PPC with the long option ‘--ppc var=prc’, or give the same arguments to the synonyms
‘--precision_preserving_compression’, or to ‘--quantize’. Here var is the variable

Chapter 3: Shared Features 113

to quantize, and prc is its precision. The option ‘--ppc’ (and its long option equivalents
such as ‘--quantize’) indicates the argument syntax will be key=val. As such, ‘--ppc’
and its synonyms are indicator options that accept arguments supplied one-by-one like
‘--ppc key1=val1 --ppc key2=val2’, or aggregated together in multi-argument format like
‘--ppc key1=val1#key2=val2’ (see Section 3.4.2 [Multi-arguments], page 32). The default
algorithm assumes prc specifies NSD precision, e.g., ‘T=2’ means nsd = 2. Prepend prc
with a decimal point to specify DSD precision, e.g., ‘T=.2’ means dsd = 2. NSD precision
must be specified as a positive integer. DSD precision may be a positive or negative integer;
and is specified as the negative base 10 logarithm of the desired precision, in accord with
common usage. For example, specifying ‘T=.3’ or ‘T=.-2’ tells the DSD algorithm to store
only enough bits to preserve the value of T rounded to the nearest thousandth or hundred,
respectively.

Setting var to default has the special meaning of applying the associated NSD or DSD

algorithm to all floating point variables except coordinate variables. Variables not affected
by default include integer and non-numeric atomic types, coordinates, and variables men-
tioned in the bounds, climatology, or coordinates attribute of any variable. NCO applies
PPC to coordinate variables only if those variables are explicitly specified (i.e., not with the
‘default=prc’ mechanism. NCO applies PPC to integer-type variables only if those variables
are explicitly specified (i.e., not with the ‘default=prc’, and only if the DSD algorithm is
invoked with a negative prc. To prevent PPC from applying to certain non-coordinate vari-
ables (e.g., gridcell_area or gaussian_weight), explicitly specify a precision exceeding 7
(for NC_FLOAT) or 15 (for NC_DOUBLE) for those variables. Since these are the maximum
representable precisions in decimal digits, NCO turns-off PPC (i.e., does nothing) when
more precision is requested.

The time-penalty for compressing and uncompressing data varies according to the al-
gorithm. The Number of Significant Digit (NSD) algorithm quantizes by bitmasking, and
employs no floating-point math. The Decimal Significant Digit (DSD) algorithm quantizes
by rounding, which does require floating-point math. Hence NSD is likely faster than DSD,
though the difference has not been measured. NSD creates a bitmask to alter the significand
of IEEE 754 floating-point data. The bitmask is one for all bits to be retained and zero or
one for all bits to be ignored. The algorithm assumes that the number of binary digits
(i.e., bits) necessary to represent a single base-10 digit is ln(10)/ln(2) = 3.32. The exact
numbers of bits Nbit retained for single and double precision values are ceil(3.32 ∗ nsd) + 1
and ceil(3.32 ∗ nsd) + 2, respectively. Once these reach 23 and 53, respectively, bitmasking
is completely ineffective. This occurs at nsd = 6.3 and 15.4, respectively.

The DSD algorithm, by contrast, uses rounding to remove undesired precision. The
rounding24 zeroes the greatest number of significand bits consistent with the desired preci-
sion.

To demonstrate the change in IEEE representation caused by PPC rounding algorithms,
consider again the case of pi, represented as an NC_FLOAT. The IEEE 754 single precision
representations of the exact value (3.141592...), the value with only three significant digits

24 Rounding is performed by the internal math library rint() family of functions that were standardized
in C99. The exact alorithm employed is val := rint(scale ∗ val)/scale where scale is the nearest power
of 2 that exceeds 10 ∗ ∗prc, and the inverse of scale is used when prc < 0. For ppc = 3 or ppc = −2, for
example, we have scale = 1024 and scale = 1/128.

114 NCO 5.0.1 User Guide

treated as exact (3.140000...), and the value as stored (3.140625) after PPC-rounding with
either the NSD (prc = 3) or DSD (prc = 2) algorithm are, respectively,

S Exponent Fraction (Significand) Decimal Notes

0 100000001 0010010000111111011011 # 3.14159265 Exact

0 100000001 0010001111010111000011 # 3.14000000

0 100000001 0010010000000000000000 # 3.14062500 NSD = 3

0 100000001 0010010000000000000000 # 3.14062500 DSD = 2

The string of trailing zero-bits in the rounded values facilitates byte-stream compression.
Note that the NSD and DSD algorithms do not always produce results that are bit-for-bit
identical, although they do in this particular case.

Reducing the preserved precision of NSD-rounding produces increasingly long strings of
identical-bits amenable to compression:

S Exponent Fraction (Significand) Decimal Notes

0 100000001 0010010000111111011011 # 3.14159265 Exact

0 100000001 0010010000111111011011 # 3.14159265 NSD = 8

0 100000001 0010010000111111011010 # 3.14159262 NSD = 7

0 100000001 0010010000111111011000 # 3.14159203 NSD = 6

0 100000001 0010010000111111000000 # 3.14158630 NSD = 5

0 100000001 0010010000111100000000 # 3.14154053 NSD = 4

0 100000001 0010010000000000000000 # 3.14062500 NSD = 3

0 100000001 0010010000000000000000 # 3.14062500 NSD = 2

0 100000001 0010000000000000000000 # 3.12500000 NSD = 1

The consumption of about 3 bits per digit of base-10 precision is evident, as is the
coincidence of a quantized value that greatly exceeds the mandated precision for NSD = 2.
Although the NSD algorithm generally masks some bits for all nsd <= 7 (for NC_FLOAT),
compression algorithms like DEFLATE may need byte-size-or-greater (i.e., at least eight-
bit) bit patterns before their algorithms can take advantage of of encoding such patterns
for compression. Do not expect significantly enhanced compression from nsd > 5 (for NC_
FLOAT) or nsd > 14 (for NC_DOUBLE). Clearly values stored as NC_DOUBLE (i.e., eight-bytes)
are susceptible to much greater compression than NC_FLOAT for a given precision because
their significands explicitly contain 53 bits rather than 23 bits.

Maintaining non-biased statistical properties during lossy compression requires special
attention. The DSD algorithm uses rint(), which rounds toward the nearest even integer.
Thus DSD has no systematic bias. However, the NSD algorithm uses a bitmask technique
susceptible to statistical bias. Zeroing all non-significant bits is guaranteed to produce
numbers quantized to the specified tolerance, i.e., half of the decimal value of the position
occupied by the LSD. However, always zeroing the non-significant bits results in quantized
numbers that never exceed the exact number. This would produce a negative bias in
statistical quantities (e.g., the average) subsequently derived from the quantized numbers.
To avoid this bias, our NSD implementation rounds non-significant bits down (to zero) or up
(to one) in an alternating fashion when processing array data. In general, the first element
is rounded down, the second up, and so on. This results in a mean bias quite close to zero.
The only exception is that the floating-point value of zero is never quantized upwards. For
simplicity, NSD always rounds scalars downwards.

Chapter 3: Shared Features 115

Although NSD or DSD are different algorithms under the hood, they both replace the
(unwanted) least siginificant bits of the IEEE significand with a string of consecutive zeroes.
Byte-stream compression techniques, such as the gzip DEFLATE algorithm compression
available in HDF5, always compress zero-strings more efficiently than random digits. The
net result is netCDF files that utilize compression can be significantly reduced in size.
This feature only works when the data are compressed, either internally (by netCDF) or
externally (by another user-supplied mechanism). It is most straightfoward to compress data
internally using the built-in compression and decompression supported by netCDF4. For
convenience, NCO automatically activates file-wide Lempel-Ziv deflation (see Section 3.33
[Deflation], page 121) level one (i.e., ‘-L 1’) when PPC is invoked on any variable in a
netCDF4 output file. This makes PPC easier to use effectively, since the user need not
explicitly specify deflation. Any explicitly specified deflation (including no deflation, ‘-L
0’) will override the PPC deflation default. If the output file is a netCDF3 format, NCO will
emit a message suggesting internal netCDF4 or external netCDF3 compression. netCDF3
files compressed by an external utility such as gzip accrue approximately the same benefits
(shrinkage) as netCDF4, although with netCDF3 the user or provider must uncompress
(e.g., gunzip) the file before accessing the data. There is no benefit to rounding numbers and
storing them in netCDF3 files unless such custom compression/decompression is employed.
Without that, one may as well maintain the undesired precision.

The user accesses PPC through a single switch, ‘--ppc’, repeated as many times as
necessary. To apply the NSD algorithm to variable u use, e.g.,

ncks -7 --ppc u=2 in.nc out.nc

The output file will preserve only two significant digits of u. The options ‘-4’ or ‘-7’
ensure a netCDF4-format output (regardless of the input file format) to support internal
compression. It is recommended though not required to write netCDF4 files after PPC. For
clarity the ‘-4/-7’ switches are omitted in subsequent examples. NCO attaches attributes
that indicate the algorithm used and degree of precision retained for each variable affected by
PPC. The NSD and DSD algorithms store the attributes number_of_significant_digits
and least_significant_digit25, respectively.

It is safe to attempt PPC on input that has already been rounded. Variables can be
made rounder, not sharper, i.e., variables cannot be “un-rounded”. Thus PPC attempted
on an input variable with an existing PPC attribute proceeds only if the new rounding level
exceeds the old, otherwise no new rounding occurs (i.e., a “no-op”), and the original PPC
attribute is retained rather than replaced with the newer value of prc.

25 A suggestion by Rich Signell and the nc3tonc4 tool by Jeff Whitaker inspired NCO to implement PPC.
Note that NCO implements a different DSD algorithm than nc3tonc4, and produces slightly different
(not bit-for-bit) though self-consistent and equivalent results. nc3tonc4 records the precision of its DSD

algorithm in the attribute least_significant_digit and NCO does the same for consistency. The
Unidata blog here also shows how to compress IEEE floating-point data by zeroing insignificant bits.
The author, John Caron, writes that the technique has been called “bit-shaving”. We call the algorithm
of always rounding-up “bit-setting”. And we named the algorithm produced by alternately rounding
up and down (with a few other bells and whistles) “bit-grooming”. Imagine orthogonally raking an
already-groomed Japanese rock garden. The criss-crossing tracks increase the pattern’s entropy, and
this entropy produces self-compensating instead of accumulating errors during statistical operations.

http://www.unidata.ucar.edu/blogs/developer/en/entry/compression_by_bit_shaving

116 NCO 5.0.1 User Guide

To request, say, five significant digits (nsd = 5) for all fields, except, say, wind speeds
which are only known to integer values (dsd = 0) in the supplied units, requires ‘--ppc’
twice:

ncks -4 --ppc default=5 --ppc u,v=.0 in.nc out.nc

To preserve five digits in all variables except coordinate variables and u and v, use the
‘default’ option and separately specify the exceptions:

ncks --ppc default=5 --ppc u,v=20 in.nc out.nc

The ‘--ppc’ option may be specified any number of times to support varying precision
types and levels, and each option may aggregate all the variables with the same precision

ncks --ppc p,w,z=5 --ppc q,RH=4 --ppc T,u,v=3 in.nc out.nc

ncks --ppc p,w,z=5#q,RH=4#T,u,v=3 in.nc out.nc # Multi-argument format

Any var argument may be a regular expression. This simplifies generating lists of related
variables:

ncks --ppc Q.?=5 --ppc FS.?,FL.?=4 --ppc RH=.3 in.nc out.nc

ncks --ppc Q.?=5#FS.?,FL.?=4#RH=.3 in.nc out.nc # Multi-argument format

Although PPC-rounding instantly reduces data precision, on-disk storage reduction only
occurs once the data are compressed.

How can one be sure the lossy data are sufficiently precise? PPC preserves all significant
digits of every value. The DSD algorithm uses floating-point math to round each value
optimally so that it has the maximum number of zeroed bits that preserve the specified
precision. The NSD algorithm uses a theoretical approach (3.2 bits per base-10 digit),
tuned and tested to ensure the worst case quantization error is less than half the value of
the minimum increment in the least significant digit.

We define several metrics to quantify the quantization error. The mean error ε̄ and
mean absolute error ε̄+ incurred in quantizing a variable from its true values xi to quantized
values qi are, respectively,

ε̄ =

∑i=N
i=1 µimiwi(xi − qi)∑i=N

i=1 µimiwi
and ε̄+ =

∑i=N
i=1 µimiwi|xi − qi|∑i=N

i=1 µimiwi

where µi is 1 unless xi equals the missing value, mi is 1 unless xi is masked, and wi is the
weight. The maximum and minimum errors εmax and εmin are both signed

εmax = max(xi − qi) and εmin = min(xi − qi)

while the maximum and minimum absolute errors ε+mabs and ε
+
mibs are positive-definite.

ε+mabs = max|xi − qi| = max(|εmax|, |εmin|)

ε+mibs = min|xi − qi| = min(|εmax|, |εmin|)

Typically ε+mibs = 0 for quantization, since many exact values need no quantization. Bit-
shifting zeros into the least significant bits (LSBs) always underestimates true values so that
εmax = 0. Conversely, bit-shifting ones into the LSBs always overestimates true values so

Chapter 3: Shared Features 117

that εmin = 0. Our NSD algorithm is balanced because it alternates bit-shifting zeroes and
ones. Balanced algorithms should yield εmax ≈ −εmin, ε

+
mabs ≈ ε+mibs, and ε̄ ≈ 0.

The three most important error metrics for quantization are ε+mabs, ε̄
+, and ε̄. The upper

bound (worst case) quantization performance is ε+mabs. ε̄+ measures the absolute mean
accuracy of quantization, and does not allow positive and negative offsets to compensate
eachother and conceal poor performance. The difference bewtween ε+mabs and ε̄+ indicates
how much of an outlier the worst case is. The mean accuracy ε̄ indicates whether statistical
properties of quantized numbers will accurately reflect the true values.

All three metrics are expressed in terms of the fraction of the ten’s place occupied by the
LSD. If the LSD is the hundreds digit or the thousandths digit, then the metrics are frac-
tions of 100, or of 1/100, respectively. PPC algorithms should produce maximum absolute
errors no greater than 0.5 in these units. If the LSD is the hundreds digit, then quantized
versions of true values will be within fifty of the true value. It is much easier to satisfy this
tolerance for a true value of 100 (only 50% accuracy required) than for 999 (5% accuracy
required). Thus the minimum accuracy guaranteed for nsd = 1 ranges from 5–50%. For
this reason, the best and worst cast performance usually occurs for true values whose LSD

value is close to one and nine, respectively. Of course most users prefer prc > 1 because
accuracies increase exponentially with prc. Continuing the previous example to prc = 2,
quantized versions of true values from 1000–9999 will also be within 50 of the true value,
i.e., have accuracies from 0.5–5%. In other words, only two significant digits are necessary to
guarantee better than 5% accuracy in quantization. We recommend that dataset producers
and users consider quantizing datasets with nsd = 3. This guarantees accuracy of 0.05–
0.5% for individual values. Statistics computed from ensembles of quantized values will,
assuming the mean error ε̄ is small, have much better accuracy than 0.5%. This accuracy
is the most that can be justified for many applications.

To demonstrate these principles we conduct error analyses on an artificial, reproducible
dataset, and on an actual dataset of observational analysis values.26 The table summarizes
quantization accuracy based on the three metrics.

NSD Number of Significant Digits.

Emabs Maximum absolute error.

Emebs Mean absolute error.

Emean Mean error.

Artificial Data: N=1000000 values in [1.0,2.0) in steps of 1.0e-6

Single-Precision Double-Precision Single-Precision

NSD Emabs Emebs Emean Emabs Emebs Emean DSD Emabs Emebs Emean

1 0.31 0.11 4.1e-4 0.31 0.11 4.0e-4 1 0.30 0.11 -8.1e-4

2 0.39 0.14 6.8e-5 0.39 0.14 5.5e-5 2 0.39 0.14 -1.3e-4

3 0.49 0.17 1.0e-6 0.49 0.17 -5.5e-7 3 0.49 0.17 -2.0e-5

4 0.30 0.11 3.2e-7 0.30 0.11 -6.1e-6 4 0.30 0.11 5.1e-8

5 0.37 0.13 3.1e-7 0.38 0.13 -5.6e-6 5 0.38 0.13 2.6e-6

26 The artificial dataset employed is one million evenly spaced values from 1.0–2.0. The analysis data are
N = 13934592 values of the temperature field from the NASA MERRA analysis of 20130601.

118 NCO 5.0.1 User Guide

6 0.36 0.12 -4.4e-7 0.48 0.17 -4.1e-7 6 0.48 0.17 7.2e-6

7 0.00 0.00 0.0 0.30 0.10 1.5e-7 7 0.00 0.00 0.0

Observational Analysis: N=13934592 values MERRA Temperature 20130601

Single-Precision

NSD Emabs Emebs Emean

1 0.31 0.11 2.4e-3

2 0.39 0.14 3.8e-4

3 0.49 0.17 -9.6e-5

4 0.30 0.11 2.3e-3

5 0.37 0.13 2.2e-3

6 0.36 0.13 1.7e-2

7 0.00 0.00 0.0

All results show that PPC quantization performs as expected. Absolute maximum errors
Emabs < 0.5 for all prc. For 1 <= prc <= 6, quantization results in comparable maximum
absolute and mean absolute errors Emabs and Emebs, respectively. Mean errors Emean
are orders of magnitude smaller because quantization produces over- and under-estimated
values in balance. When prc = 7, quantization of single-precision values is ineffective,
because all available bits are used to represent the maximum precision of seven digits.
The maximum and mean absolute errors Emabs and Emebs are nearly identical across
algorithms, precisions, and dataset types. This is consistent with both the artificial data
and empirical data being random, and thus exercising equally strengths and weaknesses of
the algorithms over the course of millions of input values. We generated artificial arrays
with many different starting values and interval spacing and all gave qualitatively similar
results. The results presented are the worst obtained.

The artificial data has much smaller mean error Emean than the observational analysis.
The reason why is unclear. It may be because the temperature field is concentrated in
particular ranges of values (and associated quantization errors) prevalent on Earth, e.g.,
200 < T < 320. It is worth noting that the mean error Emean < 0.01 for 1 <= prc < 6,
and that Emean is typically at least two or more orders of magnitude less than Emabs. Thus
quantized values with precisions as low as prc = 1 still yield highly significant statistics by
contemporary scientific standards.

Testing shows that PPC quantization enhances compression of typical climate datasets.
The degree of enhancement depends, of course, on the required precision. Model results
are often computed as NC_DOUBLE then archived as NC_FLOAT to save space. This table
summarizes the performance of lossless and lossy compression on two typical, or at least
random, netCDF data files. The files were taken from representative model-simulated and
satellite-retrieved datasets. Only floating-point data were compressed. No attempt was
made to compress integer-type variables as they occupy an insignificant fraction of every
dataset. The columns are

Type File-type: N3 for netCDF CLASSIC, N4 for NETCDF4, N7 for NETCDF4_CLASSIC
(which comprises netCDF3 data types and structures with netCDF4 storage
features like compression), H4 for HDF4, and H5 for HDF5. N4/7 means results
apply to both N4 and N7 filetypes.

Chapter 3: Shared Features 119

LLC Type of lossless compression employed, if any. Bare numbers refer to the
strength of the DEFLATE algorithm employed internally by netCDF4/HDF5,
while numbers prefixed with B refer to the block size employed by the Burrows-
Wheeler algorithm in bzip2.

PPC Number of significant digits retained by the precision-preserving compression
NSD algorithm.

Pck Y if the default ncpdq packing algorithm (convert floating-point types to NC_

SHORT) was employed.

Size Resulting filesize in MB.

% Compression ratio, i.e., resulting filesize relative to original size, in percent. In
some cases the original files is already losslessly compressed. The compression
ratios reported are relative to the size of the original file as distributed, not as
optimally losslessly compressed.

A dash (-) indicates the associated compression feature was not employed.

dstmch90_clm.nc

Type LLC PPC Pck Size % Flags and Notes

N3 - - - 34.7 100.0 Original is not compressed

N3 B1 - - 28.9 83.2 bzip2 -1

N3 B9 - - 29.3 84.4 bzip2 -9

N7 - - - 35.0 101.0

N7 1 - - 28.2 81.3 -L 1

N7 9 - - 28.0 80.8 -L 9

N7 - - Y 17.6 50.9 ncpdq -L 0

N7 1 - Y 7.9 22.8 ncpdq -L 1

N7 1 7 - 28.2 81.3 --ppc default=7

N7 1 6 - 27.9 80.6 --ppc default=6

N7 1 5 - 25.9 74.6 --ppc default=5

N7 1 4 - 22.3 64.3 --ppc default=4

N7 1 3 - 18.9 54.6 --ppc default=3

N7 1 2 - 14.5 43.2 --ppc default=2

N7 1 1 - 10.0 29.0 --ppc default=1

b1850c5cn_doe_polar_merged_0_cesm1_2_0_HD+MAM4+tun2b.hp.e003.cam.h0.0001-01.nc

Type LLC PPC Pck Size % Flags and Notes

N3 - - - 119.8 100.0 Original is not compressed

N3 B1 - - 84.2 70.3 bzip2 -1

N3 B9 - - 84.8 70.9 bzip2 -9

N7 - - - 120.5 100.7

N7 1 - - 82.6 69.0 -L 1

N7 9 - - 82.1 68.6 -L 9

N7 - - Y 60.7 50.7 ncpdq -L 0

N7 1 - Y 26.0 21.8 ncpdq -L 1

N7 1 7 - 82.6 69.0 --ppc default=7

N7 1 6 - 81.9 68.4 --ppc default=6

120 NCO 5.0.1 User Guide

N7 1 5 - 77.2 64.5 --ppc default=5

N7 1 4 - 69.0 57.6 --ppc default=4

N7 1 3 - 59.3 49.5 --ppc default=3

N7 1 2 - 49.5 41.3 --ppc default=2

N7 1 1 - 38.2 31.9 --ppc default=1

MERRA300.prod.assim.inst3_3d_asm_Cp.20130601.hdf

Type LLC PPC Pck Size % Flags and Notes

H4 5 - - 244.3 100.0 Original is compressed

H4 B1 - - 244.7 100.1 bzip2 -1

N4 5 - - 214.5 87.8

N7 5 - - 210.6 86.2

N4 B1 - - 215.4 88.2 bzip2 -1

N4 B9 - - 214.8 87.9 bzip2 -9

N3 - - - 617.1 252.6

N4/7 - - - 694.0 284.0 -L 0

N4/7 1 - - 223.2 91.3 -L 1

N4/7 9 - - 207.3 84.9 -L 9

N4/7 - - Y 347.1 142.1 ncpdq -L 0

N4/7 1 - Y 133.6 54.7 ncpdq -L 1

N4/7 1 7 - 223.1 91.3 --ppc default=7

N4/7 1 6 - 225.1 92.1 --ppc default=6

N4/7 1 5 - 221.4 90.6 --ppc default=5

N4/7 1 4 - 201.4 82.4 --ppc default=4

N4/7 1 3 - 185.3 75.9 --ppc default=3

N4/7 1 2 - 150.0 61.4 --ppc default=2

N4/7 1 1 - 100.8 41.3 --ppc default=1

OMI-Aura_L2-OMIAuraSO2_2012m1222-o44888_v01-00-2014m0107t114720.h5

Type LLC PPC Pck Size % Flags and Notes

H5 5 - - 29.5 100.0 Original is compressed

H5 B1 - - 29.3 99.6 bzip2 -1

N4 5 - - 29.5 100.0

N4 B1 - - 29.3 99.6 bzip2 -1

N4 B9 - - 29.3 99.4 bzip2 -9

N4 - - - 50.7 172.3 -L 0

N4 1 - - 29.8 101.3 -L 1

N4 9 - - 29.4 99.8 -L 9

N4 - - Y 27.7 94.0 ncpdq -L 0

N4 1 - Y 12.9 43.9 ncpdq -L 1

N4 1 7 - 29.7 100.7 --ppc default=7

N4 1 6 - 29.7 100.8 --ppc default=6

N4 1 5 - 27.3 92.8 --ppc default=5

N4 1 4 - 23.8 80.7 --ppc default=4

N4 1 3 - 20.3 69.0 --ppc default=3

N4 1 2 - 15.1 51.2 --ppc default=2

N4 1 1 - 9.9 33.6 --ppc default=1

Chapter 3: Shared Features 121

A selective, per-variable approach to PPC yields the best balance of precision and com-
pression yet requires the dataset producer to understand the intrinsic precision of each
variable. Such a specification for a GCM dataset might look like this (using names for the
NCAR CAM model):

Be conservative on non-explicit quantities, so default=5

Some quantities deserve four significant digits

Many quantities, such as aerosol optical depths and burdens, are

highly uncertain and only useful to three significant digits.

ncks -7 -O \

--ppc default=5 \

--ppc AN.?,AQ.?=4 \

--ppc AER.?,AOD.?,ARE.?,AW.?,BURDEN.?=3 \

ncar_cam.nc ~/foo.nc

3.33 Deflation� �
Availability: ncap2, ncbo, ncclimo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat,
ncremap, ncwa
Short options: ‘-L’
Long options: ‘--dfl_lvl’, ‘--deflate’

 	
All NCO operators that define variables support the netCDF4 feature of storing variables

compressed with the lossless DEFLATE compression algorithm. DEFLATE combines the
Lempel-Ziv encoding with Huffman coding. The specific version used by netCDF4/HDF5 is
that implemented in the zlib library used by gzip. Activate deflation with the -L dfl_lvl

short option (or with the same argument to the ‘--dfl_lvl’ or ‘--deflate’ long options).
Specify the deflation level dfl lvl on a scale from no deflation (dfl lvl = 0) to maximum
deflation (dfl lvl = 9). Under the hood, this selects the compression blocksize. Minimal
deflation (dfl lvl = 1) achieves considerable storage compression with little time penalty.
Higher deflation levels require more time for compression. File sizes resulting from minimal
(dfl lvl = 1) and maximal (dfl lvl = 9) deflation levels typically differ by less than 10% in
size.

To compress an entire file using deflation, use

ncks -4 -L 0 in.nc out.nc # No deflation (fast, no time penalty)

ncks -4 -L 1 in.nc out.nc # Minimal deflation (little time penalty)

ncks -4 -L 9 in.nc out.nc # Maximal deflation (much slower)

Unscientific testing shows that deflation compresses typical climate datasets by 30-60%.
Packing, a lossy compression technique available for all netCDF files (see Section 3.38
[Packed data], page 126), can easily compress files by 50%. Packed data may be deflated to
squeeze datasets by about 80%:

ncks -4 -L 1 in.nc out.nc # Minimal deflation (~30-60% compression)

ncks -4 -L 9 in.nc out.nc # Maximal deflation (~31-63% compression)

ncpdq in.nc out.nc # Standard packing (~50% compression)

122 NCO 5.0.1 User Guide

ncpdq -4 -L 9 in.nc out.nc # Deflated packing (~80% compression)

ncks prints deflation parameters, if any, to screen (see Section 4.8 [ncks netCDF Kitchen
Sink], page 261).

3.34 MD5 digests� �
Availability: ncecat, ncks, ncrcat
Short options:
Long options: ‘--md5_dgs’, ‘--md5_digest’, ‘--md5_wrt_att’, ‘--md5_write_attribute’

 	
As of NCO version 4.1.0 (April, 2012), NCO supports data integrity verification using the

MD5 digest algorithm. This support is currently implemented in ncks and in the multi-file
concatenators ncecat and ncrcat. Activate it with the ‘--md5_dgs’ or ‘--md5_digest’ long
options. As of NCO version 4.3.3 (July, 2013), NCO will write theMD5 digest of each variable
as an NC_CHAR attribute named MD5. This support is currently implemented in ncks and in
the multi-file concatenators ncecat and ncrcat. Activate it with the ‘--md5_wrt_att’ or
‘--md5_write_attribute’ long options.

The behavior and verbosity of theMD5 digest is operator-dependent. MD5 digests may be
activated in both ncks invocation types, the one-filename argument mode for printing sub-
setted and hyperslabbed data, and the two-filename argument mode for copying that data
to a new file. Both modes will incur minor overhead from performing the hash algorithm
for each variable read, and each variable written will have an additional attribute named
MD5. When activating MD5 digests with ncks it is assumed that the user wishes to print
the digest of every variable when the debugging level exceeds one.

ncks displays an MD5 digest as a 32-character hexadecimal string in which each two
characters represent one byte of the 16-byte digest:

> ncks --trd -D 2 -C --md5 -v md5_a,md5_abc ~/nco/data/in.nc

...

ncks: INFO MD5(md5_a) = 0cc175b9c0f1b6a831c399e269772661

md5_a = ’a’

ncks: INFO MD5(md5_abc) = 900150983cd24fb0d6963f7d28e17f72

lev[0]=100 md5_abc[0--2]=’abc’

> ncks --trd -D 2 -C -d lev,0 --md5 -v md5_a,md5_abc ~/nco/data/in.nc

...

ncks: INFO MD5(md5_a) = 0cc175b9c0f1b6a831c399e269772661

md5_a = ’a’

ncks: INFO MD5(md5_abc) = 0cc175b9c0f1b6a831c399e269772661

lev[0]=100 md5_abc[0--0]=’a’

In fact these examples demonstrate the validity of the hash algorithm since the MD5

hashes of the strings “a” and “abc” are widely known. The second example shows that
the hyperslab of variable md5_abc (= “abc”) consisting of only its first letter (= “a”) has

Chapter 3: Shared Features 123

the same hash as the variable md5_a (“a”). This illustrates that MD5 digests act only on
variable data, not on metadata.

When activatingMD5 digests with ncecat or ncrcat it is assumed that the user wishes to
verify that every variable written to disk has the same MD5 digest as when it is subsequently
read from disk. This incurs the major additional overhead of reading in each variable after
it is written and performing the hash algorithm again on that to compare to the original
hash. Moreover, it is assumed that such operations are generally done in “production
mode” where the user is not interested in actually examining the digests herself. The
digests proceed silently unless the debugging level exceeds three:

> ncecat -O -D 4 --md5 -p ~/nco/data in.nc in.nc ~/foo.nc | grep MD5

...

ncecat: INFO MD5(wnd_spd) = bec190dd944f2ce2794a7a4abf224b28

ncecat: INFO MD5 digests of RAM and disk contents for wnd_spd agree

> ncrcat -O -D 4 --md5 -p ~/nco/data in.nc in.nc ~/foo.nc | grep MD5

...

ncrcat: INFO MD5(wnd_spd) = 74699bb0a72b7f16456badb2c995f1a1

ncrcat: INFO MD5 digests of RAM and disk contents for wnd_spd agree

Regardless of the debugging level, an error is returned when the digests of the variable
read from the source file and from the output file disagree.

These rules may further evolve as NCO pays more attention to data integrity. We
welcome feedback and suggestions from users.

3.35 Buffer sizes� �
Availability: All operators
Short options:
Long options: ‘--bfr_sz_hnt’, ‘--buffer_size_hint’

 	
As of NCO version 4.2.0 (May, 2012), NCO allows the user to request specific buffer sizes

to allocate for reading and writing files. This buffer size determines how many system calls
the netCDF layer must invoke to read and write files. By default, netCDF uses the preferred
I/O block size returned as the ‘st_blksize’ member of the ‘stat’ structure returned by the
stat() system call27. Otherwise, netCDF uses twice the system pagesize. Larger sizes can
increase access speed by reducing the number of system calls netCDF makes to read/write
data from/to disk. Because netCDF cannot guarantee the buffer size request will be met,
the actual buffer size granted by the system is printed as an INFO statement.

Request 2 MB file buffer instead of default 8 kB buffer

> ncks -O -D 3 --bfr_sz=2097152 ~/nco/data/in.nc ~/foo.nc

...

ncks: INFO nc__open() will request file buffer size = 2097152 bytes

27 On modern Linux systems the block size defaults to 8192 B. The GLADE filesystem at NCAR has a
block size of 512 kB.

124 NCO 5.0.1 User Guide

ncks: INFO nc__open() opened file with buffer size = 2097152 bytes

...

3.36 RAM disks� �
Availability: All operators (works with netCDF3 files only)
Short options:
Long options: ‘--ram_all’, ‘--create_ram’, ‘--open_ram’, ‘--diskless_all’

 	
As of NCO version 4.2.1 (August, 2012), NCO supports the use of diskless files, aka RAM

disks, for access and creation of netCDF3 files (these options have no effect on netCDF4
files). Two independent switches, ‘--open_ram’ and ‘--create_ram’, control this feature.
Before describing the specifics of these switches, we describe why many NCO operations
will not benefit from them. Essentially, reading/writing from/to RAM rather than disk only
hastens the task when reads/writes to disk are avoided. Most NCO operations are simple
enough that they require a single read-from/write-to disk for every block of input/output.
Diskless access does not change this, but it does add an extra read-from/write-to RAM.
However this extra RAM write/read does avoid contention for limited system resources like
disk-head access. Operators which may benefit from RAM disks include ncwa, which may
need to read weighting variables multiple times, the multi-file operators ncra, ncrcat, and
ncecat, which may try to write output at least once per input file, and ncap2 scripts which
may be arbitrarily long and convoluted.

The ‘--open_ram’ switch causes input files to copied to RAM when opened. All further
metadata and data access occurs in RAM and thus avoids access time delays caused by disk-
head movement. Usually input data is read at most once so it is unlikely that requesting
input files be stored in RAM will save much time. The likeliest exceptions are files that are
accessed numerous times, such as those repeatedly analyzed by ncap2.

Invoking ‘--open_ram’, ‘--ram_all’, or ‘--diskless_all’ uses much more system mem-
ory. To copy the input file to RAM increases the sustained memory use by exactly the
on-disk filesize of the input file, i.e., MS+ = FT . For large input files this can be a huge
memory burden that starves the rest of the NCO analysis of sufficient RAM. To be safe,
use ‘--open_ram’, ‘--ram_all’, or ‘--diskless_all’ only on files that are much (say at
least a factor of four) smaller than your available system RAM. See Section 2.9 [Memory
Requirements], page 24 for further details.

The ‘--create_ram’ switch causes output files to be created in RAM, rather than on disk.
These files are copied to disk only when closed, i.e., when the operator completes. Creating
files in RAM may save time, especially with ncap2 computations that are iterative, e.g.,
loops, and for multi-file operators that write output every record (timestep) or file. RAM

files provide many of the same benefits as RAM variables in such cases (see Section 4.1.13
[RAM variables], page 176).

Two switches, ‘--ram_all’ and ‘--diskless_all’, are convenient shortcuts for specify-
ing both ‘--create_ram’ and ‘--open_ram’. Thus

ncks in.nc out.nc # Default: Open in.nc on disk, write out.nc to disk

Chapter 3: Shared Features 125

ncks --open_ram in.nc out.nc # Open in.nc in RAM, write out.nc to disk

ncks --create_ram in.nc out.nc # Create out.nc in RAM, write to disk

Open in.nc in RAM, create out.nc in RAM, then write out.nc to disk

ncks --open_ram --create_ram in.nc out.nc

ncks --ram_all in.nc out.nc # Same as above

ncks --diskless_all in.nc out.nc # Same as above

It is straightforward to demonstrate the efficacy of RAM disks. For NASA we constructed
a test that employs ncecat an arbitrary number (set to one hundred thousand) of files that
are all symbolically linked to the same file. Everything is on the local filesystem (not DAP).

Create symbolic links for benchmark

cd ${DATA}/nco # Do all work here

for idx in {1..99999}; do

idx_fmt=‘printf "%05d" ${idx}‘

/bin/ln -s ${DATA}/nco/LPRM-AMSR_E_L3_D_SOILM3_V002-20120512T111931Z_20020619.nc \

${DATA}/nco/${idx_fmt}.nc

done

Benchmark time to ncecat one hundred thousand files

time ncecat --create_ram -O -u time -v ts -d Latitude,40.0 \

-d Longitude,-105.0 -p ${DATA}/nco -n 99999,5,1 00001.nc ~/foo.nc

Run normally on a laptop in 201303, this completes in 21 seconds. The ‘--create_ram’
reduces the elapsed time to 9 seconds. Some of this speed may be due to using symlinks
and caching. However, the efficacy of ‘--create_ram’ is clear. Placing the output file in
RAM avoids thousands of disk writes. It is not unreasonable to for NCO to process a million
files like this in a few minutes. However, there is no substitute for benchmarking with real
files.

A completely independent way to reduce time spent writing files is to refrain from writing
temporary output files. This is accomplished with the ‘--no_tmp_fl’ switch (see Section 2.3
[Temporary Output Files], page 17).

3.37 Unbuffered I/O� �
Availability: All operators (works on netCDF3 files only)
Short options:
Long options: ‘--share_all’, ‘--create_share’, ‘--open_share’, ‘--unbuffered_io’,
‘--uio’

 	
As of NCO version 4.9.4 (July, 2020), NCO supports unbuffered I/O with netCDF3 files

when requested with the ‘--unbuffered_io’ flag, or its synonyms ‘--uio’ or ‘--share_all’.
(Note that these options work only with netCDF3 files and have no affect on netCDF4 files).
These flags turn-off the default I/O buffering mode for both newly created and existing
datasets. For finer-grained control, use the --create_share switch to request unbuffered
I/O only for newly created datasets, and the --open_share switch to request unbuffered I/O
only for existing datasets. Typically these options only significantly reduce throughput time

126 NCO 5.0.1 User Guide

when large record variables are written or read. Normal I/O buffering copies the data to
be read/written into an intermediate buffer in order to avoid numerous small reads/writes.
Unbuffered I/O avoids this intermediate step and can therefore execute (sometimes much)
faster when read/write lengths are large.

3.38 Packed data� �
Availability: ncap2, ncbo, nces, ncflint, ncpdq, ncra, ncwa
Short options: None
Long options: ‘--hdf_upk’, ‘--hdf_unpack’

 	
The phrase packed data refers to data which are stored in the standard netCDF3 lossy

linear packing format. See Section 4.8 [ncks netCDF Kitchen Sink], page 261 for a descrip-
tion of deflation, a lossless compression technique available with netCDF4 only. Packed
data may be deflated to save additional space.

Standard Packing Algorithm

Packing The standard netCDF linear packing algorithm (described here) produces packed
data with the same dynamic range as the original but which requires no more than half the
space to store. NCO will always use this algorithm for packing. Like all packing algorithms,
linear packing is lossy. Just how lossy depends on the values themselves, especially their
range. The packed variable is stored (usually) as type NC_SHORT with the two attributes
required to unpack the variable, scale_factor and add_offset, stored at the original
(unpacked) precision of the variable28. Let min and max be the minimum and maximum
values of x.

scale factor = (max−min)/ndrv

add offset = (min + max)/2

pck = (upk− add offset)/scale factor

=
ndrv× [upk− (min + max)/2]

max−min

where ndrv is the number of discrete representable values for given type of packed variable.
The theoretical maximum value for ndrv is two raised to the number of bits used to store
the packed variable. Thus if the variable is packed into type NC_SHORT, a two-byte datatype,
then there are at most 216 = 65536 distinct values representable. In practice, the number of
discretely representible values is taken to be two less than the theoretical maximum. This
leaves space for a missing value and solves potential problems with rounding that may occur
during the unpacking of the variable. Thus for NC_SHORT, ndrv = 65536− 2 = 65534. Less
often, the variable may be packed into type NC_CHAR, where ndrv = 28−2 = 256−2 = 254,
or type NC_INT where where ndrv = 232 − 2 = 4294967295 − 2 = 4294967293. One useful
feature of the (lossy) netCDF packing algorithm is that lossless packing algorithms perform
well on top of it.

28 Although not a part of the standard, NCO enforces the policy that the _FillValue attribute, if any, of
a packed variable is also stored at the original precision.

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attribute-Conventions.html

Chapter 3: Shared Features 127

Standard (Default) Unpacking Algorithm

Unpacking The unpacking algorithm depends on the presence of two attributes, scale_
factor and add_offset. If scale_factor is present for a variable, the data are multiplied
by the value scale factor after the data are read. If add_offset is present for a variable,
then the add offset value is added to the data after the data are read. If both scale_factor

and add_offset attributes are present, the data are first scaled by scale factor before the
offset add offset is added.

upk = scale factor× pck + add offset

=
pck× (max−min)

ndrv
+

min +max

2

NCO will use this algorithm for unpacking unless told otherwise as described below. When
scale_factor and add_offset are used for packing, the associated variable (containing the
packed data) is typically of type byte or short, whereas the unpacked values are intended
to be of type int, float, or double. An attribute’s scale_factor and add_offset and
_FillValue, if any, should all be of the type intended for the unpacked data, i.e., int,
float or double.

Non-Standard Packing and Unpacking Algorithms

Many (most?) files originally written in HDF4 format use poorly documented pack-
ing/unpacking algorithms that are incompatible and easily confused with the netCDF pack-
ing algorithm described above. The unpacking component of the “conventional” HDF algo-
rithm (described here and in Section 3.10.6 of the HDF4 Users Guide here, and in the FAQ

for MODIS MOD08 data here) is

upk = scale factor× (pck− add offset)

The unpacking component of the HDF algorithm employed for MODIS MOD13 data is

upk = (pck− add offset)/scale factor

The unpacking component of the HDF algorithm employed for MODIS MOD04 data is
the same as the netCDF algorithm.

Confusingly, the (incompatible) netCDF and HDF algorithms both store their parameters
in attributes with the same names (scale_factor and add_offset). Data packed with
one algorithm should never be unpacked with the other; doing so will result in incorrect
answers. Unfortunately, few users are aware that their datasets may be packed, and fewer
know the details of the packing algorithm employed. This is what we in the “bizness”
call an interoperability issue because it hampers data analysis performed on heterogeneous
systems.

As described below, NCO automatically unpacks data before performing arithmetic. This
automatic unpacking occurs silently since there is usually no reason to bother users with
these details. There is as yet no generic way for NCO to know which packing convention was
used, so NCO assumes the netCDF convention was used. NCO uses the same convention
for unpacking unless explicitly told otherwise with the ‘--hdf_upk’ (also ‘--hdf_unpack’)

http://www.hdfgroup.org/HDF5/doc/UG/UG_frame10Datasets.html
http://www.hdfgroup.org/release4/doc/UsrGuide_html/UG_PDF.pdf
http://modis-atmos.gsfc.nasa.gov/MOD08_D3/faq.html

128 NCO 5.0.1 User Guide

switch. Until and unless a method of automatically detecting the packing method is devised,
it must remain the user’s responsibility to tell NCO when to use the HDF convention instead
of the netCDF convention to unpack.

If your data originally came from an HDF file (e.g., NASA EOS) then it was likely packed
with the HDF convention and must be unpacked with the same convention. Our recom-
mendation is to only request HDF unpacking when you are certain. Most packed datasets
encountered by NCO will have used the netCDF convention. Those that were not will hope-
fully produce noticeably weird values when unpacked by the wrong algorithm. Before or
after panicking, treat this as a clue to re-try your commands with the ‘--hdf_upk’ switch.
See Section 4.9 [ncpdq netCDF Permute Dimensions Quickly], page 287 for an easy tech-
nique to unpack data packed with the HDF convention, and then re-pack it with the netCDF
convention.

Handling of Packed Data by Other Operators

All NCO arithmetic operators understand packed data. The operators automatically unpack
any packed variable in the input file which will be arithmetically processed. For example,
ncra unpacks all record variables, and ncwa unpacks all variable which contain a dimension
to be averaged. These variables are stored unpacked in the output file.

On the other hand, arithmetic operators do not unpack non-processed variables. For
example, ncra leaves all non-record variables packed, and ncwa leaves packed all variables
lacking an averaged dimension. These variables (called fixed variables) are passed unaltered
from the input to the output file. Hence fixed variables which are packed in input files remain
packed in output files. Completely packing and unpacking files is easily accomplished with
ncpdq (see Section 4.9 [ncpdq netCDF Permute Dimensions Quickly], page 287). Pack and
unpack individual variables with ncpdq and the ncap2 pack() and unpack() functions (see
Section 4.1.12 [Methods and functions], page 173).

3.39 Operation Types� �
Availability: ncap2, ncra, nces, ncwa
Short options: ‘-y’
Long options: ‘--operation’, ‘--op_typ’

 	
The ‘-y op_typ’ switch allows specification of many different types of operations Set op typ
to the abbreviated key for the corresponding operation:

avg Mean value

sqravg Square of the mean

avgsqr Mean of sum of squares

max Maximum value

min Minimum value

mabs Maximum absolute value

Chapter 3: Shared Features 129

mebs Mean absolute value

mibs Minimum absolute value

rms Root-mean-square (normalized by N)

rmssdn Root-mean square (normalized by N-1)

sqrt Square root of the mean

tabs Sum of absolute values

ttl Sum of values

NCO assumes coordinate variables represent grid axes, e.g., longitude. The only rank-
reduction which makes sense for coordinate variables is averaging. Hence NCO implements
the operation type requested with ‘-y’ on all non-coordinate variables, not on coordinate
variables. When an operation requires a coordinate variable to be reduced in rank, i.e.,
from one dimension to a scalar or from one dimension to a degenerate (single value) array,
then NCO always averages the coordinate variable regardless of the arithmetic operation
type performed on the non-coordinate variables.

The mathematical definition of each arithmetic operation is given below. See Section 4.14
[ncwa netCDF Weighted Averager], page 345, for additional information on masks and
normalization. If an operation type is not specified with ‘-y’ then the operator performs an
arithmetic average by default. Averaging is described first so the terminology for the other
operations is familiar.

The masked, weighted average of a variable x can be generally represented as

x̄j =

∑i=N
i=1 µimiwixi∑i=N
i=1 µimiwi

where x̄j is the j’th element of the output hyperslab, xi is the i’th element of the input
hyperslab, µi is 1 unless xi equals the missing value, mi is 1 unless xi is masked, and
wi is the weight. This formiddable formula represents a simple weighted average whose
bells and whistles are all explained below. It is not too early to note, however, that when
µi = mi = wi = 1, the generic averaging expression above reduces to a simple arithmetic
average. Furthermore, mi = wi = 1 for all operators except ncwa. These variables are
included in the discussion below for completeness, and for possible future use in other
operators.

The size J of the output hyperslab for a given variable is the product of all the dimensions
of the input variable which are not averaged over. The size N of the input hyperslab
contributing to each x̄j is simply the product of the sizes of all dimensions which are
averaged over (i.e., dimensions specified with ‘-a’). Thus N is the number of input elements
which potentially contribute to each output element. An input element xi contributes to
the output element xj except in two conditions:

1. xi equals themissing value (see Section 3.30 [Missing Values], page 103) for the variable.

2. xi is located at a point where the mask condition (see Section 4.14.1 [Mask condition],
page 346) is false.

130 NCO 5.0.1 User Guide

Points xi in either of these two categories do not contribute to xj—they are ignored. We
now define these criteria more rigorously.

Each xi has an associated Boolean weight µi whose value is 0 or 1 (false or true).
The value of µi is 1 (true) unless xi equals the missing value (see Section 3.30 [Missing
Values], page 103) for the variable. Thus, for a variable with no _FillValue attribute, µi is
always 1. All NCO arithmetic operators (ncbo, ncra, nces, ncflint, ncwa) treat missing
values analogously.

Besides (weighted) averaging, ncwa, ncra, and nces also compute some common non-
linear operations which may be specified with the ‘-y’ switch (see Section 3.39 [Operation
Types], page 128). The other rank-reducing operations are simple variations of the generic
weighted mean described above. The total value of x (-y ttl) is

x̄j =
i=N∑
i=1

µimiwixi

Note that the total is the same as the numerator of the mean of x, and may also be obtained
in ncwa by using the ‘-N’ switch (see Section 4.14 [ncwa netCDF Weighted Averager],
page 345).

The minimum value of x (-y min) is

x̄j = min[µ1m1w1x1, µ2m2w2x2, . . . , µNmNwNxN]

Analogously, the maximum value of x (-y max) is

x̄j = max[µ1m1w1x1, µ2m2w2x2, . . . , µNmNwNxN]

Thus the minima and maxima are determined after any weights are applied.

The total absolute value of x (-y tabs) is

x̄j =
i=N∑
i=1

µimiwi|xi|

The minimum absolute value of x (-y mibs) is

x̄j = min[µ1m1w1|x1|, µ2m2w2|x2|, . . . , µNmNwN |xN |]

Analogously, the maximum absolute value of x (-y mabs) is

x̄j = max[µ1m1w1|x1|, µ2m2w2|x2|, . . . , µNmNwN |xN |]

Thus the minimum and maximum absolute values are determined after any weights are
applied. The mean absolute value of x (-y mebs) is

x̄j =

∑i=N
i=1 µimiwi|xi|∑i=N
i=1 µimiwi

Chapter 3: Shared Features 131

The square of the mean value of x (-y sqravg) is

x̄j =

(∑i=N
i=1 µimiwixi∑i=N
i=1 µimiwi

)2

The mean of the sum of squares of x (-y avgsqr) is

x̄j =

∑i=N
i=1 µimiwix

2
i∑i=N

i=1 µimiwi

If x represents a deviation from the mean of another variable, xi = yi−ȳ (possibly created by
ncbo in a previous step), then applying avgsqr to x computes the approximate variance of
y. Computing the true variance of y requires subtracting 1 from the denominator, discussed
below. For a large sample size however, the two results will be nearly indistinguishable.

The root mean square of x (-y rms) is

x̄j =

√√√√∑i=N
i=1 µimiwix2

i∑i=N
i=1 µimiwi

Thus rms simply computes the squareroot of the quantity computed by avgsqr.

The root mean square of x with standard-deviation-like normalization (-y rmssdn) is
implemented as follows. When weights are not specified, this function is the same as the
root mean square of x except one is subtracted from the sum in the denominator

x̄j =

√√√√ ∑i=N
i=1 µimix2

i

−1 +
∑i=N
i=1 µimi

If x represents the deviation from the mean of another variable, xi = yi − ȳ, then applying
rmssdn to x computes the standard deviation of y. In this case the −1 in the denominator
compensates for the degree of freedom already used in computing ȳ in the numerator.
Consult a statistics book for more details.

When weights are specified it is unclear how to compensate for this extra degree of
freedom. Weighting the numerator and denominator of the above by wi and subtracting
one from the denominator is only appropriate when all the weights are 1.0. When the weights
are arbitrary (e.g., Gaussian weights), subtracting one from the sum in the denominator
does not necessarily remove one degree of freedom. Therefore when -y rmssdn is requested
and weights are specified, ncwa actually implements the rms procedure. nces and ncra,
which do not allow weights to be specified, always implement the rmssdn procedure when
asked.

The square root of the mean of x (-y sqrt) is

x̄j =

√√√√∑i=N
i=1 µimiwixi∑i=N
i=1 µimiwi

132 NCO 5.0.1 User Guide

The definitions of some of these operations are not universally useful. Mostly they were
chosen to facilitate standard statistical computations within the NCO framework. We are
open to redefining and or adding to the above. If you are interested in having other statistical
quantities defined in NCO please contact the NCO project (see Section 1.7 [Help Requests
and Bug Reports], page 15).

EXAMPLES

Suppose you wish to examine the variable prs_sfc(time,lat,lon) which contains a time
series of the surface pressure as a function of latitude and longitude. Find the minimum
value of prs_sfc over all dimensions:

ncwa -y min -v prs_sfc in.nc foo.nc

Find the maximum value of prs_sfc at each time interval for each latitude:

ncwa -y max -v prs_sfc -a lon in.nc foo.nc

Find the root-mean-square value of the time-series of prs_sfc at every gridpoint:

ncra -y rms -v prs_sfc in.nc foo.nc

ncwa -y rms -v prs_sfc -a time in.nc foo.nc

The previous two commands give the same answer but ncra is preferred because it has a
smaller memory footprint. A dimension of size one is said to be degenerate. By default,
ncra leaves the (degenerate) time dimension in the output file (which is usually useful)
whereas ncwa removes the time dimension (unless ‘-b’ is given).

These operations work as expected in multi-file operators. Suppose that prs_sfc is stored
in multiple timesteps per file across multiple files, say jan.nc, feb.nc, march.nc. We can
now find the three month maximum surface pressure at every point.

nces -y max -v prs_sfc jan.nc feb.nc march.nc out.nc

It is possible to use a combination of these operations to compute the variance and standard
deviation of a field stored in a single file or across multiple files. The procedure to compute
the temporal standard deviation of the surface pressure at all points in a single file in.nc

involves three steps.

ncwa -O -v prs_sfc -a time in.nc out.nc

ncbo -O -v prs_sfc in.nc out.nc out.nc

ncra -O -y rmssdn out.nc out.nc

First construct the temporal mean of prs_sfc in the file out.nc. Next overwrite out.nc
with the anomaly (deviation from the mean). Finally overwrite out.nc with the root-mean-
square of itself. Note the use of ‘-y rmssdn’ (rather than ‘-y rms’) in the final step. This
ensures the standard deviation is correctly normalized by one fewer than the number of
time samples. The procedure to compute the variance is identical except for the use of ‘-y
avgsqr’ instead of ‘-y rmssdn’ in the final step.

ncap2 can also compute statistics like standard deviations. Brute-force implementation
of formulae is one option, e.g.,

ncap2 -s ’prs_sfc_sdn=sqrt((prs_sfc-prs_sfc.avg($time)^2). \

total($time)/($time.size-1))’ in.nc out.nc

Chapter 3: Shared Features 133

The operation may, of course, be broken into multiple steps in order to archive interme-
diate quantities, such as the time-anomalies

ncap2 -s ’prs_sfc_anm=prs_sfc-prs_sfc.avg($time)’ \

-s ’prs_sfc_sdn=sqrt((prs_sfc_anm^2).total($time)/($time.size-1))’ \

in.nc out.nc

ncap2 supports intrinsic standard deviation functions (see Section 3.39 [Operation
Types], page 128) which simplify the above expression to

ncap2 -s ’prs_sfc_sdn=(prs_sfc-prs_sfc.avg($time)).rmssdn($time)’ in.nc out.nc

These instrinsic functions compute the answer quickly and concisely.

The procedure to compute the spatial standard deviation of a field in a single file in.nc
involves three steps.

ncwa -O -v prs_sfc,gw -a lat,lon -w gw in.nc out.nc

ncbo -O -v prs_sfc,gw in.nc out.nc out.nc

ncwa -O -y rmssdn -v prs_sfc -a lat,lon -w gw out.nc out.nc

First the spatially weighted (by ‘-w gw’) mean values are written to the output file, as are
the mean weights. The initial output file is then overwritten with the gridpoint deviations
from the spatial mean. It is important that the output file after the second line contain the
original, non-averaged weights. This will be the case if the weights are named so that NCO

treats them like a coordinate (see Section 3.45 [CF Conventions], page 145). One such name
is gw, and any variable whose name begins with msk_ (for “mask”) or wgt_ (for “weight”)
will likewise be treated as a coordinate, and will be copied (not differenced) straight from
in.nc to out.nc in the second step. When using weights to compute standard deviations
one must remember to include the weights in the initial output files so that they may be
used again in the final step. Finally the root-mean-square of the appropriately weighted
spatial deviations is taken.

No elegant ncap2 solution exists to compute weighted standard deviations. Those brave
of heart may try to formulate one. A general formula should allow weights to have fewer than
and variables to have more than the minimal spatial dimensions (latitude and longitude).

The procedure to compute the standard deviation of a time-series across multiple files
involves one extra step since all the input must first be collected into one file.

ncrcat -O -v tpt in.nc in.nc foo1.nc

ncwa -O -a time foo1.nc foo2.nc

ncbo -O -v tpt foo1.nc foo2.nc foo3.nc

ncra -O -y rmssdn foo3.nc out.nc

The first step assembles all the data into a single file. Though this may consume a lot
of temporary disk space, it is more or less required by the ncbo operation in the third step.

3.40 Type Conversion

134 NCO 5.0.1 User Guide

� �
Availability (automatic type conversion): ncap2, ncbo, nces, ncflint, ncra, ncwa
Short options: None (it’s automatic)
Availability (manual type conversion): nces, ncra, ncwa
Short options: None
Long options: ‘--dbl’, ‘--flt’, ‘--rth_dbl’, ‘--rth_flt’

 	
Type conversion refers to the casting or coercion of one fundamental or atomic data

type to another, e.g., converting NC_SHORT (two bytes) to NC_DOUBLE (eight bytes). Type
conversion always promotes or demotes the range and/or precision of the values a variable
can hold. Type conversion is automatic when the language carries out this promotion
according to an internal set of rules without explicit user intervention. In contrast, manual
type conversion refers to explicit user commands to change the type of a variable or attribute.
Most type conversion happens automatically, yet there are situations in which manual type
conversion is advantageous.

3.40.1 Automatic type conversion

There are at least two reasons to avoid type conversions. First, type conversions are expen-
sive since they require creating (temporary) buffers and casting each element of a variable
from its storage type to some other type and then, often, converting it back. Second, a
dataset’s creator perhaps had a good reason for storing data as, say, NC_FLOAT rather than
NC_DOUBLE. In a scientific framework there is no reason to store data with more precision
than the observations merit. Normally this is single-precision, which guarantees 6–9 digits
of precision. Reasons to engage in type conversion include avoiding rounding errors and
out-of-range limitations of less-precise types. This is the case with most integers. Thus NCO

defaults to automatically promote integer types to floating-point when performing lengthy
arithmetic, yet NCO defaults to not promoting single to double-precision floats.

Before discussing the more subtle floating-point issues, we first examine integer promo-
tion. We will show how following parsimonious conversion rules dogmatically can cause
problems, and what NCO does about that. That said, there are situations in which implicit
conversion of single- to double-precision is also warranted. Understanding the narrowness
of these situations takes time, and we hope the reader appreciates the following detailed
discussion.

Consider the average of the two NC_SHORTs 17000s and 17000s. A straightforward
average without promotion results in garbage since the intermediate value which holds their
sum is also of type NC_SHORT and thus overflows on (i.e., cannot represent) values greater
than 32,76729. There are valid reasons for expecting this operation to succeed and the NCO

philosophy is to make operators do what you want, not what is purest. Thus, unlike C and
Fortran, but like many other higher level interpreted languages, NCO arithmetic operators
will perform automatic type conversion on integers when all the following conditions are
met30:

1. The requested operation is arithmetic. This is why type conversion is limited to the
operators ncap2, ncbo, nces, ncflint, ncra, and ncwa.

29 32767 = 215 − 1
30 Operators began performing automatic type conversions before arithmetic in NCO version 1.2, August,

2000. Previous versions never performed unnecessary type conversion for arithmetic.

Chapter 3: Shared Features 135

2. The arithmetic operation could benefit from type conversion. Operations that could
benefit include averaging, summation, or any “hard” arithmetic that could overflow or
underflow. Larger representable sums help avoid overflow, and more precision helps to
avoid underflow. Type conversion does not benefit searching for minima and maxima
(‘-y min’, or ‘-y max’).

3. The variable on disk is of type NC_BYTE, NC_CHAR, NC_SHORT, or NC_INT. Type NC_

DOUBLE is not promoted because there is no type of higher precision. Conversion of type
NC_FLOAT is discussed in detail below. When it occurs, it follows the same procedure
(promotion then arithmetic then demotion) as conversion of integer types.

When these criteria are all met, the operator promotes the variable in question to type
NC_DOUBLE, performs all the arithmetic operations, casts the NC_DOUBLE type back to the
original type, and finally writes the result to disk. The result written to disk may not be
what you expect, because of incommensurate ranges represented by different types, and
because of (lack of) rounding. First, continuing the above example, the average (e.g., ‘-y
avg’) of 17000s and 17000s is written to disk as 17000s. The type conversion feature of NCO

makes this possible since the arithmetic and intermediate values are stored as NC_DOUBLEs,
i.e., 34000.0d and only the final result must be represented as an NC_SHORT. Without the
type conversion feature of NCO, the average would have been garbage (albeit predictable
garbage near -15768s). Similarly, the total (e.g., ‘-y ttl’) of 17000s and 17000s written to
disk is garbage (actually -31536s) since the final result (the true total) of 34000 is outside
the range of type NC_SHORT.

After arithmetic is computed in double-precision for promoted variables, the intermediate
double-precision values must be demoted to the variables’ original storage type (e.g., from
NC_DOUBLE to NC_SHORT). NCO has handled this demotion in three ways in its history.
Prior to October, 2011 (version 4.0.8), NCO employed the C library truncate function,
trunc()31. Truncation rounds x to the nearest integer not larger in absolute value. For
example, truncation rounds 1.0d, 1.5d, and 1.8d to the same value, 1s. Clearly, truncation
does not round floating-point numbers to the nearest integer! Yet truncation is how the
C language performs implicit conversion of real numbers to integers.

NCO stopped using truncation for demotion when an alert user (Neil Davis) informed
us that this caused a small bias in the packing algorithm employed by ncpdq. This led to
NCO adopting rounding functions for demotion. Rounding functions eliminated the small
bias in the packing algorithm.

From February, 2012 through March, 2013 (versions 4.0.9–4.2.6), NCO employed the
C library family of rounding functions, lround(). These functions round x to the nearest
integer, halfway cases away from zero. The problem with lround() is that it always rounds
real values ending in .5 away from zero. This rounds, for example, 1.5d and 2.5d to 2s

and 3s, respectively.

Since April, 2013 (version 4.3.0), NCO has employed the other C library family of round-
ing functions, lrint(). This algorithm rounds x to the nearest integer, using the current
rounding direction. Halfway cases are rounded to the nearest even integer. This rounds,

31 The actual type conversions with trunction were handled by intrinsic type conversion, so the trunc()

function was never explicitly called, although the results would be the same if it were.

136 NCO 5.0.1 User Guide

for example, both 1.5d and 2.5d to the same value, 2s, as recommended by the IEEE.
This rounding is symmetric: up half the time, down half the time. This is the current and
hopefully final demotion algorithm employed by NCO.

Hence because of automatic conversion, NCO will compute the average of 2s and 3s in
double-precision arithmetic as (2.0d+3.0d)/2.0d) = 2.5d. It then demotes this intermediate
result back to NC_SHORT and stores it on disk as trunc(2.5d) = 2s (versions up to 4.0.8),
lround(2.5d) = 3s (versions 4.0.9–4.2.6), and lrint(2.5d) = 2s (versions 4.3.0 and later).

3.40.2 Promoting Single-precision to Double

Promotion of real numbers from single- to double-precision is fundamental to scientific
computing. When it should occur depends on the precision of the inputs and the number
of operations. Single-precision (four-byte) numbers contain about seven significant figures,
while double-precision contain about sixteen. More, err, precisely, the IEEE single-precision
representation gives from 6 to 9 significant decimal digits precision32. And the IEEE double-
precision representation gives from 15 to 17 significant decimal digits precision33. Hence
double-precision numbers represent about nine digits more precision than single-precision
numbers.

Given these properties, there are at least two possible arithmetic conventions for the
treatment of real numbers:

1. Conservative, aka Fortran Convention Automatic type conversion during arithmetic in
the Fortran language is, by default, performed only when necessary. All operands in
an operation are converted to the most precise type involved the operation before
the arithmetic operation. Expressions which involve only single-precision numbers
are computed entirely in single-precision. Expressions involving mixed precision types
are computed in the type of higher precision. NCO by default employs the Fortan
Convention for promotion.

2. Aggressive, aka C Convention The C language is by default much more aggressive
(and thus wasteful) than Fortran, and will always implicitly convert single- to double-
precision numbers, even when there is no good reason. All real-number standard
C library functions are double-precision, and C programmers must take extra steps
to only utilize single precision arithmetic. The high-level interpreted data analysis
languages IDL, Matlab, and NCL all adopt the C Convention.

NCO does not automatically promote NC_FLOAT because, in our judgement, the perfor-
mance penalty of always doing so would outweigh the potential benefits. The now-classic

32 According to Wikipedia’s summary of IEEE standard 754, “If a decimal string with at most 6 significant
digits is converted to IEEE 754 single-precision and then converted back to the same number of significant
decimal, then the final string should match the original; and if an IEEE 754 single-precision is converted
to a decimal string with at leastn 9 significant decimal and then converted back to single, then the final
number must match the original”.

33 According to Wikipedia’s summary of IEEE standard 754, “If a decimal string with at most 15 significant
digits is converted to IEEE 754 double-precision representation and then converted back to a string with
the same number of significant digits, then the final string should match the original; and if an IEEE 754
double precision is converted to a decimal string with at least 17 significant digits and then converted
back to double, then the final number must match the original”.

Chapter 3: Shared Features 137

text “Numerical Recipes in C” discusses this point under the section “Implicit Conversion
of Float to Double”34. That said, such promotion is warranted in some circumstances.

For example, rounding errors can accumulate to worrisome levels during arithmetic per-
formed on large arrays of single-precision floats. This use-case occurs often in geoscientific
studies of climate where thousands-to-millions of gridpoints may contribute to a single av-
erage. If the inputs are all single-precision, then so should be the output. However the
intermediate results where running sums are accumulated may suffer from too much round-
ing or from underflow unless computed in double-precision.

The order of operations matters to floating-point math even when the analytic expres-
sions are equal. Cautious users feel disquieted when results from equally valid analyses
differ in the final bits instead of agreeing bit-for-bit. For example, averaging arrays in
multiple stages produces different answers than averaging them in one step. This is easily
seen in the computation of ensemble averages by two different methods. The NCO test
file in.nc contains single- and double-precision representations of the same temperature
timeseries as tpt_flt and tpt_dbl. Pretend each datapoint in this timeseries represents a
monthly-mean temperature. We will mimic the derivation of a fifteen-year ensemble-mean
January temperature by concatenating the input file five times, and then averaging the
datapoints representing January two different ways. In Method 1 we derive the 15-year
ensemble January average in two steps, as the average of three five-year averages. This
method is naturally used when each input file contains multiple years and multiple input
files are needed35. In Method 2 we obtain 15-year ensemble January average in a single
step, by averaging all 15 Januaries at one time:

tpt_flt and tpt_dbl are identical except for precision

ncks -C -v tpt_flt,tpt_dbl ~/nco/data/in.nc

tpt_dbl = 273.1, 273.2, 273.3, 273.4, 273.5, 273.6, 273.7, 273.8, 273.9, 274

tpt_flt = 273.1, 273.2, 273.3, 273.4, 273.5, 273.6, 273.7, 273.8, 273.9, 274

Create file with five "ten-month years" (i.e., 50 timesteps) of temperature data

ncrcat -O -v tpt_flt,tpt_dbl -p ~/nco/data in.nc in.nc in.nc in.nc in.nc ~/foo.nc

Average 1st five "Januaries" (elements 1, 11, 21, 31, 41)

ncra --flt -O -F -d time,1,,10 ~/foo.nc ~/foo_avg1.nc

Average 2nd five "Januaries" (elements 2, 12, 22, 32, 42)

ncra --flt -O -F -d time,2,,10 ~/foo.nc ~/foo_avg2.nc

Average 3rd five "Januaries" (elements 3, 13, 23, 33, 43)

ncra --flt -O -F -d time,3,,10 ~/foo.nc ~/foo_avg3.nc

Method 1: Obtain ensemble January average by averaging the averages

ncra --flt -O ~/foo_avg1.nc ~/foo_avg2.nc ~/foo_avg3.nc ~/foo_avg_mth1.nc

Method 2: Obtain ensemble January average by averaging the raw data

Employ ncra’s "subcycle" feature (http://nco.sf.net/nco.html#ssc)

ncra --flt -O -F -d time,1,,10,3 ~/foo.nc ~/foo_avg_mth2.nc

34 See page 21 in Section 1.2 of the First edition for this gem:

One does not need much experience in scientific computing to recognize that the implicit
conversion rules are, in fact, sheer madness! In effect, they make it impossible to write
efficient numerical programs.

35 For example, the CMIP5 archive tends to distribute monthly average timeseries in 50-year chunks.

138 NCO 5.0.1 User Guide

Difference the two methods

ncbo -O ~/foo_avg_mth1.nc ~/foo_avg_mth2.nc ~/foo_avg_dff.nc

ncks ~/foo_avg_dff.nc

tpt_dbl = 5.6843418860808e-14 ;

tpt_flt = -3.051758e-05 ;

Although the two methods are arithmetically equivalent, they produce slightly different
answers due to the different order of operations. Moreover, it appears at first glance that
the single-precision answers suffer from greater error than the double-precision answers. In
fact both precisions suffer from non-zero rounding errors. The answers differ negligibly to
machine precision, which is about seven significant figures for single precision floats (tpt_
flt), and sixteen significant figures for double precision (tpt_dbl). The input precision
determines the answer precision.

IEEE arithmetic guarantees that two methods will produce bit-for-bit identical answers
only if they compute the same operations in the same order. Bit-for-bit identical answers
may also occur by happenstance when rounding errors exactly compensate one another.
This is demonstrated by repeating the example above with the ‘--dbl’ (or ‘--rth_dbl’
for clarity) option which forces conversion of single-precision numbers to double-precision
prior to arithmetic. Now ncra will treat the first value of tpt_flt, 273.1000f, as
273.1000000000000d. Arithmetic on tpt_flt then proceeds in double-precision until the
final answer, which is converted back to single-precision for final storage.

Average 1st five "Januaries" (elements 1, 11, 21, 31, 41)

ncra --dbl -O -F -d time,1,,10 ~/foo.nc ~/foo_avg1.nc

Average 2nd five "Januaries" (elements 2, 12, 22, 32, 42)

ncra --dbl -O -F -d time,2,,10 ~/foo.nc ~/foo_avg2.nc

Average 3rd five "Januaries" (elements 3, 13, 23, 33, 43)

ncra --dbl -O -F -d time,3,,10 ~/foo.nc ~/foo_avg3.nc

Method 1: Obtain ensemble January average by averaging the averages

ncra --dbl -O ~/foo_avg1.nc ~/foo_avg2.nc ~/foo_avg3.nc ~/foo_avg_mth1.nc

Method 2: Obtain ensemble January average by averaging the raw data

Employ ncra’s "subcycle" feature (http://nco.sf.net/nco.html#ssc)

ncra --dbl -O -F -d time,1,,10,3 ~/foo.nc ~/foo_avg_mth2.nc

Difference the two methods

ncbo -O ~/foo_avg_mth1.nc ~/foo_avg_mth2.nc ~/foo_avg_dff.nc

Show differences

ncks ~/foo_avg_dff.nc

tpt_dbl = 5.6843418860808e-14 ;

tpt_flt = 0 ;

The ‘--dbl’ switch has no effect on the results computed from double-precision inputs.
But now the two methods produce bit-for-bit identical results from the single-precision
inputs! This is due to the happenstance of rounding along with the effects of the ‘--dbl’
switch. The ‘--flt’ and ‘--rth_flt’ switches are provided for symmetry. They enforce
the traditional NCO and Fortran convention of keeping single-precision arithmetic in single-
precision unless a double-precision number is explicitly involved.

Chapter 3: Shared Features 139

We have shown that forced promotion of single- to double-precision prior to arith-
metic has advantages and disadvantages. The primary disadvantages are speed and size.
Double-precision arithmetic is 10–60% slower than, and requires twice the memory of single-
precision arithmetic. The primary advantage is that rounding errors in double-precision are
much less likely to accumulate to values near the precision of the underlying geophysical
variable.

For example, if we know temperature to five significant digits, then a rounding error of
1-bit could affect the least precise digit of temperature after 1,000–10,000 consecutive one-
sided rounding errors under the worst possible scenario. Many geophysical grids have tens-
of-thousands to millions of points that must be summed prior to normalization to compute
an average. It is possible for single-precision rouding errors to accumulate and degrade
the precision in such situtations. Double-precision arithmetic mititgates this problem, so
‘--dbl’ would be warranted.

This can be seen with another example, averaging a global surface temperature field
with ncwa. The input contains a single-precision global temperature field (stored in TREFHT)
produced by the CAM3 general circulation model (GCM) run and stored at 1.9 by 2.5 degrees
resolution. This requires 94 latitudes and 144 longitudes, or 13, 824 total surface gridpoints,
a typical GCM resolution in 2008–2013. These input characteristics are provided only to
show the context to the interested reader, equivalent results would be found in statistics
of any dataset of comparable size. Models often represent Earth on a spherical grid where
global averages must be created by weighting each gridcell by its latitude-dependent weight
(e.g., a Gaussian weight stored in gw), or by the surface area of each contributing gridpoint
(stored in area).

Like many geophysical models and most GCMs, CAM3 runs completely in double-
precision yet stores its archival output in single-precision to save space. In prac-
tice such models usually save multi-dimensional prognostic and diagnostic fields (like
TREFHT(lat,lon)) as single-precision, while saving all one-dimensional coordinates and
weights (here lat, lon, and gw(lon)) as double-precision. The gridcell area area(lat,lon)
is an extensive grid property that should be, but often is not, stored as double-precision.
To obtain pure double-precision arithmetic and storage of the globla mean temperature, we
first create and store double-precision versions of the single-precision fields:

ncap2 -O -s ’TREFHT_dbl=double(TREFHT);area_dbl=double(area)’ in.nc in.nc

The single- and double-precision temperatures may each be averaged globally using four
permutations for the precision of the weight and of the intermediate arithmetic representa-
tion:

1. Single-precision weight (area), single-precision arithmetic

2. Double-precision weight (gw), single-precision arithmetic

3. Single-precision weight (area), double-precision arithmetic

4. Double-precision weight (gw), double-precision arithmetic

NB: Values below are printed with C-format %5.6f using

ncks -H -C -s ’%5.6f’ -v TREFHT,TREFHT_dbl out.nc

Single-precision weight (area), single-precision arithmetic

ncwa --flt -O -a lat,lon -w area in.nc out.nc

140 NCO 5.0.1 User Guide

TREFHT = 289.246735

TREFHT_dbl = 289.239964

Double-precision weight (gw), single-precision arithmetic

ncwa --flt -O -a lat,lon -w gw in.nc out.nc

TREFHT = 289.226135

TREFHT_dbl = 289.239964

Single-precision weight (area), double-precision arithmetic

ncwa --dbl -O -a lat,lon -w area in.nc out.nc

TREFHT = 289.239960

TREFHT_dbl = 289.239964

Double-precision weight (gw), double-precision arithmetic

ncwa --dbl -O -a lat,lon -w gw in.nc out.nc

TREFHT = 289.239960

TREFHT_dbl = 289.239964

First note that the TREFHT_dbl average never changes because TREFHT_dbl(lat,lon)

is double-precision in the input file. As described above, NCO automatically converts all
operands involving to the highest precision involved in the operation. So specifying ‘--dbl’
is redundant for double-precision inputs.

Second, the single-precision arithmetic averages of the single-precision input TREFHT

differ by 289.246735 − 289.226135 = 0.0206 from eachother, and, more importantly, by as
much as 289.239964 − 289.226135 = 0.013829 from the correct (double-precision) answer.
These averages differ in the fifth digit, i.e., they agree only to four significant figures! Given
that climate scientists are concerned about global temperature variations of a tenth of
a degree or less, this difference is large. Global mean temperature changes significant to
climate scientists are comparable in size to the numerical artifacts produced by the averaging
procedure.

Why are the single-precision numerical artifacts so large? Each global average is the
result of multiplying almost 15,000 elements each by its weight, summing those, and then
dividing by the summed weights. Thus about 50,000 single-precision floating-point opera-
tions caused the loss of two to three significant digits of precision. The net error of a series
of independent rounding errors is a random walk phenomena36. Successive rounding errors
displace the answer further from the truth. An ensemble of such averages will, on average,
have no net bias. In other words, the expectation value of a series of IEEE rounding errors
is zero. And the error of any given sequence of rounding errors obeys, for large series, a
Gaussian distribution centered on zero.

Single-precision numbers use three of their four eight-bit bytes to represent the mantissa
so the smallest representable single-precision mantissa is ε ≡ 2−23 = 1.19209× 10−7. This ε
is the smallest x such that 1.0+x 6= 1.0. This is the rounding error for non-exact precision-
numbers. Applying random walk theory to rounding, it can be shown that the expected
rounding error after n inexact operations is

√
2n/π for large n. The expected (i.e., mean

absolute) rounding error in our example with 13, 824 additions is about
√
2× 13824/π =

91.96. Hence, addition alone of about fifteen thousand single-precision floats is expected to
consume about two significant digits of precision. This neglects the error due to the inner

36 Thanks to Michael J. Prather for explaining this to me.

Chapter 3: Shared Features 141

product (weights times values) and normalization (division by tally) aspects of a weighted
average. The ratio of two numbers each containing a numerical bias can magnify the size of
the bias. In summary, a global mean number computed from about 15,000 gridpoints each
with weights can be expected to lose up to three significant digits. Since single-precision
starts with about seven significant digits, we should not expect to retain more than four
significant digits after computing weighted averages in single-precision. The above example
with TREFHT shows the expected four digits of agreement.

The NCO results have been independently validated to the extent possible in three other
languages: C, Matlab, and NCL. C and NCO are the only languages that permit single-
precision numbers to be treated with single precision arithmetic:

Double-precision weight (gw), single-precision arithmetic (C)

ncwa_3528514.exe

TREFHT = 289.240112

Double-precision weight (gw), double-precision arithmetic (C)

TREFHT = 289.239964

Single-precision weight (area), double-precision arithmetic (Matlab)

TREFHT = 289.239964

Double-precision weight (gw), double-precision arithmetic (Matlab)

TREFHT = 289.239964

Single-precision weight (area), double-precision arithmetic (NCL)

ncl < ncwa_3528514.ncl

TREFHT = 289.239960

TREFHT_dbl = 289.239964

Double-precision weight (gw), double-precision arithmetic (NCL)

TREFHT = 289.239960

TREFHT_dbl = 289.239964

All languages tested (C, Matlab, NCL, and NCO) agree to machine precision with double-
precision arithmetic. Users are fortunate to have a variety of high quality software that
liberates them from the drudgery of coding their own. Many packages are free (as in beer)!
As shown above NCO permits one to shift to their float-promotion preferences as desired.
No other language allows this with a simple switch.

To summarize, until version 4.3.6 (September, 2013), the default arithmetic convention of
NCO adhered to Fortran behavior, and automatically promoted single-precision to double-
precision in all mixed-precision expressions, and left-alone pure single-precision expressions.
This is faster and more memory efficient than other conventions. However, pure single-
precision arithmetic can lose too much precision when used to condense (e.g., average)
large arrays. Statistics involving about n = 10, 000 single-precision inputs will lose about
2–3 digits if not promoted to double-precision prior to arithmetic. The loss scales with the
squareroot of n. For larger n, users should promote floats with the ‘--dbl’ option if they
want to preserve more than four significant digits in their results.

The ‘--dbl’ and ‘--flt’ switches are only available with the NCO arithmetic operators
that could potentially perform more than a few single-precision floating-point operations
per result. These are nces, ncra, and ncwa. Each is capable of thousands to millions
or more operations per result. By contrast, the arithmetic operators ncbo and ncflint

142 NCO 5.0.1 User Guide

perform at most one floating-point operation per result. Providing the ‘--dbl’ option for
such trivial operations makes little sense, so the option is not currently made available.

We are interested in users’ opinions on these matters. The default behavior was changed
from ‘--flt’ to ‘--dbl’ with the release of NCO version 4.3.6 (October 2013). We will change
the default back to ‘--flt’ if users prefer. Or we could set a threshold (e.g., n ≥ 10000)
after which single- to double-precision promotion is automatically invoked. Or we could
make the default promotion convention settable via an environment variable (GSL does this
a lot). Please let us know what you think of the selected defaults and options.

3.40.3 Manual type conversion

ncap2 provides intrinsic functions for performing manual type conversions. This, for exam-
ple, converts variable tpt to external type NC_SHORT (a C-type short), and variable prs to
external type NC_DOUBLE (a C-type double).

ncap2 -s ’tpt=short(tpt);prs=double(prs)’ in.nc out.nc

With ncap2 there also is the convert() method that takes an integer argument. For
example the above statements become:

ncap2 -s ’tpt=tpt.convert(NC_SHORT);prs=prs.convert(NC_DOUBLE)’ in.nc out.nc

Can also use convert() in combination with type() so to make variable ilev_new the
same type as ilev just do:

ncap2 -s ’ilev_new=ilev_new.convert(ilev.type())’ in.nc out.nc

See Section 4.1 [ncap2 netCDF Arithmetic Processor], page 152, for more details.

3.41 Batch Mode� �
Availability: All operators
Short options: ‘-O’, ‘-A’
Long options: ‘--ovr’, ‘--overwrite’, ‘--apn’, ‘--append’

 	
If the output-file specified for a command is a pre-existing file, then the operator will

prompt the user whether to overwrite (erase) the existing output-file, attempt to append
to it, or abort the operation. However, interactive questions reduce productivity when
processing large amounts of data. Therefore NCO also implements two ways to override
its own safety features, the ‘-O’ and ‘-A’ switches. Specifying ‘-O’ tells the operator to
overwrite any existing output-file without prompting the user interactively. Specifying ‘-A’
tells the operator to attempt to append to any existing output-file without prompting the
user interactively. These switches are useful in batch environments because they suppress
interactive keyboard input. NB: As of 20120515, ncap2 is unable to append to files that
already contain the appended dimensions.

3.42 Global Attribute Addition

Chapter 3: Shared Features 143

� �
Availability: All operators
Short options: None
Long options: ‘--glb’, ‘--gaa’, ‘--glb_att_add’
‘--glb att_nm=att_val’ (multiple invocations allowed)

 	
All operators can add user-specified global attributes to output files. As of NCO version

4.5.2 (July, 2015), NCO supports multiple uses of the ‘--glb’ (or equivalent ‘--gaa’ or
‘--glb_att_add’) switch. The option ‘--gaa’ (and its long option equivalents such as
‘--glb_att_add’) indicates the argument syntax will be key=val. As such, ‘--gaa’ and
its synonyms are indicator options that accept arguments supplied one-by-one like ‘--gaa
key1=val1 --gaa key2=val2’, or aggregated together in multi-argument format like ‘--gaa
key1=val1#key2=val2’ (see Section 3.4.2 [Multi-arguments], page 32).

The switch takes mandatory arguments ‘--glb att_nm=att_val’ where att nm is the
desired name of the global attribute to add, and att val is its value. Currently only text
attributes are supported (recorded as type NC_CHAR), and regular expressions are not al-
lowed (unlike see Section 4.2 [ncatted netCDF Attribute Editor], page 216). Attributes are
added in “Append” mode, meaning that values are appended to pre-existing values, if any.
Multiple invocations can simplify the annotation of output file at creation (or modification)
time:

ncra --glb machine=${HOSTNAME} --glb created_by=${USER} in*.nc out.nc

As of NCO version 4.6.2 (October, 2016), one may instead combine the separate invoca-
tions into a single list of invocations separated by colons:

ncra --glb machine=${HOSTNAME}:created_by=${USER} in*.nc out.nc

The list may contain any number of key-value pairs. Special care must be taken should
a key or value contain a delimiter (i.e., a colon) otherwise NCO will interpret the colon as
a delimiter and will attempt to create a new attribute. To protect a colon from being
interpreted as an argument delimiter, precede it with a backslash.

The global attribution addition feature helps to avoid the performance penalty incurred
by using ncatted separately to annotate large files. Should users emit a loud hue and cry,
we will consider ading the functionality of ncatted to the front-end of all operators, i.e.,
accepting valid ncatted arguments to modify attributes of any type and to apply regular
expressions.

3.43 History Attribute� �
Availability: All operators
Short options: ‘-h’
Long options: ‘--hst’, ‘--history’

 	
All operators automatically append a history global attribute to any file they create or

modify. The history attribute consists of a timestamp and the full string of the invocation
command to the operator, e.g., ‘Mon May 26 20:10:24 1997: ncks in.nc out.nc’. The full

144 NCO 5.0.1 User Guide

contents of an existing history attribute are copied from the first input-file to the output-
file. The timestamps appear in reverse chronological order, with the most recent timestamp
appearing first in the history attribute. Since NCO adheres to the history convention, the
entire data processing path of a given netCDF file may often be deduced from examination
of its history attribute. As of May, 2002, NCO is case-insensitive to the spelling of the
history attribute name. Thus attributes named History or HISTORY (which are non-
standard and not recommended) will be treated as valid history attributes. When more
than one global attribute fits the case-insensitive search for “history”, the first one found is
used. To avoid information overkill, all operators have an optional switch (‘-h’, ‘--hst’, or
‘--history’) to override automatically appending the history attribute (see Section 4.2
[ncatted netCDF Attribute Editor], page 216). Note that the ‘-h’ switch also turns off
writing the nco_input_file_list-attribute for multi-file operators (see Section 3.44 [File
List Attributes], page 144).

As of NCO version 4.5.0 (June, 2015), NCO supports its own convention to retain the
history-attribute contents of all files that were appended to a file37. This convention
stores those contents in the history_of_appended_files attribute, which complements
the history-attribute to provide a more complete provenance. These attributes may appear
something like this in output:

// global attributes:

:history = "Thu Jun 4 14:19:04 2015: ncks -A /home/zender/foo3.nc /home/zender/tmp.nc\n",

"Thu Jun 4 14:19:04 2015: ncks -A /home/zender/foo2.nc /home/zender/tmp.nc\n",

"Thu Jun 4 14:19:04 2015: ncatted -O -a att1,global,o,c,global metadata only in foo1 /home/zender/foo1.nc\n",

"original history from the ur-file serving as the basis for subsequent appends." ;

:history_of_appended_files = "Thu Jun 4 14:19:04 2015: Appended file \

/home/zender/foo3.nc had following \"history\" attribute:\n",

"Thu Jun 4 14:19:04 2015: ncatted -O -a att2,global,o,c,global metadata only in foo3 /home/zender/foo3.nc\n",

"history from foo3 from which data was appended to foo1 after data from foo2 was appended\n",

"Thu Jun 4 14:19:04 2015: Appended file /home/zender/foo2.nc had following \"history\" attribute:\n",

"Thu Jun 4 14:19:04 2015: ncatted -O -a att2,global,o,c,global metadata only in foo2 /home/zender/foo2.nc\n",

"history of some totally different file foo2 from which data was appended to foo1 before foo3 was appended\n",

:att1 = "global metadata only in foo1" ;

Note that the history_of_appended_files-attribute is only created, and will only exist,
in a file that is, or descends from a file that was, appended to. The optional switch ‘-h’ (or
‘--hst’ or ‘--history’) also overrides automatically appending the history_of_appended_
files attribute.

3.44 File List Attributes

37 Note that before version 4.5.0, NCO could, in append (‘-A’) mode only, inadvertently overwrite the global
metadata (including history) of the output file with that of the input file. This is opposite the behavior
most would want.

Chapter 3: Shared Features 145

� �
Availability: nces, ncecat, ncra, ncrcat
Short options: ‘-H’
Long options: ‘--fl_lst_in’, ‘--file_list’

 	
Many methods of specifying large numbers of input file names pass these names via

pipes, encodings, or argument transfer programs (see Section 2.7 [Large Numbers of Files],
page 21). When these methods are used, the input file list is not explicitly passed on the
command line. This results in a loss of information since the history attribute no longer
contains the exact command by which the file was created.

NCO solves this dilemma by archiving input file list attributes. When the input file list
to a multi-file operator is specified via stdin, the operator, by default, attaches two global
attributes to any file they create or modify. The nco_input_file_number global attribute
contains the number of input files, and nco_input_file_list contains the file names,
specified as standard input to the multi-file operator. This information helps to verify that
all input files the user thinks were piped through stdin actually arrived. Without the nco_
input_file_list attribute, the information is lost forever and the “chain of evidence”
would be broken.

The ‘-H’ switch overrides (turns off) the default behavior of writing the input file list
global attributes when input is from stdin. The ‘-h’ switch does this too, and turns off
the history attribute as well (see Section 3.43 [History Attribute], page 143). Hence both
switches allows space-conscious users to avoid storing what may amount to many thousands
of filenames in a metadata attribute.

3.45 CF Conventions� �
Availability: ncbo, nces, ncecat, ncflint, ncpdq, ncra, ncwa
Short options: None

 	
NCO recognizes some Climate and Forecast (CF) metadata conventions, and applies

special rules to such data. NCO was contemporaneous with COARDS and still contains
some rules to handle older model datasets that pre-date CF, such as NCAR CCM and early
CCSM datasets. Such datasets may not contain an explicit Conventions attribute (e.g.,
‘CF-1.0’). Nevertheless, we refer to all such metadata collectively as CF metadata. Skip
this section if you never work with CF metadata.

The latest CF netCDF conventions are described here. Most CF netCDF conventions are
transparent to NCO. There are no known pitfalls associated with using any NCO operator
on files adhering to these conventions. NCO applies some rules that are not in CF, or
anywhere else, because experience shows that they simplify data analysis, and stay true to
the NCO mantra to do what users want.

Here is a general sense of NCO’s CF-support:

• Understand and implement NUG recommendations such as the history attribute, pack-
ing conventions, and attention to units.

http://cfconventions.org/1.7.html

146 NCO 5.0.1 User Guide

• Special handling of variables designated as coordinates, bounds, or ancillary variables,
so that users subsetting a certain variable automatically obtain all related variables.

• Special handling and prevention of meaningless operations (e.g., the root-mean-square
of latitude) so that coordinates and bounds preserve meaningful information even as
normal (non-coordinate) fields are statistically transformed.

• Understand units and certain calendars so that hyperslabs may be specified in physical
units, and so that user needs not manually decode per-file time specifications.

• Understand auxiliary coordinates so that irregular hyperslabs may be specified on com-
plex geometric grids.

• Check for CF-compliance on netCDF3 and netCDF4 and HDF files.

• Convert netCDF4 and HDF files to netCDF3 for strict CF-compliance.

Finally, a main use of NCO is to “produce CF”, i.e., to improve CF-compliance by
annotating metadata, renaming objects (attributes, variables, and dimensions), permuting
and inverting dimensions, recomputing values, and data compression.

Currently, NCO determines whether a datafile is a CF output datafile simply by checking
(case-insensitively) whether the value of the global attribute Conventions (if any) equals
‘CF-1.0’ or ‘NCAR-CSM’ Should Conventions equal either of these in the (first) input-file,
NCO will apply special rules to certain variables because of their usual meaning in CF files.
NCO will not average the following variables often found in CF files: ntrm, ntrn, ntrk,
ndbase, nsbase, nbdate, nbsec, mdt, mhisf. These variables contain scalar metadata such
as the resolution of the host geophysical model and it makes no sense to change their values.

Furthermore, the size and rank-preserving arithmetic operators try not to operate on
certain grid properties. These operators are ncap2, ncbo, nces, ncflint, and ncpdq (when
used for packing, not for permutation). These operators do not operate, by default, on (i.e.,
add, subtract, pack, etc.) the following variables: ORO, area, datesec, date, gw, hyai, hyam,
hybi. hybm, lat_bnds, lon_bnds, msk_*, and wgt_*. These variables represent Gaussian
weights, land/sea masks, time fields, hybrid pressure coefficients, and latititude/longitude
boundaries. We call these fields non-coordinate grid properties. Coordinate grid properties
are easy to identify because they are coordinate variables such as latitude and longitude.

Users usually want all grid properties to remain unaltered in the output file. To be
treated as a grid property, the variable name must exactly match a name in the above
list, or be a coordinate variable. Handling of msk_* and wgt_* is exceptional in that any
variable whose name starts with msk_ or wgt_ is considered to be a “mask” or a “weight”
and is thus preserved (not operated on when arithmetic can be avoided).

As of NCO version 4.7.7 (September, 2018), NCO began to explicitly identify files
adhering to the MPAS convention. These files have a global attribute Conventions at-
tribute that contains the string or ‘MPAS’. Size and rank-preserving arithmetic operators
will not operate on these MPAS non-coordinate grid properties: angleEdge, areaCell,
areaTriangle, cellMask, cellsOnCell, cellsOnEdge, cellsOnVertex, dcEdge,
dvEdge, edgesOnCell, edgesOnEdge, edgesOnVertex, indexToCellID, indexToEdgeID,
indexToVertexID, kiteAreasOnVertex, latCell, latEdge, latVertex, lonCell,
lonEdge, lonVertex, maxLevelCell, meshDensity, nEdgesOnCell, nEdgesOnEdge,

Chapter 3: Shared Features 147

vertexMask, verticesOnCell, verticesOnEdge, weightsOnEdge, xCell, xEdge, xVertex,
yCell, yEdge, yVertex, zCell, zEdge, and zVertex.

As of NCO version 4.5.0 (June, 2015), NCO began to support behavior required for the
DOE E3SM/ACME program, and we refer to these rules collectively as the E3SM/ACME con-
vention. The first E3SM/ACME rule implemented is that the contents of input-file variables
named date_written and time_written, if any, will be updated to the current system-
supplied (with gmtime()) GMT-time as the variables are copied to the output-file.

You must spoof NCO if you would like any grid properties or other special CF fields
processed normally. For example rename the variables first with ncrename, or alter the
Conventions attribute.

As of NCO version 4.0.8 (April, 2011), NCO supports the CF bounds convention for cell
boundaries described here. This convention allows coordinate variables (including multidi-
mensional coordinates) to describe the boundaries of their cells. This is done by naming the
variable which contains the bounds in in the bounds attribute. Note that coordinates of rank
N have bounds of rank N + 1. NCO-generated subsets of CF-compliant files with bounds

attributes will include the coordinates specified by the bounds attribute, if any. Hence the
subsets will themselves be CF-compliant. Bounds are subject to the user-specified over-
ride switches (including ‘-c’ and ‘-C’) described in Section 3.13 [Subsetting Coordinate
Variables], page 52.

The CAM/EAM family of atmospheric models does not output a bounds variable or
attribute corresponding to the lev coordinate. This prevents NCO from activating its CF

bounds machinery when lev is extracted. As of version 4.7.7 (September, 2018), NCO

works around this by outputting the ilev coordinate (and hyai, hybi) whenever the lev

coordinate is also output.

As of NCO version 4.4.9 (May, 2015), NCO supports the CF climatology convention for
climatological statistics described here. This convention allows coordinate variables (includ-
ing multidimensional coordinates) to describe the (possibly nested) periods and statistical
methods of their associated statistics. This is done by naming the variable which contains
the periods and methods in the climatology attribute. Note that coordinates of rank N
have climatology bounds of rank N +1. NCO-generated subsets of CF-compliant files with
climatology attributes will include the variables specified by the climatology attribute, if
any. Hence the subsets will themselves be CF-compliant. Climatology variables are subject
to the user-specified override switches (including ‘-c’ and ‘-C’) described in Section 3.13
[Subsetting Coordinate Variables], page 52.

As of NCO version 4.4.5 (July, 2014), NCO supports the CF ancillary_variables

convention for described here. This convention allows ancillary variables to be associated
with one or more primary variables. NCO attaches any such variables to the extraction
list along with the primary variable and its usual (one-dimensional) coordinates, if any.
Ancillary variables are subject to the user-specified override switches (including ‘-c’ and
‘-C’) described in Section 3.13 [Subsetting Coordinate Variables], page 52.

As of NCO version 4.6.4 (January, 2017), NCO supports the CF cell_measures conven-
tion described here. This convention allows variables to indicate which other variable or
variables contains area or volume information about a gridcell. These measures variables are

http://cfconventions.org/cf-conventions/cf-conventions.html#cell-boundaries
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/cf-conventions.html#climatological-statistics
http://cfconventions.org/cf-conventions/cf-conventions.html#ancillary-data
http://cfconventions.org/cf-conventions/cf-conventions.html#cell-measures

148 NCO 5.0.1 User Guide

pointed to by the cell_measures attribute. The CDL specification of a measures variable
for area looks like

orog:cell_measures = "area: areacella"

where areacella is the name of the measures variable. Unless the default behavior
is overridden, NCO attaches any measures variables to the extraction list along with the
primary variable and other associated variables. By definition, measures variables are a
subset of the rank of the variable they measure. The most common case is that the measures
variable for area is the same size as 2D fields (like surface air temperature) and much
smaller than 3D fields (like full air temperature). In such cases the measures variable
might occupy 50% of the space of a dataset consisting of only one 2D field. Extraction
of measures variables is subject to the user-specified override switches (including ‘-c’ and
‘-C’) described in Section 3.13 [Subsetting Coordinate Variables], page 52. To conserve space
without sacrificing too much metadata, NCO makes it possible to override the extraction
of measures variables independent of extracting other associated variables. Override the
default with ‘--no_cell_measures’ or ‘--no_cll_msr’. These options are available in all
operators that perform subsetting (i.e., all operators except ncatted and ncrename).

As of NCO version 4.6.4 (January, 2017), NCO supports the CF formula_terms conven-
tion described here. This convention encodes formulas used to construct (usually vertical)
coordinate grids. The CDL specification of a vertical coordinate formula for looks like

lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate"

lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS"

where standard_name contains the standardized name of the formula variable and
formula_terms contains a list of the variables used, called formula variables. Above the
formula variables are hyam, hybm, P0, and PS. Unless the default behavior is overridden,
NCO attaches any formula variables to the extraction list along with the primary variable
and other associated variables. By definition, formula variables are a subset of the rank
of the variable they define. One common case is that the formula variables for construct-
ing a 3D height grid involves a 2D variable (like surface pressure, or elevation). In such
cases the formula variables typically constitute only a small fraction of a dataset consisting
of one 3D field. Extraction of formula variables is subject to the user-specified override
switches (including ‘-c’ and ‘-C’) described in Section 3.13 [Subsetting Coordinate Vari-
ables], page 52. To conserve space without sacrificing too much metadata, NCO makes
it possible to override the extraction of formula variables independent of extracting other
associated variables. Override the default with ‘--no_formula_terms’ or ‘--no_frm_trm’.
These options are available in all operators that perform subsetting (i.e., all operators except
ncatted and ncrename).

As of NCO version 4.6.0 (May, 2016), NCO supports the CF grid_mapping convention
for described here. This convention allows descriptions of map-projections to be associated
with variables. NCO attaches any such map-projection variables to the extraction list
along with the primary variable and its usual (one-dimensional) coordinates, if any. Map-
projection variables are subject to the user-specified override switches (including ‘-c’ and
‘-C’) described in Section 3.13 [Subsetting Coordinate Variables], page 52.

http://cfconventions.org/cf-conventions/cf-conventions.html#formula-terms
http://cfconventions.org/cf-conventions/cf-conventions.html#grid-mappings-and-projections

Chapter 3: Shared Features 149

As of NCO version 3.9.6 (January, 2009), NCO supports the CF coordinates convention
described here. This convention allows variables to specify additional coordinates (including
mult-idimensional coordinates) in a space-separated string attribute named coordinates.
NCO attaches any such coordinates to the extraction list along with the variable and its usual
(one-dimensional) coordinates, if any. These auxiliary coordinates are subject to the user-
specified override switches (including ‘-c’ and ‘-C’) described in Section 3.13 [Subsetting
Coordinate Variables], page 52.

Elimination of reduced dimensions from the coordinates attribute helps ensure that
rank-reduced variables become completely independent from their former dimensions. As
of NCO version 4.4.9 (May, 2015), NCO may modify the coordinates attribute to assist
this. In particular, ncwa eliminates from the coordinates attribute any dimension that
it collapses, e.g., by averaging. The former presence of this dimension will usually be
indicated by the CF cell_methods convention described here. Hence the CF cell_methods

and coordinates conventions can be said to work in tandem to characterize the state and
history of a variable’s analysis.

As of NCO version 4.4.2 (February, 2014), NCO supports some of the CF cell_methods

convention to describe the analysis procedures that have been applied to data. The con-
vention creates (or appends to an existing) cell_methods attribute a space-separated list
of couplets of the form dmn: op where dmn is a comma-separated list of dimensions pre-
viously contained in the variable that have been reduced by the arithmetic operation op.
For example, the cell_methods value time: mean says that the variable in question was
averaged over the time dimension. In such cases time will either be a scalar variable or
a degenerate dimension or coordinate. This simply means that it has been averaged-over.
The value time, lon: mean lat: max says that the variable in question is the maximum
zonal mean of the time averaged original variable. Which is to say that the variable was
first averaged over time and longitude, and then the residual latitudinal array was reduced
by choosing the maximum value. Since the cell methods convention may alter metadata
in an undesirable (or possibly incorrect) fashion, we provide switches to ensure it is always
or never used. Use long-options ‘--cll_mth’ or ‘--cell_methods’ to invoke the algorithm
(true by default), and options ‘--no_cll_mth’ or ‘--no_cell_methods’ to turn it off. These
options are only available in the operators ncwa and ncra.

3.46 ARM Conventions� �
Availability: ncrcat
Short options: None

 	
ncrcat has been programmed to correctly handle data files which utilize the Atmospheric

Radiation Measurement (ARM) Program convention for time and time offsets. If you do not
work with ARM data then you may skip this section. ARM data files store time information
in two variables, a scalar, base_time, and a record variable, time_offset. Subtle but
serious problems can arise when these type of files are blindly concatenated without CF

or ARM support. NCO implements rebasing (see Section 3.28 [Rebasing Time Coordinate],
page 101) as necessary on both CF and ARM files. Rebasing chains together consecutive

http://cfconventions.org/cf-conventions/cf-conventions.html#coordinate-system
http://cfconventions.org/cf-conventions/cf-conventions.html#cell-methods
http://cfconventions.org/cf-conventions/cf-conventions.html#cell-methods
http://www.arm.gov/data/time.stm

150 NCO 5.0.1 User Guide

input-files and produces an output-file which contains the correct time information. For
ARM files this is expecially complex because the time coordinates are often stored as type
NC_CHAR. Currently, ncrcat determines whether a datafile is an ARM datafile simply by
testing for the existence of the variables base_time, time_offset, and the dimension time.
If these are found in the input-file then ncrcat will automatically perform two non-standard,
but hopefully useful, procedures. First, ncrcat will ensure that values of time_offset
appearing in the output-file are relative to the base_time appearing in the first input-file
(and presumably, though not necessarily, also appearing in the output-file). Second, if a
coordinate variable named time is not found in the input-files, then ncrcat automatically
creates the time coordinate in the output-file. The values of time are defined by the ARM

conventions time = base time+ time offset. Thus, if output-file contains the time_offset
variable, it will also contain the time coordinate. A short message is added to the history
global attribute whenever these ARM-specific procedures are executed.

3.47 Operator Version� �
Availability: All operators
Short options: ‘-r’
Long options: ‘--revision’, ‘--version’, or ‘--vrs’

 	
All operators can be told to print their version information, library version, copyright

notice, and compile-time configuration with the ‘-r’ switch, or its long-option equivalent
‘revision’. The ‘--version’ or ‘--vrs’ switches print the operator version information
only. The internal version number varies between operators, and indicates the most re-
cent change to a particular operator’s source code. This is useful in making sure you are
working with the most recent operators. The version of NCO you are using might be, e.g.,
3.9.5. Using ‘-r’ on, say, ncks, produces something like ‘NCO netCDF Operators version

"3.9.5" last modified 2008/05/11 built May 12 2008 on neige by

zender Copyright (C) 1995--2008 Charlie Zender ncks version 20090918’. This tells
you that ncks contains all patches up to version 3.9.5, which dates from May 11, 2008.

Chapter 4: Reference Manual 151

4 Reference Manual

This chapter presents reference pages for each of the operators individually. The operators
are presented in alphabetical order. All valid command line switches are included in the
syntax statement. Recall that descriptions of many of these command line switches are
provided only in Chapter 3 [Shared features], page 29, to avoid redundancy. Only options
specific to, or most useful with, a particular operator are described in any detail in the
sections below.

152 NCO 5.0.1 User Guide

4.1 ncap2 netCDF Arithmetic Processor� �
ncap2 understands a relatively full-featured language of operations, including loops, con-
ditionals, arrays, and math functions. ncap2 is the most rapidly changing NCO operator
and its documentation is incomplete. The distribution file data/ncap2_tst.nco contains
an up-to-date overview of its syntax and capabilities. The data/*.nco distribution files
(especially bin_cnt.nco, psd_wrf.nco, and rgr.nco) contain in-depth examples of ncap2
solutions to complex problems.
 	
SYNTAX

ncap2 [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c]

[-D dbg] [-F] [-f] [--glb ...] [-h] [--hdf] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [--no_tmp_fl] [-O] [-o output-file]

[-p path] [-R] [-r] [--ram_all]

[-s algebra] [-S fl.nco] [-t thr_nbr] [-v]

[input-file] [output-file]

DESCRIPTION

ncap2 arithmetically processes netCDF files. ncap2 is the successor to ncap which
was put into maintenance mode in November, 2006, and completely removed from NCO

in March, 2018. This documentation refers to ncap2 implements its own domain-specific
language to produc a powerful superset ncap-functionality. ncap2 may be renamed ncap

one day! The processing instructions are contained either in the NCO script file fl.nco

or in a sequence of command line arguments. The options ‘-s’ (or long options ‘--spt’ or
‘--script’) are used for in-line scripts and ‘-S’ (or long options ‘--fl_spt’, ‘--nco_script’,
or ‘--script-file’) are used to provide the filename where (usually multiple) scripting
commands are pre-stored. ncap2 was written to perform arbitrary algebraic transformations
of data and archive the results as easily as possible. See Section 3.30 [Missing Values],
page 103, for treatment of missing values. The results of the algebraic manipulations are
called derived fields.

Unlike the other operators, ncap2 does not accept a list of variables to be operated on as
an argument to ‘-v’ (see Section 3.12 [Subsetting Files], page 48). Rather, the ‘-v’ switch
takes no arguments and indicates that ncap2 should output only user-defined variables.
ncap2 neither accepts nor understands the -x switch. NB: As of 20120515, ncap2 is unable
to append to files that already contain the appended dimensions.

Providing a name for output-file is optional if input-file is a netCDF3 format, in which
case ncap2 attempts to write modifications directly to input-file (similar to the behavior of
ncrename and ncatted). Format-constraints prevent this type of appending from working
on a netCDF4 format input-file. In any case, reading and writing the same file can be risky
and lead to unexpected consequences (since the file is being both read and written), so
in normal usage we recommend providing output-file (which can be the same as input-file
since the changes are first written to an intermediate file).

As of NCO version 4.8.0 (released May, 2019), ncap2 does not require that input-file be
specified when output-file has no dependency on it. Prior to this, ncap2 required users to

http://nco.sf.net/nco.html#-A

Chapter 4: Reference Manual 153

specify a dummy input-file even if it was not used to construct output-file. Input files are
always read by ncap2, and dummy input files were read though not used for anything nor
modified. Now

ncap2 -s ’quark=1’ ~/foo.nc # Create new foo.nc

ncap2 -s ’print(quark)’ ~/foo.nc # Print existing foo.nc

ncap2 -O -s ’quark=1’ ~/foo.nc # Overwrite old with new foo.nc

ncap2 -s ’quark=1’ ~/foo.nc ~/foo.nc # Add to old foo.nc

Defining new variables in terms of existing variables is a powerful feature of ncap2. De-
rived fields inherit the metadata (i.e., attributes) of their ancestors, if any, in the script
or input file. When the derived field is completely new (no identically-named ancestors
exist), then it inherits the metadata (if any) of the left-most variable on the right hand side
of the defining expression. This metadata inheritance is called attribute propagation. At-
tribute propagation is intended to facilitate well-documented data analysis, and we welcome
suggestions to improve this feature.

The only exception to this rule of attribute propagation is in cases of left hand casting
(see Section 4.1.4 [Left hand casting], page 158). The user must manually define the proper
metadata for variables defined using left hand casting.

4.1.1 Syntax of ncap2 statements

Mastering ncap2 is relatively simple. Each valid statement statement consists of standard
forward algebraic expression. The fl.nco, if present, is simply a list of such statements,
whitespace, and comments. The syntax of statements is most like the computer language C.
The following characteristics of C are preserved:

Array syntax
Arrays elements are placed within [] characters;

Array indexing
Arrays are 0-based;

Array storage
Last dimension is most rapidly varying;

Assignment statements
A semi-colon ‘;’ indicates the end of an assignment statement.

Comments
Multi-line comments are enclosed within /* */ characters. Single line comments
are preceded by // characters.

Nesting Files may be nested in scripts using #include script. The #include command
is not followed by a semi-colon because it is a pre-processor directive, not an
assignment statement. The filename script is interpreted relative to the run
directory.

Attribute syntax
The at-sign @ is used to delineate an attribute name from a variable name.

154 NCO 5.0.1 User Guide

4.1.2 Expressions

Expressions are the fundamental building block of ncap2. Expressions are composed of
variables, numbers, literals, and attributes. The following C operators are “overloaded”
and work with scalars and multi-dimensional arrays:

Arithmetic Operators: * / % + - ^

Binary Operators: > >= < <= == != == || && >> <<

Unary Operators: + - ++ -- !

Conditional Operator: exp1 ? exp2 : exp3

Assign Operators: = += -= /= *=

In the following section a variable also refers to a number literal which is read in as a
scalar variable:

Arithmetic and Binary Operators

Consider var1 ’op’ var2

Precision

• When both operands are variables, the result has the precision of the higher precision
operand.

• When one operand is a variable and the other an attribute, the result has the precision
of the variable.

• When both operands are attributes, the result has the precision of the more precise
attribute.

• The exponentiation operator “^” is an exception to the above rules. When both
operands have type less than NC_FLOAT, the result is NC_FLOAT. When either type
is NC_DOUBLE, the result is also NC_DOUBLE.

Rank

• The Rank of the result is generally equal to Rank of the operand that has the greatest
number of dimensions.

• If the dimensions in var2 are a subset of the dimensions in var1 then its possible to
make var2 conform to var1 through broadcasting and or dimension reordering.

• Broadcasting a variable means creating data in non-existing dimensions by copying
data in existing dimensions.

• More specifically: If the numbers of dimensions in var1 is greater than or equal to the
number of dimensions in var2 then an attempt is made to make var2 conform to var1
,else var1 is made to conform to var2. If conformance is not possible then an error
message will be emitted and script execution will cease.

Even though the logical operators return True(1) or False(0) they are treated in the same
way as the arithmetic operators with regard to precision and rank.
Examples:

dimensions: time=10, lat=2, lon=4

Suppose we have the two variables:

Chapter 4: Reference Manual 155

double P(time,lat,lon);

float PZ0(lon,lat); // PZ0=1,2,3,4,5,6,7,8;

Consider now the expression:

PZ=P-PZ0

PZ0 is made to conform to P and the result is

PZ0 =

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

1,3,5,7,2,4,6,8,

Once the expression is evaluated then PZ will be of type double;

Consider now

start=four-att_var@double_att; // start =-69 and is of type intger;

four_pow=four^3.0f // four_pow=64 and is of type float

three_nw=three_dmn_var_sht*1.0f; // type is now float

start@n1=att_var@short_att*att_var@int_att;

// start@n1=5329 and is type int

Binary Operators
Unlike C the binary operators return an array of values. There is no such thing as short
circuiting with the AND/OR operators. Missing values are carried into the result in the
same way they are with the arithmetic operators. When an expression is evaluated in an
if() the missing values are treated as true.
The binary operators are, in order of precedence:

! Logical Not

<< Less Than Selection

>> Greater Than Selection

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

156 NCO 5.0.1 User Guide

!= Not equal to

&& Logical AND

|| Logical OR

To see all operators: see Section 4.1.29 [Operator precedence and associativity], page 213
Examples:

tm1=time>2 && time <7; // tm1=0, 0, 1, 1, 1, 1, 0, 0, 0, 0 double

tm2=time==3 || time>=6; // tm2=0, 0, 1, 0, 0, 1, 1, 1, 1, 1 double

tm3=int(!tm1); // tm3=1, 1, 0, 0, 0, 0, 1, 1, 1, 1 int

tm4=tm1 && tm2; // tm4=0, 0, 1, 0, 0, 1, 0, 0, 0, 0 double

tm5=!tm4; // tm5=1, 1, 0, 1, 1, 0, 1, 1, 1, 1 double

Regular Assign Operator
var1 ’=’ exp1
If var1 does not already exist in Input or Output then var1 is written to Output with the
values, type and dimensions from expr1. If var1 is in Input only it is copied to Output first.
Once the var is in Ouptut then the only reqirement on expr1 is that the number of elements
must match the number already on disk. The type of expr1 is converted as necessary to
the disk type.

If you wish to change the type or shape of a variable in Input then you must cast the
variable. See see Section 4.1.4 [Left hand casting], page 158

time[time]=time.int();

three_dmn_var_dbl[time,lon,lat]=666L;

Other Assign Operators +=,-=,*=./=
var1 ’ass op’ exp1
if exp1 is a variable and it doesn’t conform to var1 then an attempt is made to make it
conform to var1. If exp1 is an attribute it must have unity size or else have the same number
of elements as var1. If expr1 has a different type to var1 the it is converted to the var1
type.

z1=four+=one*=10 // z1=14 four=14 one=10;

time-=2 // time= -1,0,1,2,3,4,5,6,7,8

Increment/Decrement Operators
These work in a similar fashion to their regular C counterparts. If say the variable four

is input only then the statement ++four effectively means read four from input increment
each element by one, then write the new values to Output;

Example:

n2=++four; n2=5, four=5

n3=one--+20; n3=21 one=0;

n4=--time; n4=time=0.,1.,2.,3.,4.,5.,6.,7.,8.,9.;

Conditional Operator ?:
exp1 ? exp2 : exp3

Chapter 4: Reference Manual 157

The conditional operator (or ternary Operator) is a succinct way of writing an if/then/else.
If exp1 evaluates to true then exp2 is returned else exp3 is returned.

Example:

weight_avg=weight.avg();

weight_avg@units= (weight_avg == 1 ? "kilo" : "kilos");

PS_nw=PS-(PS.min() > 100000 ? 100000 : 0);

Clipping Operators

<< Less-than Clipping

For arrays, the less-than selection operator selects all values in the left operand
that are less than the corresponding value in the right operand. If the value
of the left side is greater than or equal to the corresponding value of the right
side, then the right side value is placed in the result

>> Greater-than Clipping

For arrays, the greater-than selection operator selects all values in the left
operand that are greater than the corresponding value in the right operand.
If the value of the left side is less than or equal to the corresponding value of
the right side, then the right side value is placed in the result.

Example:

RDM2=RDM >> 100.0 // 100,100,100,100,126,126,100,100,100,100 double

RDM2=RDM << 90s // 1, 9, 36, 84, 90, 90, 84, 36, 9, 1 int

4.1.3 Dimensions

Dimensions are defined in Output using the defdim() function.

defdim("cnt",10); # Dimension size is fixed by default

defdim("cnt",10,NC_UNLIMITED); # Dimension is unlimited (record dimension)

defdim("cnt",10,0); # Dimension is unlimited (record dimension)

defdim("cnt",10,1); # Dimension size is fixed

defdim("cnt",10,737); # All non-zero values indicate dimension size is fixed

This dimension name must then be prefixed with a dollar-sign ‘$’ when referred to in
method arguments or left-hand-casting, e.g.,

new_var[$cnt]=time;

temperature[$time,$lat,$lon]=35.5;

temp_avg=temperature.avg($time);

The size method allows dimension sizes to be used in arithmetic expressions:

time_avg=time.total()/$time.size;

Increase the size of a new variable by one and set new member to zero:

defdim("cnt_new",$cnt.size+1);

new_var[$cnt_new]=0.0;

158 NCO 5.0.1 User Guide

new_var(0:($cnt_new.size-2))=old_var;

To define an unlimited dimension, simply set the size to zero

defdim("time2",0)

Dimension Abbreviations
It is possible to use dimension abbreviations as method arguments:
$0 is the first dimension of a variable
$1 is the second dimension of a variable
$n is the n+1 dimension of a variable

float four_dmn_rec_var(time,lat,lev,lon);

double three_dmn_var_dbl(time,lat,lon);

four_nw=four_dmn_rev_var.reverse($time,$lon)

four_nw=four_dmn_rec_var.reverse($0,$3);

four_avg=four_dmn_rec_var.avg($lat,$lev);

four_avg=four_dmn_rec_var.avg($1,$2);

three_mw=three_dmn_var_dbl.permute($time,$lon,$lat);

three_mw=three_dmn_var_dbl.permute($0,$2,$1);

ID Quoting
If the dimension name contains non-regular characters use ID quoting: See see

Section 4.1.30 [ID Quoting], page 213

defdim("a--list.A",10);

A1[’$a--list.A’]=30.0;

GOTCHA
It is not possible to manually define in Output any dimensions that exist in Input. When
a variable from Input appears in an expression or statement its dimensions in Input are
automagically copied to Output (if they are not already present)

4.1.4 Left hand casting

The following examples demonstrate the utility of the left hand casting ability of ncap2.
Consider first this simple, artificial, example. If lat and lon are one dimensional coordinates
of dimensions lat and lon, respectively, then addition of these two one-dimensional arrays
is intrinsically ill-defined because whether lat lon should be dimensioned lat by lon or lon
by lat is ambiguous (assuming that addition is to remain a commutative procedure, i.e.,
one that does not depend on the order of its arguments). Differing dimensions are said to
be orthogonal to one another, and sets of dimensions which are mutually exclusive are or-
thogonal as a set and any arithmetic operation between variables in orthogonal dimensional
spaces is ambiguous without further information.

The ambiguity may be resolved by enumerating the desired dimension ordering of the
output expression inside square brackets on the left hand side (LHS) of the equals sign. This

Chapter 4: Reference Manual 159

is called left hand casting because the user resolves the dimensional ordering of the RHS of
the expression by specifying the desired ordering on the LHS.

ncap2 -s ’lat_lon[lat,lon]=lat+lon’ in.nc out.nc

ncap2 -s ’lon_lat[lon,lat]=lat+lon’ in.nc out.nc

The explicit list of dimensions on the LHS, [lat,lon] resolves the otherwise ambiguous
ordering of dimensions in lat lon. In effect, the LHS casts its rank properties onto the
RHS. Without LHS casting, the dimensional ordering of lat lon would be undefined and,
hopefully, ncap2 would print an error message.

Consider now a slightly more complex example. In geophysical models, a coordinate
system based on a blend of terrain-following and density-following surfaces is called a hybrid
coordinate system. In this coordinate system, four variables must be manipulated to obtain
the pressure of the vertical coordinate: PO is the domain-mean surface pressure offset
(a scalar), PS is the local (time-varying) surface pressure (usually two horizontal spatial
dimensions, i.e. latitude by longitude), hyam is the weight given to surfaces of constant
density (one spatial dimension, pressure, which is orthogonal to the horizontal dimensions),
and hybm is the weight given to surfaces of constant elevation (also one spatial dimension).
This command constructs a four-dimensional pressure prs_mdp from the four input variables
of mixed rank and orthogonality:

ncap2 -s ’prs_mdp[time,lat,lon,lev]=P0*hyam+PS*hybm’ in.nc out.nc

Manipulating the four fields which define the pressure in a hybrid coordinate system is
easy with left hand casting.

Finally, we show how to use interface quantities to define midpoint quantities. In partic-
ular, we will define interface pressures using the standard CESM output hybrid coordinate
parameters, and then difference those interface pressures to obtain the pressure difference
between the interfaces. The pressure difference is necessary obtain gridcell mass path and
density (which are midpoint quantities). Definitions are as in the above example, with new
variables hyai and hybi defined at grid cell vertical interfaces (rather than midpoints like
hyam and hybm). The approach naturally fits into two lines:

cat > ~/pdel.nco << ’EOF’

*prs_ntf[time,lat,lon,ilev]=P0*hyai+PS*hybi;

// Requires NCO 4.5.4 and later:

prs_dlt[time,lat,lon,lev]=prs_ntf(:,:,:,1:$ilev.size-1)-prs_ntf(:,:,:,0:$ilev.size-2);

// Derived variable that require pressure thickness:

// Divide by gravity to obtain total mass path in layer aka mpl [kg m-2]

mpl=prs_dlt/grv_sfc;

// Multiply by mass mixing ratio to obtain mass path of constituent

mpl_CO2=mpl*mmr_CO2;

EOF

ncap2 -O -v -S ~/pdel.nco ~/nco/data/in.nc ~/foo.nc

ncks -O -C -v prs_dlt ~/foo.nc

The first line defines the four-dimensional interface pressures prs_ntf as a RAM variable
because those are not desired in the output file. The second differences each pressure level
from the pressure above it to obtain the pressure difference. This line employs both left-hand

160 NCO 5.0.1 User Guide

casting and array hyperslabbing. However, this syntax only works with NCO version 4.5.4
(November, 2015) and later because earlier versions require that LHS and RHS dimension
names (not just sizes) match. From the pressure differences, one can obtain the mass path
in each layer as shown.

Another reason to cast a variable is to modify the shape or type of a variable already in
Input

gds_var[gds_crd]=gds_var.double();

three_dmn_var_crd[lat,lon,lev]=10.0d;

four[]=four.int();

4.1.5 Arrays and hyperslabs

Generating a regularly spaced n-dimensional array with ncap2 is simple with the array()

function. The function comes in three (overloaded) forms

(A) var_out=array(val_srt,val_inc,$dmn_nm); // One-dimensional output

(B) var_out=array(val_srt,val_inc,var_tpl); // Multi-dimensional output

(C) var_out=array(val_srt,val_inc,/$dmn1,$dmn2...,$dmnN/); // Multi-dimensional output

val srt Starting value of the array. The type of the array will be the type of this
starting value.

val inc Spacing (or increment) between elements.

var tpl Variable from which the array can derive its shape 1D or nD

One-Dimensional Arrays
Use form (A) or (B) above for 1D arrays:

var_out will be NC_DOUBLE:

var_out=array(10.0,2,$time) // 10.5,12.5,14.5,16.5,18.5,20.5,22.5,24.5,26.5,28.5

// var_out will be NC_UINT, and "shape" will duplicate "ilev"

var_out=array(0ul,2,ilev) // 0,2,4,6

// var_out will be NC_FLOAT

var_out=array(99.0f,2.5,$lon) // 99,101.5,104,106.5

// Create an array of zeros

var_out=array(0,0,$time) // 0,0,0,0,0,0,0,0,0,0

// Create array of ones

var_out=array(1.0,0.0,$lon) // 1.0,1.0,1.0,1.0

n-Dimensional Arrays
Use form (B) or (C) for creating n-D arrays.
NB: In (C) the final argument is a list of dimensions

// These are equivalent

var_out=array(1.0,2.0,three_dmn_var);

var_out=array(1.0,2.0,/$lat,$lev,$lon/);

Chapter 4: Reference Manual 161

// var_out is NC_BYTE

var_out=array(20b, -4, /$lat,$lon/); // 20,16,12,8,4,0,-4,-8

srt=3.14159f;

inc=srt/2.0f;

var_out(srt,inc,var_2D_rrg);

// 3.14159, 4.712385, 6.28318, 7.853975, 9.42477, 10.99557, 12.56636, 14.13716 ;

Hyperslabs in ncap2 are more limited than hyperslabs with the other NCO operators.
ncap2 does not understand the shell command-line syntax used to specify multi-slabs,
wrapped co-ordinates, negative stride or coordinate value limits. However with a bit of
syntactic magic they are all are possible. ncap2 accepts (in fact, it requires) N-hyperslab
arguments for a variable of rank N :

var1(arg1,arg2 ... argN);

where each hyperslab argument is of the form

start:end:stride

and the arguments for different dimensions are separated by commas. If start is omitted,
it defaults to zero. If end is omitted, it defaults to dimension size minus one. If stride is
omitted, it defaults to one.

If a single value is present then it is assumed that that dimension collapses to a single value
(i.e., a cross-section). The number of hyperslab arguments MUST equal the variable’s rank.

Hyperslabs on the Right Hand Side of an assign

A simple 1D example:

($time.size=10)

od[$time]={20,22,24,26,28,30,32,34,36,38};

od(7); // 34

od(7:); // 34,36,38

od(:7); // 20,22,24,26,28,30,32,34

od(::4); // 20,28,36

od(1:6:2) // 22,26,30

od(:) // 20,22,24,26,28,30,32,34,36,38

A more complex three dimensional example:

($lat.size=2,$lon.size=4)

th[$time,$lat,$lon]=

{1, 2, 3, 4, 5, 6, 7, 8,

9,10,11,12,13,14,15,16,

17,18,19,20,21,22,23,24,

-99,-99,-99,-99,-99,-99,-99,-99,

162 NCO 5.0.1 User Guide

33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,

49,50,51,52,53,54,55,56,

-99,58,59,60,61,62,63,64,

65,66,67,68,69,70,71,72,

-99,74,75,76,77,78,79,-99 };

th(1,1,3); // 16

th(2,0,:); // 17, 18, 19, 20

th(:,1,3); // 8, 16, 24, -99, 40, 48, 56, 64, 72, -99

th(::5,:,0:3:2); // 1, 3, 5, 7, 41, 43, 45, 47

If hyperslab arguments collapse to a single value (a cross-section has been specified),
then that dimension is removed from the returned variable. If all the values collapse then
a scalar variable is returned. So, for example, the following is valid:

th_nw=th(0,:,:)+th(9,:,:);

// th_nw has dimensions $lon,$lat

// NB: the time dimension has become degenerate

The following is invalid:

th_nw=th(0,:,0:1)+th(9,:,0:1);

because the $lon dimension now only has two elements. The above can be calculated
by using a LHS cast with $lon_nw as replacement dim for $lon:

defdim("lon_nw",2);

th_nw[$lat,$lon_nw]=th(0,:,0:1)+th(9,:,0:1);

Hyperslabs on the Left Hand Side of an assign
When hyperslabing on the LHS, the expression on the RHS must evaluate to a scalar or a
variable/attribute with the same number of elements as the LHS hyperslab. Set all elements
of the last record to zero:

th(9,:,:)=0.0;

Set first element of each lon element to 1.0:

th(:,:,0)=1.0;

One may hyperslab on both sides of an assign. For example, this sets the last record to
the first record:

th(9,:,:)=th(0,:,:);

Say th0 represents pressure at height=0 and th1 represents pressure at height=1. Then
it is possible to insert these hyperslabs into the records

prs[$time,$height,$lat,$lon]=0.0;

prs(:,0,:,:)=th0;

prs(:,1,:,:)=th1;

Chapter 4: Reference Manual 163

Reverse method
Use the reverse() method to reverse a dimension’s elements in a variable with at least one
dimension. This is equivalent to a negative stride, e.g.,

th_rv=th(1,:,:).reverse($lon); // {12,11,10,9 }, {16,15,14,13}

od_rv=od.reverse($time); // {38,36,34,32,30,28,26,24,22,20}

Permute methodp
Use the permute() method to swap the dimensions of a variable. The number and names
of dimension arguments must match the dimensions in the variable. If the first dimension
in the variable is of record type then this must remain the first dimension. If you want to
change the record dimension then consider using ncpdq.

Consider the variable:

float three_dmn_var(lat,lev,lon);

three_dmn_var_prm=three_dmn_var.permute($lon,$lat,$lev);

// The permuted values are

three_dmn_var_prm=

0,4,8,

12,16,20,

1,5,9,

13,17,21,

2,6,10,

14,18,22,

3,7,11,

15,19,23;

4.1.6 Attributes

Refer to attributes with var nm@att nm. The following are all valid statements:

global@text="Test Attributes"; /* Assign a global variable attribute */

a1[$time]=time*20;

a1@long_name="Kelvin";

a1@min=a1.min();

a1@max=a1.max();

a1@min++;

--a1@max;

a1(0)=a1@min;

a1($time.size-1)=a1@max;

NetCDF allows all attribute types to have a size between one NC_MAX_ATTRS. Here is
the metadata for variable a1:

double a1(time) ;

a1:long_name = "Kelvin" ;

a1:max = 199. ;

a1:min = 21. ;

a1:trip1 = 1, 2, 3 ;

a1:triplet = 21., 110., 199. ;

164 NCO 5.0.1 User Guide

These basic methods can be used with attributes: size(), type(), and exists(). For
example, to save an attribute text string in a variable:

defdim("sng_len",a1@long_name.size());

sng_arr[$sng_len]=a1@long_name; // sng_arr now contains "Kelvin"

Attributes defined in a script are stored in memory and are written to the output file
after script completion. To stop the attribute being written use the ram_delete() method
or use a bogus variable name.

Attribute Propagation and Inheritance

• Attribute propagation occurs in a regular assign statement. The variable being defined
on the LHS gets copies of the attributes from the leftermost variable on the RHS.

• Attribute Inheritance: The LHS variable “inherits” attributes from an Input variable
with the same name

• It is possible to have a regular assign statement for which both propagation and inher-
itance occur.

// prs_mdp inherits attributes from P0:

prs_mdp[time,lat,lon,lev]=P0*hyam+hybm*PS;

// th_min inherits attributes from three_dmn_var_dbl:

th_min=1.0 + 2*three_dmn_var_dbl.min($time);

Attribute Concatenation

The push() function concatenates attributes, or appends an “expression” to a pre-
existing attribute. It comes in two forms

(A) att_new=push(att_exp, expr)

(B) att_size=push(&att_nm,expr)

In form (A) The first argument should be an attribute identifier or an expression that
evaluates to an attribute. The second argument can evalute to an attribute or a variable.
The second argument is then converted to the type of att exp; and appended to att exp ;
and the resulting attribute is returned.

In form (B) the first argument is a call-by-reference attribute identifier (which may not
yet exist). The second argument is then evaluated (and type-converted as needed) and
appended to the call-by-reference atttribute. The final size of the attribute is then returned.

temp@range=-10.0;

push(&temp@range,12.0); // temp@range=-10.0,12.0

numbers@squares=push(1,4);

numbers@squares=push(numbers@squares,9);

push(&number@squares,16.0);

push(&number@squares,25ull); // numbers@squares=1,4,9,16,25

Chapter 4: Reference Manual 165

Now some text examples.
Remember, an atttribute identifier that begins with @ implies a global attribute. For
example, ’@institution’ is short for ’global@institution’.

global@greetings=push("hello"," world !!");

global@greek={"alpha"s,"beta"s,"gamma"s};

// Append an NC_STRING

push(&@greek,"delta"s);

// Pushing an NC_CHAR to a NC_STRING attribute is allowed, it is converted to an an NC_CHAR

@e="epsilon";

push(&@greek,@e);

push(&@greek,"zeta");

// Pushing a single NC_STRING to an NC_CHAR is not allowed

@h="hello";

push(&@h," again"s); // BAD PUSH

If the attribute name contains non-regular characters use ID quoting:

’b..m1@c--lost’=23;

See see Section 4.1.30 [ID Quoting], page 213.

4.1.7 Value List

A value list is a special type of attribute. It can only be used on the RHS of the assign
family of statements.
That is =, +=, -=, *=, /=
A value list CANNOT be involved in any logical, binary, or arithmetical operations (except
those above).
A value list CANNOT be used as a function argument.
A value list CANNOT have nested value lists.
The type of a value list is the type of the member with the highest type.

a1@trip={1,2,3};

a1@trip+={3,2,1}; // 4,4,4

a1@triplet={a1@min,(a1@min+a1@max)/2,a1@max};

lon[lon]={0.0,90.0,180.0,270.0};

lon*={1.0,1.1,1.2,1.3}

dlon[lon]={1b,2s,3ull,4.0f}; // final type NC_FLOAT

a1@ind={1,2,3}+{4,4,4}; // BAD

a1@s=sin({1.0,16.0}); // BAD

One can also use a value list to create an attribute of type NC STRING. Remember, a
literal string of type NC STRING has a postfix ’s’. A value list of NC CHAR has no
semantic meaning and is plain wrong.

array[lon]={1.0,2.,4.0,7.0};

array@numbers={"one"s, "two"s, "four"s, "seven"s}; // GOOD

166 NCO 5.0.1 User Guide

ar[lat]={0,20}

ar@numbers={"zero","twenty"}; // BAD

4.1.8 Number literals

The table below lists the postfix character(s) to add to a number literal (aka, a naked
constant) for explicit type specification. The same type-specification rules are used for
variables and attributes. A floating-point number without a postfix defaults to NC_DOUBLE,
while an integer without a postfix defaults to type NC_INT:

var[$rlev]=0.1; // Variable will be type @code{NC_DOUBLE}

var[$lon_grd]=2.0; // Variable will be type @code{NC_DOUBLE}

var[$gds_crd]=2e3; // Variable will be type @code{NC_DOUBLE}

var[$gds_crd]=2.0f; // Variable will be type @code{NC_FLOAT} (note "f")

var[$gds_crd]=2e3f; // Variable will be type @code{NC_FLOAT} (note "f")

var[$gds_crd]=2; // Variable will be type @code{NC_INT}

var[$gds_crd]=-3; // Variable will be type @code{NC_INT}

var[$gds_crd]=2s; // Variable will be type @code{NC_SHORT}

var[$gds_crd]=-3s; // Variable will be type @code{NC_SHORT}

var@att=41.; // Attribute will be type @code{NC_DOUBLE}

var@att=41.f; // Attribute will be type @code{NC_FLOAT}

var@att=41; // Attribute will be type @code{NC_INT}

var@att=-21s; // Attribute will be type @code{NC_SHORT}

var@units="kelvin"; // Attribute will be type @code{NC_CHAR}

There is no postfix for characters, use a quoted string instead for NC_CHAR. ncap2

interprets a standard double-quoted string as a value of type NC_CHAR. In this case, any
receiving variable must be dimensioned as an array of NC_CHAR long enough to hold the
value.

To use the newer netCDF4 types NCO must be compiled/linked to the netCDF4 library
and the output file must be of type NETCDF4:

var[$time]=1UL; // Variable will be type @code{NC_UINT}

var[$lon]=4b; // Variable will be type @code{NC_BYTE}

var[$lat]=5ull; // Variable will be type @code{NC_UINT64}

var[$lat]=5ll; // Variable will be type @code{NC_INT64}

var@att=6.0d; // Attribute will be type @code{NC_DOUBLE}

var@att=-666L; // Attribute will be type @code{NC_INT}

var@att="kelvin"s; // Attribute will be type @code{NC_STRING} (note the "s")

Use a post-quote ‘s’ for NC_STRING. Place the letter ‘s’ immediately following the double-
quoted string to indicate that the value is of type NC_STRING. In this case, the receiving
variable need not have any memory allocated to hold the string because netCDF4 handles
that memory allocation.

Suppose one creates a file containing an ensemble of model results, and wishes to label
the record coordinate with the name of each model. The NC_STRING type is well-suited to
this because it facilitates storing arrays of strings of arbitrary length. This is sophisticated,
though easy with ncap2:

Chapter 4: Reference Manual 167

% ncecat -O -u model cesm.nc ecmwf.nc giss.nc out.nc

% ncap2 -4 -O -s ’model[$model]={"cesm"s,"ecmwf"s,"giss"s}’ out.nc out.nc

The key here to place an ‘s’ character after each double-quoted string value to indicate
an NC_STRING type. The ‘-4’ ensures the output filetype is netCDF4 in case the input
filetype is not.

netCDF3/4 Types
b|B NC_BYTE, a signed 1-byte integer

none NC_CHAR, an ISO/ASCII character

s|S NC_SHORT, a signed 2-byte integer

l|L NC_INT, a signed 4-byte integer

f|F NC_FLOAT, a single-precision (4-byte) floating-point number

d|D NC_DOUBLE, a double-precision (8-byte) floating-point number

netCDF4 Types
ub|UB NC_UBYTE, an unsigned 1-byte integer

us|US NC_USHORT, an unsigned 2-byte integer

u|U|ul|UL
NC_UINT, an unsigned 4-byte integer

ll|LL NC_INT64, a signed 8-byte integer

ull|ULL NC_UINT64, an unsigned 8-byte integer

s NC_STRING, a string of arbitrary length

4.1.9 if statement

The syntax of the if statement is similar to its C counterpart. The Conditional Operator
(ternary operator) has also been implemented.

if(exp1)

stmt1;

else if(exp2)

stmt2;

else

stmt3;

Can use code blocks as well:

if(exp1){

stmt1;

stmt1a;

stmt1b;

}else if(exp2)

stmt2;

else{

stmt3;

168 NCO 5.0.1 User Guide

stmt3a;

stmt3b;

}

For a variable or attribute expression to be logically true all its non-missing value elements
must be logically true, i.e., non-zero. The expression can be of any type. Unlike C there is
no short-circuiting of an expression with the OR (||) and AND (&&) operators. The whole
expression is evaluated regardless if one of the AND/OR operands are True/False.

Simple example

if(time > 0)

print("All values of time are greater than zero\n");

else if(time < 0)

print("All values of time are less than zero\n");

else {

time_max=time.max();

time_min=time.min();

print("min value of time=");print(time_min,"%f");

print("max value of time=");print(time_max,"%f");

}

Example from ddra.nco

if(fl_typ == fl_typ_gcm){

var_nbr_apx=32;

lmn_nbr=1.0*var_nbr_apx*varsz_gcm_4D; /* [nbr] Variable size */

if(nco_op_typ==nco_op_typ_avg){

lmn_nbr_avg=1.0*var_nbr_apx*varsz_gcm_4D; // Block size

lmn_nbr_wgt=dmnsz_gcm_lat; /* [nbr] Weight size */

} // !nco_op_typ_avg

}else if(fl_typ == fl_typ_stl){

var_nbr_apx=8;

lmn_nbr=1.0*var_nbr_apx*varsz_stl_2D; /* [nbr] Variable size */

if(nco_op_typ==nco_op_typ_avg){

lmn_nbr_avg=1.0*var_nbr_apx*varsz_stl_2D; // Block size

lmn_nbr_wgt=dmnsz_stl_lat; /* [nbr] Weight size */

} // !nco_op_typ_avg

} // !fl_typ

Conditional Operator

// netCDF4 needed for this example

th_nw=(three_dmn_var_sht >= 0 ? three_dmn_var_sht.uint() : \

three_dmn_var_sht.int());

4.1.10 Print & String methods

The print statement comes in a variety of forms:

(A) print(variable_name, format string?);

Chapter 4: Reference Manual 169

(A1) print(expression/string, format string?);

(B) sprint(expression/string, format string?);

(B1) sprint4(expression/string, format string?);

print()

If the variable exists in I/O then it is printed in a similar fashion to ncks -H.

print(lon);

lon[0]=0

lon[1]=90

lon[2]=180

lon[3]=270

print(byt_2D)

lat[0]=-90 lon[0]=0 byt_2D[0]=0

lat[0]=-90 lon[1]=90 byt_2D[1]=1

lat[0]=-90 lon[2]=180 byt_2D[2]=2

lat[0]=-90 lon[3]=270 byt_2D[3]=3

lat[1]=90 lon[0]=0 byt_2D[4]=4

lat[1]=90 lon[1]=90 byt_2D[5]=5

lat[1]=90 lon[2]=180 byt_2D[6]=6

lat[1]=90 lon[3]=270 byt_2D[7]=7

If the first argument is NOT a variable the form (A1) is invoked.

print(mss_val_fst@_FillValue);

mss_val_fst@_FillValue, size = 1 NC_FLOAT, value = -999

print("This function \t is monotonic\n");

This function is monotonic

print(att_var@float_att)

att_var@float_att, size = 7 NC_FLOAT, value = 73, 72, 71, 70.01, 69.001, 68.01, 67.01

print(lon*10.0)

lon, size = 4 NC_DOUBLE, value = 0, 900, 1800, 2700

If the format string is specified then the results from (A) and (A1) forms are the same

print(lon_2D_rrg,"%3.2f,");

0.00,0.00,180.00,0.00,180.00,0.00,180.00,0.00,

print(lon*10.0,"%g,")

0,900,1800,2700,

print(att_var@float_att,"%g,")

73,72,71,70.01,69.001,68.01,67.01,

170 NCO 5.0.1 User Guide

sprint() & sprint4()

These functions work in an identical fashion to (A1) except that sprint() outputs a regular
netCDF3 NC_CHAR attribute and sprint4() outputs a netCDF4 NC_STRING attribute

time@units=sprint(nDays,"%d days since 1970-1-1")

bnd@num=sprint4(bnd_idx,"Band number=%d")

time@arr=sprint4(time,"%.2f,") // "1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00,9.00,10.00,"

You can also use sprint4() to convert a NC_CHAR string to a NC_STRING string and sprint()

to convert a NC_STRING to a NC_CHAR

lat_1D_rct@long_name = "Latitude for 2D rectangular grid stored as 1D arrays"; //

// convert to NC_STRING

lat_1D_rct@long_name = sprint4(lat_1D_rct@long_name)

hyperslab a netCDF string

Its possible to index-into a NC CHAR string. Just like a C-String. Remember an
NC CHAR string is has no terminating null. You CANNOT index into a NC STRING.
You have to convert to an NC CHAR first.

global@greeting="hello world!!!"

@h=@greeting(0:4); // "hello"

@w=@greeting(6:11); // "world"

// can use negative inidices

@x=@greeting(-3:-1); // "!!!"

// can use stride

@n=@greeting(::2); // "hlowrd!"

// concatenation

global@new_greeting=push(@h, " users !!!"); // "hello users!!!"

@institution="hotel california"s;

@h=@institution(0:4); // BAD

// convert NC_STRING to NC_CHAR

@is=sprint(@institution);

@h=@is(0:4); // "hotel"

// convert NC_CHAR to NC_STRING

@h=sprint4(@h);

get vars in() & get vars out()

att_lst=get_vars_in(att_regexp?)

Chapter 4: Reference Manual 171

att_lst=get_vars_out(att_regexp?)

These functions are used to create a list of vars in Input or Output. The optional arg
’att regexp’. Can be an NC CHAR att or a NC STRING att. If NC CHAR then only a
single reg-exp can be specified. If NC STRING then multiple reg-exp can be specified. The
output is allways an NC STRING att. The matching works in an identical fashion to the
-v switch in ncks. if there is no arg then all vars are returned.

@slist=get_vars_in("^time"); // "time", "time_bnds", "time_lon", "time_udunits"

// Use NC_STRINGS

@regExp={".*_bnd"s,".*_grd"s}

@slist=get_vars_in(@regExp); // "lat_bnd", "lat_grd", "lev_bnd", "lon_grd", "time_bnds", "cnv_CF_grd"

4.1.11 Missing values ncap2

Missing values operate slightly differently in ncap2 Consider the expression where op is any
of the following operators (excluding ’=’)

Arithmetic operators (* / % + - ^)

Binary Operators (>, >= <, <= ==, !=,==,||,&&, >>,<<)

Assign Operators (+=,-=,/=, *=)

var1 ’op’ var2

If var1 has a missing value then this is the value used in the operation, otherwise the missing
value for var2 is used. If during the element-by-element operation an element from either
operand is equal to the missing value then the missing value is carried through. In this way
missing values ’percolate’ or propagate through an expression.
Missing values associated with Output variables are stored in memory and are written to
disk after the script finishes. During script execution its possible (and legal) for the missing
value of a variable to take on several different values.

Consider the variable:

int rec_var_int_mss_val_int(time); =-999,2,3,4,5,6,7,8,-999,-999;

rec_var_int_mss_val_int:_FillValue = -999;

n2=rec_var_int_mss_val_int + rec_var_int_mss_val_int.reverse($time);

n2=-999,-999,11,11,11,11,11,11,999,-999;

The following methods query or manipulate missing value (aka _FillValue information
associated with a variable. The methods that “manipulate” only succeed on variables in
Output.

set_miss(expr)

The numeric argument expr becomes the new missing value, overwriting the
old missing value, if any. The argument given is converted if necessary to the
variable’s type. NB: This only changes the missing value attribute. Missing val-
ues in the original variable remain unchanged, and thus are no long considered
missing values. They are effectively “orphaned”. Thus set_miss() is normally

172 NCO 5.0.1 User Guide

used only when creating new variables. The intrinsic function change_miss()

(see below) is typically used to edit values of existing variables.

change_miss(expr)

Sets or changes (any pre-existing) missing value attribute and missing data
values to expr. NB: This is an expensive function since all values must be
examined. Use this function when changing missing values for pre-existing
variables.

get_miss()

Returns the missing value of a variable. If the variable exists in Input and
Output then the missing value of the variable in Output is returned. If the
variable has no missing value then an error is returned.

delete_miss()

Delete the missing value associated with a variable.

number_miss()

Count the number of missing values a variable contains.

has_miss()

Returns 1 (True) if the variable has a missing value associated with it. else
returns 0 (False)

missing()

This function creates a True/False mask array of where the missing value is set.
It is syntatically equivalent to (var_in == var_in.get_miss()), except that
requires deleting the missing value before-hand.

th=three_dmn_var_dbl;

th.change_miss(-1e10d);

/* Set values less than 0 or greater than 50 to missing value */

where(th < 0.0 || th > 50.0) th=th.get_miss();

Another example:

new[$time,$lat,$lon]=1.0;

new.set_miss(-997.0);

// Extract all elements evenly divisible by 3

where (three_dmn_var_dbl%3 == 0)

new=three_dmn_var_dbl;

elsewhere

new=new.get_miss();

// Print missing value and variable summary

mss_val_nbr=three_dmn_var_dbl.number_miss();

print(three_dmn_var_dbl@_FillValue);

print("Number of missing values in three_dmn_var_dbl: ");

print(mss_val_nbr,"%d");

print(three_dmn_var_dbl);

Chapter 4: Reference Manual 173

// Find total number of missing values along dims $lat and $lon

mss_ttl=three_dmn_var_dbl.missing().ttl($lat,$lon);

print(mss_ttl); // 0, 0, 0, 8, 0, 0, 0, 1, 0, 2 ;

simple_fill_miss(var)

This function takes a variable and attempts to fill missing values using an
average of up to the 4 nearest neighbour grid points. The method used is
iterative (up to 1000 cycles). For very large areas of missing values results can
be unpredictable. The given variable must be at least 2D; and the algorithm
assumes that the last two dims are lat/lon or y/x

weighted_fill_miss(var)

Weighted fill miss is more sophisticated. Up to 8 nearest neighbours are used
to calculate a weighted average. The weighting used is the inverse square of
distance. Again the method is iterative (up to 1000 cycles). The area filled is
defined by the final two dims of the variable. In addition this function assumes
the existance of coordinate vars the same name as the last two dims. if it
doesn’t find these dims it will gently exit with warning.

4.1.12 Methods and functions

The convention within this document is that methods can be used as functions. However,
functions are not and cannot be used as methods. Methods can be daisy-chained d and
their syntax is cleaner than functions. Method names are reserved words and CANNOT
be used as variable names. The command ncap2 -f shows the complete list of methods
available on your build.

n2=sin(theta)

n2=theta.sin()

n2=sin(theta)^2 + cos(theta)^2

n2=theta.sin().pow(2) + theta.cos()^2

This statement chains together methods to convert three dmn var sht to type double,
average it, then convert this back to type short:

three_avg=three_dmn_var_sht.double().avg().short();

Aggregate Methods
These methods mirror the averaging types available in ncwa. The arguments to the methods
are the dimensions to average over. Specifying no dimensions is equivalent to specifying all
dimensions i.e., averaging over all dimensions. A masking variable and a weighting variable
can be manually created and applied as needed.

avg() Mean value

sqravg() Square of the mean

avgsqr() Mean of sum of squares

max() Maximum value

min() Minimum value

174 NCO 5.0.1 User Guide

mabs() Maximum absolute value

mebs() Mean absolute value

mibs() Minimum absolute value

rms() Root-mean-square (normalize by N)

rmssdn() Root-mean square (normalize by N-1)

tabs() or ttlabs()

Sum of absolute values

ttl() or total() or sum()

Sum of values

// Average a variable over time

four_time_avg=four_dmn_rec_var($time);

Packing Methods
For more information see see Section 3.38 [Packed data], page 126 and see Section 4.9
[ncpdq netCDF Permute Dimensions Quickly], page 287

pack() & pack_short()

The default packing algorithm is applied and variable is packed to NC_SHORT

pack_byte()

Variable is packed to NC_BYTE

pack_short()

Variable is packed to NC_SHORT

pack_int()

Variable is packed to NC_INT

unpack() The standard unpacking algorithm is applied.

NCO automatically unpacks packed data before arithmetically modifying it. After modi-
fication NCO stores the unpacked data. To store it as packed data again, repack it with, e.g.,
the pack() function. To ensure that temperature is packed in the output file, regardless
of whether it is packed in the input file, one uses, e.g.,

ncap2 -s ’temperature=pack(temperature-273.15)’ in.nc out.nc

All the above pack functions also take the additional two arguments scale_factor,

add_offset. Both arguments must be included:

ncap2 -v -O -s ’rec_pck=pack(three_dmn_rec_var,-0.001,40.0);’ in.nc foo.nc

Basic Methods
These methods work with variables and attributes. They have no arguments.

size() Total number of elements

ndims() Number of dimensions in variable

Chapter 4: Reference Manual 175

type() Returns the netcdf type (see previous section)

exists() Return 1 (true) if var or att is present in I/O else return 0 (false)

getdims()

Returns an NC STRING attribute of all the dim names of a variable

Utility Methods
These functions are used to manipulate missing values and RAM variables. see

Section 4.1.11 [Missing values ncap2], page 171

set_miss(expr)

Takes one argument the missing value. Sets or overwrites the existing missing
value. The argument given is converted if necessary to the variable type

change_miss(expr)

Changes the missing value elements of the variable to the new missing value
(n.b. an expensive function).

get_miss()

Returns the missing value of a variable in Input or Output

delete_miss()

Deletes the missing value associated with a variable.

has_miss()

Returns 1 (True) if the variable has a missing else returns 0 (False)

number_miss

Returns the number of missing values a variable contains

ram_write()

Writes a RAM variable to disk i.e., converts it to a regular disk type variable

ram_delete()

Deletes a RAM variable or an attribute

PDQ Methods
See see Section 4.9 [ncpdq netCDF Permute Dimensions Quickly], page 287

reverse(dim args)

Reverse the dimension ordering of elements in a variable.

permute(dim args)

Re-shape variables by re-ordering the dimensions. All the dimensions of the
variable must be specified in the arguments. A limitation of this permute
(unlike ncpdq) is that the record dimension cannot be re-assigned.

// Swap dimensions about and reorder along lon

lat_2D_rrg_new=lat_2D_rrg.permute($lon,$lat).reverse($lon);

lat_2D_rrg_new=0,90,-30,30,-30,30,-90,0

176 NCO 5.0.1 User Guide

Type Conversion Methods and Functions
These methods allow ncap2 to convert variables and attributes to the different netCDF
types. For more details on automatic and manual type conversion see (see Section 3.40
[Type Conversion], page 133). netCDF4 types are only available if you have compiled/links
NCO with the netCDF4 library and the Output file is HDF5.

netCDF3/4 Types
byte() convert to NC_BYTE, a signed 1-byte integer

char() convert to NC_CHAR, an ISO/ASCII character

short() convert to NC_SHORT, a signed 2-byte integer

int() convert to NC_INT, a signed 4-byte integer

float() convert to NC_FLOAT, a single-precision (4-byte) floating-point number

double() convert to NC_DOUBLE, a double-precision (8-byte) floating-point number

netCDF4 Types
ubyte() convert to NC_UBYTE, an unsigned 1-byte integer

ushort() convert to NC_USHORT, an unsigned 2-byte integer

uint() convert to NC_UINT, an unsigned 4-byte integer

int64() convert to NC_INT64, a signed 8-byte integer

uint64() convert to NC_UINT64, an unsigned 8-byte integer

You can also use the convert() method to do type conversion. This takes an integer
agument. For convenience, ncap2 defines the netCDF pre-processor tokens as RAM vari-
ables. For example you may wish to convert a non-floating point variable to the same type
as another variable.

lon_type=lon.type();

if(time.type() != NC_DOUBLE && time.type() != NC_FLOAT)

time=time.convert(lon_type);

Intrinsic Mathematical Methods
The list of mathematical methods is system dependant. For the full list see Section 4.1.28
[Intrinsic mathematical methods], page 211

All the mathematical methods take a single argument except atan2() and pow() which
take two. If the operand type is less than float then the result will be of type float. Argu-
ments of type double yield results of type double. Like the other methods, you are free to
use the mathematical methods as functions.

n1=pow(2,3.0f) // n1 type float

n2=atan2(2,3.0) // n2 type double

n3=1/(three_dmn_var_dbl.cos().pow(2))-tan(three_dmn_var_dbl)^2; // n3 type double

4.1.13 RAM variables

Unlike regular variables, RAM variables are never written to disk. Hence using RAM vari-
ables in place of regular variables (especially within loops) significantly increases execution

Chapter 4: Reference Manual 177

speed. Variables that are frequently accessed within for or where clauses provide the great-
est opportunities for optimization. To declare and define a RAM variable simply prefix the
variable name with an asterisk (*) when the variable is declared/initialized. To delete RAM

variables (and recover their memory) use the ram_delete() method. To write a RAM

variable to disk (like a regular variable) use ram_write().

*temp[$time,$lat,$lon]=10.0; // Cast

*temp_avg=temp.avg($time); // Regular assign

temp.ram_delete(); // Delete RAM variable

temp_avg.ram_write(); // Write Variable to output

// Create and increment a RAM variable from "one" in Input

*one++;

// Create RAM variables from the variables three and four in Input.

// Multiply three by 10 and add it to four.

*four+=*three*=10; // three=30, four=34

4.1.14 Where statement

The where() statement combines the definition and application of a mask and can lead to
succinct code. The syntax of a where() statement is:

// Single assign (’elsewhere’ is optional)

where(mask)

var1=expr1;

elsewhere

var1=expr2;

// Multiple assigns

where(mask){

var1=expr1;

var2=expr2;

...

}elsewhere{

var1=expr3

var2=expr4

var3=expr5;

...

}

• The only expression allowed in the predicate of a where is assign, i.e., ’var=expr’. This
assign differs from a regular ncap2 assign. The LHS var must already exist in Input or
Output. The RHS expression must evaluate to a scalar or a variable/attribute of the
same size as the LHS variable.

• Consider when both the LHS and RHS are variables: For every element where mask
condition is True, the corresponding LHS variable element is re-assigned to its partner
element on the RHS. In the elsewhere part the mask is logically inverted and the assign
process proceeds as before.

• If the mask dimensions are a subset of the LHS variable’s dimensions, then it is made

178 NCO 5.0.1 User Guide

to conform; if it cannot be made to conform then script execution halts.

• Missing values in the mask evaluate to False in the where code/block statement and
to True in the elsewhere block/statement.

• LHS variable elements set to missing value are treated just like any other elements and
can be re-assigned as the mask dictates

• LHS variable cannot include subscripts. If they do script execution will terminate. See
below example for work-araound.

Consider the variables float lon_2D_rct(lat,lon); and float var_msk(lat,lon);.
Suppose we wish to multiply by two the elements for which var_msk equals 1:

where(var_msk == 1) lon_2D_rct=2*lon_2D_rct;

Suppose that we have the variable int RDM(time) and that we want to set its values less
than 8 or greater than 80 to 0:

where(RDM < 8 || RDM > 80) RDM=0;

To use where on a variable hyperslab, define and use a temporary variable, e.g.,

*var_tmp=var2(:,0,:,:);

where (var1 < 0.5) var_tmp=1234;

var2(;,0,:,;)=var_tmp;

ram_delete(var_tmp);

Consider irregu-
larly gridded data, described using rank 2 coordinates: double lat(south_north,east_

west), double lon(south_north,east_west), double temperature(south_north,east_

west). This type of structure is often found in regional weather/climate model (such as
WRF) output, and in satellite swath data. For this reason we call it “Swath-like Data”,
or SLD. To find the average temperature in a region bounded by [lat min,lat max] and
[lon min,lon max]:

temperature_msk[$south_north,$east_west]=0.0;

where((lat >= lat_min && lat <= lat_max) && (lon >= lon_min && lon <= lon_max))

temperature_msk=temperature;

elsewhere

temperature_msk=temperature@_FillValue;

temp_avg=temperature_msk.avg();

temp_max=temperature.max();

For North American Regional Reanalysis (NARR) data (example dataset) the procedure
looks like this

ncap2 -O -v -S ~/narr.nco ${DATA}/hdf/narr_uwnd.199605.nc ~/foo.nc

where narr.nco is an ncap2 script like this:

/* North American Regional Reanalysis (NARR) Statistics

NARR stores grids with 2-D latitude and longitude, aka Swath-like Data (SLD)

Here we work with three variables:

http://dust.ess.uci.edu/diwg/narr_uwnd.199605.nc

Chapter 4: Reference Manual 179

lat(y,x), lon(y,x), and uwnd(time,level,y,x);

To study sub-regions of SLD, we use masking techniques:

1. Define mask as zero times variable to be masked

Then mask automatically inherits variable attributes

And average below will inherit mask attributes

2. Optionally, create mask as RAM variable (as below with asterisk *)

NCO does not write RAM variable to output

Masks are often unwanted, and can be big, so this speeds execution

3. Example could be extended to preserve mean lat and lon of sub-region

Follow uwnd example to do this: lat_msk=0.0*lat ... lat_avg=lat.avg($y,$x) */

*uwnd_msk=0.0*uwnd;

where((lat >= 35.6 && lat <= 37.0) && (lon >= -100.5 && lon <= -99.0))

uwnd_msk=uwnd;

elsewhere

uwnd_msk=uwnd@_FillValue;

// Average only over horizontal dimensions x and y (preserve level and time)

uwnd_avg=uwnd_msk.avg($y,$x);

Stripped of comments and formatting, this example is a three-statement script executed
by a one-line command. NCO needs only this meagre input to unpack and copy the input
data and attributes, compute the statistics, and then define and write the output file.
Unless the comments pointed out that wind variable (uwnd) was four-dimensional and the
latitude/longitude grid variables were both two-dimensional, there would be no way to tell.
This shows how NCO hides from the user the complexity of analyzing multi-dimensional
SLD. We plan to extend such SLD features to more operators soon.

4.1.15 Loops

ncap2 supplies for() loops and while() loops. They are completely unoptimized so use
them only with RAM variables unless you want thrash your disk to death. To break out of
a loop use the break command. To iterate to the next cycle use the continue command.

// Set elements in variable double temp(time,lat)

// If element < 0 set to 0, if element > 100 set to 100

*sz_idx=$time.size;

*sz_jdx=$lat.size;

for(*idx=0;idx<sz_idx;idx++)

for(*jdx=0;jdx<sz_jdx;jdx++)

if(temp(idx,jdx) > 100) temp(idx,jdx)=100.0;

else if(temp(idx,jdx) < 0) temp(idx,jdx)=0.0;

// Are values of co-ordinate variable double lat(lat) monotonic?

*sz=$lat.size;

for(*idx=1;idx<sz;idx++)

if(lat(idx)-lat(idx-1) < 0.0) break;

180 NCO 5.0.1 User Guide

if(idx == sz) print("lat co-ordinate is monotonic\n");

else print("lat co-ordinate is NOT monotonic\n");

// Sum odd elements

*idx=0;

*sz=$lat_nw.size;

*sum=0.0;

while(idx<sz){

if(lat(idx)%2) sum+=lat(idx);

idx++;

}

ram_write(sum);

print("Total of odd elements ");print(sum);print("\n");

4.1.16 Include files

The syntax of an include-file is:

#include "script.nco"

#include "/opt/SOURCES/nco/data/tst.nco"

If the filename is relative and not absolute then the directory searched is relative to the
run-time directory. It is possible to nest include files to an arbitrary depth. A handy use of
inlcude files is to store often used constants. Use RAM variables if you do not want these
constants written to nc-file.

output-file.

// script.nco

// Sample file to #include in ncap2 script

*pi=3.1415926535; // RAM variable, not written to output

*h=6.62607095e-34; // RAM variable, not written to output

e=2.71828; // Regular (disk) variable, written to output

As of NCO version 4.6.3 (December, 2016), The user can specify the directory(s) to be
searched by specifing them in the UNIX environment var NCO_PATH. The format used is
identical to the UNIX PATH. The directory(s) are only searched if the include filename is
relative.

export NCO_PATH=":/home/henryb/bin/:/usr/local/scripts:/opt/SOURCES/nco/data:"

4.1.17 sort methods

In ncap2 there are multiple ways to sort data. Beginning with NCO 4.1.0 (March, 2012),
ncap2 support six sorting functions:

var_out=sort(var_in,&srt_map); // Ascending sort

var_out=asort(var_in,&srt_map); // Accending sort

var_out=dsort(var_in,&srt_map); // Desending sort

var_out=remap(var_in,srt_map); // Apply srt_map to var_in

Chapter 4: Reference Manual 181

var_out=unmap(var_in,srt_map); // Reverse what srt_map did to var_in

dsr_map=invert_map(srt_map); // Produce "de-sort" map that inverts srt_map

The first two functions, sort() and asort() sort, in ascending order, all the elements of
var in (which can be a variable or attribute) without regard to any dimensions. The third
function, dsort() does the same but sorts in descending order. Remember that ascending
and descending sorts are specified by asort() and dsort(), respectively.

These three functions are overloaded to take a second, optional argument called the sort
map srt map, which should be supplied as a call-by-reference variable, i.e., preceded with
an ampersand. If the sort map does not yet exist, then it will be created and returned as
an integer type the same shape as the input variable.

The output var out of each sort function is a sorted version of the input, var in. The
output var out of the two mapping functions the result of applying (with remap() or un-
applying (with unmap()) the sort map srt map to the input var in. To apply the sort map
with remap() the size of the variable must be exactly divisible by the size of the sort map.

The final function invert_map() returns the so-called de-sorting map dsr map which is
the inverse of the input map srt map. This gives the user access to both the forward and
inverse sorting maps:

a1[$time]={10,2,3,4,6,5,7,3,4,1};

a1_sort=sort(a1);

print(a1_sort);

// 1, 2, 3, 3, 4, 4, 5, 6, 7, 10;

a2[$lon]={2,1,4,3};

a2_sort=sort(a2,&a2_map);

print(a2);

// 1, 2, 3, 4

print(a2_map);

// 1, 0, 3, 2;

If the map variable does not exist prior to the sort() call, then it will be created with
the same shape as the input variable and be of type NC_INT. If the map variable already
exists, then the only restriction is that it be of at least the same size as the input variable.
To apply a map use remap(var_in,srt_map).

defdim("nlat",5);

a3[$lon]={2,5,3,7};

a4[$nlat,$lon]={

1, 2, 3, 4,

5, 6, 7, 8,

9,10,11,12,

13,14,15,16,

17,18,19,20};

a3_sort=sort(a3,&a3_map);

182 NCO 5.0.1 User Guide

print(a3_map);

// 0, 2, 1, 3;

a4_sort=remap(a4,a3_map);

print(a4_sort);

// 1, 3, 2, 4,

// 5, 7, 6, 8,

// 9,11,10,12,

// 13,15,14,16,

// 17,19,18,20;

a3_map2[$nlat]={4,3,0,2,1};

a4_sort2=remap(a4,a3_map2);

print(a4_sort2);

// 3, 5, 4, 2, 1

// 8, 10, 9,7, 6,

// 13,15,14,12,11,

// 18,20,19,17,16

As in the above example you may create your own sort map. To sort in descending
order, apply the reverse() method after the sort().

Here is an extended example of how to use ncap2 features to hyperslab an irregular region
based on the values of a variable not a coordinate. The distinction is crucial: hyperslabbing
based on dimensional indices or coordinate values is straightforward. Using the values of
single or multi-dimensional variable to define a hyperslab is quite different.

cat > ~/ncap2_foo.nco << ’EOF’

// Purpose: Save irregular 1-D regions based on variable values

// Included in NCO User Guide at http://nco.sf.net/nco.html#sort

/* NB: Single quotes around EOF above turn off shell parameter

expansion in "here documents". This in turn prevents the

need for protecting dollarsign characters in NCO scripts with

backslashes when the script is cut-and-pasted (aka "moused")

from an editor or e-mail into a shell console window */

/* Copy coordinates and variable(s) of interest into RAM variable(s)

Benefits:

1. ncap2 defines writes all variables on LHS of expression to disk

Only exception is RAM variables, which are stored in RAM only

Repeated operations on regular variables takes more time,

because changes are written to disk copy after every change.

RAM variables are only changed in RAM so script works faster

RAM variables can be written to disk at end with ram_write()

2. Script permutes variables of interest during processing

Chapter 4: Reference Manual 183

Safer to work with copies that have different names

This discourages accidental, mistaken use of permuted versions

3. Makes this script a more generic template:

var_in instead of specific variable names everywhere */

*var_in=one_dmn_rec_var;

*crd_in=time;

*dmn_in_sz=$time.size; // [nbr] Size of input arrays

/* Create all other "intermediate" variables as RAM variables

to prevent them from cluttering the output file.

Mask flag and sort map are same size as variable of interest */

*msk_flg=var_in;

*srt_map=var_in;

/* In this example we mask for all values evenly divisible by 3

This is the key, problem-specific portion of the template

Replace this where() condition by that for your problem

Mask variable is Boolean: 1=Meets condition, 0=Fails condition */

where(var_in % 3 == 0) msk_flg=1; elsewhere msk_flg=0;

// print("msk_flg = ");print(msk_flg); // For debugging...

/* The sort() routine is overloaded, and takes one or two arguments

The second argument (optional) is the "sort map" (srt_map below)

Pass the sort map by reference, i.e., prefix with an ampersand

If the sort map does not yet exist, then it will be created and

returned as an integer type the same shape as the input variable.

The output of sort(), on the LHS, is a sorted version of the input

msk_flg is not needed in its original order after sort()

Hence we use msk_flg as both input to and output from sort()

Doing this prevents the need to define a new, unneeded variable */

msk_flg=sort(msk_flg,&srt_map);

// Count number of valid points in mask by summing the one’s

*msk_nbr=msk_flg.total();

// Define output dimension equal in size to number of valid points

defdim("crd_out",msk_nbr);

/* Now sort the variable of interest using the sort map and remap()

The output, on the LHS, is the input re-arranged so that all points

meeting the mask condition are contiguous at the end of the array

Use same srt_map to hyperslab multiple variables of the same shape

Remember to apply srt_map to the coordinate variables */

crd_in=remap(crd_in,srt_map);

var_in=remap(var_in,srt_map);

184 NCO 5.0.1 User Guide

/* Hyperslab last msk_nbr values of variable(s) of interest */

crd_out[crd_out]=crd_in((dmn_in_sz-msk_nbr):(dmn_in_sz-1));

var_out[crd_out]=var_in((dmn_in_sz-msk_nbr):(dmn_in_sz-1));

/* NB: Even though we created all variables possible as RAM variables,

the original coordinate of interest, time, is written to the ouput.

I’m not exactly sure why. For now, delete it from the output with:

ncks -O -x -v time ~/foo.nc ~/foo.nc

*/

EOF

ncap2 -O -v -S ~/ncap2_foo.nco ~/nco/data/in.nc ~/foo.nc

ncks -O -x -v time ~/foo.nc ~/foo.nc

ncks ~/foo.nc

Here is an extended example of how to use ncap2 features to sort multi-dimensional
arrays based on the coordinate values along a single dimension.

cat > ~/ncap2_foo.nco << ’EOF’

/* Purpose: Sort multi-dimensional array based on coordinate values

This example sorts the variable three_dmn_rec_var(time,lat,lon)

based on the values of the time coordinate. */

// Included in NCO User Guide at http://nco.sf.net/nco.html#sort

// Randomize the time coordinate

time=10.0*gsl_rng_uniform(time);

//print("original randomized time = \n");print(time);

/* The sort() routine is overloaded, and takes one or two arguments

The first argument is a one dimensional array

The second argument (optional) is the "sort map" (srt_map below)

Pass the sort map by reference, i.e., prefix with an ampersand

If the sort map does not yet exist, then it will be created and

returned as an integer type the same shape as the input variable.

The output of sort(), on the LHS, is a sorted version of the input */

time=sort(time,&srt_map);

//print("sorted time (ascending order) and associated sort map =\n");print(time);print(srt_map);

/* sort() always sorts in ascending order

The associated sort map therefore re-arranges the original,

randomized time array into ascending order.

There are two methods to obtain the descending order the user wants

1) We could solve the problem in ascending order (the default)

and then apply the reverse() method to re-arrange the results.

2) We could change the sort map to return things in descending

order of time and solve the problem directly in descending order. */

Chapter 4: Reference Manual 185

// Following shows how to do method one:

/* Expand the sort map to srt_map_3d, the size of the data array

1. Use data array to provide right shape for the expanded sort map

2. Coerce data array into an integer so srt_map_3d is an integer

3. Multiply data array by zero so 3-d map elements are all zero

4. Add the 1-d sort map to the 3-d sort map (NCO automatically resizes)

5. Add the spatial (lat,lon) offsets to each time index

6. de-sort using the srt_map_3d

7. Use reverse to obtain descending in time order

Loops could accomplish the same thing (exercise left for reader)

However, loops are slow for large datasets */

/* Following index manipulation requires understanding correspondence

between 1-d (unrolled, memory order of storage) and access into that

memory as a multidimensional (3-d, in this case) rectangular array.

Key idea to understand is how dimensionality affects offsets */

// Copy 1-d sort map into 3-d sort map

srt_map_3d=(0*int(three_dmn_rec_var))+srt_map;

// Multiply base offset by factorial of lesser dimensions

srt_map_3d*=$lat.size*$lon.size;

lon_idx=array(0,1,$lon);

lat_idx=array(0,1,$lat)*$lon.size;

lat_lon_idx[$lat,$lon]=lat_idx+lon_idx;

srt_map_3d+=lat_lon_idx;

print("sort map 3d =\n");print(srt_map_3d);

// Use remap() to re-map the data

three_dmn_rec_var=remap(three_dmn_rec_var,srt_map_3d);

// Finally, reverse data so time coordinate is descending

time=time.reverse($time);

//print("sorted time (descending order) =\n");print(time);

three_dmn_rec_var=three_dmn_rec_var.reverse($time);

// Method two: Key difference is srt_map=$time.size-srt_map-1;

EOF

ncap2 -O -v -S ~/ncap2_foo.nco ~/nco/data/in.nc ~/foo.nc

4.1.18 UDUnits script

As of NCO version 4.6.3 (December, 2016), ncap2 includes support for UDUnits conversions.
The function is called udunits. Its syntax is

varOut=udunits(varIn,"UnitsOutString")

The udunits() function looks for the attribute of varIn@units and fails if it is not
found. A quirk of this function that due to attribute propagation varOut@units will be

186 NCO 5.0.1 User Guide

overwritten by varIn@units. It is best to re-initialize this attribute AFTER the call. In
addition if varIn@units is of the form "time_interval since basetime" then the calendar
attribute varIn@calendar will read it. If it does not exist then the calendar used defaults
to mixed Gregorian/Julian as defined by UDUnits.

If varIn is not a floating-point type then it is promoted to NC_DOUBLE for the system
call in the UDUnits library, and then demoted back to its original type after.

T[lon]={0.0,100.0,150.0,200.0};

T@units="Celsius";

// Overwrite variable

T=udunits(T,"kelvin");

print(T);

// 273.15, 373.15, 423.15, 473.15 ;

T@units="kelvin";

// Rebase coordinate days to hours

timeOld=time;

print(timeOld);

// 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ;

timeOld@units="days since 2012-01-30";

@units="hours since 2012-02-01 01:00";

timeNew=udunits(timeOld, @units);

timeNew@units=@units;

print(timeNew);

// -25, -1, 23, 47, 71, 95, 119, 143, 167, 191 ;

tOld=time;

// nb in this calendar NO Leap year

tOld@calendar="365_day";

tOld@units="minutes since 2012-02-28 23:58:00.00";

@units="seconds since 2012-03-01 00:00";

tNew=udunits(tOld, @units);

tNew@units=@units;

print(tNew);

// -60, 0, 60, 120, 180, 240, 300, 360, 420, 480

strftime() The var_str=strtime(var_time,fmt_sng) method takes a time-based variable
and a format string and returns an NC STRING variable (of the same shape as var time)
of time-stamps in the form specified by ’fmt sng’. In order to run this command output
type must be netCDF-4.

ncap2 -4 -v -O -s ’time_str=strftime(time,"%Y-%m-%d");’ in.nc foo.nc

time_str="1964-03-13", "1964-03-14", "1964-03-15", "1964-03-16",

"1964-03-17", "1964-03-18", "1964-03-19", "1964-03-20",

"1964-03-21", "1964-03-22" ;

Chapter 4: Reference Manual 187

Under the hood there are a few steps invoved: First the method reads var_time@units
and var_time@calendar (if present) then converts var_time to seconds since 1970-01-

01. It then converts these possibly UTC seconds to the standard struture struct *tm.
Finally strftime() is called with fmt_sng and the *tm struct. The C-standard strftime()

is used as defined in time.h. If the method is called without fmt sng then the following
default is used: "%Y-%m-%d %H:%M:%S". The method regular takes a single var argument
and uses the above default string.

ncap2 -4 -v -O -s ’time_str=regular(time);’ in.nc foo.nc

time_str = "1964-03-13 21:09:00", "1964-03-14 21:09:00", "1964-03-15 21:09:00",

"1964-03-16 21:09:00", "1964-03-17 21:09:00", "1964-03-18 21:09:00",

"1964-03-19 21:09:00", "1964-03-20 21:09:00", "1964-03-21 21:09:00",

"1964-03-22 21:09:00" ;

Another working example

ncap2 -v -O -s ’ts=strftime(frametime(0),"%Y-%m-%d/envlog_netcdf_L1_ua-mac_%Y-%m-%d.nc");’ in.nc out.nc

ts="2017-08-11/envlog_netcdf_L1_ua-mac_2017-08-11.nc"

4.1.19 Vpointer

A variable-pointer or vpointer is a pointer to a variable or attribute. It is most useful when
one needs to apply a set of operations on a list of variables. For example, after regular
processing one may wish to set the _FillValue of all NC_FLOAT variables to a particular
value, or to create min/max attributes for all 3D variables of type NC_DOUBLE. A vpointer
is not a ’pointer’ to a memory location in the C/C++ sense. Rather the vpointer is a text
attribute that contains the name of a variable. To use the pointer simply prefix the pointer
with *. Then, most places where you use VAR_ID you can use *vpointer nm. There are
a variety of ways to maintain a list of strings in ncap2. The easiest method is to use an
NC_STRING attribute.

Below is a simple illustration that uses a vpointer of type NC_CHAR. Remember an
attribute starting with @ implies ’global’, e.g., @vpx is short for global@vpx.

idx=9;

idy=20;

t2=time;

global@vpx="idx";

// Increment idx by one

*global@vpx++;

print(idx);

// Multiply by 5

@vpx=5; // idx now 50

print(idx);

188 NCO 5.0.1 User Guide

// Add 200 (long method)

@vpx=@vpx+200; //idx now 250

print(idx);

@vpy="idy";

// Add idx idy to get idz

idz=*@vpx+*@vpy; // idz == 270

print(idz);

// We can also reference variables in the input file

// Can use an existing attribute pointer since attributes are not written

// to the netCDF file until after the script has finished.

@vpx="three_dmn_var";

// We can convert this variable to type NC_DOUBLE and

// write it to ouptut all at once

@vpx=@vpx.double();

The following script writes to the output files all variables that are of type NC_DOUBLE

and that have at least two dimensions. It then changes their _FillValue to 1.0E-9. The
function get_vars_in() creates an NC_STRING attribute that contains all of the variable
names in the input file. Note that a vpointer must be a plain attribute, NOT an a attribute
expression. Thus in the below script using *all(idx) would be a fundamental mistake. In
the below example the vpointer var_nm is of type NC_STRING.

@all=get_vars_in();

*sz=@all.size();

*idx=0;

for(idx=0;idx<sz;idx++){

// @var_nm is of type NC_STRING

@var_nm=@all(idx);

if(*@var_nm.type() == NC_DOUBLE && *@var_nm.ndims() >= 2){

@var_nm=@var_nm;

*@var_nm.change_miss(1e-9d);

}

}

The following script writes to the output file all 3D/4D variables of type NC_FLOAT. Then
for each variable it calculates a range attribute that contains the maximum and minimum
values, and a total attribute that is the sum of all the elements. In this example vpointers
are used to ’point’ to attributes.

@all=get_vars_in();

*sz=@all.size();

Chapter 4: Reference Manual 189

for(*idx=0;idx<sz;idx++){

@var_nm=@all(idx);

if(*@var_nm.ndims() >= 3){

@var_nm=@var_nm.float();

// The push function also takes a call-by-ref att -if it doesnt already exist then it is created

// the call below is pushing a NC_STRING to an att so the end result is a list of NC_STRINGS

push(&@prc,@var_nm);

}

}

*sz=@prc.size();

for(*idx=0;idx<sz;idx++){

@var_nm=@prc(idx);

// We can work with attribute pointers as well

// sprint - ouptut is of type NC_CHAR

@att_total=sprint(@var_nm,"%s@total");

@att_range=sprint(@var_nm,"%s@range");

// If you are still confused then print out the atts

print(@att_total);

print(@att_range);

*@att_total= *@var_nm.total();

@att_range={ min(@var_nm), max(*@var_nm)};

}

This is an ncdump of one of the variables that has been processed by the above script

float three_dmn_var_int(time, lat, lon) ;

three_dmn_var_int:_FillValue = -99.f ;

three_dmn_var_int:long_name = "three dimensional record variable of type int" ;

three_dmn_var_int:range = 1.f, 80.f ;

three_dmn_var_int:total = 2701.f ;

three_dmn_var_int:units = "watt meter-2" ;

4.1.20 Irregular Grids

NCO is capable of analyzing datasets for many different underlying coordinate grid types.
netCDF was developed for and initially used with grids comprised of orthogonal dimen-
sions forming a rectangular coordinate system. We call such grids standard grids. It is
increasingly common for datasets to use metadata to describe much more complex grids.
Let us first define three important coordinate grid properties: regularity, rectangularity,
and structure.

Grids are regular if the spacing between adjacent is constant. For example, a 4-by-5
degree latitude-longitude grid is regular because the spacings between adjacent latitudes
(4 degrees) are constant as are the (5 degrees) spacings between adjacent longitudes. Spac-

190 NCO 5.0.1 User Guide

ing in irregular grids depends on the location along the coordinate. Grids such as Gaussian
grids have uneven spacing in latitude (points cluster near the equator) and so are irregular.

Grids are rectangular if the number of elements in any dimension is not a function of
any other dimension. For example, a T42 Gaussian latitude-longitude grid is rectangular
because there are the same number of longitudes (128) for each of the (64) latitudes. Grids
are non-rectangular if the elements in any dimension depend on another dimension. Non-
rectangular grids present many special challenges to analysis software like NCO.

Grids are structured if they are represented as functions of two horizontal spatial di-
mensions. For example, grids with latitude and longitude dimensions are structured, and
so are curvilinear grids with along-track and cross-track dimensions. A grid with a single
dimension is unstructured. For example, icosohedral grids are usually unstructured, as are
MPAS grids.

Wrapped coordinates (see Section 3.22 [Wrapped Coordinates], page 74), such as longi-
tude, are independent of these grid properties (regularity, rectangularity, structure).

The preferred NCO technique to analyze data on non-standard coordinate grids is to
create a region mask with ncap2, and then to use the mask within ncap2 for variable-specific
processing, and/or with other operators (e.g., ncwa, ncdiff) for entire file processing.

Before describing the construction of masks, let us review how irregularly gridded geo-
science data are described. Say that latitude and longitude are stored as R-dimensional
arrays and the product of the dimension sizes is the total number of elements N in the other
variables. Geoscience applications tend to use R = 1, R = 2, and R = 3.

If the grid is has no simple representation (e.g., discontinuous) then it makes sense to
store all coordinates as 1D arrays with the same size as the number of grid points. These
gridpoints can be completely independent of all the other (own weight, area, etc.).

R=1: lat(number of gridpoints) and lon(number of gridpoints)

If the horizontal grid is time-invariant then R=2 is common:

R=2: lat(south north,east west) and lon(south north,east west)

The Weather and Research Forecast (WRF) model uses R=3:

R=3: lat(time,south north,east west), lon(time,south north,east west)

and so supports grids that change with time.

Grids with R > 1 often use missing values to indicated empty points. For example,
so-called “staggered grids” will use fewer east west points near the poles and more near
the equator. netCDF only accepts rectangular arrays so space must be allocated for the
maximum number of east west points at all latitudes. Then the application writes missing
values into the unused points near the poles.

We demonstrate the ncap2 analysis technique for irregular regions by constructing a
mask for an R=2 grid. We wish to find, say, the mean temperature within [lat min,lat max]
and [lon min,lon max]:

ncap2 -s ’mask_var= (lat >= lat_min && lat <= lat_max) && \

(lon >= lon_min && lon <= lon_max);’ in.nc out.nc

Chapter 4: Reference Manual 191

Arbitrarily shaped regions can be defined by more complex conditional statements. Once
defined, masks can be applied to specific variables, and to entire files:

ncap2 -s ’temperature_avg=(temperature*mask_var).avg()’ in.nc out.nc

ncwa -a lat,lon -m mask_var -w area in.nc out.nc

Crafting such commands on the command line is possible though unwieldy. In such
cases, a script is often cleaner and allows you to document the procedure:

cat > ncap2.in << ’EOF’

mask_var = (lat >= lat_min && lat <= lat_max) && (lon >= lon_min && > lon <= lon_max);

if(mask_var.total() > 0){ // Check that mask contains some valid values

temperature_avg=(temperature*mask_var).avg(); // Average temperature

temperature_max=(temperature*mask_var).max(); // Maximum temperature

}

EOF

ncap2 -S ncap2.in in.nc out.nc

Grids like those produced by the WRF model are complex because one must use global
metadata to determine the grid staggering and offsets to translate XLAT and XLONG into real
latitudes, longitudes, and missing points. The WRF grid documentation should describe
this. For WRF files creating regional masks looks, in general, like

mask_var = (XLAT >= lat_min && XLAT <= lat_max) && (XLONG >= lon_min && XLONG <= lon_max);

A few notes: Irregular regions are the union of arrays of lat/lon min/max’s. The mask
procedure is identical for all R.

4.1.21 Bilinear interpolation

As of version 4.0.0 NCO has internal routines to perform bilinear interpolation on gridded
data sets. In mathematics, bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables on a regular grid. The idea is to perform linear
interpolation first in one direction, and then again in the other direction.

Suppose we have an irregular grid of data temperature[lat,lon], with co-ordinate vars
lat[lat], lon[lon]. We wish to find the temperature at an arbitary point [X,Y] within
the grid. If we can locate lat min,lat max and lon min,lon max such that lat_min <= X

<= lat_max and lon_min <= Y <= lon_max then we can interpolate in two dimensions the
temperature at [X,Y].

The general form of the ncap2 interpolation function is

var_out=bilinear_interp(grid_in,grid_out,grid_out_x,grid_out_y,grid_in_x,grid_in_y)

where

grid_in Input function data. Usually a two dimensional variable. It must be of size
grid_in_x.size()*grid_in_y.size()

grid_out This variable is the shape of var_out. Usually a two dimensional variable. It
must be of size grid_out_x.size()*grid_out_y.size()

grid_out_x

X output values

192 NCO 5.0.1 User Guide

grid_out_y

Y output values

grid_in_x

X input values values. Must be monotonic (increasing or decreasing).

grid_in_y

Y input values values. Must be monotonic (increasing or decreasing).

Prior to calculations all arguments are converted to type NC_DOUBLE. After calculations
var_out is converted to the input type of grid_in.

Suppose the first part of an ncap2 script is

defdim("X",4);

defdim("Y",5);

// Temperature

T_in[$X,$Y]=

{100, 200, 300, 400, 500,

101, 202, 303, 404, 505,

102, 204, 306, 408, 510,

103, 206, 309, 412, 515.0 };

// Coordinate variables

x_in[$X]={0.0,1.0,2.0,3.01};

y_in[$Y]={1.0,2.0,3.0,4.0,5};

Now we interpolate with the following variables:

defdim("Xn",3);

defdim("Yn",4);

T_out[$Xn,$Yn]=0.0;

x_out[$Xn]={0.0,0.02,3.01};

y_out[$Yn]={1.1,2.0,3,4};

var_out=bilinear_interp(T_in,T_out,x_out,y_out,x_in,y_in);

print(var_out);

// 110, 200, 300, 400,

// 110.022, 200.04, 300.06, 400.08,

// 113.3, 206, 309, 412 ;

It is possible to interpolate a single point:

var_out=bilinear_interp(T_in,0.0,3.0,4.99,x_in,y_in);

print(var_out);

// 513.920594059406

Wrapping and Extrapolation
The function bilinear_interp_wrap() takes the same arguments as bilinear_interp()
but performs wrapping (Y) and extrapolation (X) for points off the edge of the grid. If
the given range of longitude is say (25-335) and we have a point at 20 degrees, then the

Chapter 4: Reference Manual 193

endpoints of the range are used for the interpolation. This is what wrapping means. For
wrapping to occur Y must be longitude and must be in the range (0,360) or (-180,180).
There are no restrictions on the longitude (X) values, though typically these are in the range
(-90,90). This ncap2 script illustrates both wrapping and extrapolation of end points:

defdim("lat_in",6);

defdim("lon_in",5);

// Coordinate input vars

lat_in[$lat_in]={-80,-40,0,30,60.0,85.0};

lon_in[$lon_in]={30, 110, 190, 270, 350.0};

T_in[$lat_in,$lon_in]=

{10,40,50,30,15,

12,43,52,31,16,

14,46,54,32,17,

16,49,56,33,18,

18,52,58,34,19,

20,55,60,35,20.0 };

defdim("lat_out",4);

defdim("lon_out",3);

// Coordinate variables

lat_out[$lat_out]={-90,0,70,88.0};

lon_out[$lon_out]={0,190,355.0};

T_out[$lat_out,$lon_out]=0.0;

T_out=bilinear_interp_wrap(T_in,T_out,lat_out,lon_out,lat_in,lon_in);

print(T_out);

// 13.4375, 49.5, 14.09375,

// 16.25, 54, 16.625,

// 19.25, 58.8, 19.325,

// 20.15, 60.24, 20.135 ;

4.1.22 GSL special functions

As of version 3.9.6 (released January, 2009), NCO can link to the GNU Scientific Li-
brary (GSL). ncap2 can access most GSL special functions including Airy, Bessel, error,
gamma, beta, hypergeometric, and Legendre functions and elliptical integrals. GSL must
be version 1.4 or later. To list the GSL functions available with your NCO build, use ncap2
-f | grep ^gsl.

The function names used by ncap2 mirror their GSL names. The NCO wrappers for GSL

functions automatically call the error-handling version of the GSL function when available1.

1 These are the GSL standard function names postfixed with _e. NCO calls these functions automatically,
without the NCO command having to specifically indicate the _e function suffix.

194 NCO 5.0.1 User Guide

This allows NCO to return a missing value when the GSL library encounters a domain error
or a floating-point exception. The slow-down due to calling the error-handling version of
the GSL numerical functions was found to be negligible (please let us know if you find
otherwise).

Consider the gamma function.
The GSL function prototype is
int gsl_sf_gamma_e(const double x, gsl_sf_result * result) The ncap2 script would
be:

lon_in[lon]={-1,0.1,0,2,0.3};

lon_out=gsl_sf_gamma(lon_in);

lon_out= _, 9.5135, 4.5908, 2.9915

The first value is set to _FillValue since the gamma function is undefined for negative
integers. If the input variable has a missing value then this value is used. Otherwise, the
default double fill value is used (defined in the netCDF header netcdf.h as NC_FILL_DOUBLE
= 9.969e+36).

Consider a call to a Bessel function with GSL prototype
int gsl_sf_bessel_Jn_e(int n, double x, gsl_sf_result * result)

An ncap2 script would be

lon_out=gsl_sf_bessel_Jn(2,lon_in);

lon_out=0.11490, 0.0012, 0.00498, 0.011165

This computes the Bessel function of order n=2 for every value in lon_in. The Bessel
order argument, an integer, can also be a non-scalar variable, i.e., an array.

n_in[lon]={0,1,2,3};

lon_out=gsl_sf_bessel_Jn(n_in,0.5);

lon_out= 0.93846, 0.24226, 0.03060, 0.00256

Arguments to GSL wrapper functions in ncap2 must conform to one another, i.e., they
must share the same sub-set of dimensions. For example: three_out=gsl_sf_bessel_

Jn(n_in,three_dmn_var_dbl) is valid because the variable three_dmn_var_dbl has a lon
dimension, so n_in in can be broadcast to conform to three_dmn_var_dbl. However time_
out=gsl_sf_bessel_Jn(n_in,time) is invalid.

Consider the elliptical integral with prototype int gsl_sf_ellint_RD_e(double x,

double y, double z, gsl_mode_t mode, gsl_sf_result * result)

three_out=gsl_sf_ellint_RD(0.5,time,three_dmn_var_dbl);

The three arguments are all conformable so the above ncap2 call is valid. The mode
argument in the function prototype controls the convergence of the algorithm. It also
appears in the Airy Function prototypes. It can be set by defining the environment variable
GSL_PREC_MODE. If unset it defaults to the value GSL_PREC_DOUBLE. See the GSL manual
for more details.

export GSL_PREC_MODE=0 // GSL_PREC_DOUBLE

export GSL_PREC_MODE=1 // GSL_PREC_SINGLE

export GSL_PREC_MODE=2 // GSL_PREC_APPROX

Chapter 4: Reference Manual 195

The ncap2 wrappers to the array functions are slightly different. Consider the following
GSL prototype
int gsl_sf_bessel_Jn_array(int nmin, int nmax, double x, double *result_array)

b1=lon.double();

x=0.5;

status=gsl_sf_bessel_Jn_array(1,4,x,&b1);

print(status);

b1=0.24226,0.0306,0.00256,0.00016;

This calculates the Bessel function of x=0.5 for n=1 to 4. The first three arguments are
scalar values. If a non-scalar variable is supplied as an argument then only the first value is
used. The final argument is the variable where the results are stored (NB: the & indicates
this is a call by reference). This final argument must be of type double and must be of least
size nmax-nmin+1. If either of these conditions is not met then then the function returns
an error message. The function/wrapper returns a status flag. Zero indicates success.

Consider another array function
int gsl_sf_legendre_Pl_array(int lmax, double x, double *result_array);

a1=time.double();

x=0.3;

status=gsl_sf_legendre_Pl_array(a1.size()-1, x,&a1);

print(status);

This call calculates P l(0.3) for l=0..9. Note that |x|<=1, otherwise there will be a domain
error. See the GSL documentation for more details.

The GSL functions implemented in NCO are listed in the table below. This table is correct
for GSL version 1.10. To see what functions are available on your build run the command
ncap2 -f |grep ^gsl . To see this table along with the GSL C-function prototypes look at
the spreadsheet doc/nco gsl.ods.

GSL NAME I NCAP FUNCTION CALL
gsl sf airy Ai e Y gsl sf airy Ai(dbl expr)
gsl sf airy Bi e Y gsl sf airy Bi(dbl expr)
gsl sf airy Ai scaled e Y gsl sf airy Ai scaled(dbl expr)
gsl sf airy Bi scaled e Y gsl sf airy Bi scaled(dbl expr)
gsl sf airy Ai deriv e Y gsl sf airy Ai deriv(dbl expr)
gsl sf airy Bi deriv e Y gsl sf airy Bi deriv(dbl expr)
gsl sf airy Ai deriv scaled e Y gsl sf airy Ai deriv scaled(dbl expr)
gsl sf airy Bi deriv scaled e Y gsl sf airy Bi deriv scaled(dbl expr)
gsl sf airy zero Ai e Y gsl sf airy zero Ai(uint expr)
gsl sf airy zero Bi e Y gsl sf airy zero Bi(uint expr)
gsl sf airy zero Ai deriv e Y gsl sf airy zero Ai deriv(uint expr)
gsl sf airy zero Bi deriv e Y gsl sf airy zero Bi deriv(uint expr)
gsl sf bessel J0 e Y gsl sf bessel J0(dbl expr)
gsl sf bessel J1 e Y gsl sf bessel J1(dbl expr)

196 NCO 5.0.1 User Guide

gsl sf bessel Jn e Y gsl sf bessel Jn(int expr,dbl expr)
gsl sf bessel Jn array Y status=gsl sf bessel Jn array(int,int,double,&var out)
gsl sf bessel Y0 e Y gsl sf bessel Y0(dbl expr)
gsl sf bessel Y1 e Y gsl sf bessel Y1(dbl expr)
gsl sf bessel Yn e Y gsl sf bessel Yn(int expr,dbl expr)
gsl sf bessel Yn array Y gsl sf bessel Yn array
gsl sf bessel I0 e Y gsl sf bessel I0(dbl expr)
gsl sf bessel I1 e Y gsl sf bessel I1(dbl expr)
gsl sf bessel In e Y gsl sf bessel In(int expr,dbl expr)
gsl sf bessel In array Y status=gsl sf bessel In array(int,int,double,&var out)
gsl sf bessel I0 scaled e Y gsl sf bessel I0 scaled(dbl expr)
gsl sf bessel I1 scaled e Y gsl sf bessel I1 scaled(dbl expr)
gsl sf bessel In scaled e Y gsl sf bessel In scaled(int expr,dbl expr)
gsl sf bessel In scaled array Y staus=gsl sf bessel In scaled array(int,int,double,&var out)
gsl sf bessel K0 e Y gsl sf bessel K0(dbl expr)
gsl sf bessel K1 e Y gsl sf bessel K1(dbl expr)
gsl sf bessel Kn e Y gsl sf bessel Kn(int expr,dbl expr)
gsl sf bessel Kn array Y status=gsl sf bessel Kn array(int,int,double,&var out)
gsl sf bessel K0 scaled e Y gsl sf bessel K0 scaled(dbl expr)
gsl sf bessel K1 scaled e Y gsl sf bessel K1 scaled(dbl expr)
gsl sf bessel Kn scaled e Y gsl sf bessel Kn scaled(int expr,dbl expr)
gsl sf bessel Kn scaled array Y status=gsl sf bessel Kn scaled array(int,int,double,&var out)
gsl sf bessel j0 e Y gsl sf bessel J0(dbl expr)
gsl sf bessel j1 e Y gsl sf bessel J1(dbl expr)
gsl sf bessel j2 e Y gsl sf bessel j2(dbl expr)
gsl sf bessel jl e Y gsl sf bessel jl(int expr,dbl expr)
gsl sf bessel jl array Y status=gsl sf bessel jl array(int,double,&var out)
gsl sf bessel jl steed array Y gsl sf bessel jl steed array
gsl sf bessel y0 e Y gsl sf bessel Y0(dbl expr)
gsl sf bessel y1 e Y gsl sf bessel Y1(dbl expr)
gsl sf bessel y2 e Y gsl sf bessel y2(dbl expr)
gsl sf bessel yl e Y gsl sf bessel yl(int expr,dbl expr)
gsl sf bessel yl array Y status=gsl sf bessel yl array(int,double,&var out)
gsl sf bessel i0 scaled e Y gsl sf bessel I0 scaled(dbl expr)
gsl sf bessel i1 scaled e Y gsl sf bessel I1 scaled(dbl expr)
gsl sf bessel i2 scaled e Y gsl sf bessel i2 scaled(dbl expr)
gsl sf bessel il scaled e Y gsl sf bessel il scaled(int expr,dbl expr)
gsl sf bessel il scaled array Y status=gsl sf bessel il scaled array(int,double,&var out)
gsl sf bessel k0 scaled e Y gsl sf bessel K0 scaled(dbl expr)
gsl sf bessel k1 scaled e Y gsl sf bessel K1 scaled(dbl expr)
gsl sf bessel k2 scaled e Y gsl sf bessel k2 scaled(dbl expr)
gsl sf bessel kl scaled e Y gsl sf bessel kl scaled(int expr,dbl expr)
gsl sf bessel kl scaled array Y status=gsl sf bessel kl scaled array(int,double,&var out)
gsl sf bessel Jnu e Y gsl sf bessel Jnu(dbl expr,dbl expr)
gsl sf bessel Ynu e Y gsl sf bessel Ynu(dbl expr,dbl expr)
gsl sf bessel sequence Jnu e N gsl sf bessel sequence Jnu
gsl sf bessel Inu scaled e Y gsl sf bessel Inu scaled(dbl expr,dbl expr)

Chapter 4: Reference Manual 197

gsl sf bessel Inu e Y gsl sf bessel Inu(dbl expr,dbl expr)
gsl sf bessel Knu scaled e Y gsl sf bessel Knu scaled(dbl expr,dbl expr)
gsl sf bessel Knu e Y gsl sf bessel Knu(dbl expr,dbl expr)
gsl sf bessel lnKnu e Y gsl sf bessel lnKnu(dbl expr,dbl expr)
gsl sf bessel zero J0 e Y gsl sf bessel zero J0(uint expr)
gsl sf bessel zero J1 e Y gsl sf bessel zero J1(uint expr)
gsl sf bessel zero Jnu e N gsl sf bessel zero Jnu
gsl sf clausen e Y gsl sf clausen(dbl expr)
gsl sf hydrogenicR 1 e N gsl sf hydrogenicR 1
gsl sf hydrogenicR e N gsl sf hydrogenicR
gsl sf coulomb wave FG e N gsl sf coulomb wave FG
gsl sf coulomb wave F array N gsl sf coulomb wave F array
gsl sf coulomb wave FG array N gsl sf coulomb wave FG array
gsl sf coulomb wave FGp array N gsl sf coulomb wave FGp array
gsl sf coulomb wave sphF array N gsl sf coulomb wave sphF array
gsl sf coulomb CL e N gsl sf coulomb CL
gsl sf coulomb CL array N gsl sf coulomb CL array
gsl sf coupling 3j e N gsl sf coupling 3j
gsl sf coupling 6j e N gsl sf coupling 6j
gsl sf coupling RacahW e N gsl sf coupling RacahW
gsl sf coupling 9j e N gsl sf coupling 9j
gsl sf coupling 6j INCORRECT eN gsl sf coupling 6j INCORRECT
gsl sf dawson e Y gsl sf dawson(dbl expr)
gsl sf debye 1 e Y gsl sf debye 1(dbl expr)
gsl sf debye 2 e Y gsl sf debye 2(dbl expr)
gsl sf debye 3 e Y gsl sf debye 3(dbl expr)
gsl sf debye 4 e Y gsl sf debye 4(dbl expr)
gsl sf debye 5 e Y gsl sf debye 5(dbl expr)
gsl sf debye 6 e Y gsl sf debye 6(dbl expr)
gsl sf dilog e N gsl sf dilog
gsl sf complex dilog xy e N gsl sf complex dilog xy e
gsl sf complex dilog e N gsl sf complex dilog
gsl sf complex spence xy e N gsl sf complex spence xy e
gsl sf multiply e N gsl sf multiply
gsl sf multiply err e N gsl sf multiply err
gsl sf ellint Kcomp e Y gsl sf ellint Kcomp(dbl expr)
gsl sf ellint Ecomp e Y gsl sf ellint Ecomp(dbl expr)
gsl sf ellint Pcomp e Y gsl sf ellint Pcomp(dbl expr,dbl expr)
gsl sf ellint Dcomp e Y gsl sf ellint Dcomp(dbl expr)
gsl sf ellint F e Y gsl sf ellint F(dbl expr,dbl expr)
gsl sf ellint E e Y gsl sf ellint E(dbl expr,dbl expr)
gsl sf ellint P e Y gsl sf ellint P(dbl expr,dbl expr,dbl expr)
gsl sf ellint D e Y gsl sf ellint D(dbl expr,dbl expr,dbl expr)
gsl sf ellint RC e Y gsl sf ellint RC(dbl expr,dbl expr)
gsl sf ellint RD e Y gsl sf ellint RD(dbl expr,dbl expr,dbl expr)
gsl sf ellint RF e Y gsl sf ellint RF(dbl expr,dbl expr,dbl expr)
gsl sf ellint RJ e Y gsl sf ellint RJ(dbl expr,dbl expr,dbl expr,dbl expr)

198 NCO 5.0.1 User Guide

gsl sf elljac e N gsl sf elljac
gsl sf erfc e Y gsl sf erfc(dbl expr)
gsl sf log erfc e Y gsl sf log erfc(dbl expr)
gsl sf erf e Y gsl sf erf(dbl expr)
gsl sf erf Z e Y gsl sf erf Z(dbl expr)
gsl sf erf Q e Y gsl sf erf Q(dbl expr)
gsl sf hazard e Y gsl sf hazard(dbl expr)
gsl sf exp e Y gsl sf exp(dbl expr)
gsl sf exp e10 e N gsl sf exp e10
gsl sf exp mult e Y gsl sf exp mult(dbl expr,dbl expr)
gsl sf exp mult e10 e N gsl sf exp mult e10
gsl sf expm1 e Y gsl sf expm1(dbl expr)
gsl sf exprel e Y gsl sf exprel(dbl expr)
gsl sf exprel 2 e Y gsl sf exprel 2(dbl expr)
gsl sf exprel n e Y gsl sf exprel n(int expr,dbl expr)
gsl sf exp err e Y gsl sf exp err(dbl expr,dbl expr)
gsl sf exp err e10 e N gsl sf exp err e10
gsl sf exp mult err e N gsl sf exp mult err
gsl sf exp mult err e10 e N gsl sf exp mult err e10
gsl sf expint E1 e Y gsl sf expint E1(dbl expr)
gsl sf expint E2 e Y gsl sf expint E2(dbl expr)
gsl sf expint En e Y gsl sf expint En(int expr,dbl expr)
gsl sf expint E1 scaled e Y gsl sf expint E1 scaled(dbl expr)
gsl sf expint E2 scaled e Y gsl sf expint E2 scaled(dbl expr)
gsl sf expint En scaled e Y gsl sf expint En scaled(int expr,dbl expr)
gsl sf expint Ei e Y gsl sf expint Ei(dbl expr)
gsl sf expint Ei scaled e Y gsl sf expint Ei scaled(dbl expr)
gsl sf Shi e Y gsl sf Shi(dbl expr)
gsl sf Chi e Y gsl sf Chi(dbl expr)
gsl sf expint 3 e Y gsl sf expint 3(dbl expr)
gsl sf Si e Y gsl sf Si(dbl expr)
gsl sf Ci e Y gsl sf Ci(dbl expr)
gsl sf atanint e Y gsl sf atanint(dbl expr)
gsl sf fermi dirac m1 e Y gsl sf fermi dirac m1(dbl expr)
gsl sf fermi dirac 0 e Y gsl sf fermi dirac 0(dbl expr)
gsl sf fermi dirac 1 e Y gsl sf fermi dirac 1(dbl expr)
gsl sf fermi dirac 2 e Y gsl sf fermi dirac 2(dbl expr)
gsl sf fermi dirac int e Y gsl sf fermi dirac int(int expr,dbl expr)
gsl sf fermi dirac mhalf e Y gsl sf fermi dirac mhalf(dbl expr)
gsl sf fermi dirac half e Y gsl sf fermi dirac half(dbl expr)
gsl sf fermi dirac 3half e Y gsl sf fermi dirac 3half(dbl expr)
gsl sf fermi dirac inc 0 e Y gsl sf fermi dirac inc 0(dbl expr,dbl expr)
gsl sf lngamma e Y gsl sf lngamma(dbl expr)
gsl sf lngamma sgn e N gsl sf lngamma sgn
gsl sf gamma e Y gsl sf gamma(dbl expr)
gsl sf gammastar e Y gsl sf gammastar(dbl expr)
gsl sf gammainv e Y gsl sf gammainv(dbl expr)

Chapter 4: Reference Manual 199

gsl sf lngamma complex e N gsl sf lngamma complex
gsl sf taylorcoeff e Y gsl sf taylorcoeff(int expr,dbl expr)
gsl sf fact e Y gsl sf fact(uint expr)
gsl sf doublefact e Y gsl sf doublefact(uint expr)
gsl sf lnfact e Y gsl sf lnfact(uint expr)
gsl sf lndoublefact e Y gsl sf lndoublefact(uint expr)
gsl sf lnchoose e N gsl sf lnchoose
gsl sf choose e N gsl sf choose
gsl sf lnpoch e Y gsl sf lnpoch(dbl expr,dbl expr)
gsl sf lnpoch sgn e N gsl sf lnpoch sgn
gsl sf poch e Y gsl sf poch(dbl expr,dbl expr)
gsl sf pochrel e Y gsl sf pochrel(dbl expr,dbl expr)
gsl sf gamma inc Q e Y gsl sf gamma inc Q(dbl expr,dbl expr)
gsl sf gamma inc P e Y gsl sf gamma inc P(dbl expr,dbl expr)
gsl sf gamma inc e Y gsl sf gamma inc(dbl expr,dbl expr)
gsl sf lnbeta e Y gsl sf lnbeta(dbl expr,dbl expr)
gsl sf lnbeta sgn e N gsl sf lnbeta sgn
gsl sf beta e Y gsl sf beta(dbl expr,dbl expr)
gsl sf beta inc e N gsl sf beta inc
gsl sf gegenpoly 1 e Y gsl sf gegenpoly 1(dbl expr,dbl expr)
gsl sf gegenpoly 2 e Y gsl sf gegenpoly 2(dbl expr,dbl expr)
gsl sf gegenpoly 3 e Y gsl sf gegenpoly 3(dbl expr,dbl expr)
gsl sf gegenpoly n e N gsl sf gegenpoly n
gsl sf gegenpoly array Y gsl sf gegenpoly array
gsl sf hyperg 0F1 e Y gsl sf hyperg 0F1(dbl expr,dbl expr)
gsl sf hyperg 1F1 int e Y gsl sf hyperg 1F1 int(int expr,int expr,dbl expr)
gsl sf hyperg 1F1 e Y gsl sf hyperg 1F1(dbl expr,dbl expr,dbl expr)
gsl sf hyperg U int e Y gsl sf hyperg U int(int expr,int expr,dbl expr)
gsl sf hyperg U int e10 e N gsl sf hyperg U int e10
gsl sf hyperg U e Y gsl sf hyperg U(dbl expr,dbl expr,dbl expr)
gsl sf hyperg U e10 e N gsl sf hyperg U e10
gsl sf hyperg 2F1 e Y gsl sf hyperg 2F1(dbl expr,dbl expr,dbl expr,dbl expr)
gsl sf hyperg 2F1 conj e Y gsl sf hyperg 2F1 conj(dbl expr,dbl expr,dbl expr,dbl expr)
gsl sf hyperg 2F1 renorm e Y gsl sf hyperg 2F1 renorm(dbl expr,dbl expr,dbl expr,dbl expr)
gsl sf hyperg 2F1 conj renorm e Y gsl sf hyperg 2F1 conj renorm(dbl expr,dbl expr,dbl expr,dbl expr)
gsl sf hyperg 2F0 e Y gsl sf hyperg 2F0(dbl expr,dbl expr,dbl expr)
gsl sf laguerre 1 e Y gsl sf laguerre 1(dbl expr,dbl expr)
gsl sf laguerre 2 e Y gsl sf laguerre 2(dbl expr,dbl expr)
gsl sf laguerre 3 e Y gsl sf laguerre 3(dbl expr,dbl expr)
gsl sf laguerre n e Y gsl sf laguerre n(int expr,dbl expr,dbl expr)
gsl sf lambert W0 e Y gsl sf lambert W0(dbl expr)
gsl sf lambert Wm1 e Y gsl sf lambert Wm1(dbl expr)
gsl sf legendre Pl e Y gsl sf legendre Pl(int expr,dbl expr)
gsl sf legendre Pl array Y status=gsl sf legendre Pl array(int,double,&var out)
gsl sf legendre Pl deriv array N gsl sf legendre Pl deriv array
gsl sf legendre P1 e Y gsl sf legendre P1(dbl expr)
gsl sf legendre P2 e Y gsl sf legendre P2(dbl expr)

200 NCO 5.0.1 User Guide

gsl sf legendre P3 e Y gsl sf legendre P3(dbl expr)
gsl sf legendre Q0 e Y gsl sf legendre Q0(dbl expr)
gsl sf legendre Q1 e Y gsl sf legendre Q1(dbl expr)
gsl sf legendre Ql e Y gsl sf legendre Ql(int expr,dbl expr)
gsl sf legendre Plm e Y gsl sf legendre Plm(int expr,int expr,dbl expr)
gsl sf legendre Plm array Y status=gsl sf legendre Plm array(int,int,double,&var out)
gsl sf legendre Plm deriv array N gsl sf legendre Plm deriv array
gsl sf legendre sphPlm e Y gsl sf legendre sphPlm(int expr,int expr,dbl expr)
gsl sf legendre sphPlm array Y status=gsl sf legendre sphPlm array(int,int,double,&var out)
gsl sf legendre sphPlm deriv arrayN gsl sf legendre sphPlm deriv array
gsl sf legendre array size N gsl sf legendre array size
gsl sf conicalP half e Y gsl sf conicalP half(dbl expr,dbl expr)
gsl sf conicalP mhalf e Y gsl sf conicalP mhalf(dbl expr,dbl expr)
gsl sf conicalP 0 e Y gsl sf conicalP 0(dbl expr,dbl expr)
gsl sf conicalP 1 e Y gsl sf conicalP 1(dbl expr,dbl expr)
gsl sf conicalP sph reg e Y gsl sf conicalP sph reg(int expr,dbl expr,dbl expr)
gsl sf conicalP cyl reg e Y gsl sf conicalP cyl reg(int expr,dbl expr,dbl expr)
gsl sf legendre H3d 0 e Y gsl sf legendre H3d 0(dbl expr,dbl expr)
gsl sf legendre H3d 1 e Y gsl sf legendre H3d 1(dbl expr,dbl expr)
gsl sf legendre H3d e Y gsl sf legendre H3d(int expr,dbl expr,dbl expr)
gsl sf legendre H3d array N gsl sf legendre H3d array
gsl sf legendre array size N gsl sf legendre array size
gsl sf log e Y gsl sf log(dbl expr)
gsl sf log abs e Y gsl sf log abs(dbl expr)
gsl sf complex log e N gsl sf complex log
gsl sf log 1plusx e Y gsl sf log 1plusx(dbl expr)
gsl sf log 1plusx mx e Y gsl sf log 1plusx mx(dbl expr)
gsl sf mathieu a array N gsl sf mathieu a array
gsl sf mathieu b array N gsl sf mathieu b array
gsl sf mathieu a N gsl sf mathieu a
gsl sf mathieu b N gsl sf mathieu b
gsl sf mathieu a coeff N gsl sf mathieu a coeff
gsl sf mathieu b coeff N gsl sf mathieu b coeff
gsl sf mathieu ce N gsl sf mathieu ce
gsl sf mathieu se N gsl sf mathieu se
gsl sf mathieu ce array N gsl sf mathieu ce array
gsl sf mathieu se array N gsl sf mathieu se array
gsl sf mathieu Mc N gsl sf mathieu Mc
gsl sf mathieu Ms N gsl sf mathieu Ms
gsl sf mathieu Mc array N gsl sf mathieu Mc array
gsl sf mathieu Ms array N gsl sf mathieu Ms array
gsl sf pow int e N gsl sf pow int
gsl sf psi int e Y gsl sf psi int(int expr)
gsl sf psi e Y gsl sf psi(dbl expr)
gsl sf psi 1piy e Y gsl sf psi 1piy(dbl expr)
gsl sf complex psi e N gsl sf complex psi
gsl sf psi 1 int e Y gsl sf psi 1 int(int expr)

Chapter 4: Reference Manual 201

gsl sf psi 1 e Y gsl sf psi 1(dbl expr)
gsl sf psi n e Y gsl sf psi n(int expr,dbl expr)
gsl sf synchrotron 1 e Y gsl sf synchrotron 1(dbl expr)
gsl sf synchrotron 2 e Y gsl sf synchrotron 2(dbl expr)
gsl sf transport 2 e Y gsl sf transport 2(dbl expr)
gsl sf transport 3 e Y gsl sf transport 3(dbl expr)
gsl sf transport 4 e Y gsl sf transport 4(dbl expr)
gsl sf transport 5 e Y gsl sf transport 5(dbl expr)
gsl sf sin e N gsl sf sin
gsl sf cos e N gsl sf cos
gsl sf hypot e N gsl sf hypot
gsl sf complex sin e N gsl sf complex sin
gsl sf complex cos e N gsl sf complex cos
gsl sf complex logsin e N gsl sf complex logsin
gsl sf sinc e N gsl sf sinc
gsl sf lnsinh e N gsl sf lnsinh
gsl sf lncosh e N gsl sf lncosh
gsl sf polar to rect N gsl sf polar to rect
gsl sf rect to polar N gsl sf rect to polar
gsl sf sin err e N gsl sf sin err
gsl sf cos err e N gsl sf cos err
gsl sf angle restrict symm e N gsl sf angle restrict symm
gsl sf angle restrict pos e N gsl sf angle restrict pos
gsl sf angle restrict symm err e N gsl sf angle restrict symm err
gsl sf angle restrict pos err e N gsl sf angle restrict pos err
gsl sf zeta int e Y gsl sf zeta int(int expr)
gsl sf zeta e Y gsl sf zeta(dbl expr)
gsl sf zetam1 e Y gsl sf zetam1(dbl expr)
gsl sf zetam1 int e Y gsl sf zetam1 int(int expr)
gsl sf hzeta e Y gsl sf hzeta(dbl expr,dbl expr)
gsl sf eta int e Y gsl sf eta int(int expr)
gsl sf eta e Y gsl sf eta(dbl expr)

4.1.23 GSL interpolation

As of version 3.9.9 (released July, 2009), NCO has wrappers to the GSL interpolation func-
tions.

Given a set of data points (x1,y1)...(xn, yn) the GSL functions computes a continuous
interpolating function Y(x) such that Y(xi) = yi. The interpolation is piecewise smooth, and
its behavior at the end-points is determined by the type of interpolation used. For more
information consult the GSL manual.

Interpolation with ncap2 is a two stage process. In the first stage, a RAM variable is created
from the chosen interpolating function and the data set. This RAM variable holds in memory
a GSL interpolation object. In the second stage, points along the interpolating function are
calculated. If you have a very large data set or are interpolating many sets then consider
deleting the RAM variable when it is redundant. Use the command ram_delete(var_nm).

202 NCO 5.0.1 User Guide

A simple example

x_in[$lon]={1.0,2.0,3.0,4.0};

y_in[$lon]={1.1,1.2,1.5,1.8};

// Ram variable is declared and defined here

gsl_interp_cspline(&ram_sp,x_in,y_in);

x_out[$lon_grd]={1.1,2.0,3.0,3.1,3.99};

y_out=gsl_spline_eval(ram_sp,x_out);

y2=gsl_spline_eval(ram_sp,1.3);

y3=gsl_spline_eval(ram_sp,0.0);

ram_delete(ram_sp);

print(y_out); // 1.10472, 1.2, 1.4, 1.42658, 1.69680002

print(y2); // 1.12454

print(y3); // ’_’

Note in the above example y3 is set to ’missing value’ because 0.0 isn’t within the input X
range.

GSL Interpolation Types
All the interpolation functions have been implemented. These are:
gsl interp linear()
gsl interp polynomial()
gsl interp cspline()
gsl interp cspline periodic()
gsl interp akima()
gsl interp akima periodic()

Evaluation of Interpolating Types
Implemented
gsl spline eval()
Unimplemented
gsl spline deriv()
gsl spline deriv2()
gsl spline integ()

4.1.24 GSL least-squares fitting

Least Squares fitting is a method of calculating a straight line through a set of experimental
data points in the XY plane. Data may be weighted or unweighted. For more information
please refer to the GSL manual.

Chapter 4: Reference Manual 203

These GSL functions fall into three categories:
A) Fitting data to Y=c0+c1*X
B) Fitting data (through the origin) Y=c1*X
C) Multi-parameter fitting (not yet implemented)

Section A
status=gsl fit linear
(data_x,stride_x,data_y,stride_y,n,&co,&c1,&cov00,&cov01,&cov11,&sumsq)

Input variables: data x, stride x, data y, stride y, n
From the above variables an X and Y vector both of length ’n’ are derived. If data x or
data y is less than type double then it is converted to type double. It is up to you to do
bounds checking on the input data. For example if stride x=3 and n=8 then the size of
data x must be at least 24

Output variables: c0, c1, cov00, cov01, cov11,sumsq
The ’&’ prefix indicates that these are call-by-reference variables. If any of the output
variables don’t exist prior to the call then they are created on the fly as scalar variables of
type double. If they already exist then their existing value is overwritten. If the function
call is successful then status=0.

status= gsl fit wlinear(data_x,stride_x,data_w,stride_w,data_y,stride_
y,n,&co,&c1,&cov00,&cov01,&cov11,&chisq)

Similar to the above call except it creates an additional weighting vector from the variables
data w, stride w, n

data_y_out=gsl fit linear est(data_x,c0,c1,cov00,cov01,cov11)

This function calculates y values along the line Y=c0+c1*X

Section B
status=gsl fit mul(data_x,stride_x,data_y,stride_y,n,&c1,&cov11,&sumsq)

Input variables: data x, stride x, data y, stride y, n
From the above variables an X and Y vector both of length ’n’ are derived. If data x or
data y is less than type double then it is converted to type double.

Output variables: c1,cov11,sumsq

status= gsl fit wmul(data_x,stride_x,data_w,stride_w,data_y,stride_
y,n,&c1,&cov11,&sumsq)

Similar to the above call except it creates an additional weighting vector from the variables
data w, stride w, n

data_y_out=gsl fit mul est(data_x,c0,c1,cov11)

204 NCO 5.0.1 User Guide

This function calculates y values along the line Y=c1*X

The below example shows gsl fit linear() in action

defdim("d1",10);

xin[d1]={1,2,3,4,5,6,7,8,9,10.0};

yin[d1]={3.1,6.2,9.1,12.2,15.1,18.2,21.3,24.0,27.0,30.0};

gsl_fit_linear(xin,1,yin,1,$d1.size,&c0,&c1,&cov00,&cov01,&cov11,&sumsq);

print(c0); // 0.2

print(c1); // 2.98545454545

defdim("e1",4);

xout[e1]={1.0,3.0,4.0,11};

yout[e1]=0.0;

yout=gsl_fit_linear_est(xout,c0,c1,cov00,cov01,cov11,sumsq);

print(yout); // 3.18545454545, 9.15636363636, 12.1418181818, 33.04

The following code does linear regression of sst(time,lat,lon) for each time-step

// Declare variables

c0[$lat, $lon]=0.; // Intercept

c1[$lat, $lon]=0.; // Slope

sdv[$lat, $lon]=0.; // Standard deviation

covxy[$lat, $lon]=0.; // Covariance

for (i=0;i<$lat.size;i++) // Loop over lat

{

for (j=0;j<$lon.size;j++) // Loop over lon

{

// Linear regression function

gsl_fit_linear(time,1,sst(:, i, j),1,$time.size,&tc0,&tc1,&cov00,&cov01,&cov11,&sumsq);

c0(i,j)=tc0; // Output results

c1(i,j)=tc1; // Output results

// Covariance function

covxy(i,j)=gsl_stats_covariance(time,1,$time.size,double(sst(:,i,j)),1,$time.size);

// Standard deviation function

sdv(i,j)=gsl_stats_sd(sst(:,i,j),1,$time.size);

}

}

// slope (c1) missing values are set to ’0’, change to -999. (variable c0 intercept value)

where(c0 == -999) c1=-999;

4.1.25 GSL statistics

Wrappers for most of the GSL Statistical functions have been implemented. The GSL

function names include a type specifier (except for type double functions). To obtain the
equivalent NCO name simply remove the type specifier; then depending on the data type

Chapter 4: Reference Manual 205

the appropriate GSL function is called. The weighed statistical functions e.g., gsl_stats_

wvariance() are only defined in GSL for floating-point types; so your data must of type
float or double otherwise ncap2 will emit an error message. To view the implemented
functions use the shell command ncap2 -f|grep _stats

GSL Functions

short gsl_stats_max (short data[], size_t stride, size_t n);

double gsl_stats_int_mean (int data[], size_t stride, size_t n);

double gsl_stats_short_sd_with_fixed_mean (short data[], size_t stride, size_t n, double mean);

double gsl_stats_wmean (double w[], size_t wstride, double data[], size_t stride, size_t n);

double gsl_stats_quantile_from_sorted_data (double sorted_data[], size_t stride, size_t n, double f) ;

Equivalent ncap2 wrapper functions

short gsl_stats_max (var_data, data_stride, n);

double gsl_stats_mean (var_data, data_stride, n);

double gsl_stats_sd_with_fixed_mean (var_data, data_stride, n, var_mean);

double gsl_stats_wmean (var_weight, weight_stride, var_data, data_stride, n, var_mean);

double gsl_stats_quantile_from_sorted_data (var_sorted_data, data_stride, n, var_f) ;

GSL has no notion of missing values or dimensionality beyond one. If your data has missing
values which you want ignored in the calculations then use the ncap2 built in aggregate
functions(Section 4.1.12 [Methods and functions], page 173). The GSL functions operate on
a vector of values created from the var data/stride/n arguments. The ncap wrappers check
that there is no bounding error with regard to the size of the data and the final value in
the vector.

a1[time]={1,2,3,4,5,6,7,8,9,10};

a1_avg=gsl_stats_mean(a1,1,10);

print(a1_avg); // 5.5

a1_var=gsl_stats_variance(a1,4,3);

print(a1_var); // 16.0

// bounding error, vector attempts to access element a1(10)

a1_sd=gsl_stats_sd(a1,5,3);

For functions with the signature func nm(var data,data stride,n), one may omit the sec-
ond or third arguments. The default value for stride is 1. The default value for n is
1+(data.size()-1)/stride.

// Following statements are equvalent

n2=gsl_stats_max(a1,1,10)

n2=gsl_stats_max(a1,1);

n2=gsl_stats_max(a1);

// Following statements are equvalent

n3=gsl_stats_median_from_sorted_data(a1,2,5);

n3=gsl_stats_median_from_sorted_data(a1,2);

206 NCO 5.0.1 User Guide

// Following statements are NOT equvalent

n4=gsl_stats_kurtosis(a1,3,2);

n4=gsl_stats_kurtosis(a1,3); //default n=4

The following example illustrates some of the weighted functions. The data are randomly
generated. In this case the value of the weight for each datum is either 0.0 or 1.0

defdim("r1",2000);

data[r1]=1.0;

// Fill with random numbers [0.0,10.0)

data=10.0*gsl_rng_uniform(data);

// Create a weighting variable

weight=(data>4.0);

wmean=gsl_stats_wmean(weight,1,data,1,$r1.size);

print(wmean);

wsd=gsl_stats_wsd(weight,1,data,1,$r1.size);

print(wsd);

// number of values in data that are greater than 4

weight_size=weight.total();

print(weight_size);

// print min/max of data

dmin=data.gsl_stats_min();

dmax=data.gsl_stats_max();

print(dmin);print(dmax);

4.1.26 GSL random number generation

The GSL library has a large number of random number generators. In addition there
are a large set of functions for turning uniform random numbers into discrete or continuous
probabilty distributions. The random number generator algorithms vary in terms of quality
numbers output, speed of execution and maximum number output. For more information
see the GSL documentation. The algorithm and seed are set via environment variables,
these are picked up by the ncap2 code.

Setup
The number algorithm is set by the environment variable GSL_RNG_TYPE. If this variable
isn’t set then the default rng algorithm is gsl rng 19937. The seed is set with the environ-
ment variable GSL_RNG_SEED. The following wrapper functions in ncap2 provide information
about the chosen algorithm.

gsl_rng_min()

the minimum value returned by the rng algorithm.

Chapter 4: Reference Manual 207

gsl_rng_max()

the maximum value returned by the rng algorithm.

Uniformly Distributed Random Numbers

gsl_rng_get(var_in)

This function returns var in with integers from the chosen rng algorithm. The
min and max values depend uoon the chosen rng algorthm.

gsl_rng_uniform_int(var_in)

This function returns var in with random integers from 0 to n-1. The value n
must be less than or equal to the maximum value of the chosen rng algorithm.

gsl_rng_uniform(var_in)

This function returns var in with double-precision numbers in the range [0.0,1).
The range includes 0.0 and excludes 1.0.

gsl_rng_uniform_pos(var_in)

This function returns var in with double-precision numbers in the range (0.0,1),
excluding both 0.0 and 1.0.

Below are examples of gsl_rng_get() and gsl_rng_uniform_int() in action.

export GSL_RNG_TYPE=ranlux

export GSL_RNG_SEED=10

ncap2 -v -O -s ’a1[time]=0;a2=gsl_rng_get(a1);’ in.nc foo.nc

// 10 random numbers from the range 0 - 16777215

// a2=9056646, 12776696, 1011656, 13354708, 5139066, 1388751, 11163902, 7730127, 15531355, 10387694 ;

ncap2 -v -O -s ’a1[time]=21;a2=gsl_rng_uniform_int(a1).sort();’ in.nc foo.nc

// 10 random numbers from the range 0 - 20

a2 = 1, 1, 6, 9, 11, 13, 13, 15, 16, 19 ;

The following example produces an ncap2 runtime error. This is because the chose rng algo-
rithm has a maximum value greater than NC_MAX_INT=2147483647; the wrapper functions
to gsl_rng_get() and gsl_rng_uniform_int() return variable of type NC_INT. Please
be aware of this when using random number distribution functions functions from the GSL

library which return unsigned int. Examples of these are gsl_ran_geometric() and gsl_

ran_pascal().

export GSL_RNG_TYPE=mt19937

ncap2 -v -O -s ’a1[time]=0;a2=gsl_rng_get(a1);’ in.nc foo.nc

To find the maximum value of the chosen rng algorithm use the following code snippet.

ncap2 -v -O -s ’rng_max=gsl_rng_max();print(rng_max)’ in.nc foo.nc

Random Number Distributions
The GSL library has a rich set of random number disribution functions. The library also
provides cumulative distribution functions and inverse cumulative distribution functions
sometimes referred to a quantile functions. To see whats available on your build use the
shell command ncap2 -f|grep -e _ran -e _cdf.

208 NCO 5.0.1 User Guide

The following examples all return variables of type NC_INT

defdim("out",15);

a1[$out]=0.5;

a2=gsl_ran_binomial(a1,30).sort();

//a2 = 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 22 ;

a3=gsl_ran_geometric(a2).sort();

//a2 = 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5 ;

a4=gsl_ran_pascal(a2,50);

//a5 = 37, 40, 40, 42, 43, 45, 46, 49, 52, 58, 60, 62, 62, 65, 67 ;

The following all return variables of type NC_DOUBLE;

defdim("b1",1000);

b1[$b1]=0.8;

b2=gsl_ran_exponential(b1);

b2_avg=b2.avg();

print(b2_avg);

// b2_avg = 0.756047976787

b3=gsl_ran_gaussian(b1);

b3_avg=b3.avg();

b3_rms=b3.rms();

print(b3_avg);

// b3_avg = -0.00903446534258;

print(b3_rms);

// b3_rms = 0.81162979889;

b4[$b1]=10.0;

b5[$b1]=20.0;

b6=gsl_ran_flat(b4,b5);

b6_avg=b6.avg();

print(b6_avg);

// b6_avg=15.0588129413

4.1.27 Examples ncap2

See the ncap.in and ncap2.in scripts released with NCO for more complete demonstrations
of ncap2 functionality (script available on-line at http://nco.sf.net/ncap2.in).

Define new attribute new for existing variable one as twice the existing attribute dou-
ble att of variable att var:

ncap2 -s ’one@new=2*att_var@double_att’ in.nc out.nc

Average variables of mixed types (result is of type double):

ncap2 -s ’average=(var_float+var_double+var_int)/3’ in.nc out.nc

Multiple commands may be given to ncap2 in three ways. First, the commands may
be placed in a script which is executed, e.g., tst.nco. Second, the commands may be

http://nco.sf.net/ncap2.in

Chapter 4: Reference Manual 209

individually specified with multiple ‘-s’ arguments to the same ncap2 invocation. Third,
the commands may be chained into a single ‘-s’ argument to ncap2. Assuming the file
tst.nco contains the commands a=3;b=4;c=sqrt(a^2+b^2);, then the following ncap2

invocations produce identical results:

ncap2 -v -S tst.nco in.nc out.nc

ncap2 -v -s ’a=3’ -s ’b=4’ -s ’c=sqrt(a^2+b^2)’ in.nc out.nc

ncap2 -v -s ’a=3;b=4;c=sqrt(a^2+b^2)’ in.nc out.nc

The second and third examples show that ncap2 does not require that a trailing semi-
colon ‘;’ be placed at the end of a ‘-s’ argument, although a trailing semi-colon ‘;’ is always
allowed. However, semi-colons are required to separate individual assignment statements
chained together as a single ‘-s’ argument.

ncap2 may be used to “grow” dimensions, i.e., to increase dimension sizes without al-
tering existing data. Say in.nc has ORO(lat,lon) and the user wishes a new file with
new_ORO(new_lat,new_lon) that contains zeros in the undefined portions of the new grid.

defdim("new_lat",$lat.size+1); // Define new dimension sizes

defdim("new_lon",$lon.size+1);

new_ORO[$new_lat,$new_lon]=0.0f; // Initialize to zero

new_ORO(0:$lat.size-1,0:$lon.size-1)=ORO; // Fill valid data

The commands to define new coordinate variables new_lat and new_lon in the output
file follow a similar pattern. One would might store these commands in a script grow.nco
and then execute the script with

ncap2 -v -S grow.nco in.nc out.nc

Imagine you wish to create a binary flag based on the value of an array. The flag should
have value 1.0 where the array exceeds 1.0, and value 0.0 elsewhere. This example creates
the binary flag ORO_flg in out.nc from the continuous array named ORO in in.nc.

ncap2 -s ’ORO_flg=(ORO > 1.0)’ in.nc out.nc

Suppose your task is to change all values of ORO which equal 2.0 to the new value 3.0:

ncap2 -s ’ORO_msk=(ORO==2.0);ORO=ORO_msk*3.0+!ORO_msk*ORO’ in.nc out.nc

This creates and uses ORO_msk to mask the subsequent arithmetic operation. Values of
ORO are only changed where ORO_msk is true, i.e., where ORO equals 2.0
Using the where statement the above code simplifies to :

ncap2 -s ’where(ORO == 2.0) ORO=3.0;’ in.nc foo.nc

This example uses ncap2 to compute the covariance of two variables. Let the variables
u and v be the horizontal wind components. The covariance of u and v is defined as
the time mean product of the deviations of u and v from their respective time means.
Symbolically, the covariance [u′v′] = [uv] − [u][v] where [x] denotes the time-average of x,
[x] ≡ 1

τ

∫ t=τ
t=0 x(t) dt and x

′ denotes the deviation from the time-mean. The covariance tells
us how much of the correlation of two signals arises from the signal fluctuations versus the
mean signals. Sometimes this is called the eddy covariance. We will store the covariance in
the variable uprmvprm.

210 NCO 5.0.1 User Guide

ncwa -O -a time -v u,v in.nc foo.nc # Compute time mean of u,v

ncrename -O -v u,uavg -v v,vavg foo.nc # Rename to avoid conflict

ncks -A -v uavg,vavg foo.nc in.nc # Place time means with originals

ncap2 -O -s ’uprmvprm=u*v-uavg*vavg’ in.nc in.nc # Covariance

ncra -O -v uprmvprm in.nc foo.nc # Time-mean covariance

The mathematically inclined will note that the same covariance would be obtained by
replacing the step involving ncap2 with

ncap2 -O -s ’uprmvprm=(u-uavg)*(v-vavg)’ foo.nc foo.nc # Covariance

As of NCO version 3.1.8 (December, 2006), ncap2 can compute averages, and thus co-
variances, by itself:

ncap2 -s ’uavg=u.avg($time);vavg=v.avg($time);uprmvprm=u*v-uavg*vavg’ \

-s ’uprmvrpmavg=uprmvprm.avg($time)’ in.nc foo.nc

We have not seen a simpler method to script and execute powerful arithmetic than
ncap2.

ncap2 utilizes many meta-characters (e.g., ‘$’, ‘?’, ‘;’, ‘()’, ‘[]’) that can confuse the
command-line shell if not quoted properly. The issues are the same as those which arise
in utilizing extended regular expressions to subset variables (see Section 3.12 [Subsetting
Files], page 48). The example above will fail with no quotes and with double quotes. This
is because shell globbing tries to interpolate the value of $time from the shell environment
unless it is quoted:

ncap2 -s ’uavg=u.avg($time)’ in.nc foo.nc # Correct (recommended)

ncap2 -s uavg=u.avg(’$time’) in.nc foo.nc # Correct (and dangerous)

ncap2 -s uavg=u.avg($time) in.nc foo.nc # Wrong ($time = ’’)

ncap2 -s "uavg=u.avg($time)" in.nc foo.nc # Wrong ($time = ’’)

Without the single quotes, the shell replaces $time with an empty string. The command
ncap2 receives from the shell is uavg=u.avg(). This causes ncap2 to average over all
dimensions rather than just the time dimension, and unintended consequence.

We recommend using single quotes to protect ncap2 command-line scripts from the
shell, even when such protection is not strictly necessary. Expert users may violate this rule
to exploit the ability to use shell variables in ncap2 command-line scripts (see Chapter 9
[CCSM Example], page 385). In such cases it may be necessary to use the shell backslash
character ‘\’ to protect the ncap2 meta-character.

A dimension of size one is said to be degenerate. Whether a degenerate record dimension
is desirable or not depends on the application. Often a degenerate time dimension is useful,
e.g., for concatentating, but it may cause problems with arithmetic. Such is the case in the
above example, where the first step employs ncwa rather than ncra for the time-averaging.
Of course the numerical results are the same with both operators. The difference is that,
unless ‘-b’ is specified, ncwa writes no time dimension to the output file, while ncra defaults
to keeping time as a degenerate (size 1) dimension. Appending u and v to the output file
would cause ncks to try to expand the degenerate time axis of uavg and vavg to the size of
the non-degenerate time dimension in the input file. Thus the append (ncks -A) command
would be undefined (and should fail) in this case. Equally important is the ‘-C’ argument

Chapter 4: Reference Manual 211

(see Section 3.13 [Subsetting Coordinate Variables], page 52) to ncwa to prevent any scalar
time variable from being written to the output file. Knowing when to use ncwa -a time

rather than the default ncra for time-averaging takes, well, time.

4.1.28 Intrinsic mathematical methods

ncap2 supports the standard mathematical functions supplied with most operating systems.
Standard calculator notation is used for addition +, subtraction -, multiplication *, division
/, exponentiation ^, and modulus %. The available elementary mathematical functions are:

abs(x) Absolute value Absolute value of x, |x|. Example: abs(−1) = 1

acos(x) Arc-cosine Arc-cosine of x where x is specified in radians. Example: acos(1.0) =
0.0

acosh(x) Hyperbolic arc-cosine Hyperbolic arc-cosine of x where x is specified in radians.
Example: acosh(1.0) = 0.0

asin(x) Arc-sine Arc-sine of x where x is specified in radians. Example: asin(1.0) =
1.57079632679489661922

asinh(x) Hyperbolic arc-sine Hyperbolic arc-sine of x where x is specified in radians.
Example: asinh(1.0) = 0.88137358702

atan(x) Arc-tangent Arc-tangent of x where x is specified in radians between −π/2 and
π/2. Example: atan(1.0) = 0.78539816339744830961

atan2(y,x)

Arc-tangent2 Arc-tangent of y/x

atanh(x) Hyperbolic arc-tangent Hyperbolic arc-tangent of x where x is specified in radi-
ans between −π/2 and π/2. Example: atanh(3.14159265358979323844) = 1.0

ceil(x) Ceil Ceiling of x. Smallest integral value not less than argument. Example:
ceil(0.1) = 1.0

cos(x) Cosine Cosine of x where x is specified in radians. Example: cos(0.0) = 1.0

cosh(x) Hyperbolic cosine Hyperbolic cosine of x where x is specified in radians. Ex-
ample: cosh(0.0) = 1.0

erf(x) Error function Error function of x where x is specified between −1 and 1.
Example: erf(1.0) = 0.842701

erfc(x) Complementary error function Complementary error function of x where x is
specified between −1 and 1. Example: erfc(1.0) = 0.15729920705

exp(x) Exponential Exponential of x, ex. Example:
exp(1.0) = 2.71828182845904523536

floor(x) Floor Floor of x. Largest integral value not greater than argument. Example:
floor(1.9) = 1

gamma(x) Gamma function Gamma function of x, Γ(x). The well-known and loved con-
tinuous factorial function. Example: gamma(0.5) =

√
π

212 NCO 5.0.1 User Guide

gamma_inc_P(x)

Incomplete Gamma function Incomplete Gamma function of parameter a and
variable x, P (a, x). One of the four incomplete gamma functions. Example:
gamma inc P(1, 1) = 1− e−1

ln(x) Natural Logarithm Natural logarithm of x, ln(x). Example:
ln(2.71828182845904523536) = 1.0

log(x) Natural Logarithm Exact synonym for ln(x).

log10(x) Base 10 Logarithm Base 10 logarithm of x, log10(x). Example: log(10.0) = 1.0

nearbyint(x)

Round inexactly Nearest integer to x is returned in floating-point format. No
exceptions are raised for inexact conversions. Example: nearbyint(0.1) = 0.0

pow(x,y) Power Value of x is raised to the power of y. Exceptions are raised for do-
main errors. Due to type-limitations in the C language pow function, integer
arguments are promoted (see Section 3.40 [Type Conversion], page 133) to type
NC_FLOAT before evaluation. Example: pow(2, 3) = 8

rint(x) Round exactly Nearest integer to x is returned in floating-point format. Ex-
ceptions are raised for inexact conversions. Example: rint(0.1) = 0.0

round(x) Round Nearest integer to x is returned in floating-point format. Round halfway
cases away from zero, regardless of current IEEE rounding direction. Example:
round(0.5) = 1.0

sin(x) Sine Sine of x where x is specified in radians. Example:
sin(1.57079632679489661922) = 1.0

sinh(x) Hyperbolic sine Hyperbolic sine of x where x is specified in radians. Example:
sinh(1.0) = 1.1752

sqrt(x) Square Root Square Root of x,
√
x. Example: sqrt(4.0) = 2.0

tan(x) Tangent Tangent of x where x is specified in radians. Example:
tan(0.78539816339744830961) = 1.0

tanh(x) Hyperbolic tangent Hyperbolic tangent of x where x is specified in radians.
Example: tanh(1.0) = 0.761594155956

trunc(x) Truncate Nearest integer to x is returned in floating-point format. Round half-
way cases toward zero, regardless of current IEEE rounding direction. Example:
trunc(0.5) = 0.0

The complete list of mathematical functions supported is platform-specific. Functions man-
dated by ANSI C are guaranteed to be present and are indicated with an asterisk 2. and

2 ANSI C compilers are guaranteed to support double-precision versions of these functions. These func-
tions normally operate on netCDF variables of type NC_DOUBLE without having to perform intrinsic
conversions. For example, ANSI compilers provide sin for the sine of C-type double variables. The
ANSI standard does not require, but many compilers provide, an extended set of mathematical functions
that apply to single (float) and quadruple (long double) precision variables. Using these functions
(e.g., sinf for float, sinl for long double), when available, is (presumably) more efficient than casting
variables to type double, performing the operation, and then re-casting. NCO uses the faster intrinsic
functions when they are available, and uses the casting method when they are not.

Chapter 4: Reference Manual 213

are indicated with an asterisk. Use the ‘-f’ (or ‘fnc_tbl’ or ‘prn_fnc_tbl’) switch to print
a complete list of functions supported on your platform. 3

4.1.29 Operator precedence and associativity

This page lists the ncap2 operators in order of precedence (highest to lowest). Their asso-
ciativity indicates in what order operators of equal precedence in an expression are applied.

Operator Description Associativity
++ -- Postfix Increment/Decrement Right to Left
() Parentheses (function call)
. Method call
++ -- Prefix Increment/Decrement Right to Left
+ - Unary Plus/Minus
! Logical Not
^ Power of Operator Right to Left
* / % Multiply/Divide/Modulus Left To Right
+ - Addition/Subtraction Left To Right
>> << Fortran style array clipping Left to Right
< <= Less than/Less than or equal to Left to Right
> >= Greater than/Greater than or equal to
== != Equal to/Not equal to Left to Right
&& Logical AND Left to Right
|| Logical OR Left to Right
?: Ternary Operator Right to Left
= Assignment Right to Left
+= -= Addition/subtraction assignment
*= /= Multiplication/division assignment

4.1.30 ID Quoting

In this section a name refers to a variable, attribute, or dimension name. The allowed
characters in a valid netCDF name vary from release to release. (See end section). To use
metacharacters in a name, or to use a method name as a variable name, the name must be
quoted wherever it occurs.

The default NCO name is specified by the regular expressions:

DGT: (’0’..’9’);

LPH: (’a’..’z’ | ’A’..’Z’ | ’_’);

name: (LPH)(LPH|DGT)+

The first character of a valid name must be alphabetic or the underscore. Subsequent
characters must be alphanumeric or underscore, e.g., a1, 23, hell is 666.

The valid characters in a quoted name are specified by the regular expressions:

LPHDGT: (’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’);

name: (LPHDGT|’-’|’+’|’.’|’(’|’)’|’:’)+ ;

3 Linux supports more of these intrinsic functions than other OSs.

214 NCO 5.0.1 User Guide

Quote a variable:
’avg’ , ’10 +10’,’set miss’ ’+-90field’ , ’–test’=10.0d

Quote a attribute:
’three@10’, ’set mss@+10’, ’666@hell’, ’t1@+units’="kelvin"

Quote a dimension:
’$10’, ’$t1–’, ’$–odd’, c1[’$10’,’$t1–’]=23.0d

The following comments are from the netCDF library definitions and detail the naming
conventions for each release. netcdf-3.5.1
netcdf-3.6.0-p1
netcdf-3.6.1
netcdf-3.6.2

/*

* ([a-zA-Z]|[0-9]|’_’|’-’|’+’|’.’|’|’:’|’@’|’(’|’)’)+

* Verify that name string is valid CDL syntax, i.e., all characters are

* alphanumeric, ’-’, ’_’, ’+’, or ’.’.

* Also permit ’:’, ’@’, ’(’, or ’)’ in names for chemists currently making

* use of these characters, but don’t document until ncgen and ncdump can

* also handle these characters in names.

*/

netcdf-3.6.3
netcdf-4.0 Final 2008/08/28

/*

* Verify that a name string is valid syntax. The allowed name

* syntax (in RE form) is:

*

* ([a-zA-Z_]|{UTF8})([^\x00-\x1F\x7F/]|{UTF8})*

*

* where UTF8 represents a multibyte UTF-8 encoding. Also, no

* trailing spaces are permitted in names. This definition

* must be consistent with the one in ncgen.l. We do not allow ’/’

* because HDF5 does not permit slashes in names as slash is used as a

* group separator. If UTF-8 is supported, then a multi-byte UTF-8

* character can occur anywhere within an identifier. We later

* normalize UTF-8 strings to NFC to facilitate matching and queries.

*/

4.1.31 make bounds() function

The ncap2 custom function ’make bounds()’ takes any monotonic 1D coordinate variable
with regular or irregular (e.g., Gaussian) spacing and creates a bounds variable.

Chapter 4: Reference Manual 215

<bounds var out>=make bounds(<coordinate var in>, <dim in>, <string>)

1st Argument
The name of the input coordinate variable.

2nd Argument
The second dimension of the output variable, referenced as a dimension (i.e.,
the name preceded by a dollarsign) not as a string name. The size of this
dimension should always be 2. If the dimension does not yet exist create it first
using defdim().

3rd Argument
This optional string argument will be placed in the "bounds" attribute that
will be created in the input coordinate variable. Normally this is the name of
the bounds variable:

Typical usage:

defdim("nv",2);

longitude_bounds=make_bounds(longitude,$nv,"longitude_bounds");

Another common CF convention:

defdim("nv",2);

climatology_bounds=make_bounds(time,$nv,"climatology_bounds");

4.1.32 solar zenith angle function

<zenith out>=solar zenith angle(<time in>, <latitude in>)

This function takes two arguments, mean local solar time and latitude. Calculation and
output is done with type NC_DOUBLE. The calendar attribute for <time in> in is NOT read
and is assumed to be Gregorian (this is the calendar that UDUnits uses). As part of the
calculation <time in> is converted to days since start of year. For some input units e.g.,
seconds, this function may produce gobbledygook. The output <zenith out> is in degrees.
For more details of the algorithm used please examine the function solar_geometry() in
fmc_all_cls.cc. Note that this routine does not account for the equation of time, and so
can be in error by the angular equivalent of up to about fifteen minutes time depending on
the day of year.

my_time[time]={10.50, 11.0, 11.50, 12.0, 12.5, 13.0, 13.5, 14.0, 14.50, 15.00};

my_time@units="hours since 2017-06-21";

// Assume we are at Equator

latitude=0.0;

// 32.05428, 27.61159, 24.55934, 23.45467, 24.55947, 27.61184, 32.05458, 37.39353, 43.29914, 49.55782 ;

zenith=solar_zenith_angle(my_time,latitude);

216 NCO 5.0.1 User Guide

4.2 ncatted netCDF Attribute Editor

SYNTAX

ncatted [-a att_dsc] [-a ...] [-D dbg]

[-h] [--hdr_pad nbr] [--hpss]

[-l path] [-O] [-o output-file] [-p path]

[-R] [-r] [--ram_all] [-t] input-file [[output-file]]

DESCRIPTION

ncatted edits attributes in a netCDF file. If you are editing attributes then you are
spending too much time in the world of metadata, and ncatted was written to get you
back out as quickly and painlessly as possible. ncatted can append, create, delete, modify,
and overwrite attributes (all explained below). ncatted allows each editing operation to
be applied to every variable in a file. This saves time when changing attribute conventions
throughout a file. ncatted is for writing attributes. To read attribute values in plain text,
use ncks -m -M, or define something like ncattget as a shell command (see Section 4.8.2
[Filters for ncks], page 281).

Because repeated use of ncatted can considerably increase the size of the history

global attribute (see Section 3.43 [History Attribute], page 143), the ‘-h’ switch is provided
to override automatically appending the command to the history global attribute in the
output-file.

According to the netCDF User Guide, altering metadata in netCDF files does not incur
the penalty of recopying the entire file when the new metadata occupies less space than the
old metadata. Thus ncatted may run much faster (at least on netCDF3 files) if judicious
use of header padding (see Section 3.2 [Metadata Optimization], page 29) was made when
producing the input-file. Similarly, using the ‘--hdr_pad’ option with ncatted helps ensure
that future metadata changes to output-file occur as swiftly as possible.

When ncatted is used to change the _FillValue attribute, it changes the associated
missing data self-consistently. If the internal floating-point representation of a missing value,
e.g., 1.0e36, differs between two machines then netCDF files produced on those machines
will have incompatible missing values. This allows ncatted to change the missing values in
files from different machines to a single value so that the files may then be concatenated,
e.g., by ncrcat, without losing information. See Section 3.30 [Missing Values], page 103,
for more information.

To master ncatted one must understand the meaning of the structure that describes
the attribute modification, att dsc specified by the required option ‘-a’ or ‘--attribute’.
This option is repeatable and may be used multiple time in a single ncatted invocation to
increase the efficiency of altering multiple attributes. Each att dsc contains five elements.
This makes using ncatted somewhat complicated, though powerful. The att dsc fields are
in the following order:

att dsc = att nm, var nm, mode, att type, att val

Chapter 4: Reference Manual 217

att nm Attribute name. Example: units As of NCO 4.5.1 (July, 2015), ncatted ac-
cepts regular expressions (see Section 3.12 [Subsetting Files], page 48) for at-
tribute names (it has “always” accepted regular expressions for variable names).
Regular expressions will select all matching attribute names.

var nm Variable name. Example: pressure, ’^H2O’. Regular expressions (see
Section 3.12 [Subsetting Files], page 48) are accepted and will select all match-
ing variable (and/or group) names. The names global and group have special
meaning.

mode Edit mode abbreviation. Example: a. See below for complete listing of valid
values of mode.

att type Attribute type abbreviation. Example: c. See below for complete listing of
valid values of att type.

att val Attribute value. Example: pascal.

There should be no empty space between these five consecutive arguments. The description
of these arguments follows in their order of appearance.

The value of att nm is the name of the attribute to edit. The meaning of this should
be clear to all ncatted users. Both att nm and var nm may be specified as regular expres-
sions. If att nm is omitted (i.e., left blank) and Delete mode is selected, then all attributes
associated with the specified variable will be deleted.

The value of var nm is the name of the variable containing the attribute (named att nm)
that you want to edit. There are three very important and useful exceptions to this rule.
The value of var nm can also be used to direct ncatted to edit global attributes, or to
repeat the editing operation for every group or variable in a file. A value of var nm of
global indicates that att nm refers to a global (i.e., root-level) attribute, rather than to
a particular variable’s attribute. This is the method ncatted supports for editing global
attributes. A value of var nm of group indicates that att nm refers to all groups, rather
than to a particular variable’s or group’s attribute. The operation will proceed to edit
group metadata for every group. Finally, if var nm is left blank, then ncatted attempts to
perform the editing operation on every variable in the file. This option may be convenient
to use if you decide to change the conventions you use for describing the data. As of
NCO 4.6.0 (May, 2016), ncatted accepts the ‘-t’ (or long-option equivalent ‘--typ_mch’
or ‘--type_match’) option. This causes ncatted to perform the editing operation only on
variables that are the same type as the specified attribute.

The value of mode is a single character abbreviation (a, c, d, m, n, or o) standing for
one of five editing modes:

a Append. Append value att val to current var nm attribute att nm value
att val, if any. If var nm does not already have an existing attribute att nm,
it is created with the value att val.

c Create. Create variable var nm attribute att nm with att val if att nm does
not yet exist. If var nm already has an attribute att nm, there is no effect, so
the existing attribute is preserved without change.

218 NCO 5.0.1 User Guide

d Delete. Delete current var nm attribute att nm. If var nm does not have an
attribute att nm, there is no effect. If att nm is omitted (left blank), then all at-
tributes associated with the specified variable are automatically deleted. When
Delete mode is selected, the att type and att val arguments are superfluous
and may be left blank.

m Modify. Change value of current var nm attribute att nm to value att val. If
var nm does not have an attribute att nm, there is no effect.

n Nappend. Append value att val to var nm attribute att nm value att val if
att nm already exists. If var nm does not have an attribute att nm, there is no
effect. In other words, if att nm already exist, Nappend behaves like Append
otherwise it does nothing. The mnenomic is “non-create append”. Nappend
mode was added to ncatted in version 4.6.0 (May, 2016).

o Overwrite. Write attribute att nm with value att val to variable var nm, over-
writing existing attribute att nm, if any. This is the default mode.

The value of att type is a single character abbreviation (f, d, l, i, s, c, b, u) or a short
string standing for one of the twelve primitive netCDF data types:

f Float. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_FLOAT.

d Double. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_DOUBLE.

i, l Integer or (its now deprecated synonym) Long. Value(s) specified in att val
will be stored as netCDF intrinsic type NC_INT.

s Short. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_SHORT.

c Char. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_CHAR.

b Byte. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_BYTE.

ub Unsigned Byte. Value(s) specified in att val will be stored as netCDF intrinsic
type NC_UBYTE.

us Unsigned Short. Value(s) specified in att val will be stored as netCDF intrinsic
type NC_USHORT.

u, ui, ul Unsigned Int. Value(s) specified in att val will be stored as netCDF intrinsic
type NC_UINT.

ll, int64 Int64. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_INT64.

ull, uint64

Uint64. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_UINT64.

Chapter 4: Reference Manual 219

sng, string

String. Value(s) specified in att val will be stored as netCDF intrinsic type
NC_STRING. Note that ncatted handles type NC_STRING attributes correctly
beginning with version 4.3.3 released in July, 2013. Earlier versions fail when
asked to handle NC_STRING attributes.

In Delete mode the specification of att type is optional (and is ignored if supplied).

The value of att val is what you want to change attribute att nm to contain. The
specification of att val is optional in Delete (and is ignored) mode. Attribute values for
all types besides NC_CHAR must have an attribute length of at least one. Thus att val may
be a single value or one-dimensional array of elements of type att_type. If the att val is
not set or is set to empty space, and the att type is NC_CHAR, e.g., -a units,T,o,c,""

or -a units,T,o,c,, then the corresponding attribute is set to have zero length. When
specifying an array of values, it is safest to enclose att val in single or double quotes,
e.g., -a levels,T,o,s,"1,2,3,4" or -a levels,T,o,s,’1,2,3,4’. The quotes are strictly
unnecessary around att val except when att val contains characters which would confuse
the calling shell, such as spaces, commas, and wildcard characters.

NCO processing of NC_CHAR attributes is a bit like Perl in that it attempts to do what
you want by default (but this sometimes causes unexpected results if you want unusual
data storage). If the att type is NC_CHAR then the argument is interpreted as a string and it
may contain C-language escape sequences, e.g., \n, which NCO will interpret before writing
anything to disk. NCO translates valid escape sequences and stores the appropriate ASCII

code instead. Since two byte escape sequences, e.g., \n, represent one-byte ASCII codes,
e.g., ASCII 10 (decimal), the stored string attribute is one byte shorter than the input string
length for each embedded escape sequence. The most frequently used C-language escape
sequences are \n (for linefeed) and \t (for horizontal tab). These sequences in particular
allow convenient editing of formatted text attributes. The other valid ASCII codes are \a,
\b, \f, \r, \v, and \\. See Section 4.8 [ncks netCDF Kitchen Sink], page 261, for more
examples of string formatting (with the ncks ‘-s’ option) with special characters.

Analogous to printf, other special characters are also allowed by ncatted if they are
“protected” by a backslash. The characters ", ’, ?, and \ may be input to the shell as \",
\’, \?, and \\. NCO simply strips away the leading backslash from these characters before
editing the attribute. No other characters require protection by a backslash. Backslashes
which precede any other character (e.g., 3, m, $, |, &, @, %, {, and }) will not be filtered and
will be included in the attribute.

Note that the NUL character \0 which terminates C language strings is assumed and
need not be explicitly specified. If \0 is input, it is translated to the NUL character.
However, this will make the subsequent portion of the string, if any, invisible to C standard
library string functions. And that may cause unintended consequences. Because of these
context-sensitive rules, one must use ncatted with care in order to store data, rather than
text strings, in an attribute of type NC_CHAR.

Note that ncatted interprets character attributes (i.e., attributes of type NC_CHAR) as
strings. EXAMPLES

Append the string Data version 2.0.\n to the global attribute history:

220 NCO 5.0.1 User Guide

ncatted -a history,global,a,c,’Data version 2.0\n’ in.nc

Note the use of embedded C language printf()-style escape sequences.

Change the value of the long_name attribute for variable T from whatever it currently
is to “temperature”:

ncatted -a long_name,T,o,c,temperature in.nc

Many model and observational datasets use missing values that are not annotated in the
standard manner. For example, at the time (2015–2018) of this writing, the MPAS ocean
and ice models use −9.99999979021476795361e+33 as the missing value, yet do not store a
_FillValue attribute with any variables. To prevent arithmetic from treating these values
as normal, designate this value as the _FillValue attribute:

ncatted -a _FillValue,,o,d,-9.99999979021476795361e+33 in.nc

ncatted -t -a _FillValue,,o,d,-9.99999979021476795361e+33 in.nc

ncatted -t -a _FillValue,,o,d,-9.99999979021476795361e+33 \

-a _FillValue,,o,f,1.0e36 -a _FillValue,,o,i,-999 in.nc

The first example adds the attribute to all variables. The ‘-t’ switch causes the second
example to add the attribute only to double precision variables. This is often more useful,
and can be used to provide distinct missing value attributes to each numeric type, as in the
third example.

NCO arithmetic operators may not work as expected on IEEE NaN (short for Not-a-
Number) and NaN-like numbers such as positive infinity and negative infinity1. One way to
work-around this problem is to change IEEE NaNs to normal missing values. As of NCO 4.1.0
(March, 2012), ncatted works with NaNs (though none of the arithmetic operators do).
This limited support enables users to change NaN to a normal number before performing
arithmetic or propagating a NaN-tainted dataset. First set the missing value (i.e., the value
of the _FillValue attribute) for the variable(s) in question to the IEEE NaN value.

ncatted -a _FillValue,,o,f,NaN in.nc

Then change the missing value from the IEEE NaN value to a normal IEEE number, like
1.0e36 (or to whatever the original missing value was).

ncatted -a _FillValue,,m,f,1.0e36 in.nc

Some NASA MODIS datasets provide a real-world example.

ncatted -O -a _FillValue,,m,d,1.0e36 -a missing_value,,m,d,1.0e36 \

1 NaN is a special floating point value (not a string). Arithmetic comparisons to NaN and NaN-like
numbers always return False, contrary to the behavior of all other numbers. This behavior is difficult
to intuit, yet IEEE 754 mandates it. To correctly handle NaNs during arithmetic, code must use special
math library macros (e.g., isnormal()) to determine whether any operand is special. If so, additional
special logic must handle the arithmetic. This is in addition to the normal handling incurred to correctly
handle missing values. Handling field and missing values (either or both of which may be NaN) in binary
operators thus incurs four-to-eight extra code paths. Each code path slows down arithmetic relative to
normal numbers. This makes supporting NaN arithmetic costly and inefficient. Hence NCO supports
NaN only to the extent necessary to replace it with a normal number. Although using NaN for the
missing value (or any value) in datasets is legal in netCDF, we strongly discourage it. We recommend
avoiding NaN entirely.

Chapter 4: Reference Manual 221

MODIS_L2N_20140304T1120.nc MODIS_L2N_20140304T1120_noNaN.nc

Delete all existing units attributes:

ncatted -a units,,d,, in.nc

The value of var nm was left blank in order to select all variables in the file. The values of
att type and att val were left blank because they are superfluous in Delete mode.

Delete all attributes associated with the tpt variable, and delete all global attributes

ncatted -a ,tpt,d,, -a ,global,d,, in.nc

The value of att nm was left blank in order to select all attributes associated with the
variable. To delete all global attributes, simply replace tpt with global in the above.

Modify all existing units attributes to meter second-1:

ncatted -a units,,m,c,’meter second-1’ in.nc

Add a units attribute of kilogram kilogram-1 to all variables whose first three char-
acters are ‘H2O’:

ncatted -a units,’^H2O’,c,c,’kilogram kilogram-1’ in.nc

Overwrite the quanta attribute of variable energy to an array of four integers.

ncatted -a quanta,energy,o,s,’010,101,111,121’ in.nc

As of NCO 3.9.6 (January, 2009), ncatted accepts extended regular expressions as ar-
guments for variable names, and, since NCO 4.5.1 (July, 2015), for attribute names.

ncatted -a isotope,’^H2O*’,c,s,’18’ in.nc

ncatted -a ’.?_iso19115$’,’^H2O*’,d,, in.nc

The first example creates isotope attributes for all variables whose names contain ‘H2O’.
The second deletes all attributes whose names end in _iso19115 from all variables whose
names contain ‘H2O’. See Section 3.12 [Subsetting Files], page 48 for more details on using
regular expressions.

As of NCO 4.3.8 (November, 2013), ncatted accepts full and partial group paths in
names of attributes, variables, dimensions, and groups.

Overwrite units attribute of specific ’lon’ variable

ncatted -O -a units,/g1/lon,o,c,’degrees_west’ in_grp.nc

Overwrite units attribute of all ’lon’ variables

ncatted -O -a units,lon,o,c,’degrees_west’ in_grp.nc

Delete units attribute of all ’lon’ variables

ncatted -O -a units,lon,d,, in_grp.nc

Overwrite units attribute with new type for specific ’lon’ variable

ncatted -O -a units,/g1/lon,o,sng,’degrees_west’ in_grp.nc

Add new_att attribute to all variables

ncatted -O -a new_att,,c,sng,’new variable attribute’ in_grp.nc

Add new_grp_att group attribute to all groups

ncatted -O -a new_grp_att,group,c,sng,’new group attribute’ in_grp.nc

Add new_grp_att group attribute to single group

222 NCO 5.0.1 User Guide

ncatted -O -a g1_grp_att,g1,c,sng,’new group attribute’ in_grp.nc

Add new_glb_att global attribute to root group

ncatted -O -a new_glb_att,global,c,sng,’new global attribute’ in_grp.nc

Note that regular expressions work well in conjuction with group path support. In other
words, the variable name (including group path component) and the attribute names may
both be extended regular expressions.

Demonstrate input of C-language escape sequences (e.g., \n) and other special characters
(e.g., \")

ncatted -h -a special,global,o,c,

’\nDouble quote: \"\nTwo consecutive double quotes: \"\"\n

Single quote: Beyond my shell abilities!\nBackslash: \\\n

Two consecutive backslashes: \\\\\nQuestion mark: \?\n’ in.nc

Note that the entire attribute is protected from the shell by single quotes. These outer
single quotes are necessary for interactive use, but may be omitted in batch scripts.

Chapter 4: Reference Manual 223

4.3 ncbo netCDF Binary Operator

SYNTAX

ncbo [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]] [-F] [--fl_fmt fl_fmt]

[-G gpe_dsc] [-g grp[,...]] [--glb ...] [-h] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [--no_cll_msr] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o file_3] [-p path] [-R] [-r] [--ram_all]

[-t thr_nbr] [--unn] [-v var[,...]] [-X ...] [-x] [-y op_typ]

file_1 file_2 [file_3]

DESCRIPTION

ncbo performs binary operations on variables in file 1 and the corresponding variables
(those with the same name) in file 2 and stores the results in file 3. The binary operation
operates on the entire files (modulo any excluded variables). See Section 3.30 [Missing
Values], page 103, for treatment of missing values. One of the four standard arithmetic
binary operations currently supported must be selected with the ‘-y op_typ’ switch (or
long options ‘--op_typ’ or ‘--operation’). The valid binary operations for ncbo, their
definitions, corresponding values of the op typ key, and alternate invocations are:

Addition Definition: file 3 = file 1 + file 2
Alternate invocation: ncadd
op typ key values: ‘add’, ‘+’, ‘addition’
Examples: ‘ncbo --op_typ=add 1.nc 2.nc 3.nc’, ‘ncadd 1.nc 2.nc 3.nc’

Subtraction
Definition: file 3 = file 1 - file 2
Alternate invocations: ncdiff, ncsub, ncsubtract
op typ key values: ‘sbt’, ‘-’, ‘dff’, ‘diff’, ‘sub’, ‘subtract’, ‘subtraction’
Examples: ‘ncbo --op_typ=- 1.nc 2.nc 3.nc’, ‘ncdiff 1.nc 2.nc 3.nc’

Multiplication
Definition: file 3 = file 1 * file 2
Alternate invocations: ncmult, ncmultiply
op typ key values: ‘mlt’, ‘*’, ‘mult’, ‘multiply’, ‘multiplication’
Examples: ‘ncbo --op_typ=mlt 1.nc 2.nc 3.nc’, ‘ncmult 1.nc 2.nc 3.nc’

Division Definition: file 3 = file 1 / file 2
Alternate invocation: ncdivide
op typ key values: ‘dvd’, ‘/’, ‘divide’, ‘division’
Examples: ‘ncbo --op_typ=/ 1.nc 2.nc 3.nc’, ‘ncdivide 1.nc 2.nc 3.nc’

224 NCO 5.0.1 User Guide

Care should be taken when using the shortest form of key values, i.e., ‘+’, ‘-’, ‘*’, and ‘/’.
Some of these single characters may have special meanings to the shell 1. Place these
characters inside quotes to keep them from being interpreted (globbed) by the shell2. For
example, the following commands are equivalent

ncbo --op_typ=* 1.nc 2.nc 3.nc # Dangerous (shell may try to glob)

ncbo --op_typ=’*’ 1.nc 2.nc 3.nc # Safe (’*’ protected from shell)

ncbo --op_typ="*" 1.nc 2.nc 3.nc # Safe (’*’ protected from shell)

ncbo --op_typ=mlt 1.nc 2.nc 3.nc

ncbo --op_typ=mult 1.nc 2.nc 3.nc

ncbo --op_typ=multiply 1.nc 2.nc 3.nc

ncbo --op_typ=multiplication 1.nc 2.nc 3.nc

ncmult 1.nc 2.nc 3.nc # First do ’ln -s ncbo ncmult’

ncmultiply 1.nc 2.nc 3.nc # First do ’ln -s ncbo ncmultiply’

No particular argument or invocation form is preferred. Users are encouraged to use the
forms which are most intuitive to them.

Normally, ncbo will fail unless an operation type is specified with ‘-y’ (equivalent to
‘--op_typ’). You may create exceptions to this rule to suit your particular tastes, in
conformance with your site’s policy on symbolic links to executables (files of a different name
point to the actual executable). For many years, ncdiff was the main binary file operator.
As a result, many users prefer to continue invoking ncdiff rather than memorizing a
new command (‘ncbo -y sbt’) which behaves identically to the original ncdiff command.
However, from a software maintenance standpoint, maintaining a distinct executable for
each binary operation (e.g., ncadd) is untenable, and a single executable, ncbo, is desirable.
To maintain backward compatibility, therefore, NCO automatically creates a symbolic link
from ncbo to ncdiff. Thus ncdiff is called an alternate invocation of ncbo. ncbo supports
many additional alternate invocations which must be manually activated. Should users or
system adminitrators decide to activate them, the procedure is simple. For example, to
use ‘ncadd’ instead of ‘ncbo --op_typ=add’, simply create a symbolic link from ncbo to
ncadd3. The alternatate invocations supported for each operation type are listed above.
Alternatively, users may always define ‘ncadd’ as an alias to ‘ncbo --op_typ=add’4.

It is important to maintain portability in NCO scripts. Therefore we recommend
that site-specfic invocations (e.g., ‘ncadd’) be used only in interactive sessions from
the command-line. For scripts, we recommend using the full invocation (e.g., ‘ncbo
--op_typ=add’). This ensures portability of scripts between users and sites.

ncbo operates (e.g., adds) variables in file 2 with the corresponding variables (those
with the same name) in file 1 and stores the results in file 3. Variables in file 1 or file 2

1 A naked (i.e., unprotected or unquoted) ‘*’ is a wildcard character. A naked ‘-’ may confuse the com-
mand line parser. A naked ‘+’ and ‘/’ are relatively harmless.

2 The widely used shell Bash correctly interprets all these special characters even when they are not quoted.
That is, Bash does not prevent NCO from correctly interpreting the intended arithmetic operation when
the following arguments are given (without quotes) to ncbo: ‘--op_typ=+’, ‘--op_typ=-’, ‘--op_typ=*’,
and ‘--op_typ=/’

3 The command to do this is ‘ln -s -f ncbo ncadd’
4 The command to do this is ‘alias ncadd=’ncbo --op_typ=add’’

Chapter 4: Reference Manual 225

are broadcast to conform to the corresponding variable in the other input file if necessary5.
Now ncbo is completely symmetric with respect to file 1 and file 2, i.e., file1 − file2 =
−(file2 − file1).

Broadcasting a variable means creating data in non-existing dimensions by copying data
in existing dimensions. For example, a two dimensional variable in file 2 can be subtracted
from a four, three, or two (not one or zero) dimensional variable (of the same name) in
file_1. This functionality allows the user to compute anomalies from the mean. In the
future, we will broadcast variables in file 1, if necessary to conform to their counterparts
in file 2. Thus, presently, the number of dimensions, or rank, of any processed variable in
file 1 must be greater than or equal to the rank of the same variable in file 2. Of course,
the size of all dimensions common to both file 1 and file 2 must be equal.

When computing anomalies from the mean it is often the case that file 2 was created by
applying an averaging operator to a file with initially the same dimensions as file 1 (often
file 1 itself). In these cases, creating file 2 with ncra rather than ncwa will cause the ncbo
operation to fail. For concreteness say the record dimension in file_1 is time. If file 2 was
created by averaging file 1 over the time dimension with the ncra operator (rather than
with the ncwa operator), then file 2 will have a time dimension of size 1 rather than having
no time dimension at all 6. In this case the input files to ncbo, file 1 and file 2, will have
unequally sized time dimensions which causes ncbo to fail. To prevent this from occurring,
use ncwa to remove the time dimension from file 2. See the example below.

ncbo never operates on coordinate variables or variables of type NC_CHAR or NC_STRING.
This ensures that coordinates like (e.g., latitude and longitude) are physically meaningful
in the output file, file 3. This behavior is hardcoded. ncbo applies special rules to some
CF-defined (and/or NCAR CCSM or NCAR CCM fields) such as ORO. See Section 3.45
[CF Conventions], page 145 for a complete description. Finally, we note that ncflint (see
Section 4.7 [ncflint netCDF File Interpolator], page 258) is designed for file interpolation. As
such, it also performs file subtraction, addition, multiplication, albeit in a more convoluted
way than ncbo.

Beginning with NCO version 4.3.1 (May, 2013), ncbo supports group broadcasting.
Group broadcasting means processing data based on group patterns in the input file(s)
and automatically transferring or transforming groups to the output file. Consider the case
where file 1 contains multiple groups each with the variable v1, while file 2 contains v1
only in its top-level (i.e., root) group. Then ncbo will replicate the group structure of file 1
in the output file, file 3. Each group in file 3 contains the output of the corresponding
group in file 1 operating on the data in the single group in file 2. An example is provided
below.

EXAMPLES

Say files 85_0112.nc and 86_0112.nc each contain 12 months of data. Compute the
change in the monthly averages from 1985 to 1986:

5 Prior to NCO version 4.3.1 (May, 2013), ncbo would only broadcast variables in file 2 to conform to
file 1. Variables in file 1 were never broadcast to conform to the dimensions in file 2.

6 This is because ncra collapses the record dimension to a size of 1 (making it a degenerate dimension),
but does not remove it, while, unless ‘-b’ is given, ncwa removes all averaged dimensions. In other words,
by default ncra changes variable size though not rank, while, ncwa changes both variable size and rank.

226 NCO 5.0.1 User Guide

ncbo 86_0112.nc 85_0112.nc 86m85_0112.nc

ncdiff 86_0112.nc 85_0112.nc 86m85_0112.nc

ncbo --op_typ=sub 86_0112.nc 85_0112.nc 86m85_0112.nc

ncbo --op_typ=’-’ 86_0112.nc 85_0112.nc 86m85_0112.nc

These commands are all different ways of expressing the same thing.

The following examples demonstrate the broadcasting feature of ncbo. Say we wish to
compute the monthly anomalies of T from the yearly average of T for the year 1985. First we
create the 1985 average from the monthly data, which is stored with the record dimension
time.

ncra 85_0112.nc 85.nc

ncwa -O -a time 85.nc 85.nc

The second command, ncwa, gets rid of the time dimension of size 1 that ncra left in 85.nc.
Now none of the variables in 85.nc has a time dimension. A quicker way to accomplish
this is to use ncwa from the beginning:

ncwa -a time 85_0112.nc 85.nc

We are now ready to use ncbo to compute the anomalies for 1985:

ncdiff -v T 85_0112.nc 85.nc t_anm_85_0112.nc

Each of the 12 records in t_anm_85_0112.nc now contains the monthly deviation of T from
the annual mean of T for each gridpoint.

Say we wish to compute the monthly gridpoint anomalies from the zonal annual mean.
A zonal mean is a quantity that has been averaged over the longitudinal (or x) direction.
First we use ncwa to average over longitudinal direction lon, creating 85_x.nc, the zonal
mean of 85.nc. Then we use ncbo to subtract the zonal annual means from the monthly
gridpoint data:

ncwa -a lon 85.nc 85_x.nc

ncdiff 85_0112.nc 85_x.nc tx_anm_85_0112.nc

This examples works assuming 85_0112.nc has dimensions time and lon, and that 85_x.nc
has no time or lon dimension.

Group broadcasting simplifies evaluation of multiple models against observations. Con-
sider the input file cmip5.nc which contains multiple top-level groups cesm, ecmwf, and
giss, each of which contains the surface air temperature field tas. We wish to compare
these models to observations stored in obs.nc which contains tas only in its top-level
(i.e., root) group. It is often the case that many models and/or model simulations exist,
whereas only one observational dataset does. We evaluate the models and obtain the bias
(difference) between models and observations by subtracting obs.nc from cmip5.nc. Then
ncbo “broadcasts” (i.e., replicates) the observational data to match the group structure of
cmip5.nc, subtracts, and then stores the results in the output file, bias.nc which has the
same group structure as cmip5.nc.

% ncbo -O cmip5.nc obs.nc bias.nc

% ncks -H -v tas -d time,3 bias.nc

/cesm/tas

Chapter 4: Reference Manual 227

time[3] tas[3]=-1

/ecmwf/tas

time[3] tas[3]=0

/giss/tas

time[3] tas[3]=1

As a final example, say we have five years of monthly data (i.e., 60 months) stored in
8501_8912.nc and we wish to create a file which contains the twelve month seasonal cycle
of the average monthly anomaly from the five-year mean of this data. The following method
is just one permutation of many which will accomplish the same result. First use ncwa to
create the five-year mean:

ncwa -a time 8501_8912.nc 8589.nc

Next use ncbo to create a file containing the difference of each month’s data from the
five-year mean:

ncbo 8501_8912.nc 8589.nc t_anm_8501_8912.nc

Now use ncks to group together the five January anomalies in one file, and use ncra to
create the average anomaly for all five Januarys. These commands are embedded in a shell
loop so they are repeated for all twelve months:

for idx in {1..12}; do # Bash Shell (version 3.0+)

idx=‘printf "%02d" ${idx}‘ # Zero-pad to preserve order

ncks -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}

ncra foo.${idx} t_anm_8589_${idx}.nc

done

for idx in 01 02 03 04 05 06 07 08 09 10 11 12; do # Bourne Shell

ncks -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}

ncra foo.${idx} t_anm_8589_${idx}.nc

done

foreach idx (01 02 03 04 05 06 07 08 09 10 11 12) # C Shell

ncks -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}

ncra foo.${idx} t_anm_8589_${idx}.nc

end

Note that ncra understands the stride argument so the two commands inside the loop
may be combined into the single command

ncra -F -d time,${idx},,12 t_anm_8501_8912.nc foo.${idx}

Finally, use ncrcat to concatenate the 12 average monthly anomaly files into one twelve-
record file which contains the entire seasonal cycle of the monthly anomalies:

ncrcat t_anm_8589_??.nc t_anm_8589_0112.nc

228 NCO 5.0.1 User Guide

4.4 ncclimo netCDF Climatology Generator

SYNTAX

ncclimo [-3] [-4] [-5] [-6] [-7]

[-a dec_md] [-C clm_md] [-c caseid]

[-d dbg_lvl] [--d2f] [--dpf=dpf] [--dpt_fl=dpt_fl] [-E yr_prv] [-e yr_end]

[-f fml_nm] [--fl_fmt=fl_fmt] [--glb_avg] [-h hst_nm] [-i drc_in]

[-j job_nbr] [-L dfl_lvl] [-l lnk_flg]

[-m mdl_nm] [--mth_end=mth_end] [--mth_srt=mth_srt]

[-n nco_opt] [--no_cll_msr] [--no_frm_trm] [--no_ntv_tms] [--no_stg_grd] [--no_stdin]

[-O drc_rgr] [-o drc_out] [-P prc_typ] [-p par_typ] [--ppc=ppc_prc]

[-R rgr_opt] [-r rgr_map]

[-S yr_prv] [-s yr_srt] [--seasons=csn_lst] [--sgs_frc=sgs_frc]

[-t thr_nbr] [--tpd=tpd] [--uio] [-v var_lst] [--var_xtr=var_xtr] [--version]

[--vrt_fl=vrt_fl] [--vrt_xtr=vrt_xtr]

[-X drc_xtn] [-x drc_prv] [--xcl_var]

[-Y rgr_xtn] [-y rgr_prv] [--ypf=ypf_max]

DESCRIPTION

In climatology generation mode, ncclimo ingests “raw” data consisting of interannual
sets of files, each containing sub-daily (diurnal), daily, monthly, or yearly averages, and from
these produces climatological daily, monthly, seasonal, and/or annual means. Alternatively,
in timeseries reshaping (aka “splitter”) mode, ncclimo will subset and temporally split the
input raw data timeseries into per-variable files spanning the entire period. ncclimo can
optionally (call ncremap to) regrid all output files in either mode. Unlike the rest of NCO,
ncclimo and ncremap are shell scripts, not compiled binaries1. As of NCO 4.9.2 (February,
2020), the ncclimo and ncremap scripts export the environment variable HDF5_USE_FILE_
LOCKING with a value of FALSE. This prevents failures of these operators that can occur
with some versions of the underlying HDF library that attempt to lock files on file systems
that cannot, or do not, support it.

There are five (usually) required options (‘-c’, ‘-s’, ‘-e’, ‘-i’, and ‘-o’)) to generate
climatologies, and many more options are available to customize the processing. Options
are similar to ncremap options. Standard ncclimo usage for climatology generation looks
like

ncclimo -c caseid -s srt_yr -e end_yr -i drc_in -o drc_out

ncclimo -m mdl_nm -c caseid -s srt_yr -e end_yr -i drc_in -o drc_out

ncclimo -v var_lst -c caseid -s srt_yr -e end_yr -i drc_in -o drc_out

ncclimo --case=caseid --start=srt_yr --end=end_yr --input=drc_in --output=drc_out

In climatology generation mode, ncclimo constructs the list of input filenames from the
arguments to the caseid, date, and model-type options. As of NCO version 4.9.4 (Septem-
ber, 2020), ncclimo can produce climatologies of high-frequency input data supplied via

1 This means that newer (including user-modified) versions of ncclimo work fine without re-compiling
NCO. Re-compiling is only necessary to take advantage of new features or fixes in the NCO binaries,
not to improve ncclimo. One may download and give executable permissions to the latest source at
https://github.com/nco/nco/tree/master/data/ncclimo without re-installing the rest of NCO.

https://github.com/nco/nco/tree/master/data/ncclimo

Chapter 4: Reference Manual 229

standard input, positional command-line options, or directory contents, all input methods
traditionally supported only in splitter mode. Instead of using the caseid option to help
generate the input filenames as it does for normal (monthly) climos, ncclimo uses the
caseid option, when provided, to rename the output files for high-frequency climos.

Generate diurnal climos from high-frequency CMIP6 timeseries

cd ${drc_in};ls ${caseid}*.h4.nc | ncclimo --clm_md=hfc \

-c ${caseid} --yr_srt=2001 --yr_end=2002 --drc_out=${HOME}

ncclimo automatically switches to timeseries reshaping mode if it receives a list of files
from stdin, or, alternatively, placed as positional arguments (after the last command-line
option), or if neither of these is done and no caseid is specified, in which case it assumes all
*.nc files in drc in constitute the input file list.

Split monthly timeseries into CMIP-like timeseries

cd ${drc_in};ls ${caseid}*.h4.nc | ncclimo -v=T \

--ypf=1 --yr_srt=56 --yr_end=76 --drc_out=${HOME}

Split high-frequency timeseries into CMIP-like timeseries

cd ${drc_in};ls ${caseid}*.h4.nc | ncclimo --clm_md=hfs -v=T \

--ypf=1 --yr_srt=56 --yr_end=76 --drc_out=${HOME}

Options for ncclimo and ncremap come in both short (single-letter) and long forms. The
handful of long-option synonyms for each option allows the user to imbue the commands
with a level of verbosity and precision that suits her taste. A complete description of
all options is given below, in alphabetical order of the short option letter. Long option
synonyms are given just after the letter. When invoked without options, ncclimo and
ncremap print a succinct table of all options and some examples. All valid options for both
operators are listed in their command syntax above but, for brevity, options that ncclimo
passes straight through to ncremap are only fully described in the table of ncremap options.

-a dec_md (--dec_md, --dcm_md, --december_mode, --dec_mode)

December mode determines the start and end months of the climatology and the
type of NH winter seasonal average. Two valid arguments are scd (default, or
synonyms djf and DJF) and sdd (or synonyms jfd and JFD). SCD-mode stands
for “Seasonally Continuous December”. The first month used is December of
the year before the start year specified with ‘-s’. The last month is November
of the end year specified with ‘-e’. In SCD-mode the Northern Hemisphere
winter seasonal climatology will be computed with sets of the three consecutive
months December, January, and February (DJF) where the calendar year of
the December months is always one less than the calendar year of January
and February. SDD-mode stands for “Seasonally Discontinuous December”.
The first month used is January of the specified start year. The last month
is December of the end year specified with ‘-e’. In SDD-mode the Northern
Hemisphere winter seasonal climatology will be computed with sets of the three
non-consecutive months January, February, and December (JFD) from each
calendar year.

-C clm_md (--clm_md, --climatology_mode, --mode, --climatology)

Climatology mode. Valid values for clm md are ann (or synonyms annual,
annual, yearly, or year) for annual-mode climatologies, dly (or synonyms

230 NCO 5.0.1 User Guide

daily, doy, or day) for daily-mode climatologies, hfc (or synonyms high_

frequency_climo or hgh_frq_clm) for high-frequency (diurnally resolved)
climos, hfs (or synonyms high_frequency_splitter or hgh_frq_spl) for
high-frequency splitting, and mth (or synonyms month or monthly) for monthly
climotologies. The value indicates the timespan of each input file for annual and
monthly climatologies. The default mode is ‘mth’, which means input files are
monthly averages. Use ‘ann’ when the input files are a series of annual means (a
common temporal resolution for ice-sheet simulations). The value ‘dly’ is used
only input files whose temporal resolution is daily or finer, and when the desired
output is a day-of-year climatology where the means are output for each day of
a 365 day year. Day-of-year climatologies are uncommon, yet useful for showing
daily variability. The value ‘hfc’ indicates a high-frequency climatology where
the output will be a traditional set of climatological monthly, seasonal, or an-
nual means similar to monthly climos, except that each file will have the same
number of timesteps-per-day as the input data to resolve the diurnal cycle. The
value ‘hfs’ indicates a high-frequency splitting operation where an interannual
input timeseries will be split into regular size segments of a given number of
years, similar to CMIP timeseries.

The climatology generator and splitter do not require that daily-mode input
files begin or end on daily boundaries. These tools hyperslab the input files
using the date information required to performed their analysis. This facilitates
analyzing datasets with varying numbers of days per input file.

Explicitly specifying ‘--clm_md=mth’ serves a secondary purpose, namely invok-
ing the default setting on systems that control stdin. When ncclimo detects
that stdin is not attached to the terminal (keyboard) it automatically expects
a list of files on stdin. Some environments, however, hijack stdin for their
purposes and thereby confuse ncclimo into expecting a list argument. Users
have encountered this issue when attempting to run ncclimo in Python paral-
lel environments, via inclusion in crontab, and in nohup-mode (whatever that
is!). In such cases, explicitly specify ‘--clm_md=mth’ (or ann or day) to persuade
ncclimo to run a normal climatology.

-c caseid (--case, --caseid, --case_id)

Simulation name, or any input filename for non-CESM’ish files. The use of
caseid is required in climate generation mode (unless equivalent information
is provided through other options), where caseid is used to construct both in-
put and output filenames. For CESM’ish input files like famipc5_ne30_v0.3_

00001.cam.h0.1980-01.nc, specify ‘-c famipc5_ne30_v0.3_00001’. The
‘.cam.’ and ‘.h0.’ bits are added internally to produce the input filenames.
Modify these via the -m mdl_nm and -h hst_nm switches if needed. For in-
put files named slightly differently than standard CESM’ish names, supply the
filename (excluding the path component) as the caseid and then ncclimo will
attempt to parse that by matching to a database of known regular expres-
sions common to model output. These are all of the format prefix[.-]YYYY [-
]MM [-]DD.suffix. The particular formats current supported, as of NCO ver-
sion 4.7.3 (March, 2018) are: prefix_YYYYMM.suffix, prefix.YYYY-MM.suffix, and
prefix.YYYY-MM-01.suffix. For example, input files like merra2_198001.nc

Chapter 4: Reference Manual 231

(i.e., the six digits that precede the suffix are YYYYMM-format), specify ‘-c
merra2_198001.nc’ and the prefix (merra2) will be automatically abstracted
and used to template and generate all the filenames based on the specified yr srt
and yr end. Please tell us any dataset filename regular expressions that you
would like added to ncclimo’s internal database.

The ‘--caseid=caseid’ option is not mandatory in the High-Frequency-Splitter
(clm md=hfs) and High-Frequency-Climatology (clm md=hfc) modes. Those
modes expect all input filenames to be entered from the command-line so there
is no internal need to create filenames from the caseid variable. Instead, when
caseid is specified in a high-freqency mode, its value is used to name the output
files in a similar manner to the ‘-f fml_nm’ option.

-D dbg_lvl (--dbg_lvl, --dbg, --debug, --debug_level)

Specifies a debugging level similar to the rest of NCO. If dbg lvl = 1, ncclimo
prints more extensive diagnostics of its behavior. If dbg lvl = 2, ncclimo prints
the commands it would execute at any higher or lower debugging level, but does
not execute these commands. If dbg lvl > 2, ncclimo prints the diagnostic
information, executes all commands, and passes-through the debugging level to
the regridder (ncks) for additional diagnostics.

--d2f (--d2f, --d2s, --dbl_flt, --dbl_sgl, --double_float)

This switch (which takes no argument) causes ncclimo to invoke ncremap with
the same switch, so that ncremap converts all double precision non-coordinate
variables to single precision in the regridded file. This switch has no effect on
files that are not regridded. To demote the precision in such files, use ncpdq to
apply the dbl_flt packing map to the file directly.

--dpf=dpf (--dpf, --days_per_file)

The number of days-per-file in files ingested by ncclimo. It can sometimes
be difficult for ncclimo to infer the number of days-per-file in high-frequency
input files, i.e., those with 1 or more timesteps-per-day. In such cases, users
may override the inferred value by explicitly specifying --dpf=dpf.

--dpt_fl=dpt_fl (--dpt_fl, --depth_file, --mpas_fl, --mpas_depth)

The ‘--dpt_fl=dpt_fl’ triggers the addition of a depth coordinate to MPAS

ocean datasets that will undergo regridding. ncclimo passes this option through
to ncremap, and this option has no effect when ncclimo does not invoke
ncremap. The ncremap documentation contains the full description of this
option.

-e end_yr (--end_yr, --yr_end, --end_year, --year_end, --end)

End year (example: 2000). By default, the last month is December of the
specified end year. If ‘-a scd’ is specified, the last month used is November of
the specified end year.

-f fml_nm (--fml_nm, --fml, --family, --family_name)

Family name (nickname) of output files. In climate generation mode, output
climo file names are constructed by default with the same caseid as the input
files. The fml nm, if supplied, replaces caseid in output climo names, which
are of the form fml nm XX YYYYMM YYYYMM.nc where XX is the month

232 NCO 5.0.1 User Guide

or seasonal abbreviation. Use ‘-f fml_nm’ to simplify long names, avoid over-
lap, etc. Example values of fml nm are ‘control’, ‘experiment’, and (for a
single-variable climo) ‘FSNT’. In timeseries reshaping mode, fml nm will be
used, if supplied, as an additional string in the output filename. For example,
specifying ‘-f control’ would cause T_000101_000912.nc to be instead named
T_control_000101_000912.nc.

-h hst_nm (--hst_nm, --history_name, --history)

History volume name of file used to generate climatologies. This referring to the
hst nm character sequence used to construct input file names: caseid.mdl_

nm.hst nm.YYYY-MM.nc. By default input climo file names are constructed
from the caseid of the input files, together with the model name mdl nm (speci-
fied with ‘-m’) and the date range. Use ‘-h hst_nm’ to specify alternative history
volumes. Examples include ‘h0’ (default, works for CAM, CLM/CTSM/ELM),
‘h1’, and ‘h’ (for CISM).

-i drc_in (--drc_in, --in_drc, --dir_in, --input)

Directory containing all monthly mean files to read as input to the climatology.
The use of drc in is mandatory in climate generation mode and is optional
in timeseries reshaping mode. In timeseries reshaping mode, ncclimo uses all
netCDF files (meaning files with suffixes .nc, .nc3, .nc4, .nc5, .nc6, .nc7,
.cdf, .hdf, .he5, or .h5) in drc in to create the list of input files when no list
is provided through stdin or as positional arguments to the command-line.

-j job_nbr (--job_nbr, --job_number, --jobs)

The job nbr parameter controls the parallelism granularity of both timeseries
reshaping (aka splitting) and climatology generation. These modes parallelize
over different types of tasks, so we describe the effects of job nbr separately,
first for climatologies, then for splitting. However, for both modes, job nbr
specifies the total number of simultaneous processes to run during in parallel
either on the local node for Background parallelism, or across all the nodes for
MPI parallelism (i.e., job nbr is the total across all nodes, it is not the number
per node).

For climatology generation, job nbr specifies the number of averaging tasks to
perform simultaneously on the local node for Background parallelism, or spread
across all nodes for MPI-parallelism. By default ncclimo sets job nbr = 12 for
both parallelism modes. This number ensures that monthly averages for all
individual months complete more-or-less simultaneously, so that all seasonal
averages can then be computed. However, many nodes are too small to simul-
taneously average multiple distinct months (January, February, etc.). Hence
job nbr may be set to any factor of 12, i.e., 1, 2, 3, 4, 6, or 12. For Back-
ground parallelism, setting job nbr = 4 causes four-months to be averaged at
one time. After three batches of four-months complete, the climatology gener-
ator then moves on to seasonal averaging and regridding. For MPI-parallelism,
set job nbr >= nd nbr otherwise some nodes will be idle for the entire time.
For the biggest jobs, when a single-month nearly exhausts the RAM on a
node, set job nbr = nd nbr so that each node gets only one job at a time.
If a node can handle average three distinct months simultaneously, then try

Chapter 4: Reference Manual 233

job nbr = 3 ∗ nd nbr. Never set job nbr > 12 in climatology modes, since
there are at most only twelve jobs that can be performed in parallel.

For splitting, job nbr specifies the number of simultaneous subsetting processes
to spawn during parallel execution for both Background and MPI-parallelism.
In both parallelism modes ncclimo spawns processes in batches of job nbr
jobs, then waits for those processes to complete. Once a batch finishes, ncclimo
spawns the next batch. For Background-parallelism, all jobs are spawned to the
local node. For MPI-parallelism, all jobs are spawned in round-robin fashion
to all available nodes until job nbr jobs are running. Rinse, lather, repeat
until all variables have been split. The splitter chooses its default value of
job nbr based on on the parallelism mode. For Background parallelism, job nbr
defaults to the number of variables to be split, so that not specifying job nbr
results in launching var nbr simultaneous splitter tasks. This scales well to over
a hundred variables in our tests2. In practice, splitting timeseries consumes
minimal memory, since ncrcat (which underlies the splitter) only holds one
record (timestep) of a variable in memory Section 2.9 [Memory Requirements],
page 24.

However, if splitting consumes so much RAM (e.g., because variables are large
and/or the number of jobs is large) that a single node can perform only one or a
few subsetting jobs at a time, then it is reasonable value to employ MPI to split
the datasets. For MPI-parallelism, job nbr defaults to the number of nodes
requested. This helps prevent users from overloading nodes with too many
jobs. Usually, however, nodes can usually subset (and then regrid, if requested)
multiple variables simultaneously. In summary, by default job nbr = var nbr
in Background mode, and job nbr = node nbr in MPI mode. Subject to the
availability of adequate RAM, expand the number of jobs per node by increasing
job nbr until overall throughput peaks.

The main throughput bottleneck in timeseries reshaping mode is I/O. Increasing
job nbr may reduce throughput once the maximum I/O bandwidth of the node
is reached, due to contention for I/O resources. Regridding requires math that
can relieve some I/O contention and allows for some throughput gains with
increasing job nbr. One strategy that seems sensible is to set job nbr equal
to the number of nodes times the number of cores per node, and increase or
decrease as necessary until throughput peaks.

-L (--dfl_lvl, --dfl, --deflate)

Activate deflation (i.e., lossless compress, see Section 3.33 [Deflation], page 121)
with the -L dfl_lvl short option (or with the same argument to the
‘--dfl_lvl’ or ‘--deflate’ long options). Specify deflation level dfl lvl on a
scale from no deflation (dfl lvl = 0, the default) to maximum deflation (dfl lvl
= 9).

2 At least one known environment (the E3SM-Unified Anaconda environment at NERSC) prevents users
from spawning scores of processes and may report OpenBLAS/pthread or RLIMIT_NPROC-related errors. A
solution seems to be executing ‘ulimit -u unlimited’

234 NCO 5.0.1 User Guide

-l (--lnk_flg, --link_flag)

--no_amwg_link (--no_amwg_link, --no_amwg_links, --no_amwg, --no_AMWG_link,

--no_AMWG_links)

--amwg_link (--amwg_link, --amwg_links, --AMWG_link, --AMWG_links)

These options turn-on or turn-off the linking of E3SM/ACME-climo to AMWG-
climo filenames. AMWG omits the YYYYMM components of climo filenames,
resulting in shorter names. By default ncclimo symbolically links the full
E3SM/ACME filename (which is always) created to a file with the shorter
(AMWG) name whose creation is optional. AMWG diagnostics scripts can pro-
duce plots directly from the linked AMWG filenames. The ‘-l’ (and ‘--lnk_flg’
and ‘--link_flag’ long-option synonmyms) are true options that require an
argument of either ‘Yes’ or ‘No’. The remaining synonyms are switches that
take no arguments. The ‘--amwg_link’ switch and its synonyms cause the cre-
ation of symbolic links with AMWG filenames. The ‘--no_amwg_link’ switch
and its synonyms prevent the creation of symbolic links with AMWG filenames.
If you do not need AMWG filenames, turn-off linking to reduce file proliferation
in the output directories.

-m mdl_nm (--mdl_nm, --mdl, --model_name, --model)

Model name (as embedded in monthly input filenames). Default is ‘cam’. Other
options are ‘clm2’, ‘ocn’, ‘ice’, ‘cism’, ‘cice’, ‘pop’.

-n nco_opt (nco_opt, nco, nco_options)

Specifies a string of options to pass-through unaltered to ncks. nco opt defaults
to ‘--no_tmp_fl’. Note that ncclimo passes its nco opt to ncremap. This can
cause unexpected results, so use the front-end options to ncclimo when possible,
rather than attempting to subvert them with nco opt.

-O drc_rgr (--drc_rgr, --rgr_drc, --dir_rgr, --regrid)

Directory to hold regridded climo files. Regridded climos are placed in drc out
unless a separate directory for them is specified with ‘-O’ (NB: capital “O”).

--no_cll_msr (--no_cll_msr, --no_cll, --no_cell_measures, --no_area)

This switch (which takes no argument) controls whether ncclimo and ncremap

add measures variables to the extraction list along with the primary variable
and other associated variables. See Section 3.45 [CF Conventions], page 145 for
a detailed description.

--no_frm_trm (--no_frm_trm, --no_frm, --no_formula_terms)

This switch (which takes no argument) controls whether ncclimo and ncremap

add formula variables to the extraction list along with the primary variable and
other associated variables. See Section 3.45 [CF Conventions], page 145 for a
detailed description.

--glb_avg (--glb_avg, --global_average)

As of NCO version 4.9.1 (released December, 2019), this switch (which takes
no argument) tells the splitter to output horizontally spatially averaged time-
series files instead of raw, native-grid timeseries. This switch only has effect
in timeseries splitting mode. This is useful, for example, to quickly diagnose
the behavior of ongoing model simulations prior to a full-blown analysis. Thus

Chapter 4: Reference Manual 235

the spatial mean files will be in the same location and have the same name as
the native grid timeseries would have been and had, respectively. Note that
this switch does not alter the capability of also outputting the full regridded
timeseries, if requested, at the same time.

--no_ntv_tms (--no_ntv_tms, --no_ntv, --no_native, --remove_native)

This switch (which takes no argument) controls whether the splitter retains
native grid split files, which it does by default, or deletes them. ncclimo can
split model output from multi-variable native grid files into per-variable time-
series files and regrid those onto a so-called analysis grid. That is the typical
format in which Model Intercomparison Projects (MIPs) request and dissemi-
nate contributions. When the data producer has no use for the split timeseries
on the native grid, he/she can invoke this flag to cause ncclimo to delete the
native grid timeseries (not the raw native grid datafiles). This functionality
is implemented by first creating the native grid timeseries, regridding it, and
then overwriting the native grid timeseries with the regridded timeseries. Thus
the regridded files will be in the same location and have the same name as the
native grid timeseries would have been and had, respectively.

--no_stg_grd (--no_stg_grd, --no_stg, --no_stagger, --no_staggered_grid)

This switch (which takes no argument) controls whether regridded output will
contain the staggered grid coordinates slat, slon, and w_stag (see Section 3.25
[Regridding], page 86). By default the staggered grid is output for all files
regridded from a Cap (aka FV) grid, except when the regridding is performed
as part of splitting (reshaping) into timeseries.

-o drc_out (--drc_out, --out_drc, --dir_out, --output)

Directory to hold computed (output) native grid climo files. Regridded climos
are also placed here unless a separate directory for them is specified with ‘-O’
(NB: capital “O”).

-p par_typ (--par_typ, --par_md, --parallel_type, --parallel_mode,

--parallel)

Specifies the parallelism mode desired. The options are serial mode (‘-p
srl’, ‘-p serial’, or ‘-p nil’), background mode parallelism (‘-p bck’ or ‘-p
background’)), and MPI parallelism (‘-p mpi’ or ‘-p MPI’). The default is
background-mode parallelism. The default par typ is ‘background’, which
means ncclimo spawns up to twelve (one for each month) parallel processes
at a time. See discussion below under Memory Considerations.

--ppc=ppc_prc (--ppc, --ppc_prc, --precision, --quantize)

Specifies the precision of the Precision-Preserving Compression algorithm (see
Section 3.32.2 [Precision-Preserving Compression], page 112). A positive in-
teger is interpreted as the Number of Significant Digits for the Bit-Grooming
algorithm, and is equivalent to specifying ‘--ppc default=ppc_prc’ to a bi-
nary operator. A positive or negative integer preceded by a period, e.g., ‘.-2’
is interpreted as the number of Decimal Significant Digits for the rounding al-
gorithm and is equivalent to specifying ‘--ppc default=.ppc_prc’ to a binary
operator. This option applies one precision algorithm and a uniform precision
for the entire file. To specify variable-by-variable precision options, pass the

236 NCO 5.0.1 User Guide

desired options as a quoted string directly with ‘-n nco_opt’, e.g., ‘-n ’--ppc

FSNT,TREFHT=4 --ppc CLOUD=2’’.

-R rgr_opt (rgr_opt, regrid_options)

Specifies a string of options to pass-through unaltered to ncks. rgr opt defaults
to ‘-O --no_tmp_fl’.

-r rgr_map (--rgr_map, --regrid_map, --map)

Regridding map. Unless ‘-r’ is specified ncclimo produces only a climatology
on the native grid of the input datasets. The rgr map specifies how to (quickly)
transform the native grid into the desired analysis grid. ncclimo will (call
ncremap to) apply the given map to the native grid climatology and produce
a second climatology on the analysis grid. Options intended exclusively for
the regridder may be passed as arguments to the ‘-R’ switch. See below the
discussion on regridding.

--mth_srt=mth_srt (--mth_srt, --srt_mth, --month_start, --start_month)

--mth_end=mth_end (--mth_end, --end_mth, --month_end, --end_month)

Start month (example: 4), and end month (example: 11). The starting month of
monthly timeseries extracted by the splitter defaults to January of the specified
start year, and the ending month defaults to December of the specified end
year. As of NCO version 4.9.8, released in March, 2021, the splitter mode
of ncclimo accepts user-specified start and end months with the ‘--mth_srt’
and ‘--mth_end’ options, respectively. Months are input as one-based integers
so January is 1 and December is is 12. To extract 14-month timeseries from
individual monthly input files one could use, e.g.,

ncclimo --yr_srt=1 --yr_end=2 --mth_srt=4 --mth_end=5 ...

Note that mth_srt and mth_end only affect the splitter, and that they play no
role in climatology generation.

-s srt_yr (--srt_yr, --yr_srt, --start_year, --year_start, --start)

Start year (example: 1980). By default, the first month used is January of
the specified start year. If ‘-a scd’ is specified, the first month used will be
December of the year before the start year (to allow for contiguous DJF climos).

--seasons=csn_lst (--seasons, --csn_lst, --csn)

Seasons for ncclimo to compute in monthly climatology generation mode. The
list of seasons, csn lst, is a comma-separated, case-insensitive, unordered subset
of the abbreviations for the eleven (so far) defined seasons: jfm, amj, jas, ond,
on, fm, djf, mam, jja, son, and ann. By default csn_lst=mam,jja,son,djf.
Moreover, ncclimo automatically computes the climatological annual mean,
ANN, is always computed when MAM, JJA, SON, and DJF are all requested
(which is the default). The ANN computed automatically is the time-weighted
average of the four seasons, rather than as the time-weighted average of the
twelve monthly climatologies. Users who need ANN but not DJF, MAM,
JJA, and SON should instead explicitly specify ANN as a season in csn lst.
The ANN computed as a season is the time-weighted average of the twelve
monthly climatologies, rather than the time-weighted average of four seasonal
climatologies. Specifying the four seasons and ANN in csn lst (e.g., csn_

lst=mam,jja,son,djf,ann) is legal though redundant and wasteful. It cause

Chapter 4: Reference Manual 237

ANN to be computed twice, first as the average of the twelve monthly climatolo-
gies, then as the average of the four seasons. The special value csn_lst=none

turns-off computation of seasonal (and annual) climatologies.

ncclimo --seasons=none ... # Produce only monthly climos

ncclimo --seasons=mam,jja,son,djf ... # Monthly + MAM,JJA,SON,DJF,ANN

ncclimo --seasons=jfm,jas,ann ... # Monthly + JFM,JAS,ANN

ncclimo --seasons=fm,on ... # Monthly + FM,ON

--stdin (--stdin, --inp_std, --std_flg, --redirect, --standard_input)

This switch (which takes no argument) explicitly indicates that input file lists
are provided via stdin, i.e., standard input. In interactive environments,
ncclimo and ncremap can automatically (i.e., without any switch) detect
whether input is provided via stdin. This switch is never required for jobs
run in an interactive shell. However, non-interactive batch jobs (such as those
submitted to the SLURM and PBS schedulers) make it impossible to unambigu-
ously determine whether input has been provided via stdin. Specifically, the
‘--stdin’ switch must be used in non-interactive batch jobs on PBS when the
input files are piped to stdin, and on SLURM when the input files are redirected
from a file to stdin. Using this switch in any other context (e.g., interactive
shells) is optional.

In some other non-interactive environments (e.g., crontab, nohup, Azure CI,
CWL), ncclimo and ncremap may mistakenly expect input to be provided
on stdin simply because the environment is using stdin for other purposes.
In such cases users may disable checking stdin by explicitly invoking the
‘--clm_md’ option (this works, as described above, only for ncclimo), or by
invoking the ‘--no_stdin’ flag (described next), which works for both ncclimo

and ncremap.

--no_stdin (--no_stdin, --no_inp_std, --no_redirect, --no_standard_input)

First introduced in NCO version 4.8.0 (released May, 2019), this switch (which
takes no argument) disables checking standard input (aka stdin) for input files.
This is useful because ncclimo and ncremap may mistakenly expect input to
be provided on stdin in environments that use stdin for other purposes. Some
non-interactive environments (e.g., crontab, nohup, Azure CI, CWL), may use
standard input for their own purposes, and thus confuse NCO into thinking
that you provided the input files names via the stdin mechanism. In such
cases users may disable the automatic checks for standard input by explicitly
invoking the ‘--no_stdin’ flag. This switch is usually not required for jobs in
an interactive shell. Interactive SLURM shells can also commandeer stdin, as
is the case on the DOE machine named Chrysalis. This behavior appears to vary
depending on the SLURM implementation.

ncclimo --no_stdin -v T -s 2000 -e 2001 --ypf=10 -i in -o out

-t thr_nbr (--thr_nbr, --thr, --thread_number, --threads)

Specifies the number of threads used per regridding process (see Section 3.3
[OpenMP Threading], page 30). The NCO regridder scales well to 8–16 threads.
However, regridding with the maximum number of threads can interfere with

238 NCO 5.0.1 User Guide

climatology generation in parallel climatology mode (i.e., when par typ = mpi

or bck). Hence ncclimo defaults to thr nbr=2.

--tpd=tpd (--tpd_out, --tpd, --timesteps_per_day)

Normally, the number of timesteps-per-day in files ingested by ncclimo. It can
sometimes be difficult for ncclimo to infer the number of timesteps-per-day in
high-frequency input files, i.e., those with 1 or more timesteps-per-day. In such
cases, users may override the inferred value by explicitly specifying --tpd=tpd.

The value of tpd out in daily-average climatology mode clm_md=dly (which is
generally not used outside of ice-sheet models) is different, and actually refers
to the number of timesteps per day that ncclimo will output, regardless of its
value in the input files. Hence in daily-average mode (only), we refer to this
variable as tpd out.

The climatology output from input files at daily or sub-daily resolution is, by de-
fault, averaged to daily resolution, i.e., tpd out=1. If the number of timesteps
per day in each input file is tpd in, then the user may select any value of
tpd out that is smaller than and integrally divides tpd in. For example, an in-
put timeseries with tpd in=8 (i.e., 3-hourly resolution), can be used to produce
climatological output at 3, 6, or 12-hourly resolution by setting tpd out to 8,
4, or 2, respectively. This option only takes effect in daily-average climatology
mode.

For full generality, the --tpd option should probably be split into separate
options --tpd_in and --tpd_out. However, because it is unlikely that anyone
will need to specify these to different values, we leave only one option. If this
hinders you, please let us know and we will split the options.

-v var_lst (--var_lst, --var, --vars, --variables, --variable_list)

Variables to subset or to split. Same behavior as Section 3.12 [Subsetting Files],
page 48. The use of var lst is optional in clim-generation mode. We suggest
using this feature to test whether an ncclimo command, especially one that is
lengthy and/or time-consuming, works as intended on one or a few variables
with, e.g., ‘-v T,FSNT’ before generating the full climatology (by omitting this
option). Invoking this switch was required in the original splitter released in ver-
sion 4.6.5 (March, 2017), and became optional as of version 4.6.6 (May, 2017).
This option is recommended in timeseries reshaping mode to prevent inadver-
tently copying the results of an entire model simulation. Regular expressions are
allowed so, e.g., ‘PREC.?’ extracts the variables ‘PRECC,PRECL,PRECSC,PRECSL’
if present. Currently in reshaping mode all matches to a regular expression are
placed in the same output file. We hope to remove this limitation in the future.

--var_xtr=var_xtr (--var_xtr, --var_xtr, --var_extra, --variables_extra,

--extra_variables)

The ‘-v’ option causes ncclimo to include the extra variables specified in
var xtr in every timeseries split from the raw data. This is useful when extra
variables are desired in timeseries. There are no limits on the extra variables—
they may be of any rank and may be timeseries themselves.

Chapter 4: Reference Manual 239

--version (--version, --vrs, --config, --configuration, --cnf)

This switch (which takes no argument) causes the operator to print its version
and configuration. This includes the copyright notice, URLs to the BSD and
NCO license, directories from which the NCO scripts and binaries are running,
and the locations of any separate executables that may be used by the script.

--xcl_var (--xcl_var, --xcl, --exclude, --exclude_variables)

This flag (which takes no argument) changes var lst, as set by the --var_lst

option, from an extraction list to an exclusion list so that variables in var lst
will not be processed, and variables not in var lst will be processed. Thus the
option ‘-v var_lst’ must also be present for this flag to take effect. Variables
explicitly specified for exclusion by ‘--xcl --vars=var_lst[,...]’ need not
be present in the input file.

--ypf_max ypf_max (--ypf, --years, --years_per_file)

Specifies the maximum number of years-per-file output by ncclimo’s splitting
operation. When ncclimo subsets and splits a collection of input files span-
ning a timerseries, it places each subset variable in its own output file. The
maximum length, in years, of each output file is ypf max, which defaults to
ypf max=50. If an input timeseries spans 237 years and ypf max=50, then
ncclimo will generate four output files of length 50 years and one output file of
length 37 years. Note that invoking this option causes ncclimo to enter time-
series reshaping mode. In fact, one must use ‘--ypf’ to turn-on splitter mode
when the input files are specified by using the ‘-i drc_in’ method. Otherwise
it would be ambiguous whether to generate a climatology from or to split the
input files.

Timeseries Reshaping mode, aka Splitting

This section of the ncclimo documentation applies only to resphaping mode, whereas all
subsequent sections apply to climatology generation mode. As mentioned above, ncclimo
automatically switches to timeseries reshaping mode if it receives a list of files through
stdin, or, alternatively, placed as positional arguments (after the last command-line op-
tion), or if neither of these is done and no caseid is specified, in which case it assumes all
*.nc files in drc in constitute the input file list. These examples invoke reshaping mode in
the three possible ways:

Pipe list to stdin

cd $drc_in;ls *mdl*000[1-9]*.nc | ncclimo -v T,Q,RH -s 1 -e 9 -o $drc_out

Redirect list from file to stdin

cd $drc_in;ls *mdl*000[1-9]*.nc > foo;ncclimo -v T,Q,RH -s 1 -e 9 -o $drc_out < foo

List as positional arguments

ncclimo -v T,Q,RH -s 1 -e 9 -o $drc_out $drc_in/*mdl*000[1-9]*.nc

Glob directory

ncclimo -v T,Q,RH -s 1 -e 9 -i $drc_in -o $drc_out

Assuming each input file is a monthly average comprising the variables T, Q, and RH,
then the output will be files T_000101_000912.nc, Q_000101_000912.nc, and RH_000101_

000912.nc. ncclimo reshapes the input so that the outputs are continuous timeseries
of each variable taken from all input files. When necessary, the output is split into seg-

240 NCO 5.0.1 User Guide

ments each containing no more than ypf max (default 50) years of input, i.e., T_000101_
005012.nc, T_005101_009912.nc, T_010001_014912.nc, etc.

MPAS-O/I/L considerations

MPAS ocean and ice models currently have their own (non-CESM’ish) naming convention
that guarantees output files have the same names for all simulations. By default ncclimo
analyzes the “timeSeriesStatsMonthly” analysis member output (tell us if you want options
for other analysis members). ncclimo and ncremap recognize input files as being MPAS-
style when invoked with ‘-P mpas’ or with the more expressive synonym ‘--prc_typ=mpas’.
While this works for generating climatologies for any MPAS model, some regridder options
are model-specific and therefore it is smarter to specify which MPAS model produced the
input data.

‘-m mpasocean’, (or ‘-m mpaso’ for short), ‘-m mpasseaice’, (or ‘-m mpassi’ for short),
or ‘-m mpaslandice’ (or ‘-m mpasli’ for short), like this:

ncclimo -m mpaso -s 1980 -e 1983 -i $drc_in -o $drc_out # MPAS-O

ncclimo -m mpassi -s 1980 -e 1983 -i $drc_in -o $drc_out # MPAS-SI

ncclimo -m mpasli -s 1980 -e 1983 -i $drc_in -o $drc_out # MPAS-LI

Raw output data from all MPAS models does not contain missing value attributes3.
These attributes must be manually added before sending the data as input to ncclimo or
ncremap. We recommend that simulation producers annotate all floating point variables
with the appropriate _FillValue prior to invoking ncclimo. Run something like this once
in the history-file directory:

for fl in ‘ls hist.*‘ ; do

ncatted -O -t -a _FillValue,,o,d,-9.99999979021476795361e+33 ${fl}

done

If/when MPAS-O/I generates the _FillValue attributes itself, this step can and should
be skipped. All other ncclimo features like regridding (below) are invoked identically
for MPAS as for CAM/CLM users although under-the-hood ncclimo does do some spe-
cial pre-processing (dimension permutation, metadata annotation) for MPAS. A five-year
oEC60to30 MPAS-O climo with regridding to T62 takes less than 10 minutes on the machine
rhea.

Annual climos

Not all model or observed history files are created as monthly means. To create a climatolog-
ical annual mean from a series of annual mean inputs, select ncclimo’s annual climatology
mode with the ‘-C ann’ option:

ncclimo -C ann -m cism -h h -c caseid -s 1851 -e 1900 -i drc_in -o drc_out

The options ‘-m mdl_nm’ and ‘-h hst_nm’ (that default to cam and h0, respectively)
tell ncclimo how to construct the input filenames. The above formula names the files
caseid.cism.h.1851-01-01-00000.nc, caseid.cism.h.1852-01-01-00000.nc, and so

3 We submitted pull-requests to implement the _FillValue attribute in all MPAS-ocean output in July,
2020. The status of this PR may be tracked at https://github.com/MPAS-Dev/MPAS-Model/pull/677.
Once this PR is merged to master, we will do the same for the MPAS-Seaice and MPAS-Landice models.

https://github.com/MPAS-Dev/MPAS-Model/pull/677

Chapter 4: Reference Manual 241

on. Annual climatology mode produces a single output file (or two if regridding is selected),
and in all other respects behaves the same as monthly climatology mode.

Regridding Climos and Other Files

ncclimo will (optionally) regrid during climatology generation and produce climatology
files on both native and analysis grids. This regridding is virtually free, because it is
performed on idle nodes/cores after monthly climatologies have been computed and while
seasonal climatologies are being computed. This load-balancing can save half-an-hour on
ne120 datasets. To regrid, simply pass the desired mapfile name with ‘-r map.nc’, e.g.,
‘-r maps/map_ne120np4_to_fv257x512_aave.20150901.nc’. Although this should not be
necessary for normal use, you may pass any options specific to regridding with ‘-R opt1

opt2’.

Specifying ‘-O drc_rgr’ (NB: uppercase ‘O’) causes ncclimo to place the regridded files
in the directory drc rgr. These files have the same names as the native grid climos from
which they were derived. There is no namespace conflict because they are in separate
directories. These files also have symbolic links to their AMWG filenames. If ‘-O drc_rgr’
is not specified, ncclimo places all regridded files in the native grid climo output directory,
drc out, specified by ‘-o drc_out’ (NB: lowercase ‘o’). To avoid namespace conflicts when
both climos are stored in the same directory, the names of regridded files are suffixed by the
destination geometry string obtained from the mapfile, e.g., *_climo_fv257x512_bilin.nc.
These files also have symbolic links to their AMWG filenames.

ncclimo -c amip_xpt -s 1980 -e 1983 -i drc_in -o drc_out

ncclimo -c amip_xpt -s 1980 -e 1983 -i drc_in -o drc_out -r map_fl

ncclimo -c amip_xpt -s 1980 -e 1983 -i drc_in -o drc_out -r map_fl -O drc_rgr

The above commands perform a climatology without regridding, then with regridding (all
climos stored in drc out), then with regridding and storing regridded files separately. Paths
specified by drc in, drc out, and drc rgr may be relative or absolute. An alternative to
regridding during climatology generation is to regrid afterwards with ncremap, which has
more special features built-in for regridding. To use ncremap to regrid a climatology in
drc out and place the results in drc rgr, use something like

ncremap -I drc_out -m map.nc -O drc_rgr

ls drc_out/*climo* | ncremap -m map.nc -O drc_rgr

See Section 4.12 [ncremap netCDF Remapper], page 302 for more details (including
MPAS!).

Extended Climatologies

ncclimo supports two methods for generating extended climatologies: Binary and Incremen-
tal. Both methods lengthen a climatology without requiring access to all the raw monthly
data spanning the time period. The binary method combines, with appropriate weighting,
two previously computed climatologies into a single climatology. No raw monthly data are
employed. The incremental method computes a climatology from raw monthly data and
(with appropriate weighting) combines that with a previously computed climatology that
ends the month prior to raw data. The incremental method was introduced in NCO version

242 NCO 5.0.1 User Guide

4.6.1 (released August, 2016), and the binary method was introduced in NCO version 4.6.3
(released December, 2016).

Both methods, binary and incremental, compute the so-called “extended climo” as a
weighted mean of two shorter climatologies, called the “previous” and “current” climos.
The incremental method uses the original monthly input to compute the curent climo,
which must immediately follow in time the previous climo which has been pre-computed.
The binary method use pre-computed climos for both the previous and current climos, and
these climos need not be sequential nor chronological. Both previous and current climos for
both binary and incremental methods may be of any length (in years); their weights will
be automatically adjusted in computing the extended climo.

The use of pre-computed climos permits ongoing simulations (or lengthy observations) to
be analyzed in shorter segments combined piecemeal, instead of requiring all raw, native-grid
data to be simultaneously accessible. Without extended climatology capability, generating a
one-hundred year climatology requires that one-hundred years of monthly data be available
on disk. Disk-space requirements for large datasets may make this untenable. Extended
climo methods permits a one-hundred year climo to be generated as the weighted mean of,
say, the current ten year climatology (weighted at 10%) combined with the pre-computed
climatology of the previous 90-years (weighted at 90%). The 90-year climo could itself
have been generated incrementally or binary-wise, and so on. Climatologies occupy at most
17/(12N) the amount of space of N years of monthly data, so the extended methods vastly
reduce disk-space requirements.

Incremental mode is selected by specifying ‘-S’, the start year of the pre-computed,
previous climo. The argument to ‘-S’) is the previous climo start year. That, together with
the current climo end year, determines the extended climo range. ncclimo assumes that
the previous climo ends the month before the current climo begins. In incremental mode,
ncclimo first generates the current climatology from the current monthly input files then
weights that current climo with the previous climo to produce the extended climo.

Binary mode is selected by specifying both ‘-S’ and ‘-E’, the end year of the pre-
computed, previous climo. In binary mode, the previous and current climatologies can
be of any length, and from any time-period, even overlapping. Most users will run extended
clmos the same way they run regular climos in terms of parallelism and regridding, although
that is not required. Both climos must treat Decembers same way (or else previous climo
files will not be found), and if subsetting (i.e., ‘-v var_lst’) is performed, then the subset
must remain the same, and if nicknames (i.e., ‘-f fml_nm’) are employed, then the nickname
must remain the same.

As of 20161129, the climatology_bounds attributes of extended climos are incorrect.
This is a work in progress...

Options:

-E yr_end_prv (--yr_end_prv, --prv_yr_end, --previous_end)

The ending year of the previous climo. This argument is required to trigger
binary climatologies, and should not be used for incremental climatologies.

Chapter 4: Reference Manual 243

-S yr_srt_prv (--yr_srt_prv, --prv_yr_srt, --previous_start)

The starting year of the previous climo. This argument is required to trigger
incremental climatologies, and is also mandatory for binary climatologies.

-X drc_xtn (--drc_xtn, --xtn_drc, --extended)

Directory in which the extended native grid climo files will be stored for an
extended climatology. Default value is drc prv. Unless a separate directory
is specified (with ‘-Y’) for the extended climo on the analysis grid, it will be
stored in drc xtn, too.

-x drc_prv (--drc_prv, --prv_drc, --previous)

Directory in which the previous native grid climo files reside for an incremental
climatology. Default value is drc out. Unless a separate directory is specified
(with ‘-y’) for the previous climo on the analysis grid, it is assumed to reside
in drc prv, too.

-Y drc_rgr_xtn (--drc_rgr_xtn, --drc_xtn_rgr, --extended_regridded,

--regridded_extended)

Directory in which the extended analysis grid climo files will be stored in an
incremental climatology. Default value is drc xtn.

-y drc_rgr_prv (--drc_rgr_prv, --drc_prv_rgr, --regridded_previous,

--previous_regridded)

Directory in which the previous climo on the analysis grid resides in an incre-
mental climatology. Default value is drc prv.

Incremental method climatologies can be as simple as providing a start year for the
previous climo, e.g.,

ncclimo -v FSNT,AODVIS -c caseid -s 1980 -e 1981 -i raw -o clm -

r map.nc

ncclimo -v FSNT,AODVIS -c caseid -s 1982 -e 1983 -i raw -o clm -

r map.nc -S 1980

By default ncclimo stores all native and analysis grid climos in one directory so the
above “just works”. There are no namespace clashes because all climos are for distinct
years, and regridded files have a suffix based on their grid resolution. However, there can
be only one set of AMWG filename links due to AMWG filename convention. Thus AMWG

filename links, if any, point to the latest extended climo in a given directory.

Many researchers segregate (with ‘-O drc_rgr’) native-grid from analysis-grid climos.
Incrementally generated climos must be consistent in this regard. In other words, all climos
contributing to an extended climo must have their native-grid and analysis-grid files in the
same (per-climo) directory, or all climos must segregate their native from their analysis
grid files. Do not segregate the grids in one climo, and combine them in another. Such
climos cannot be incrementally aggregated. Thus incrementing climos can require from
zero to four additional options that specify all the previous and extended climatologies for
both native and analysis grids. The example below constructs the current climo in crr,
then combines the weighted average of that with the previous climo in prv, and places the
resulting extended climatology in xtn. Here the native and analysis climos are combined in
one directory per climo:

244 NCO 5.0.1 User Guide

ncclimo -v FSNT,AODVIS -c caseid -s 1980 -e 1981 -i raw -o prv -r map.nc

ncclimo -v FSNT,AODVIS -c caseid -s 1982 -e 1983 -i raw -o clm -r map.nc \

-S 1980 -x prv -X xtn

If the native and analysis grid climo directories are segregated, then those directories
must be specified, too:

ncclimo -v FSNT,AODVIS -c caseid -s 1980 -e 1981 -i raw -o prv -O rgr_prv -r map.nc

ncclimo -v FSNT,AODVIS -c caseid -s 1982 -e 1983 -i raw -o clm -O rgr -r map.nc \

-S 1980 -x prv -X xtn -y rgr_prv -Y rgr_xtn

ncclimo does not know whether a pre-computed climo is on a native grid or an analysis
grid, i.e., whether it has been regridded. In binary mode, ncclimo may be pointed to two
pre-computed native grid climatologies, or to two pre-computed analysis grid climatologies.
In other words, it is not necessary to maintain native grid climatologies for use in creating
extended climatologies. It is sufficient to generate climatologies on the analysis grid, and
feed them to ncclimo in binary mode, without a mapping file:

ncclimo -c caseid -S 1980 -E 1981 -x prv -s 1980 -e 1981 -i crr -o clm

Coupled Runs

ncclimo works on all E3SM/ACME and CESM models. It can simultaneously generate cli-
matologies for a coupled run, where climatologies mean both native and regridded monthly,
seasonal, and annual averages as per E3SM/ACME specifications (which mandate the inclu-
sion of certain helpful metadata and provenance information). Here are template commands
for a recent simulation:

caseid=20160121.A_B2000ATMMOD.ne30_oEC.titan.a00

drc_in=/scratch/simulations/$caseid/run

drc_out=${DATA}/acme

map_atm=${DATA}/maps/map_ne30np4_to_fv129x256_aave.20150901.nc

map_lnd=$map_atm

map_ocn=${DATA}/maps/map_oEC60to30_to_t62_bilin.20160301.nc

map_ice=$map_ocn

ncclimo -p mpi -c $caseid -m cam -s 2 -e 5 -i $drc_in -r $map_atm -o $drc_out/atm

ncclimo -c $caseid -m clm2 -s 2 -e 5 -i $drc_in -r $map_lnd -o $drc_out/lnd

ncclimo -p mpi -m mpaso -s 2 -e 5 -i $drc_in -r $map_ocn -o $drc_out/ocn

ncclimo -m mpassi -s 2 -e 5 -i $drc_in -r $map_ice -o $drc_out/ice

Atmosphere and ocean model output is typically larger than land and ice model output.
These commands recognize that by using different parallelization strategies that may (rhea
standard queue) or may not (cooley, or rhea’s bigmem queue) be required, depending on
the fatness of the analysis nodes, as explained below.

Memory Considerations

It is important to employ the optimal ncclimo parallelization strategy for your computer
hardware resources. Select from the three available choices with the -p par_typ switch. The
options are serial mode (‘-p srl’, ‘-p serial’, or ‘-p nil’), background mode parallelism
(‘-p bck’, or ‘-p background’), and MPI parallelism (‘-p mpi’ or ‘-p MPI’). The default
is background-mode parallelism. This is appropriate for lower resolution (e.g., ne30L30)

Chapter 4: Reference Manual 245

simulations on most nodes at high-performance computer centers. Use (or at least start
with) serial mode on personal laptops/workstations. Serial mode requires twelve times less
RAM than the parallel modes, and is much less likely to deadlock or cause OOM (out-
of-memory) conditions on your personal computer. If the available RAM (plus swap) is
< 12 ∗ 4∗sizeof(monthly input file), then try serial mode first (12 is the optimal number
of parallel processes for monthly climos, the computational overhead is a factor of four).
CAM-SE ne30L30 output is about 1 GB/month so each month requires about 4 GB of RAM.
CAM-SE ne30L72 output (with LINOZ) is about 10 GB/month so each month requires about
40 GB RAM. CAM-SE ne120 output is about 12 GB/month so each month requires about
48 GB RAM. The computer does not actually use all this memory at one time, and many
kernels compress RAM usage to below what top reports, so the actual physical usage is hard
to pin-down, but may be a factor of 2.5–3.0 (rather than a factor of four) times the size
of the input file. For instance, my 16 GB 2014 MacBookPro successfully runs an ne30L30
climatology (that requests 48 GB RAM) in background mode. However the laptop is slow
and unresponsive for other uses until it finishes (in 6–8 minutes) the climos. Experiment
and choose the parallelization option that performs best.

Serial-mode, as its name implies, uses one core at a time for climos, and proceeds se-
quentially from months to seasons to annual climatologies. Serial mode means that climos
are performed serially, while regridding still employs OpenMP threading (up to 16 cores) on
platforms that support it. By design each month and each season is independent of the oth-
ers, so all months can be computed in parallel, then each season can be computed in parallel
(using monthly climatologies), from which annual average is computed. Background paral-
lelization mode exploits this parallelism and executes the climos in parallel as background
processes on a single node, so that twelve cores are simultaneously employed for monthly
climatologies, four for seasonal, and one for annual. The optional regridding will employ, by
default, up to two cores per process. The MPI parallelism mode executes the climatologies
on different nodes so that up to (optimally) twelve nodes compute monthly climos. The
full memory of each node is available for each individual climo. The optional regridding
employs, by default, up to eight cores per node in MPI-mode. MPI-mode or serial-mode
must be used to process ne30L72 and ne120L30 climos on all but the fattest DOE nodes. An
ne120L30 climo in background mode on rhea (i.e., on one 128 GB compute node) fails due
to OOM. (Unfortunately OOM errors do not produce useful return codes so if your climo
processes die without printing useful information, the cause may be OOM). However the
same climo in background-mode succeeds when executed on a single big-memory (1 TB)
node on rhea (use ‘-lpartition=gpu’, as shown below). Or MPI-mode can be used for any
climatology. The same ne120L30 climo will also finish blazingly fast in background mode
on cooley (i.e., on one 384 GB compute node), so MPI-mode is unnecessary on cooley. In
general, the fatter the memory, the better the performance.

Single, Dedicated Nodes at LCFs

The basic approach above (running the script from a standard terminal window) that works
well for small cases can be unpleasantly slow on login nodes of LCFs and for longer or higher
resolution (e.g., ne120) climatologies. As a baseline, generating a climatology of 5 years of
ne30 (~1x1 degree) CAM-SE output with ncclimo takes 1–2 minutes on rhea (at a time with
little contention), and 6–8 minutes on a 2014 MacBook Pro. To make things a bit faster at

246 NCO 5.0.1 User Guide

LCFs, request a dedicated node (this only makes sense on supercomputers or clusters with
job-schedulers). On rhea or titan, which use the PBS scheduler, do this with

Standard node (128 GB), PBS scheduler

qsub -I -A CLI115 -V -l nodes=1 -l walltime=00:10:00 -N ncclimo

Bigmem node (1 TB), PBS scheduler

qsub -I -A CLI115 -V -l nodes=1 -l walltime=00:10:00 -lpartition=gpu -N ncclimo

The equivalent requests on cooley or mira (Cobalt scheduler) and cori or titan

(SLURM scheduler) are:

Cooley node (384 GB) with Cobalt

qsub -I -A HiRes_EarthSys --nodecount=1 --time=00:10:00 --jobname=ncclimo

Cori node (128 GB) with SLURM

salloc -A acme --nodes=1 --partition=debug --time=00:10:00 --job-name=ncclimo

Flags used and their meanings:

-I Submit in interactive mode. This returns a new terminal shell rather than
running a program.

--time How long to keep this dedicated node for. Unless you kill the shell created
by the qsub command, the shell will exist for this amount of time, then die
suddenly. In the above examples, 10 minutes is requested.

-l nodes=1

PBS syntax (e.g., on rhea) for nodes.

--nodecount 1

Cobalt syntax (e.g., on cooley) for nodes.

--nodes=1

SLURM syntax (e.g., on cori or edison) for nodes. These scheduler-dependent
variations request a quantity of nodes. Request 1 node for Serial or Background-
mode, and up to 12 nodes for MPI-mode parallelism. In all cases ncclimo will
use multiple cores per node if available.

-V Export existing environmental variables into the new interactive shell. This
may not actually be needed.

-q name Queue name. This is needed for locations like edison that have multiple queues
with no default queue.

-A Name of account to charge for time used.

Acquiring a dedicated node is useful for any workflow, not just creating climos. This
command returns a prompt once nodes are assigned (the prompt is returned in your home
directory so you may then have to cd to the location you meant to run from). Then run
your code with the basic ncclimo invocation. The is faster because the node is exclusively
dedicated to ncclimo. Again, ne30L30 climos only require < 2 minutes, so the 10 minutes
requested in the example is excessive and conservative. Tune it with experience.

Chapter 4: Reference Manual 247

12 node MPI-mode Jobs

The above parallel approaches will fail when a single node lacks enough RAM (plus swap) to
store all twelve monthly input files, plus extra RAM for computations. One should employ
MPI multinode parallelism ‘-p mpi’ on nodes with less RAM than 12 ∗ 3∗sizeof(input).
The longest an ne120 climo will take is less than half an hour (~25 minutes on edison

or rhea), so the simplest method to run MPI jobs is to request 12-interactive nodes using
the above commands (though remember to add ‘-p mpi’), then execute the script at the
command line.

It is also possible, and sometimes preferable, to request non-interactive compute nodes
in a batch queue. Executing an MPI-mode climo (on machines with job scheduling and,
optimally, 12 nodes) in a batch queue can be done in two commands. First, write an
executable file which calls the ncclimo script with appropriate arguments. We do this
below by echoing to a file, ncclimo.pbs.

echo "ncclimo -p mpi -c $caseid -s 1 -e 20 -i $drc_in -o $drc_out" > ncclimo.pbs

The only new argument here is ‘-p mpi’ that tells ncclimo to use MPI parallelism. Then
execute this command file with a 12 node non-interactive job:

qsub -A CLI115 -V -l nodes=12 -l walltime=00:30:00 -j oe -m e -N ncclimo \

-o ncclimo.out ncclimo.pbs

This script adds new flags: ‘-j oe’ (combine output and error streams into standard
error), ‘-m e’ (send email to the job submitter when the job ends), ‘-o ncclimo.out’ (write
all output to ncclimo.out). The above commands are meant for PBS schedulers like on
rhea. Equivalent commands for cooley/mira (Cobalt) and cori/edison (SLURM) are

Cooley (Cobalt scheduler)

/bin/rm -f ncclimo.err ncclimo.out

echo ’#!/bin/bash’ > ncclimo.cobalt

echo "ncclimo -p mpi -c $caseid -s 1 -e 20 -i $drc_in -o $drc_out" >> ncclimo.cobalt

chmod a+x ncclimo.cobalt

qsub -A HiRes_EarthSys --nodecount=12 --time=00:30:00 --jobname ncclimo \

--error ncclimo.err --output ncclimo.out --notify zender@uci.edu ncclimo.cobalt

Cori/Edison (SLURM scheduler)

echo "ncclimo -p mpi -c $caseid -s 1 -e 20 -i $drc_in -o $drc_out -r $map_fl" \

> ncclimo.pbs

chmod a+x ncclimo.slurm

sbatch -A acme --nodes=12 --time=03:00:00 --partition=regular --job-name=ncclimo \

--mail-type=END --error=ncclimo.err --output=ncclimo.out ncclimo.slurm

Notice that Cobalt and SLURM require the introductory shebang-interpreter line
(#!/bin/bash) which PBS does not need. Set only the scheduler batch queue parameters
mentioned above. In MPI-mode, ncclimo determines the appropriate number of tasks-
per-node based on the number of nodes available and script internals (like load-balancing
for regridding). Hence do not set a tasks-per-node parameter with scheduler configuration
parameters as this could cause conflicts.

248 NCO 5.0.1 User Guide

What does ncclimo do?

For monthly climatologies (e.g., JAN), ncclimo passes the list of all relevant January
monthly files to NCO’s ncra command, which averages each variable in these monthly
files over their time-dimension (if it exists) or copies the value from the first month un-
changed (if no time-axis exists). Seasonal climos are then created by taking the average of
the monthly climo files using ncra. To account for differing numbers of days per month,
the ncra ‘-w’ flag is used, followed by the number of days in the relevant months. For ex-
ample, the MAM climo is computed with ‘ncra -w 31,30,31 MAR_climo.nc APR_climo.nc

MAY_climo.nc MAM_climo.nc’ (details about file names and other optimization flags have
been stripped here to make the concept easier to follow). The annual (ANN) climo is then
computed as a weighted average of the seasonal climos.

Assumptions, Approximations, and Algorithms (AAA) Employed:

A climatology embodies many algorithmic choices, and regridding from the native to the
analysis grid involves still more choices. A separate method should reproduce the ncclimo
and NCO answers to round-off precision if it implements the same algorithmic choices.
For example, ncclimo agrees to round-off with AMWG diagnostics when making the same
(sometimes questionable) choices. The most important choices have to do with converting
single- to double-precision (SP and DP, respectively), treatment of missing values, and
generation/application of regridding weights. For concreteness and clarity we describe the
algorithmic choices made in processing a CAM-SE monthly output into a climatological
annual mean (ANN) and then regridding that. Other climatologies (e.g., daily to monthly,
or annual-to-climatological) involve similar choices.

E3SM/ACME (and CESM) computes fields in DP and outputs history (not restart) files
as monthly means in SP. The NCO climatology generator (ncclimo) processes these data in
four stages. Stage N accesses input only from stage N − 1, never from stage N − 2 or earlier.
Thus the (on-disk) files from stage N determine the highest precision achievable by stage
N + 1. The general principal is to perform math (addition, weighting, normalization) in DP

and output results to disk in the same precision in which they were input from disk (usually
SP). In Stage 1, NCO ingests Stage 0 monthly means (raw CAM-SE output), converts SP

input to DP, performs the average across all years, then converts the answer from DP to SP

for storage on-disk as the climatological monthly mean. In Stage 2, NCO ingests Stage 1
climatological monthly means, converts SP input to DP, performs the average across all
months in the season (e.g., DJF), then converts the answer from DP to SP for storage on-
disk as the climatological seasonal mean. In Stage 3, NCO ingests Stage 2 climatological
seasonal means, converts SP input to DP, performs the average across all four seasons
(DJF, MAM, JJA, SON), then converts the answer from DP to SP for storage on-disk as the
climatological annual mean.

Stage 2 weights each input month by its number of days (e.g., 31 for January), and
Stage 3 weights each input season by its number of days (e.g., 92 for MAM). E3SM/ACME

runs CAM-SE with a 365-day calendar, so these weights are independent of year and never
change. The treatment of missing values in Stages 1–3 is limited by the lack of missing
value tallies provided by Stage 0 (model) output. Stage 0 records a value as missing if it
is missing for the entire month, and present if the value is valid for one or more timesteps.
Stage 0 does not record the missing value tally (number of valid timesteps) for each spatial

Chapter 4: Reference Manual 249

point. Thus a point with a single valid timestep during a month is weighted the same
in Stages 1–4 as a point with 100% valid timesteps during the month. The absence of
tallies inexorably degrades the accuracy of subsequent statistics by an amount that varies
in time and space. On the positive side, it reduces the output size (by a factor of two) and
complexity of analyzing fields that contain missing values. Due to the ambiguous nature of
missing values, it is debatable whether they merit efforts to treat them more exactly.

The vast majority of fields undergo three promotion/demotion cycles between CAM-SE

and ANN. No promotion/demotion cycles occur for history fields that CAM-SE outputs in
DP rather than SP, nor for fields without a time dimension. Typically these fields are grid
coordinates (e.g., longitude, latitude) or model constants (e.g., CO2 mixing ratio). NCO

never performs any arithmetic on grid coordinates or non-time-varying input, regardless of
whether they are SP or DP. Instead, NCO copies these fields directly from the first input
file. Stage 4 uses a mapfile to regrid climos from the native to the desired analysis grid.
E3SM/ACME currently uses mapfiles generated by ESMF_RegridWeightGen (ERWG) and by
TempestRemap.

The algorithmic choices, approximations, and commands used to generate mapfiles from
input gridfiles are separate issues. We mention only some of these issues here for brevity.
Input gridfiles used by E3SM/ACME until ~20150901, and by CESM (then and currently, at
least for Gaussian grids) contained flaws that effectively reduced their precision, especially
at regional scales, and especially for Gaussian grids. E3SM/ACME (and CESM) mapfiles
continue to approximate grids as connected by great circles, whereas most analysis grids
(and some models) use great circles for longitude and small circles for latitude. The great
circle assumption may be removed in the future. Constraints imposed by ERWG during
weight-generation ensure that global integrals of fields undergoing conservative regridding
are exactly conserved.

Application of weights from the mapfile to regrid the native data to the analysis grid is
straightforward. Grid fields (e.g., latitude, longitude, area) are not regridded. Instead they
are copied (and area is reconstructed if absent) directly from the mapfile. NCO ingests all
other native grid (source) fields, converts SP to DP, and accumulates destination gridcell
values as the sum of the DP weight (from the sparse matrix in the mapfile) times the (usually
SP-promoted-to-DP) source values. Fields without missing values are then stored to disk
in their original precision. Fields with missing values are treated (by default) with what
NCO calls the “conservative” algorithm. This algorithm uses all valid data from the source
grid on the destination grid once and only once. Destination cells receive the weighted valid
values of the source cells. This is conservative because the global integrals of the source
and destination fields are equal. See Section 4.12 [ncremap netCDF Remapper], page 302
for more description of the conservative and of the optional (“renormalized”) algorithm.

EXAMPLES

How to create a climo from a collection of monthly non-CESM’ish files? This is a two-step
procedure: First be sure the names are arranged with a YYYYMM-format date preceding
the suffix (usually ‘.nc’). Then give any monthly input filename to ncclimo. Consider the
MERRA2 collection, for example. As retrieved from NASA, MERRA2 files have names like
svc_MERRA2_300.tavgM_2d_aer_Nx.200903.nc4. While the sub-string ‘200903’ is easy to
recognize as a month in YYYYMM format, other parts (specifically the ‘300’ code) of the

250 NCO 5.0.1 User Guide

filename also change with date. We can use Bash regular expressions to extract dates and
create symbolic links to simpler filenames with regularly patterned YYYYMM strings like
merra2_200903.nc4:

for fl in ‘ls *.nc4‘ ; do

Convert svc_MERRA2_300.tavgM_2d_aer_Nx.YYYYMM.nc4 to merra2_YYYYMM.nc4

sfx_out=‘expr match "${fl}" ’.*_Nx.\(.*.nc4\)’‘

fl_out="merra2_${sfx_out}"

ln -s ${fl} ${fl_out}

done

Then call ncclimo with any standard format filename, e.g., merra2_200903.nc4, as as
the caseid:

ncclimo -c merra2_200903.nc4 -s 1980 -e 2016 -i $drc_in -o $drc_out

In the default monthly climo generation mode, ncclimo expects each input file to contain
one single record that is the monthly average of all fields. Another example of of wrangling
observed datasets into a CESMish format is ECMWF Integrated Forecasting System (IFS)
output that contains twelve months per file, rather than the one month per file that ncclimo
expects.

for yr in {1979..2016}; do

Convert ifs_YYYY01-YYYY12.nc to ifs_YYYYMM.nc

yyyy=‘printf "%04d" $yr‘

for mth in {1..12}; do

mm=‘printf "%02d" $mth‘

ncks -O -F -d time,${mth} ifs_${yyyy}01-${yyyy}12.nc ifs_${yyyy}${mm}.nc

done

done

Then call ncclimo with ifs_197901.nc as caseid:

ncclimo -c ifs_197901.nc -s 1979 -e 2016 -i $drc_in -o $drc_out

ncclimo does not recognize all combinations imaginable of records per file and files per
year. However, support can be added for the most prevalent combinations so that ncclimo,
rather than the user, does any necessary data wrangling. Contact us if there is a common
input data format you would like supported as a custom option.

Often one wishes to create a climatology of a single variable. The ‘-f fml_nm’ option to
ncclimo makes this easy. Consider a series of single-variable climos for the fields FSNT, and
FLNT

ncclimo -v FSNT -f FSNT -c amip_xpt -s 1980 -e 1983 -i drc_in -o drc_out

ncclimo -v FLNT -f FLNT -c amip_xpt -s 1980 -e 1983 -i drc_in -o drc_out

These climos use the ‘-f’ option and so their output files will have no namespace conflicts.
Moreover, the climatologies can be generated in parallel.

Chapter 4: Reference Manual 251

4.5 ncecat netCDF Ensemble Concatenator

SYNTAX

ncecat [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]] [-F] [--fl_fmt fl_fmt]

[-G gpe_dsc] [-g grp[,...]] [--gag] [--glb ...]

[-h] [--hdf] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [-M] [--md5_digest] [--mrd] [-n loop]

[--no_cll_msr] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o output-file] [-p path] [--ppc ...] [-R] [-r] [--ram_all]

[-t thr_nbr] [-u ulm_nm] [--unn] [-v var[,...]] [-X ...] [-x]

[input-files] [output-file]

DESCRIPTION

ncecat aggregates an arbitrary number of input files into a single output file using using
one of two methods. Record AGgregation (RAG), the traditional method employed on
(flat) netCDF3 files and still the default method, stores input-files as consecutive records
in the output-file. Group AGgregation (GAG) stores input-files as top-level groups in the
netCDF4 output-file. Record Aggregation (RAG) makes numerous assumptions about the
structure of input files whereas Group Aggregation (GAG) makes none. Both methods are
described in detail below. Since ncecat aggregates all the contents of the input files, it can
easily produce large output files so it is often helpful to invoke subsetting simultaneously
(see Section 3.12 [Subsetting Files], page 48).

RAG makes each variable (except coordinate variables) in each input file into a single
record of the same variable in the output file. Coordinate variables are not concatenated,
they are instead simply copied from the first input file to the output-file. All input-files
must contain all extracted variables (or else there would be “gaps” in the output file).

A new record dimension is the glue which binds together the input file data. The new
record dimension is defined in the root group of the output file so it is visible to all sub-
groups. Its name is, by default, “record”. This default name can be overridden with the
‘-u ulm_nm’ short option (or the ‘--ulm_nm’ or ‘rcd_nm’ long options).

Each extracted variable must be constant in size and rank across all input-files. The only
exception is that ncecat allows files to differ in the record dimension size if the requested
record hyperslab (see Section 3.16 [Hyperslabs], page 63) resolves to the same size for all files.
This allows easier gluing/averaging of unequal length timeseries from simulation ensembles
(e.g., the CMIP archive).

Classic (i.e., all netCDF3 and NETCDF4_CLASSIC) output files can contain only one record
dimension. ncecat makes room for the new glue record dimension by changing the pre-
existing record dimension, if any, in the input files into a fixed dimension in the output file.
netCDF4 output files may contain any number of record dimensions, so ncecat need not
and does not alter the record dimensions, if any, of the input files as it copies them to the
output file.

252 NCO 5.0.1 User Guide

Group AGgregation (GAG) stores input-files as top-level groups in the output-file. No
assumption is made about the size or shape or type of a given object (variable or dimension
or group) in the input file. The entire contents of the extracted portion of each input
file is placed in its own top-level group in output-file, which is automatically made as a
netCDF4-format file.

GAG has two methods to specify group names for the output-file. The ‘-G’ option, or its
long-option equivalent ‘--gpe’, takes as argument a group path editing description gpe dsc
of where to place the results. Each input file needs a distinct output group name to avoid
namespace conflicts in the output-file. Hence ncecat automatically creates unique output
group names based on either the input filenames or the gpe dsc arguments. When the
user provides gpe dsc (i.e., with ‘-G’), then the output groups are formed by enumerating
sequential two-digit numeric suffixes starting with zero, and appending them to the specified
group path (see Section 3.14 [Group Path Editing], page 53). When gpe dsc is not provided
(i.e., user requests GAG with ‘--gag’ instead of ‘-G’), then ncecat forms the output groups
by stripping the input file name of any type-suffix (e.g., .nc), and all but the final component
of the full filename.

ncecat --gag 85.nc 86.nc 87.nc 8587.nc # Output groups 85, 86, 87

ncecat -G 85_ a.nc b.nc c.nc 8589.nc # Output groups 85_00, 85_01, 85_02

ncecat -G 85/ a.nc b.nc c.nc 8589.nc # Output groups 85/00, 85/01, 85/02

With both RAG and GAG the output-file size is the sum of the sizes of the extracted
variables in the input files. See Section 2.6 [Statistics vs. Concatenation], page 20, for a
description of the distinctions between the various statistics tools and concatenators. As
a multi-file operator, ncecat will read the list of input-files from stdin if they are not
specified as positional arguments on the command line (see Section 2.7 [Large Numbers of
Files], page 21).

Suppress global metadata copying. By default NCO’s multi-file operators copy the global
metadata from the first input file into output-file. This helps to preserve the provenance
of the output data. However, the use of metadata is burgeoning and sometimes one en-
counters files with excessive amounts of extraneous metadata. Extracting small bits of
data from such files leads to output files which are much larger than necessary due to
the automatically copied metadata. ncecat supports turning off the default copying of
global metadata via the ‘-M’ switch (or its long option equivalents, ‘--no_glb_mtd’ and
‘--suppress_global_metadata’).

Consider five realizations, 85a.nc, 85b.nc, . . . 85e.nc of 1985 predictions from the same
climate model. Then ncecat 85?.nc 85_ens.nc glues together the individual realizations
into the single file, 85_ens.nc. If an input variable was dimensioned [lat,lon], it will by
default have dimensions [record,lat,lon] in the output file. A restriction of ncecat is that
the hyperslabs of the processed variables must be the same from file to file. Normally this
means all the input files are the same size, and contain data on different realizations of the
same variables.

Concatenating a variable packed with different scales across multiple datasets is be-
yond the capabilities of ncecat (and ncrcat, the other concatenator (Section 2.6.1 [Con-
catenation], page 20). ncecat does not unpack data, it simply copies the data from the
input-files, and the metadata from the first input-file, to the output-file. This means that

Chapter 4: Reference Manual 253

data compressed with a packing convention must use the identical packing parameters (e.g.,
scale_factor and add_offset) for a given variable across all input files. Otherwise the
concatenated dataset will not unpack correctly. The workaround for cases where the pack-
ing parameters differ across input-files requires three steps: First, unpack the data using
ncpdq. Second, concatenate the unpacked data using ncecat, Third, re-pack the result with
ncpdq.

EXAMPLES

Consider a model experiment which generated five realizations of one year of data, say
1985. You can imagine that the experimenter slightly perturbs the initial conditions of the
problem before generating each new solution. Assume each file contains all twelve months
(a seasonal cycle) of data and we want to produce a single file containing all the seasonal
cycles. Here the numeric filename suffix denotes the experiment number (not the month):

ncecat 85_01.nc 85_02.nc 85_03.nc 85_04.nc 85_05.nc 85.nc

ncecat 85_0[1-5].nc 85.nc

ncecat -n 5,2,1 85_01.nc 85.nc

These three commands produce identical answers. See Section 3.6 [Specifying Input Files],
page 34, for an explanation of the distinctions between these methods. The output file,
85.nc, is five times the size as a single input-file. It contains 60 months of data.

One often prefers that the (new) record dimension have a more descriptive, context-
based name than simply “record”. This is easily accomplished with the ‘-u ulm_nm’ switch.
To add a new record dimension named “time” to all variables

ncecat -u time in.nc out.nc

To glue together multiple files with a new record variable named “realization”

ncecat -u realization 85_0[1-5].nc 85.nc

Users are more likely to understand the data processing history when such descriptive
coordinates are used.

Consider a file with an existing record dimension named time. and suppose the user
wishes to convert time from a record dimension to a non-record dimension. This may be
useful, for example, when the user has another use for the record variable. The simplest
method is to use ‘ncks --fix_rec_dmn’, and another possibility is to use ncecat followed
by ncwa:

ncecat in.nc out.nc # Convert time to non-record dimension

ncwa -a record in.nc out.nc # Remove new degenerate record dimension

The second step removes the degenerate record dimension. See Section 4.9 [ncpdq netCDF
Permute Dimensions Quickly], page 287 and Section 4.8 [ncks netCDF Kitchen Sink],
page 261 for other methods of of changing variable dimensionality, including the record
dimension.

254 NCO 5.0.1 User Guide

4.6 nces netCDF Ensemble Statistics

SYNTAX

nces [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c] [--cb y1,y2,m1,m2,tpd]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]] [-F]

[-G gpe_dsc] [-g grp[,...]] [--glb ...]

[-h] [--hdf] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [-n loop]

[--no_cll_msr] [--no_frm_trm] [--no_tmp_fl] [--nsm_fl|grp] [--nsm_sfx sfx]

[-O] [-o output-

file] [-p path] [--ppc ...] [-R] [-r] [--ram_all] [--rth_dbl|flt]

[-t thr_nbr] [--unn] [-v var[,...]] [-w wgt] [-X ...] [-x] [-y op_typ]

[input-files] [output-file]

DESCRIPTION

nces performs gridpoint statistics (including, but not limited to, averages) on variables
across an arbitrary number (an ensemble) of input-files and/or of input groups within each
file. Each file (or group) receives an equal weight by default. nces was formerly (until NCO

version 4.3.9, released December, 2013) known as ncea (netCDF Ensemble Averager)1. For
example, nces will average a set of files or groups, weighting each file or group evenly
by default. This is distinct from ncra, which performs statistics only over the record
dimension(s) (e.g., time), and weights each record in each record dimension evenly.

The file or group is the logical unit of organization for the results of many scientific
studies. Often one wishes to generate a file or group which is the statistical product (e.g.,
average) of many separate files or groups. This may be to reduce statistical noise by
combining the results of a large number of experiments, or it may simply be a step in a
procedure whose goal is to compute anomalies from a mean state. In any case, when one
desires to generate a file whose statistical properties are influenced by all the inputs, then
use nces.

As of NCO version 4.9.4, released in July, 2020, nces accepts user-specified weights with
the ‘-w’ (or long-option equivalent ‘--wgt’, ‘--wgt_var’, or ‘--weight’) switch. The user
must specify one weight per input file on the command line, or the name of a (scalar or
degenerate 1-D array) variable in each input file that contains a single value to weight that
file. When no weight is specified, nces weights each file (e.g., ensemble) in the input-files
equally.

Variables in the output-file are the same size as the variable hyperslab in each input file
or group, and each input file or group must be the same size after hyperslabbing2 nces does
allow files to differ in the input record dimension size if the requested record hyperslab (see

1 The old ncea command was deprecated in NCO version 4.3.9, released December, 2013. NCO will
attempt to maintain back-compatibility and work as expected with invocations of ncea for as long as
possible. Please replace ncea by nces in all future work.

2 As of NCO version 4.4.2 (released February, 2014) nces allows hyperslabs in all dimensions so long as
the hyperslabs resolve to the same size. The fixed (i.e., non-record) dimensions should be the same size
in all ensemble members both before and after hyperslabbing, although the hyperslabs may (and usually

Chapter 4: Reference Manual 255

Section 3.16 [Hyperslabs], page 63) resolves to the same size for all files. nces recomputes
the record dimension hyperslab limits for each input file so that coordinate limits may be
used to select equal length timeseries from unequal length files. This simplifies analysis of
unequal length timeseries from simulation ensembles (e.g., the CMIP3 IPCC AR4 archive).

nces works in one of two modes, file ensembles or group ensembles. File ensembles
are the default (equivalent to the old ncea) and may also be explicitly specified by the
‘--nsm_fl’ or ‘--ensemble_file’ switches. To perform statistics on ensembles of groups, a
newer feature, use ‘--nsm_grp’ or ‘--ensemble_group’. Members of a group ensemble are
groups that share the same structure, parent group, and nesting level. Members must be
leaf groups, i.e., not contain any sub-groups. Their contents usually have different values
because they are realizations of replicated experiments. In group ensemble mode nces

computes the statistics across the ensemble, which may span multiple input files. Files may
contain members of multiple, distinct ensembles. However, all ensembles must have at least
one member in the first input file. Group ensembles behave as an unlimited dimension of
datasets: they may contain an arbitrary and extensible number of realizations in each file,
and may be composed from multiple files.

Output statistics in group ensemble mode are stored in the parent group by default. If the
ensemble members are /cesm/cesm_01 and /cesm/cesm_02, then the computed statistic will
be in /cesm in the output file. The ‘--nsm_sfx’ option instructs nces to instead store output
in a new child group of the parent created by attaching the suffix to the parent group’s name,
e.g., ‘--nsm_sfx=’_avg’’ would store results in the output group /cesm/cesm_avg:

nces --nsm_grp mdl1.nc mdl2.nc mdl3.nc out.nc

nces --nsm_grp --nsm_sfx=’_avg’ mdl1.nc mdl2.nc mdl3.nc out.nc

See Section 2.6 [Statistics vs. Concatenation], page 20, for a description of the distinc-
tions between the statistics tools and concatenators. As a multi-file operator, nces will
read the list of input-files from stdin if they are not specified as positional arguments on
the command line (see Section 2.7 [Large Numbers of Files], page 21).

Like ncra and ncwa, nces treats coordinate variables as a special case. Coordinate
variables are assumed to be the same in all ensemble members, so nces simply copies the
coordinate variables that appear in ensemble members directly to the output file. This
has the same effect as averaging the coordinate variable across the ensemble, yet does not
incur the time- or precision- penalties of actually averaging them. ncra and ncwa allow
coordinate variables to be processed only by the linear average operation, regardless of
the arithmetic operation type performed on the non-coordinate variables (see Section 3.39
[Operation Types], page 128). Thus it can be said that the three operators (ncra, ncwa, and
nces) all average coordinate variables (even though nces simply copies them). All other
requested arithmetic operations (e.g., maximization, square-root, RMS) are applied only to
non-coordinate variables. In these cases the linear average of the coordinate variable will
be returned.

EXAMPLES

do) change the size of the dimensions from the input to the output files. Prior to this, nces was only
guaranteed to work on hyperslabs in the record dimension that resolved to the same size.

256 NCO 5.0.1 User Guide

Consider a model experiment which generated five realizations of one year of data, say
1985. Imagine that the experimenter slightly perturbs the initial conditions of the problem
before generating each new solution. Assume each file contains all twelve months (a seasonal
cycle) of data and we want to produce a single file containing the ensemble average (mean)
seasonal cycle. Here the numeric filename suffix denotes the realization number (not the
month):

nces 85_01.nc 85_02.nc 85_03.nc 85_04.nc 85_05.nc 85.nc

nces 85_0[1-5].nc 85.nc

nces -n 5,2,1 85_01.nc 85.nc

These three commands produce identical answers. See Section 3.6 [Specifying Input Files],
page 34, for an explanation of the distinctions between these methods. The output file,
85.nc, is the same size as the inputs files. It contains 12 months of data (which might or
might not be stored in the record dimension, depending on the input files), but each value
in the output file is the average of the five values in the input files.

In the previous example, the user could have obtained the ensemble average values in a
particular spatio-temporal region by adding a hyperslab argument to the command, e.g.,

nces -d time,0,2 -d lat,-23.5,23.5 85_??.nc 85.nc

In this case the output file would contain only three slices of data in the time dimension.
These three slices are the average of the first three slices from the input files. Additionally,
only data inside the tropics is included.

As of NCO version 4.3.9 (released December, 2013) nces also works with groups (rather
than files) as the fundamental unit of the ensemble. Consider two ensembles, /ecmwf and
/cesm stored across three input files mdl1.nc, mdl2.nc, and mdl3.nc. Ensemble members
would be leaf groups with names like /ecmwf/01, /ecmwf/02 etc. and /cesm/01, /cesm/02,
etc. These commands average both ensembles:

nces --nsm_grp mdl1.nc mdl2.nc mdl3.nc out.nc

nces --nsm_grp --nsm_sfx=’_min’ --op_typ=min -n 3,1,1 mdl1.nc out.nc

nces --nsm_grp -g cesm -v tas -d time,0,3 -n 3,1,1 mdl1.nc out.nc

nces --nsm_grp mdl1.nc mdl2.nc mdl3.nc out.nc

nces --nsm_grp --nsm_sfx=’_min’ --op_typ=min -n 3,1,1 mdl1.nc out.nc

nces --nsm_grp -g cesm -v tas -d time,0,3 -n 3,1,1 mdl1.nc out.nc

The first command stores averages in the output groups /cesm and /ecmwf, while the
second stores minima in the output groups /cesm/cesm_min and /ecmwf/ecmwf_min: The
third command demonstrates that sub-setting and hyperslabbing work as expected. Note
that each input file may contain different numbers of members of each ensemble, as long as
all distinct ensembles contain at least one member in the first file.

As of NCO version 4.9.4, released in July, 2020, nces accepts user-specified weights with
the ‘-w’ (or long-option equivalent ‘--wgt’, ‘--wgt_var’, or ‘--weight’) switch:

Construct input variables with values of 1 and 2

ncks -O -M -v one ~/nco/data/in.nc ~/1.nc

ncrename -O -v one,var ~/1.nc

ncap2 -O -s ’var=2’ ~/1.nc ~/2.nc

Chapter 4: Reference Manual 257

Three methods of weighting input files unevenly

1. Old-method: specify input files multiple times

2. New-method: specify one weight per input file

3. New-method: specify weight variable in each input file

nces -O ~/1.nc ~/2.nc ~/2.nc ~/out.nc # Clumsy, limited to integer weights

nces -O -w 1,2 ~/1.nc ~/2.nc ~/out.nc # Flexible, works for any weight

nces -O -w var ~/1.nc ~/2.nc ~/out.nc # Flexible, works for any weight

All three methods produce same answer: var=(1*1+2*2)/3=5/3=1.67

ncks ~/out.nc

258 NCO 5.0.1 User Guide

4.7 ncflint netCDF File Interpolator

SYNTAX

ncflint [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]] [--fl_fmt fl_fmt]

[-F] [--fix_rec_crd] [-G gpe_dsc] [-g grp[,...]] [--glb ...]

[-h] [--hdr_pad nbr] [--hpss]

[-i var,val3] [-L dfl_lvl] [-l path] [-N]

[--no_cll_msr] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o file_3] [-p path] [--ppc ...] [-R] [-r] [--ram_all]

[-t thr_nbr] [--unn] [-v var[,...]] [-w wgt1[,wgt2]] [-X ...] [-x]

file_1 file_2 [file_3]

DESCRIPTION

ncflint creates an output file that is a linear combination of the input files. This linear
combination is a weighted average, a normalized weighted average, or an interpolation of
the input files. Coordinate variables are not acted upon in any case, they are simply copied
from file 1.

There are two conceptually distinct methods of using ncflint. The first method is to
specify the weight each input file contributes to the output file. In this method, the value
val3 of a variable in the output file file 3 is determined from its values val1 and val2 in
the two input files according to val3 = wgt1 × val1 + wgt2 × val2 . Here at least wgt1,
and, optionally, wgt2, are specified on the command line with the ‘-w’ (or ‘--weight’ or
‘--wgt_var’) switch. If only wgt1 is specified then wgt2 is automatically computed as
wgt2 = 1−wgt1. Note that weights larger than 1 are allowed. Thus it is possible to specify
wgt1 = 2 and wgt2 = −3. One can use this functionality to multiply all values in a given
file by a constant.

As of NCO version 4.6.1 (July, 2016), the ‘-N’ switch (or long-option equivalents ‘--nrm’
or ‘--normalize’) implements a variation of this method. This switch instructs ncflint
to internally normalize the two supplied (or one supplied and one inferred) weights so that
wgt1 = wgt1/(wgt1+wgt2) and wgt2 = wgt2/(wgt1+wgt2) . This allows the user to input
integral weights, say, and to delegate the chore of normalizing them to ncflint. Be careful
that ‘-N’ means what you think, since the same switch means something quite different in
ncwa.

The second method of using ncflint is to specify the interpolation option with ‘-i’ (or
with the ‘--ntp’ or ‘--interpolate’ long options). This is the inverse of the first method
in the following sense: When the user specifies the weights directly, ncflint has no work
to do besides multiplying the input values by their respective weights and adding together
the results to produce the output values. It makes sense to use this when the weights are
known a priori.

Another class of problems has the arrival value (i.e., val3) of a particular variable var
known a priori. In this case, the implied weights can always be inferred by examining the
values of var in the input files. This results in one equation in two unknowns, wgt1 and

Chapter 4: Reference Manual 259

wgt2: val3 = wgt1 × val1 + wgt2 × val2 . Unique determination of the weights requires
imposing the additional constraint of normalization on the weights: wgt1 + wgt2 = 1.
Thus, to use the interpolation option, the user specifies var and val3 with the ‘-i’ option.
ncflint then computes wgt1 and wgt2, and uses these weights on all variables to generate
the output file. Although var may have any number of dimensions in the input files, it
must represent a single, scalar value. Thus any dimensions associated with var must be
degenerate, i.e., of size one.

If neither ‘-i’ nor ‘-w’ is specified on the command line, ncflint defaults to weighting
each input file equally in the output file. This is equivalent to specifying ‘-w 0.5’ or ‘-w
0.5,0.5’. Attempting to specify both ‘-i’ and ‘-w’ methods in the same command is an
error.

ncflint does not interpolate variables of type NC_CHAR and NC_STRING. This behavior
is hardcoded.

By default ncflint interpolates or multiplies record coordinate variables (e.g., time is
often stored as a record coordinate) not other coordinate variables (e.g., latitude and longi-
tude). This is because ncflint is often used to time-interpolate between existing files, but
is rarely used to spatially interpolate. Sometimes however, users wish to multiply entire
files by a constant that does not multiply any coordinate variables. The ‘--fix_rec_crd’
switch was implemented for this purpose in NCO version 4.2.6 (March, 2013). It prevents
ncflint from multiplying or interpolating any coordinate variables, including record coor-
dinate variables.

Depending on your intuition, ncflint may treat missing values unexpectedly. Consider
a point where the value in one input file, say val1, equals the missing value mss val 1 and,
at the same point, the corresponding value in the other input file val2 is not misssing (i.e.,
does not equal mss val 2). There are three plausible answers, and this creates ambiguity.

Option one is to set val3 = mss val 1. The rationale is that ncflint is, at heart, an
interpolator and interpolation involving a missing value is intrinsically undefined. ncflint
currently implements this behavior since it is the most conservative and least likely to lead
to misinterpretation.

Option two is to output the weighted valid data point, i.e., val3 = wgt2 × val2 . The
rationale for this behavior is that interpolation is really a weighted average of known points,
so ncflint should weight the valid point.

Option three is to return the unweighted valid point, i.e., val3 = val2. This behavior
would appeal to those who use ncflint to estimate data using the closest available data.
When a point is not bracketed by valid data on both sides, it is better to return the known
datum than no datum at all.

The current implementation uses the first approach, Option one. If you have strong
opinions on this matter, let us know, since we are willing to implement the other approaches
as options if there is enough interest.

EXAMPLES

Although it has other uses, the interpolation feature was designed to interpolate file 3
to a time between existing files. Consider input files 85.nc and 87.nc containing variables

260 NCO 5.0.1 User Guide

describing the state of a physical system at times time = 85 and time = 87. Assume each
file contains its timestamp in the scalar variable time. Then, to linearly interpolate to a
file 86.nc which describes the state of the system at time at time = 86, we would use

ncflint -i time,86 85.nc 87.nc 86.nc

Say you have observational data covering January and April 1985 in two files named
85_01.nc and 85_04.nc, respectively. Then you can estimate the values for February and
March by interpolating the existing data as follows. Combine 85_01.nc and 85_04.nc in a
2:1 ratio to make 85_02.nc:

ncflint -w 0.667 85_01.nc 85_04.nc 85_02.nc

ncflint -w 0.667,0.333 85_01.nc 85_04.nc 85_02.nc

Multiply 85.nc by 3 and by −2 and add them together to make tst.nc:

ncflint -w 3,-2 85.nc 85.nc tst.nc

This is an example of a null operation, so tst.nc should be identical (within machine
precision) to 85.nc.

Multiply all the variables except the coordinate variables in the file emissions.nc by
by 0.8:

ncflint --fix_rec_crd -w 0.8,0.0 emissions.nc emissions.nc scaled_emissions.nc

The use of ‘--fix_rec_crd’ ensures, e.g., that the time coordinate, if any, is not scaled
(i.e., multiplied).

Add 85.nc to 86.nc to obtain 85p86.nc, then subtract 86.nc from 85.nc to obtain
85m86.nc

ncflint -w 1,1 85.nc 86.nc 85p86.nc

ncflint -w 1,-1 85.nc 86.nc 85m86.nc

ncdiff 85.nc 86.nc 85m86.nc

Thus ncflint can be used to mimic some ncbo operations. However this is not a good
idea in practice because ncflint does not broadcast (see Section 4.3 [ncbo netCDF Binary
Operator], page 223) conforming variables during arithmetic. Thus the final two commands
would produce identical results except that ncflint would fail if any variables needed to
be broadcast.

Rescale the dimensional units of the surface pressure prs_sfc from Pascals to hectopas-
cals (millibars)

ncflint -C -v prs_sfc -w 0.01,0.0 in.nc in.nc out.nc

ncatted -a units,prs_sfc,o,c,millibar out.nc

Chapter 4: Reference Manual 261

4.8 ncks netCDF Kitchen Sink

SYNTAX

ncks [-3] [-4] [-5] [-6] [-7] [-A] [-a] [--area_wgt]

[-b fl_bnr] [-C] [-c] [--cdl] [--chk_map] [--chk_nan]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]]

[-F] [--fix_rec_dmn dim] [--fl_fmt fl_fmt] [--fmt_val format]

[-G gpe_dsc] [-g grp[,...]] [--glb ...] [--grp_xtr_var_xcl]

[-H] [-h] [--hdn] [--hdr_pad nbr] [--hpss] [--jsn] [--jsn_fmt lvl]

[-L dfl_lvl] [-l path]

[-M] [-m] [--map map-file] [--md5] [--mk_rec_dmn dim]

[--no_blank] [--no_cll_msr] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o output-file] [-P] [-p path] [--ppc ...] [--prn_fl print-file]

[-Q] [-q] [-R] [-r] [--rad] [--ram_all] [--rgr ...] [--rnr=wgt]

[-s format] [-u] [--unn] [-V] [-v var[,...]] [--vrt vrt-file]

[-X ...] [-x] [--xml] input-file [[output-file]]

DESCRIPTION

The nickname “kitchen sink” is a catch-all because ncks combines most features of
ncdump and nccopy with extra features to extract, hyperslab, multi-slab, sub-set, and
translate into one versatile utility. ncks extracts (a subset of the) data from input-file,
regrids it according to map-file if specified, then writes in netCDF format to output-file,
and optionally writes it in flat binary format to fl_bnr, and optionally prints it to screen.

ncks prints netCDF input data in ASCII, CDL, JSON, or NcML/XML text formats to
stdout, like (an extended version of) ncdump. By default ncks prints CDL format. Option
‘-s’ (or long options ‘--sng_fmt’ and ‘--string’) permits the user to format data using C-
style format strings, while option ‘--cdl’ outputs CDL, option ‘--jsn’ (or ‘json’) outputs
JSON, option ‘--trd’ (or ‘traditional’) outputs “traditional” format, and option ‘--xml’
(or ‘ncml’) outputs NcML. The “traditional” tabular format is intended to be easy to
search for the data you want, one datum per screen line, with all dimension subscripts and
coordinate values (if any) preceding the datum. ncks exposes many flexible controls over
printed output, including CDL, JSON, and NcML.

Options ‘-a’, ‘--cdl’, ‘-F’, ‘--fmt_val’, ‘-H’, ‘--hdn’, ‘--jsn’, ‘-M’, ‘-m’, ‘-P’,
‘--prn_fl’, ‘-Q’, ‘-q’, ‘-s’, ‘--trd’, ‘-u’, ‘-V’, and ‘--xml’ (and their long option coun-
terparts) control the presence of data and metadata and their formatted location and ap-
pearance when printed.

ncks extracts (and optionally creates a new netCDF file comprised of) only selected
variables from the input file (similar to the old ncextr specification). Only variables and
coordinates may be specifically included or excluded—all global attributes and any attribute
associated with an extracted variable are copied to the screen and/or output netCDF file.
Options ‘-c’, ‘-C’, ‘-v’, and ‘-x’ (and their long option synonyms) control which variables
are extracted.

262 NCO 5.0.1 User Guide

ncks extracts hyperslabs from the specified variables (ncks implements the original
nccut specification). Option ‘-d’ controls the hyperslab specification. Input dimensions
that are not associated with any output variable do not appear in the output netCDF. This
feature removes superfluous dimensions from netCDF files.

ncks will append variables and attributes from the input-file to output-file if output-
file is a pre-existing netCDF file whose relevant dimensions conform to dimension sizes of
input-file. The append features of ncks are intended to provide a rudimentary means of
adding data from one netCDF file to another, conforming, netCDF file. If naming conflicts
exist between the two files, data in output-file is usually overwritten by the corresponding
data from input-file. Thus, when appending, the user should backup output-file in case
valuable data are inadvertantly overwritten.

If output-file exists, the user will be queried whether to overwrite, append, or exit the
ncks call completely. Choosing overwrite destroys the existing output-file and create an
entirely new one from the output of the ncks call. Append has differing effects depending
on the uniqueness of the variables and attributes output by ncks: If a variable or attribute
extracted from input-file does not have a name conflict with the members of output-file then
it will be added to output-file without overwriting any of the existing contents of output-
file. In this case the relevant dimensions must agree (conform) between the two files; new
dimensions are created in output-file as required. When a name conflict occurs, a global
attribute from input-file will overwrite the corresponding global attribute from output-file.
If the name conflict occurs for a non-record variable, then the dimensions and type of the
variable (and of its coordinate dimensions, if any) must agree (conform) in both files. Then
the variable values (and any coordinate dimension values) from input-file will overwrite the
corresponding variable values (and coordinate dimension values, if any) in output-file1.

Since there can only be one record dimension in a file, the record dimension must have the
same name (though not necessarily the same size) in both files if a record dimension variable
is to be appended. If the record dimensions are of differing sizes, the record dimension of
output-file will become the greater of the two record dimension sizes, the record variable
from input-file will overwrite any counterpart in output-file and fill values will be written
to any gaps left in the rest of the record variables (I think). In all cases variable attributes
in output-file are superseded by attributes of the same name from input-file, and left alone
if there is no name conflict.

Some users may wish to avoid interactive ncks queries about whether to overwrite ex-
isting data. For example, batch scripts will fail if ncks does not receive responses to its
queries. Options ‘-O’ and ‘-A’ are available to force overwriting existing files, and appending
existing variables, respectively.

Options specific to ncks

The following summarizes features unique to ncks. Features common to many operators
are described in Chapter 3 [Shared features], page 29.

1 Those familiar with netCDF mechanics might wish to know what is happening here: ncks does not
attempt to redefine the variable in output-file to match its definition in input-file, ncks merely copies
the values of the variable and its coordinate dimensions, if any, from input-file to output-file.

Chapter 4: Reference Manual 263

‘-a’ Switches ‘-a’, ‘--abc’, and ‘--alphabetize’ turn-off the default alphbetization
of extracted fields in ncks only. These switches are misleadingly named and
were deprecated in ncks as of NCO version 4.7.1 (December, 2017).

This is the default behavior so these switches are no-ops included only for
completeness. By default, NCO extracts, prints, and writes specified output
variables to disk in alphabetical order. This tends to make long output lists
easier to search for particular variables. Again, no option is necessary to write
output in alphabetical order. Until NCO version 4.7.1 (December, 2017), ncks
used the -a, --abc, or --alphabetize switches to turn-off the default alpha-
betization. These names were counter-intuitive and needlessly confusing. As
of NCO version 4.7.1, ncks uses the new switches --no_abc, --no-abc, --no_
alphabetize, or --no-alphabetize, all of which are equivalent. The --abc

and --alphabetize switches are now no-ops, i.e., they write the output in the
unsorted order of the input. The -a switch is now completely deprecated in
favor of the clearer long option switches.

‘-b file’ Activate native machine binary output writing to binary file file. Also
‘--fl_bnr’ and ‘--binary-file’. Writing packed variables in binary format
is not supported. Metadata is never output to the binary file. Examine the
netCDF output file to see the variables in the binary file. Use the ‘-C’ switch,
if necessary, to avoid wanting unwanted coordinates to the binary file:

% ncks -O -v one_dmn_rec_var -b bnr.dat -p ~/nco/data in.nc out.nc

% ls -l bnr.dat | cut -d ’ ’ -f 5 # 200 B contains time and one_dmn_rec_var

200

% ls -l bnr.dat

% ncks -C -O -v one_dmn_rec_var -b bnr.dat -p ~/nco/data in.nc out.nc

% ls -l bnr.dat | cut -d ’ ’ -f # 40 B contains one_dmn_rec_var only

40

‘--cal’ As of NCO version 4.6.5 (March, 2017), ncks can print human-legible calendar
strings corresponding to time values with UDUnits-compatible date units of
the form time-since-basetime, e.g., ‘days since 2000-01-01’ and a CF calendar
attribute, if any. Enact this with the ‘--calendar’ (also ‘--cln’, ‘--prn_lgb’,
and ‘--datestamp’) option when printing in any mode. Invoking this option
when dbg lvl >= 1 in CDL mode prints both the value and the calendar string
(one in comments):

zender@aerosol:~$ ncks -D 1 --cal -v tm_365 ~/nco/data/in.nc

...

variables:

double tm_365 ;

tm_365:units = "days since 2013-01-01" ; // char

tm_365:calendar = "365_day" ; // char

data:

tm_365 = "2013-03-01"; // double value: 59

...

zender@aerosol:~$ ncks -D 1 -v tm_365 ~/nco/data/in.nc

264 NCO 5.0.1 User Guide

...

tm_365 = 59; // calendar format: "2013-03-01"

...

This option is similar to the ncdump ‘-t’ option. As of NCO version 4.6.8 (Au-
gust, 2017), ncks CDL printing supports finer-grained control of date formats
with the ‘--dt_fmt=dt_fmt’ (or ‘--date_format’) option. The dt fmt is an
enumerated integer from 0–3. Values dt fmt = 0 or 1 correspond to the short
format for dates that are the default. The value dt fmt = 2 requests the “reg-
ular” format for dates, dt fmt = 3 requests the full ISO-8601 format with the
“T” separator and the comma:

ncks -H -m -v time_bnds -C --dt_fmt=value ~/nco/data/in.nc

Value: Output:

0,1 1964-03-13 09:08:16 # Default, short format

2 1964-03-13 09:08:16.000000 # Regular format

3 1964-03-13T09:08:16.000000 # ISO8601 ’T’ format

Note that ‘--dt_fmt’ automatically implies ‘--cal’ makes that options super-
fluous.

As of NCO version 4.9.4 (September, 2020), invoking the ‘--dt_fmt’ option now
applies equally well to JSON and XML output as to CDL output:

% ncks -d time,0 -v time --cdl --dt_fmt=3 ~/nco/data/in.nc

...

time = "1964-03-13T21:09:0.000000" ;

...

% ncks -d time,0 -v time --json --dt_fmt=3 ~/nco/data/in.nc

...

"data": ["1964-03-13T21:09:0.000000"]

...

% ncks -d time,0 -v time --xml --dt_fmt=3 ~/nco/data/in.nc

...

<ncml:values separator="*">1964-03-13T21:09:0.000000</ncml:values>

...

‘--chk_map’
As of NCO version 4.9.0 (December, 2019), invoking ‘--chk_map’ causes ncks
to evaluate the quality of regridding weights in the map-file provided as
input-file. This option works with map-files (not grid-files) in ESMF/CMIP6-
compliant format (i.e., a sparse matrix variable named S and coordinates
[xy][ab]_[cv]. When invoked with the additional ‘--area_wgt’ option, the
evaluation statistics are area-weighted and thus exactly represent the global-
mean/min/max/mebs/rms/sdn biases expected when regridding a globally uni-
form field. This tool makes it easier to objectively assess weight-generation
algorithms, and will hopefully assist in their improvement. Thanks to Mark
Taylor of Saturday Night Live (SNL) and Paul Ullrich of UC Davis for this
suggestion and early prototypes.

$ ncks --chk_map map.nc # Unweighted statistics

$ ncks --chk_map --dbg=2 map.nc # Additional diagnostics

Chapter 4: Reference Manual 265

$ ncks --chk_map --area_wgt map.nc # Area-weighted statistics

The map-checker performs numerous checks and reports numerous statistics,
probably more than you care about. Be assured that each piece of provided
information has in the past proved useful to developers of weight-generation and
regridding algorithms. Most of the time, users can learn whether the examined
map is of sufficient quality for their purposes by examing only a few of these
statistics. Before defining these primary statistics, it is helpful to understand
the meaning of the weight-array S (stored in a map-file as the variable S), and
the terminology of rows and columns.

A remapping (aka regridding) transforms a field on an input grid to an an
output grid while conserving to the extent possible or desired the local and
global properties of the field. The map S is a matrix of M rows and N columns
of weights, where M is the number of gridcells (or degrees of freedom, DOFs)
in the destination grid, and N is the number of gridcells (or DOFs) in the
source grid. An individual weight S(m,n) represents the fractional contribution
to destination gridcell m by source gridcell n. By convention the weights are
normalized to sum to unity in each row (destination gridcell) that completely
overlaps the input grid. Thus the weights in a single row are all equivalent to the
fractional destination areas that the same destination gridcell (we will drop the
DOF terminology hereafter for conciseness) receives from each source gridcell.
Regardless of the values of the individual weights, it is intuitive that their row-
sum should never exceed unity because that would be physically equivalent to
an output gridcell receiving more than its own area from the source grid. Map-
files typically store these row-sum statistics for each destination gridcell in the
frac_b variable described further below.

Likewise the weights in a single column represent the fractional destination areas
that a single source gridcell contributes to every output gridcell. Each output
gridcell in a column may have a different area so column-sums need not, and
in general do not, sum to unity. However, a source gridcell ought to contribute
to the destination grid a total area equal to its own area. Thus a constraint
on column-sums is that their weights, themselves weighted by the destination
gridcell area corresponding to each row, should sum exactly to the source grid-
cell area. In other words, the destination-area-weighted column-sum divided by
the source gridcell area would be unity (in a perfect first order map) for every
source gridcell that completely overlaps valid destination gridcells. Map-files
typically store these area-weighted-column-sum-ratio statistics for each gridcell
in the frac_a variable described further below.

Storing the entire weight-matrix S is unnecessary because only a relative handful
of gridcells in the source grid contribute to a given destination gridcell, and visa
versa. Instead, map-files store only the non-zero S(m,n), and encode them as a
sparse-matrix. Storing S as a sparse matrix rather than a full matrix reduces
overall storage sizes by a factor on the order of the ratio of the product of the
grid sizes to their sum, or about 10,000 for grids with horizontal resolution near
one degree, and more for finer resolutions. The sparse-matrix representation is a
one-dimensional array of weights S, together with two ancillary arrays, row and
column, that contain the one-dimensional row and column indices, respectively,

266 NCO 5.0.1 User Guide

corresponding to the destination and source gridcells of the associated weight.
By convention, map-files store the row and column indices using the 1-based
convention in common use in the 1990s when regridding software was all written
in Fortran. The map-checker prints cell locations with 1-based indices as well:

% ncks --chk_map map_ne30np4_to_cmip6_180x360_nco.20190601.nc

Characterization of map-file map_ne30np4_to_cmip6_180x360_nco.20190601.nc

Cell triplet elements : [Fortran (1-based) index, center latitude, center longitude]

Sparse matrix size n_s: 246659

Weight min S(190813): 5.1827201764857658e-25 from cell \

[33796,-45.7998,+136.437] to [15975,-45.5,+134.5]

Weight max S(67391): 1.0000000000000000e+00 from cell \

[33671,-54.4442,+189.645] to [12790,-54.5,+189.5]

Ignored weights (S=0.0): 0

...

Here the map-file weights span twenty-five orders of magnitude. This may seem
large though in practice is typical for high-resolution intersection grids. The
Fortran-convention index of each weight extreme is followed by its geographic
latitude and longitude. Reporting the locations of extrema, and of gridcells
whose metrics miss their target values by more than a specificied tolerance, are
prime map-checker features.

As mentioned above, the two statistics most telling about map quality are the
weighted column-sums frac a and the row-sums frac b. The short-hand names
for what these metrics quantify are Conservation and Consistency, respectively.
Conservation means the total fraction of an input gridcell that contributes to
the output grid. For global input and output grids that completely tile the
sphere, the entirety of each input gridcell should contribute (i.e., map to) the
output grid. The same concept that applies locally to conservation of a gridcell
value applies globally to the overall conservation of an input field. Thus a
perfectly conservative mapping between global grids that tile the sphere would
have frac a = 1.0 for every input gridcell, and for the mean of all input gridcells.

The map-checker computes Conservation (frac a) from the stored variables S,
row, column, area_a, and area_b in the map-file, and then compares those
values to the frac_a values (if any) on-disk, and warns of any disagreements.
By definition, conservation is perfect to first order if the sum of the destination-
gridcell-area-weighted weights (which is an area) equals the source gridcell area,
and so their ratio (frac a) is unity. Computing the area-weighted-column-sum-
ratios and comparing those frac a to the stored frac_a catches any discrep-
ancies. The analysis sounds an alarm when discrepancies exceed a tolerance
(currently 5.0e-16). More importantly, the map-checker reports the summary
statistics of the computed frac a metrics and their imputed errors, including
the grid mean, minimum, maximum, mean-absolute bias, root-mean-square
bias, and standard deviation.

% ncks --chk_map map_ne30np4_to_cmip6_180x360_nco.20190601.nc

...

Conservation metrics (column-sums of area_b-weighted weights normalized by area_a) and errors---

Perfect metrics for global Grid B are avg = min = max = 1.0, mbs = rms = sdn = 0.0:

Chapter 4: Reference Manual 267

frac_a avg: 1.0000000000000000 = 1.0-0.0e+00 // Mean

frac_a min: 0.9999999999991109 = 1.0-8.9e-13 // Minimum in grid A cell [45328,+77.3747,+225]

frac_a max: 1.0000000000002398 = 1.0+2.4e-13 // Maximum in grid A cell [47582,+49.8351,+135]

frac_a mbs: 0.0000000000000096 = 9.6e-15 // Mean absolute bias from 1.0

frac_a rms: 0.0000000000000167 = 1.7e-14 // RMS relative to 1.0

frac_a sdn: 0.0000000000000167 = 1.7e-14 // Standard deviation

...

The values of the frac_a metric are generally imperfect (not 1.0) for global
grids. The bias is the deviation from the target metric shown in the second
floating-point column in each row above (e.g., 8.9e-13). These biases should be
vanishingly small with respect to unity. Mean biases as large as 1.0e-08 may
be considered acceptable for off-line analyses (i.e., a single regridding of raw
data) though the acceptable tolerance should be more stringent for on-line use
such as in a coupler where forward and reverse mappings may be applied tens
of thousands of times. The mean biases for such on-line regridding should be
close to 1.0e-15 in order for tens-of-thousands of repetitions to still conserve
mass/energy to full double-precision.

The minimum and maximum gridcell biases indicate the worst performing lo-
cations of the mapping. These are generally much (a few orders of magni-
tude) greater than the mean biases. Observe that the minimum and maximum
biases in the examples above and below occur at longitudes that are multi-
ples of 45 degrees. This is characteristic of mappings to/from for cube-square
grids whose faces have edges, and thus additional complexity, at multiples of
45 degrees. This illustrates how intersection grid geometry influences biases.
More complex, finer-scale structures, produce greater biases. The Root-Mean-
Square (RMS) and standard deviation metrics characterize the distribution of
biases throughout the entire intersection grid, and are thus complementary in-
formation to the minimum and maximum biases.

Consistency expresses the total fraction of an output gridcell that receives con-
tributions from the input grid. Thus Consistency is directly analogous to Con-
servation, only applied to the output grid. Conservation is the extent to which
the mapping preserves the local and grid-wide integrals of input fields, while
Consistency is the extent to which the mapping correctly aligns the input and
output grids so that each destination cell receives the appropriate proportion
of the input integrals. The mapping will produce an acceptably faithful repro-
duction of the input on the output grid only if all local and global Conservation
and Consistency metrics meet the acceptable error tolerances.

The map-checker computes the Consistency (frac b) as row-sums of the weights
stored in S and compares these to the stored values of frac_b. (Note how
the definition of weights S(m,n) as the fractional contribution to destination
gridcell m by source gridcell n makes calculation of frac b almost trivial in
comparison to frac a). Nevertheless, frac_b in the file may differ from the
computed row-sum for example if the map-file generator artificially limits the
stored frac_b value for any cell to 1.0 for those row-sums that exceed 1.0. The
map-checker raises an alarm when discrepancies between computed and stored
frac_b exceed a tolerance (currently 5.0e-16). There are semi-valid reasons a

268 NCO 5.0.1 User Guide

map-generator might do this, so this does not necessarily indicate an error. The
alarm simply informs the user that applying the weights will lead to a slightly
different Consistency than indicated by the stored frac_b.

As with frac_a, the values of frac_b are generally imperfect (not 1.0) for global
grids:

% ncks --chk_map map_ne30np4_to_cmip6_180x360_nco.20190601.nc

...

Consistency metrics (row-sums of weights) and errors---

Perfect metrics for global Grid A are avg = min = max = 1.0, mbs = rms = sdn = 0.0:

frac_b avg: 0.9999999999999999 = 1.0-1.1e-16 // Mean

frac_b min: 0.9999999999985523 = 1.0-1.4e-12 // Minimum in grid B cell [59446,+75.5,+45.5]

frac_b max: 1.0000000000004521 = 1.0+4.5e-13 // Maximum in grid B cell [63766,+87.5,+45.5]

frac_b mbs: 0.0000000000000065 = 6.5e-15 // Mean absolute bias from 1.0

frac_b rms: 0.0000000000000190 = 1.9e-14 // RMS relative to 1.0

frac_b sdn: 0.0000000000000190 = 1.9e-14 // Standard deviation

...

This example shows that frac b has the greatest local errors at similar bound-
aries (multiples of 45 degrees longitude) as frac a. It is typical for Conservation
and Consistency to degrade in intricate areas of the intersection grid, and these
areas occur at multiples of 45 degrees longitude for cubed-sphere mappings.

The map-checker will produce area-weighted metrics when invoked with the
--area_wgt flag, e.g., ‘ncks --area_wgt in.nc’. Area-weighted statistics show
the exact local and global results to expect with real-world grids in which large
consistency/conservation errors in small gridcells may be less important than
smaller errors in larger gridcells. Global-weighted mean statistics will of course
differ from unweighted statistics, although the minimum and maximum do not
change:

% ncks --area_wgt map_ne30np4_to_cmip6_180x360_nco.20190601.nc

...

Conservation metrics (column-sums of area_b-weighted weights normalized by area_a) and errors---

Perfect metrics for global Grid B are avg = min = max = 1.0, mbs = rms = sdn = 0.0:

frac_a avg: 1.0000000000000009 = 1.0+8.9e-16 // Area-weighted mean

frac_a min: 0.9999999999999236 = 1.0-7.6e-14 // Minimum in grid A cell [12810,+3.44654,+293.25]

frac_a max: 1.0000000000001146 = 1.0+1.1e-13 // Maximum in grid A cell [16203,-45.7267,+272.31]

frac_a mbs: 0.0000000000000067 = 6.7e-15 // Area-weighted mean absolute bias from 1.0

frac_a rms: 0.0000000000000102 = 1.0e-14 // Area-weighted RMS relative to 1.0

frac_a sdn: 0.0000000000000103 = 1.0e-14 // Standard deviation

Consistency metrics (row-sums of weights) and errors---

Perfect metrics for global Grid A are avg = min = max = 1.0, mbs = rms = sdn = 0.0:

frac_b avg: 1.0000000000000047 = 1.0+4.7e-15 // Area-weighted mean

frac_b min: 0.9999999999998442 = 1.0-1.6e-13 // Minimum in grid B cell [48415,+44.5,+174.5]

frac_b max: 1.0000000000002611 = 1.0+2.6e-13 // Maximum in grid B cell [16558,-44.5,+357.5]

frac_b mbs: 0.0000000000000065 = 6.5e-15 // Area-weighted mean absolute bias from 1.0

frac_b rms: 0.0000000000000129 = 1.3e-14 // Area-weighted RMS relative to 1.0

frac_b sdn: 0.0000000000000133 = 1.3e-14 // Standard deviation

Chapter 4: Reference Manual 269

...

The examples above show no outstanding differences (besides rounding) be-
tween the unweighted and area-weighted statistics. The absence of degradation
between the global unweighted statistics (further up the page) and the global
weighted statistics (just above) demonstrates there are no important correla-
tions between local weight biases and gridcell areas. The area-weighted mean
frac b statistic deserves special mention. Its value is the exact factor by which
the mapping will shift the global mean of a spatially uniform input field. This
metric is, therefore, first among equals when evaluating the quality of maps
under consideration for use in time-stepping models where global conservation
(e.g., of mass or energy) is crucial.

As of NCO version 4.9.2 (March, 2020), adding the ‘--frac_b_nrm’ flag changes
the map-checker into a read-write algorithm that first diagnoses the map-file
statistics described above and then re-writes the weights (and weight-derived
statistics frac a and frac b) to compensate or “fix” issues that poor-quality
input grids can cause. Input grids can and often do have regions that are
not tiled by any portion of any input gridcell. For example, many FV ocean
grids (such as MPAS) are empty (have no gridcells) in land regions beyond
the coasts. Some FV ocean grids have gridcells everywhere and mask (i.e.,
screen-out) the non-ocean gridcells by setting the mask value to zero. Both
these designs are perfectly legal. What is illegal, yet sometimes encountered in
practice, is overlapping gridcells on the same input grid. Such an input grid is
said to be self-overlapping.

The surface topography dataset grid SCRIPgrid_1km-merge-10min_HYDRO1K-

merge-nomask_c130402.nc (hereafter the HYDRO1K grid for short) used by
E3SM and CESM is self-overlapping. Weight-generators that receive the same
input location twice might (if they do not take precaustions to idenfity the issue,
which no known weight-generators do) double-weight the self-overlapped re-
gion(s). In other words, self-overlapping input grids can lead weight-generators
to produce values frac b >> 1.0. Applying these weights would lead to exag-
gerated values on the destination grid.

The best solution to this issue is to adjust the input grid to avoid self-overlap.
However, this solution may be difficult or impractical where the original data,
producer, or algorithm are unavailable or unclear. In such cases, the --frac_b_
nrm flag provides a workaround. Please understand that ‘ncks --frac_b_nrm

map.nc’ is designed to alter map.nc in-xsplace, so backup the original file first.

% ncks --frac_b_nrm map_hydro1k_to_ne1024np4_nco.20200301.nc

...

...

‘--chk_nan’
As of NCO version 4.8.0 (May, 2019), ncks can locate NaN of NaNf in double- and
single-precision floating-point variables, respectively. If a NaN is encountered,
NCO prints its location and then exits with an error code. Thanks to Matthew
Thompson of NASA for this suggestion.

$ ncks --chk_nan ~/nco/data/in.nc

270 NCO 5.0.1 User Guide

‘--fix_rec_dmn’
Change record dimension dim in the input file into a fixed dimension in the
output file. Also ‘--no_rec_dmn’. Before NCO version 4.2.5 (January, 2013),
the syntax for --fix_rec_dmn did not permit or require the specification of
the dimension name dim. This is because the feature only worked on netCDF3
files, which support only one record dimension, so specifying its name was
unnecessary. netCDF4 files allow an arbitrary number of record dimensions, so
the user must specify which record dimension to fix. The decision was made
that starting with NCO version 4.2.5 (January, 2013), it is always required to
specify the dimension name to fix regardless of the netCDF file type. This keeps
the code simple, and is symmetric with the syntax for --mk_rec_dmn, described
next.

As of NCO version 4.4.0 (January, 2014), the argument all may be given to
‘--fix_rec_dmn’ to convert all record dimensions to fixed dimensions in the
output file. Previously, ‘--fix_rec_dmn’ only allowed one option, the name of
a single record dimension to be fixed. Now it is simple to simultaneously fix
all record dimensions. This is useful (and nearly mandatory) when flattening
netCDF4 files that have multiple record dimensions per group into netCDF3
files (which are limited to at most one record dimension) (see Section 3.14
[Group Path Editing], page 53).

‘--hdn’ As of NCO version 4.4.0 (January, 2014), the ‘--hdn’ or ‘--hidden’ options
print hidden (aka special) attributes. This is equivalent to ‘ncdump -s’. Hid-
den attributes include: _Format, _DeflateLevel, _Shuffle, _Storage, _

ChunkSizes, _Endianness, _Fletcher32, and _NOFILL. Previously ncks ig-
nored all these attributes in CDL/XML modes. Now it prints these attributes
as appropriate in all modes. As of NCO version 4.4.6 (September, 2014), ‘--hdn’
also prints the extended file format (i.e., the format of the file or server sup-
plying the data) as _SOURCE_FORMAT. As of NCO version 4.6.1 (August, 2016),
‘--hdn’ also prints the hidden attributes _NCProperties, _IsNetcdf4, and _

SuperblockVersion for netCDF4 files so long as NCO is linked against netCDF
library version 4.4.1 or later. Users are referred to the Unidata netCDF Docu-
mentation, or the man pages for ncgen or ncdump, for detailed descriptions of
the meanings of these hidden attributes.

‘--cdl’ As of NCO version 4.3.3 (July, 2013), ncks can print extracted data and meta-
data to screen (i.e., stdout) as valid CDL (network Common data form De-
scription Language). CDL is the human-readable “lingua franca” of netCDF
ingested by ncgen and excreted by ncdump. As of NCO version 4.6.9 (Septem-
ber, 2017), ncks prints CDL by default, and the “traditional” mode must be
explicitly selected with ‘--trd’. Compare ncks “traditional” with CDL print-
ing:

zender@roulee:~$ ncks --trd -v one ~/nco/data/in.nc

one: type NC_FLOAT, 0 dimensions, 1 attribute, chunked? no, compressed? no, packed? no

one size (RAM) = 1*sizeof(NC_FLOAT) = 1*4 = 4 bytes

one attribute 0: long_name, size = 3 NC_CHAR, value = one

one = 1

http://www.unidata.ucar.edu/software/netcdf/docs
http://www.unidata.ucar.edu/software/netcdf/docs

Chapter 4: Reference Manual 271

zender@roulee:~$ ncks --cdl -v one ~/nco/data/in.nc

netcdf in {

variables:

float one ;

one:long_name = "one" ;

data:

one = 1 ;

} // group /

Users should note the NCO’s CDL mode outputs successively more verbose
additional diagnostic information in CDL comments as the level of debugging
increases from zero to two. For example printing the above with ‘-D 2’ yields

zender@roulee:~$ ncks -D 2 --cdl -v one ~/nco/data/in.nc

netcdf in {

// ncgen -k classic -b -o in.nc in.cdl

variables:

float one ; // RAM size = 1*sizeof(NC_FLOAT) = 1*4 = 4 bytes, ID = 147

one:long_name = "one" ; // char

data:

one = 1 ;

} // group /

ncgen converts CDL-mode output into a netCDF file:

ncks -v one ~/nco/data/in.nc > ~/in.cdl

ncgen -k netCDF-4 -b -o ~/in.nc ~/in.cdl

ncks -v one ~/in.nc

The HDF4 version of ncgen, often named hncgen, h4_ncgen, or ncgen-hdf,
(usually) converts netCDF3 CDL into an HDF file:

cd ~/nco/data

ncgen -b -o hdf.hdf hdf.cdl # HDF ncgen is sometimes named...ncgen

ncgen -b -o in.hdf in.cdl # Fails: Some valid netCDF CDL breaks HDF ncgen

hncgen -b -o hdf.hdf hdf.cdl # HDF ncgen is hncgen in some RPM packages

h4_ncgen -b -o hdf.hdf hdf.cdl # HDF ncgen is h4_ncgen in Anaconda packages

ncgen-hdf -b -o hdf.hdf hdf.cdl # HDF ncgen is ncgen-hdf in some Debian packages

hdp dumpsds hdf.hdf # ncdump/h5dump-equivalent for HDF4

h4_ncdump dumpsds hdf.hdf # ncdump/h5dump-equivalent for HDF4

Note that HDF4 does not support netCDF-style groups, so the above com-
mands fail when the input file contains groups. Only netCDF4 and HDF5

support groups. In our experience the HDF ncgen command, by whatever
name installed, is not robust and fails on many valid netCDF3 CDL con-

272 NCO 5.0.1 User Guide

structs. The HDF4 version of ncgen will definitely fail on the default NCO

input file nco/data/in.cdl. The NCO source code distribution provides
nco/data/hdf.cdl that works with the HDF4 version of ncgen, and can be
used to test HDF files.

‘--mk_rec_dmn dim’
Change existing dimension dim to a record dimension in the output file. This is
the most straightforward way of changing a dimension to a/the record dimen-
sion, and works fine in most cases. See Section 4.5 [ncecat netCDF Ensemble
Concatenator], page 251 and Section 4.9 [ncpdq netCDF Permute Dimensions
Quickly], page 287 for other methods of changing variable dimensionality, in-
cluding the record dimension.

‘-H’ Toggle (turn-on or turn-off) default behavior of printing data (not metadata) to
screen or copying data to disk. Also activated using ‘--print’ or ‘--prn’. By
default ncks prints all metadata but no data to screen when no netCDF output-
file is specified. And if output-file is specified, ncks copies all metadata and
all data to it. In other words, the printing/copying default is context-sensitive,
and ‘-H’ toggles the default behavior. Hence, use ‘-H’ to turn-off copying data
(not metadata) to an output file. (It is occasionally useful to write all metadata
to a file, so that the file has allocated the required disk space to hold the data,
yet to withold writing the data itself). And use ‘-H’ to turn-on printing data
(not metadata) to screen. Unless otherwise specified (with -s), each element of
the data hyperslab prints on a separate line containing the names, indices, and,
values, if any, of all of the variables dimensions. The dimension and variable
indices refer to the location of the corresponding data element with respect to
the variable as stored on disk (i.e., not the hyperslab).

% ncks --trd -C -v three_dmn_var in.nc

lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0

lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1

lat[0]=-90 lev[0]=100 lon[2]=180 three_dmn_var[2]=2

...

lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21

lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22

lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23

Printing the same variable with the ‘-F’ option shows the same variable indexed
with Fortran conventions

% ncks -F -C -v three_dmn_var in.nc

lon(1)=0 lev(1)=100 lat(1)=-90 three_dmn_var(1)=0

lon(2)=90 lev(1)=100 lat(1)=-90 three_dmn_var(2)=1

lon(3)=180 lev(1)=100 lat(1)=-90 three_dmn_var(3)=2

...

Printing a hyperslab does not affect the variable or dimension indices since
these indices are relative to the full variable (as stored in the input file), and
the input file has not changed. However, if the hyperslab is saved to an output
file and those values are printed, the indices will change:

% ncks --trd -H -d lat,90.0 -d lev,1000.0 -v three_dmn_var in.nc out.nc

Chapter 4: Reference Manual 273

...

lat[1]=90 lev[2]=1000 lon[0]=0 three_dmn_var[20]=20

lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21

lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22

lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23

% ncks --trd -C -v three_dmn_var out.nc

lat[0]=90 lev[0]=1000 lon[0]=0 three_dmn_var[0]=20

lat[0]=90 lev[0]=1000 lon[1]=90 three_dmn_var[1]=21

lat[0]=90 lev[0]=1000 lon[2]=180 three_dmn_var[2]=22

lat[0]=90 lev[0]=1000 lon[3]=270 three_dmn_var[3]=23

‘--jsn, --json’
As of NCO version 4.6.2 (November, 2016), ncks can print extracted metadata
and data to screen (i.e., stdout) as JSON, JavaScript Object Notation, defined
here. ncks supports JSON output more completely, flexibly, and robustly than
any other tool to our knowledge. With ncks one can translate entire netCDF3
and netCDF4 files into JSON, including metadata and data, using all NCO’s
subsetting and hyperslabbing capabilities. NCO uses a JSON format we devel-
oped ourselves, during a year of discussion among interested researchers. Some
refer to this format as NCO-JSON, to disambiguate it from other JSON formats
for netCDF data. Other projects have since adopted, and some can generate,
NCO-JSON. Projects that support NCO-JSON include ERDDAP (https://
coastwatch.pfeg.noaa.gov/erddap/index.html, choose output filetype
.ncoJson from this table) and CF-JSON (http://cf-json.org).

Behold JSON output in default mode:

zender@aerosol:~$ ncks --jsn -v one ~/nco/data/in.nc

{

"variables": {

"one": {

"type": "float",

"attributes": {

"long_name": "one"

},

"data": 1.0

}

}

}

NCO converts to (using commonsense rules) and prints all NC TYPEs as one of
three atomic types distinguishable as JSON values: float, string, and int2.
Floating-point types (NC_FLOAT and NC_DOUBLE) are printed with a decimal
point and at least one signficant digit following the decimal point, e.g., 1.0
rather than 1. or 1. Integer types (e.g., NC_INT, NC_UINT64) are printed with no
decimal point. String types (NC_CHAR and NC_STRING) are enclosed in double-
quotes.

2 The JSON boolean atomic type is not (yet) supported as there is no obvious netCDF-equivalent to this
type.

http://www.json.org
https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/documentation.html#fileType
http://cf-json.org

274 NCO 5.0.1 User Guide

The JSON specification allows many possible output formats for netCDF files.
NCO developers implemented a working prototype in Octoboer, 2016 and, af-
ter discussing options with interested parties here, finalized the emitted JSON

syntax a few weeks later. The resulting JSON backend supports three lev-
els of pedanticness, ordered from more concise, flexible, and human-readable
to more verbose, restrictive, and 1-to-1 reproducible. JSON-specific switches
access these modes and other features. Each JSON configuration option auto-
matically triggers JSON printing, so that specifying ‘--json’ in addition to a
JSON configuration option is redundant and unnecessary.

Request a specific format level with the pedantic level argument to the
‘--jsn_fmt lvl’ option. As of NCO version 4.6.3 (December, 2016), the op-
tion formerly known as ‘--jsn_att_fmt’ was renamed simply ‘--jsn_fmt’. The
more general name reflects the fact that the option controls all JSON formatting,
not just attribute formatting. As of version 4.6.3, NCO defaults to demarcate
inner dimensions of variable data with (nested) square brackets rather than
printing data as an unrolled single dimensional array. An array with C-ordered
dimensionality [2,3,4] prints as:

% ncks --jsn -v three_dmn_var ~/nco/data/in.nc

...

"data": [[[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0], [8.0, 9.0, 10.0,11.0]], [[12.0, 13.0, 14.0, 15.0], [16.0, 17.0, 18.0, 19.0], [20.0,21.0, 22.0, 23.0]]]

...

% ncks --jsn_fmt=4 -v three_dmn_var ~/nco/data/in.nc

...

"data": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0,22.0, 23.0]

...

One can recover the former behavior (and omit the brackets) by adding four
to the base pedantic level lvl (as shown above). Besides the potential offset of
four, lvl may take one of three values between 0–2:

• lvl = 0 is the default mode, and is also explicitly selectable with
‘--jsn_fmt=0’. All values are output without the original NC TYPE token.
This allows attributes to print as JSON name-value pairs, rather than as
more complex objects:

% ncks --jsn_fmt=0 -v att_var ~/nco/data/in_grp.nc

...

"att_var": {

"shape": ["time"],

"type": "float",

"attributes": {

"byte_att": [0, 1, 2, 127, -128, -127, -2, -1],

"char_att": "Sentence one.\nSentence two.\n",

"short_att": 37,

"int_att": 73,

"long_att": 73,

"float_att": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.010],

"double_att": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.0100010]

},

https://sourceforge.net/p/nco/discussion/9829/thread/8c4d7e72

Chapter 4: Reference Manual 275

"data": [10.0, 10.10, 10.20, 10.30, 10.40101, 10.50, 10.60, 10.70, 10.80, 10.990]

...

This least pedantic mode produces the most easily read results, and suf-
fices for many (most?) purposes. Any downstream parser is expected to
assign an appropriate type as indicated by JSON syntax rules. Because the
original attributes’ NC_TYPE are not output, a downstream parser may not
exactly reproduce the input file datatypes. For example, whether the orig-
inal attribute string was stored as NC_CHAR or NC_STRING will be unknown
to a downstream parser. Distinctions between NC_FLOAT and NC_DOUBLE

are similarly lost, as are all distinctions among the integer types.

In our experience, these distinctions are immaterial for attributes, which
are intended for metadata not for large-scale storage. Type-distinctions
can, however, significantly impact the size of variable data, responsible
for nearly all the storage required by datasets. For instance, storing or
transferring an NC_SHORT field as NC_DOUBLE would waste a factor of four
in space or bandwidth. This is why NCO always prints the NC_TYPE of
variable data. Downstream parsers can (but are not required to) take
advantage of the variable’s NC_TYPE to choose the most efficient storage
type.

The Shape member of the variable object is an ordered array of dimension
names such as "shape": ["lat","lon"], similar to its use in NcML. Each
name corresponds to a previously defined Dimension object that, taken
together, define the rank, shape, and size of the variable. Variables are
assumed to be scalar by default. Hence the Shape member is mandatory
for arrays, and is always omitted for scalars (by contrast, NcML requires
an empty shape string to indicate scalars).

• lvl = 1 is a medium-pedantic level that prints all attributes as objects
(with explicit types) unless the attribute type match the simplest default
JSON value types. In other words, attributes of type NC_FLOAT, NC_CHAR,
NC_SHORT, and NC_BYTE are printed as objects with an explicit type so
that parsers do not use the default type. Attributes of type NC_DOUBLE,
NC_STRING, and NC_INT are printed as JSON arrays, as in the lvl = 0 above:

% ncks --jsn_fmt=1 -v att_var ~/nco/data/in.nc

...

"att_var": {

"shape": ["time"],

"type": "float",

"attributes": {

"byte_att": { "type": "byte", "data": [0, 1, 2, 127, -128, -127, -2, -1]},

"char_att": "Sentence one.\nSentence two.\n",

"short_att": { "type": "short", "data": 37},

"int_att": 73,

"long_att": 73,

"float_att": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.010],

"double_att": { "type": "double", "data": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.0100010]}

},

276 NCO 5.0.1 User Guide

"data": [10.0, 10.10, 10.20, 10.30, 10.40101, 10.50, 10.60, 10.70, 10.80, 10.990]

...

The attributes of type NC_BYTE, NC_SHORT, and NC_DOUBLE are printed as
JSON objects that comprise an NC_TYPE and a value list, because their
values could conceivably not be representable, or would waste space, if
interpreted as NC_INT or NC_FLOAT, respectively. All other attributes may
be naturally mapped to the type indicated by the JSON syntax of the
value, where numbers are assumed to correspond to NC_FLOAT for floating-
point, NC_INT for integers, and NC_CHAR or NC_STRING for strings. This
minimal increase in verbosity allows a downstream parser to re-construct
the original dataset with nearly identical attributes types to the original.

• lvl = 2 is the most pedantic mode, and should be used when preserving
all input types (e.g., to ensure exact reproducibility of the input file) is
important. This mode always prints attributes as JSON objects with a type
value so that any downstream parser can (though it need not) guarantee
exact reproduction of the original dataset:

% ncks --jsn_fmt=2 -v att_var ~/nco/data/in.nc

...

"att_var": {

"shape": ["time"],

"type": "float",

"attributes": {

"byte_att": { "type": "byte", "data": [0, 1, 2, 127, -128, -127, -2, -1]},

"char_att": { "type": "char", "data": "Sentence one.\nSentence two.\n"},

"short_att": { "type": "short", "data": 37},

"int_att": { "type": "int", "data": 73},

"long_att": { "type": "int", "data": 73},

"float_att": { "type": "float", "data": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.010]},

"double_att": { "type": "double", "data": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.0100010]}

},

"data": [10.0, 10.10, 10.20, 10.30, 10.40101, 10.50, 10.60, 10.70, 10.80, 10.990]

...

That ncks produces correct translations of for all supported datatypes may be
verified by a JSON syntax checker command like jsonlint. Please let us know
how to improve JSON features for your application.

There

‘-M’ Turn-on printing to screen or turn-off copying global and group metadata. This
includes file summary information and global and group attributes. Also ‘--Mtd’
and ‘--Metadata’. By default ncks prints global metadata to screen if no
netCDF output file and no variable extraction list is specified (with ‘-v’). Use
‘-M’ to print global metadata to screen if a netCDF output is specified, or if
a variable extraction list is specified (with ‘-v’). Use ‘-M’ to turn-off copying
of global and group metadata when copying, subsetting, or appending to an
output file.

Chapter 4: Reference Manual 277

The various combinations of printing switches can be confusing. In an attempt
to anticipate what most users want to do, ncks uses context-sensitive defaults
for printing. Our goal is to minimize the use of switches required to accomplish
the common operations. We assume that users creating a new file or overwriting
(e.g., with ‘-O’) an existing file usually wish to copy all global and variable-
specific attributes to the new file. In contrast, we assume that users appending
(e.g., with ‘-A’ an explicit variable list from one file to another usually wish to
copy only the variable-specific attributes to the output file. The switches ‘-H’,
‘-M’, and ‘-m’ switches are implemented as toggles which reverse the default
behavior. The most confusing aspect of this is that ‘-M’ inhibits copying global
metadata in overwrite mode and causes copying of global metadata in append
mode.

ncks in.nc # Print VAs and GAs

ncks -v one in.nc # Print VAs not GAs

ncks -M -v one in.nc # Print GAs only

ncks -m -v one in.nc # Print VAs only

ncks -M -m -v one in.nc # Print VAs and GAs

ncks -O in.nc out.nc # Copy VAs and GAs

ncks -O -v one in.nc out.nc # Copy VAs and GAs

ncks -O -M -v one in.nc out.nc # Copy VAs not GAs

ncks -O -m -v one in.nc out.nc # Copy GAs not VAs

ncks -O -M -m -v one in.nc out.nc # Copy only data (no atts)

ncks -A in.nc out.nc # Append VAs and GAs

ncks -A -v one in.nc out.nc # Append VAs not GAs

ncks -A -M -v one in.nc out.nc # Append VAs and GAs

ncks -A -m -v one in.nc out.nc # Append only data (no atts)

ncks -A -M -m -v one in.nc out.nc # Append GAs not VAs

where VAs and GAs denote variable and group/global attributes, respectively.

‘-m’ Turn-on printing to screen or turn-off copying variable metadata. Using ‘-m’
will print variable metadata to screen (similar to ncdump -h). This displays
all metadata pertaining to each variable, one variable at a time. This includes
information on the storage properties of the variable, such as whether it em-
ploys chunking, compression, or packing. Also activated using ‘--mtd’ and
‘--metadata’. The ncks default behavior is to print variable metadata to screen
if no netCDF output file is specified. Use ‘-m’ to print variable metadata to
screen if a netCDF output is specified. Also use ‘-m’ to turn-off copying of
variable metadata to an output file.

‘--no_blank’
Print numeric representation of missing values. As of NCO version 4.2.2 (Octo-
ber, 2012), NCO prints missing values as blanks (i.e., the underscore character
‘_’) by default. To enable the old behavior of printing the numeric repre-
sentation of missing values (e.g., 1.0e36), use the ‘--no_blank’ switch. Also
activated using ‘--noblank’ or ‘--no-blank’.

278 NCO 5.0.1 User Guide

‘-P’ Print data, metadata, and units to screen. The ‘-P’ switch is a convenience
abbreviation for ‘-C -H -M -m -u’. Also activated using ‘--print’ or ‘--prn’.
This set of switches is useful for exploring file contents.

‘--prn_fl print-file’
Activate printing formatted output to file print-file. Also ‘--print_file’,
‘--fl_prn’, and ‘--file_print’. One can achieve the same result by redirect-
ing stdout to a named file. However, it is slightly faster to print formatted
output directly to a file than to stdout:

ncks --fl_prn=foo.txt --jsn in.nc

‘-Q’ Print quietly, meaning omit dimension names, indices, and coordinate values
when printing arrays. Variable (not dimension) indices are printed. Variable
names appear flush left in the output:

zender@roulee:~$ ncks --trd -Q -v three_dmn_rec_var -C -H ~/nco/data/in.nc

three_dmn_rec_var[0]=1

...

This helps locate specific variables in lists with many variables and different
dimensions. See also the ‘-V’ option, which omits all names and indices and
prints only variable values.

‘-q’ Quench (turn-off) all printing to screen. This overrides the setting of all print-
related switches, equivalent to -H -M -m when in single-file printing mode. When
invoked with -R (see Section 3.9 [Retaining Retrieved Files], page 42), ncks
automatically sets -q. This allows ncks to retrieve remote files without auto-
matically trying to print them. Also ‘--quench’.

‘--rad’ Retain all dimensions. When invoked with --rad (Retain All Dimensions), ncks
copies each dimension in the input file to the output file, regardless of whether
the dimension is utilized by any variables. Normally ncks discards “orphan
dimensions”, i.e., dimensions not referenced by any variables. This switch allows
users to keep non-referenced dimensions in the workflow. When invoked in
printing mode, causes orphaned dimensions to be printed (they are not printed
by default). Also ‘--retain_all_dimensions’, ‘--orphan_dimensions’, and
‘--rph_dmn’.

‘-s format’
String format for text output. Accepts C language escape sequences and
printf() formats. Also ‘--string’ and ‘--sng_fmt’. This option is only in-
tended for use with traditional (TRD) printing, and thus automatically invokes
the ‘--trd’ switch.

‘--fmt_val format’
Supply a printf()-style format for printed output, i.e., in CDL, JSON, TRD, or
XML modes. Also ‘--val_fmt’ and ‘--value_format’. One use for this option
is to reduce the printed precision of floating point values:

Default printing of original double precision values

0.0,0.1,0.12,0.123,0.1234,0.12345,0.123456,0.1234567,0.12345678,0.123456789

% ncks -C -v ppc_dbl ~/nco/data/in.nc

Chapter 4: Reference Manual 279

...

ppc_dbl = 0, 0.1, 0.12, 0.123, 0.1234, 0.12345, 0.123456, 0.1234567, 0.12345678, 0.123456789 ;

...

Restrict printing to three digits after the decimal

% ncks --fmt_val=%.3f -C -v ppc_dbl ~/nco/data/in.nc

...

ppc_dbl = 0., 0.1, 0.12, 0.123, 0.123, 0.123, 0.123, 0.123, 0.123, 0.123 ;

...

The supplied format only applies to floating point variable values (NC_FLOAT or
NC_DOUBLE), and not to other types or to attributes. For reference, the default
printf() format for CDL, JSON, TRD, and XML modes is %#.7gf, %#.7g,
%g, and %#.7g, respectively, for single-precision data, and, for double-precision
data is %#.15g, %#.15g, %.12g, and %#.15g, respectively. NCO introduced this
feature in version 4.7.3 (March, 2018). We would appreciate your feedback on
whether and how to extend this feature to make it more useful.

‘--secret’
Print summary of ncks hidden features. These hidden or secret features are
used mainly by developers. They are not supported for general use and may
change at any time. This demonstrates conclusively that I cannot keep a secret.
Also ‘--ssh’ and ‘--scr’.

‘--trd, --traditional’
From 1995–2017 ncks dumped the ASCII text representation of netCDF files
in what we now call “traditional” mode. Much of this manual contains output
printed in traditional mode, which places one value per line, with complete
dimensional information. Traditional-mode metadata output includes lower-
level information, such as RAM usage and internal variable IDs, than CDL.
While this is useful for some developers and user, CDL has, over the years,
become more useful than traditional mode for most users. As of NCO version
4.6.9 (September, 2017) CDL became the default printing mode. Traditional
printing mode is accessed via the ‘--trd’ option.

‘-u’ Toggle the printing of a variable’s units attribute, if any, with its values. Also
‘--units’.

‘-V’ Print variable values only. Do not print variable and dimension names, indices,
and coordinate values when printing arrays.

zender@roulee:~$ ncks --trd -V -v three_dmn_rec_var -C -H ~/nco/data/in.nc

1

...

See also the ‘-Q’ option, which prints variable names and indices, but not di-
mension names, indices, or coordinate values when printing arrays. Using ‘-V’
is the same as specifying ‘-Q --no_nm_prn’.

‘--xml, --ncml’
As of NCO version 4.3.3 (July, 2013), ncks can print extracted data and meta-
data to screen (i.e., stdout) as XML in NcML, the netCDF Markup Language.
ncks supports XML more completely than ‘ncdump -x’. With ncks one can

280 NCO 5.0.1 User Guide

translate entire netCDF3 and netCDF4 files into NcML, including metadata
and data, using all NCO’s subsetting and hyperslabbing capabilities. Compare
ncks “traditional” with XML printing:

zender@roulee:~$ ncks --trd -v one ~/nco/data/in.nc

one: type NC_FLOAT, 0 dimensions, 1 attribute, chunked? no, compressed? no, packed? no

one size (RAM) = 1*sizeof(NC_FLOAT) = 1*4 = 4 bytes

one attribute 0: long_name, size = 3 NC_CHAR, value = one

one = 1

zender@roulee:~$ ncks --xml -v one ~/nco/data/in.nc

<?xml version="1.0" encoding="UTF-8"?>

<netcdf xmlns="http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2" location="/home/zender/nco/data/in.nc">

<variable name="one" type="float" shape="">

<attribute name="long_name" separator="*" value="one" />

<values>1.</values>

</variable>

</netcdf>

XML-mode prints variable metadata and, as of NCO version 4.3.7 (October,
2013), variable data and, as of NCO version 4.4.0 (January, 2014), hidden at-
tributes. That ncks produces correct NcML translations of CDM files for all sup-
ported datatypes is verified by comparison to output from Unidata’s toolsUI
Java program. Please let us know how to improve XML/NcML features.

ncks provides additional options to configure NcML output:
‘--xml_no_location’, ‘--xml_spr_chr’, and ‘--xml_spr_nmr’. Every NcML

configuration option automatically triggers NcML printing, so that specifying
‘--xml’ in addition to a configuration option is redundant and unnecessary.
The ‘--xml_no_location’ switch prevents output of the NcML location el-
ement. By default the location element is printed with a value equal to the
location of the input dataset, e.g., location="/home/zender/in.nc". The
‘--xml_spr_chr’ and ‘--xml_spr_nmr’ options customize the strings used as
NcML separators for attributes and variables of character-type and numeric-
type, respectively. Their default separators are * and “ ” (a space):

zender@roulee:~$ ncks --xml -d time,0,3 -v two_dmn_rec_var_sng in.nc

...

<values separator="*">abc*bcd*cde*def</values>

...

zender@roulee:~$ ncks --xml_spr_chr=’, ’ -v two_dmn_rec_var_sng in.nc

...

<values separator=", ">abc, bcd, cde, def, efg, fgh, ghi, hij, jkl, klm</values>

...

zender@roulee:~$ ncks --xml -v one_dmn_rec_var in.nc

...

<values>1 2 3 4 5 6 7 8 9 10</values>

...

zender@roulee:~$ ncks --xml_spr_nmr=’, ’ -v one_dmn_rec_var in.nc

Chapter 4: Reference Manual 281

...

<values separator=", ">1, 2, 3, 4, 5, 6, 7, 8, 9, 10</values>

...

Separator elements for strings are a thorny issue. One must be sure that the
separator element is not mistaken as a portion of the string. NCO attempts to
produce valid NcML and supplies the ‘--xml_spr_chr’ option to work around
any difficulties. NCO performs precautionary checks with strstr(val,spr) to
identify presence of the separator string (spr) in data (val) and, when it detects
a match, automatically switches to a backup separator string (*|*). However
limitations of strstr() may lead to false negatives when the separator string
occurs in data beyond the first string in multi-dimensional NC_CHAR arrays.
Hence, results may be ambiguous to NcML parsers. If problems arise, use
‘--xml_spr_chr’ to specify a multi-character separator that does not appear
in the string array and that does not include an NcML formatting characters
(e.g., commas, angles, quotes).

4.8.2 Filters for ncks

We encourage the use of standard UNIX pipes and filters to narrow the verbose output of
ncks into more precise targets. For example, to obtain an uncluttered listing of the variables
in a file try

ncks --trd -m in.nc | grep -E ’: type’ | cut -f 1 -d ’ ’ | sed ’s/://’ | sort

A Bash user could alias the previous filter to the shell command ncvarlst as shown
below. More complex examples could involve command line arguments. For example, a
user may frequently be interested in obtaining the value of an attribute, e.g., for textual file
examination or for passing to another shell command. Say the attribute is purpose, the
variable is z, and the file is in.nc. In this example, ncks --trd -m -v z is too verbose so
a robust grep and cut filter is desirable, such as

ncks --trd -M -m in.nc | grep -E -i "^z attribute [0-9]+: purpose" | cut -f 11- -d ’ ’ | sort

The filters are clearly too complex to remember on-the-fly so the entire procedure could
be implemented as a shell command or function called, say, ncattget

function ncattget { ncks --trd -M -m ${3} | grep -E -i "^${2} attribute [0-9]+: ${1}" | cut -f 11- -d ’ ’ | sort ; }

The shell ncattget is invoked with three arugments that are, in order, the names of the
attribute, variable, and file to examine. Global attributes are indicated by using a variable
name of global. This definition yields the following results

% ncattget purpose z in.nc

Height stored with a monotonically increasing coordinate

% ncattget Purpose Z in.nc

Height stored with a monotonically increasing coordinate

% ncattget history z in.nc

% ncattget history global in.nc

History global attribute.

Note that case sensitivity has been turned off for the variable and attribute names (and
could be turned on by removing the ‘-i’ switch to grep). Furthermore, extended regular

282 NCO 5.0.1 User Guide

expressions may be used for both the variable and attribute names. The next two commands
illustrate this by searching for the values of attribute purpose in all variables, and then for
all attributes of the variable z:

% ncattget purpose .+ in.nc

1-D latitude coordinate referred to by geodesic grid variables

1-D longitude coordinate referred to by geodesic grid variables

...

% ncattget .+ Z in.nc

Height

Height stored with a monotonically increasing coordinate

meter

Extended filters are best stored as shell commands if they are used frequently. Shell
commands may be re-used when they are defined in shell configuration files. These files are
usually named .bashrc, .cshrc, and .profile for the Bash, Csh, and Sh shells, respec-
tively.

NB: Untested on Csh, Ksh, Sh, Zsh! Send us feedback!

Bash shell (/bin/bash), .bashrc examples

ncattget $att_nm $var_nm $fl_nm : What attributes does variable have?

function ncattget { ncks --trd -M -m ${3} | grep -E -i "^${2} attribute [0-9]+: ${1}" | cut -f 11- -d ’ ’ | sort ; }

ncunits $att_val $fl_nm : Which variables have given units?

function ncunits { ncks --trd -m ${2} | grep -E -i " attribute [0-9]+: units.+ ${1}" | cut -f 1 -d ’ ’ | sort ; }

ncavg $var_nm $fl_nm : What is mean of variable?

function ncavg { ncwa -y avg -O -C -v ${1} ${2} ~/foo.nc ; ncks --trd -H -C -v ${1} ~/foo.nc | cut -f 3- -d ’ ’ ; }

ncavg $var_nm $fl_nm : What is mean of variable?

function ncavg { ncap2 -O -C -v -s "foo=${1}.avg();print(foo)" ${2} ~/foo.nc | cut -f 3- -d ’ ’ ; }

ncdmnlst $fl_nm : What dimensions are in file?

function ncdmnlst { ncks --cdl -m ${1} | cut -d ’:’ -f 1 | cut -d ’=’ -s -f 1 ; }

ncvardmnlst $var_nm $fl_nm : What dimensions are in a variable?

function ncvardmnlst { ncks --trd -m -v ${1} ${2} | grep -E -i "^${1} dimension [0-9]+: " | cut -f 4 -d ’ ’ | sed ’s/,//’ ; }

ncvardmnlatlon $var_nm $fl_nm : Does variable contain both lat and lon dimensions?

function ncvardmnlatlon { flg=‘ncks -C -v ${1} -m ${2} | grep -E -i "${1}\(" | grep -E "lat.*lon|lon.*lat"‘ ; [[! -z "$flg"]] && echo "Yes, ${1} has both lat and lon dimensions" || echo "No, ${1} does not have both lat and lon dimensions" }

ncdmnsz $dmn_nm $fl_nm : What is dimension size?

function ncdmnsz { ncks --trd -m -M ${2} | grep -E -i ": ${1}, size =" | cut -f 7 -d ’ ’ | uniq ; }

ncgrplst $fl_nm : What groups are in file?

function ncgrplst { ncks -m ${1} | grep ’group:’ | cut -d ’:’ -f 2 | cut -d ’ ’ -f 2 | sort ; }

ncvarlst $fl_nm : What variables are in file?

function ncvarlst { ncks --trd -m ${1} | grep -E ’: type’ | cut -f 1 -d ’ ’ | sed ’s/://’ | sort ; }

ncmax $var_nm $fl_nm : What is maximum of variable?

function ncmax { ncwa -y max -O -C -v ${1} ${2} ~/foo.nc ; ncks --trd -H -C -v ${1} ~/foo.nc | cut -f 3- -d ’ ’ ; }

ncmax $var_nm $fl_nm : What is maximum of variable?

function ncmax { ncap2 -O -C -v -s "foo=${1}.max();print(foo)" ${2} ~/foo.nc | cut -f 3- -d ’ ’ ; }

ncmdn $var_nm $fl_nm : What is median of variable?

function ncmdn { ncap2 -O -C -v -s "foo=gsl_stats_median_from_sorted_data(${1}.sort());print(foo)" ${2} ~/foo.nc | cut -f 3- -d ’ ’ ; }

ncmin $var_nm $fl_nm : What is minimum of variable?

function ncmin { ncap2 -O -C -v -s "foo=${1}.min();print(foo)" ${2} ~/foo.nc | cut -f 3- -d ’ ’ ; }

Chapter 4: Reference Manual 283

ncrng $var_nm $fl_nm : What is range of variable?

function ncrng { ncap2 -O -C -v -s "foo_min=${1}.min();foo_max=${1}.max();print(foo_min,\"%f\");print(\" to \");print(foo_max,\"%f\")" ${2} ~/foo.nc ; }

ncmode $var_nm $fl_nm : What is mode of variable?

function ncmode { ncap2 -O -C -v -s "foo=gsl_stats_median_from_sorted_data(${1}.sort());print(foo)" ${2} ~/foo.nc | cut -f 3- -d ’ ’ ; }

ncrecsz $fl_nm : What is record dimension size?

function ncrecsz { ncks --trd -M ${1} | grep -E -i "^Root record dimension 0:" | cut -f 10- -d ’ ’ ; }

nctypget $var_nm $fl_nm : What type is variable?

function nctypget { ncks --trd -m -v ${1} ${2} | grep -E -i "^${1}: type" | cut -f 3 -d ’ ’ | cut -f 1 -d ’,’ ; }

Csh shell (/bin/csh), .cshrc examples (derive others from Bash definitions):

ncattget() { ncks --trd -M -m -v ${3} | grep -E -i "^${2} attribute [0-9]+: ${1}" | cut -f 11- -d ’ ’ | sort ; }

ncdmnsz() { ncks --trd -m -M ${2} | grep -E -i ": ${1}, size =" | cut -f 7 -d ’ ’ | uniq ; }

ncvarlst() { ncks --trd -m ${1} | grep -E ’: type’ | cut -f 1 -d ’ ’ | sed ’s/://’ | sort ; }

ncrecsz() { ncks --trd -M ${1} | grep -E -i "^Record dimension:" | cut -f 8- -d ’ ’ ; }

Sh shell (/bin/sh), .profile examples (derive others from Bash definitions):

ncattget() { ncks --trd -M -m ${3} | grep -E -i "^${2} attribute [0-9]+: ${1}" | cut -f 11- -d ’ ’ | sort ; }

ncdmnsz() { ncks --trd -m -M ${2} | grep -E -i ": ${1}, size =" | cut -f 7 -d ’ ’ | uniq ; }

ncvarlst() { ncks --trd -m ${1} | grep -E ’: type’ | cut -f 1 -d ’ ’ | sed ’s/://’ | sort ; }

ncrecsz() { ncks --trd -M ${1} | grep -E -i "^Record dimension:" | cut -f 8- -d ’ ’ ; }

EXAMPLES

View all data in netCDF in.nc, printed with Fortran indexing conventions:

ncks -F in.nc

Copy the netCDF file in.nc to file out.nc.

ncks in.nc out.nc

Now the file out.nc contains all the data from in.nc. There are, however, two differences
between in.nc and out.nc. First, the history global attribute (see Section 3.43 [History
Attribute], page 143) will contain the command used to create out.nc. Second, the variables
in out.nc will be defined in alphabetical order. Of course the internal storage of variable
in a netCDF file should be transparent to the user, but there are cases when alphabetizing
a file is useful (see description of -a switch).

Copy all global attributes (and no variables) from in.nc to out.nc:

ncks -A -x ~/nco/data/in.nc ~/out.nc

The ‘-x’ switch tells NCO to use the complement of the extraction list (see Section 3.12
[Subsetting Files], page 48). Since no extraction list is explicitly specified (with ‘-v’), the
default is to extract all variables. The complement of all variables is no variables. Without
any variables to extract, the append (‘-A’) command (see Section 2.4 [Appending Variables],
page 19) has only to extract and copy (i.e., append) global attributes to the output file.

Copy/append metadata (not data) from variables in one file to variables in a second file.
When copying/subsetting/appending files (as opposed to printing them), the copying of
data, variable metadata, and global/group metadata are now turned OFF by ‘-H’, ‘-m’, and
‘-M’, respectively. This is the opposite sense in which these switches work when printing a

284 NCO 5.0.1 User Guide

file. One can use these switches to easily replace data or metadata in one file with data or
metadata from another:

Extract naked (data-only) copies of two variables

ncks -h -M -m -O -C -v one,three_dmn_rec_var ~/nco/data/in.nc ~/out.nc

Change values to be sure original values are not copied in following step

ncap2 -O -v -s ’one*=2;three_dmn_rec_var*=0’ ~/nco/data/in.nc ~/in2.nc

Append in2.nc metadata (not data!) to out.nc

ncks -A -C -H -v one,three_dmn_rec_var ~/in2.nc ~/out.nc

Variables in out.nc now contain data (not metadata) from in.nc and metadata (not
data) from in2.nc.

Print variable three_dmn_var from file in.nc with default notations. Next print three_
dmn_var as an un-annotated text column. Then print three_dmn_var signed with very high
precision. Finally, print three_dmn_var as a comma-separated list:

% ncks --trd -C -v three_dmn_var in.nc

lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0

lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1

...

lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23

% ncks --trd -s ’%f\n’ -C -v three_dmn_var in.nc

0.000000

1.000000

...

23.000000

% ncks --trd -s ’%+16.10f\n’ -C -v three_dmn_var in.nc

+0.0000000000

+1.0000000000

...

+23.0000000000

% ncks --trd -s ’%f, ’ -C -v three_dmn_var in.nc

0.000000, 1.000000, ..., 23.000000,

Programmers will recognize these as the venerable C language printf() formatting strings.
The second and third options are useful when pasting data into text files like reports or
papers. See Section 4.2 [ncatted netCDF Attribute Editor], page 216, for more details on
string formatting and special characters.

As of NCO version 4.2.2 (October, 2012), NCO prints missing values as blanks (i.e., the
underscore character ‘_’) by default:

% ncks --trd -C -H -v mss_val in.nc

lon[0]=0 mss_val[0]=73

lon[1]=90 mss_val[1]=_

lon[2]=180 mss_val[2]=73

lon[3]=270 mss_val[3]=_

% ncks -s ’%+5.1f, ’ -H -C -v mss_val in.nc

+73.0, _, +73.0, _,

Chapter 4: Reference Manual 285

To print the numeric value of the missing value instead of a blank, use the ‘--no_blank’
option.

ncks prints in a verbose fashion by default and supplies a number of switches to pare-
down (or even spruce-up) the output. The interplay of the ‘-Q’, ‘-V’, and (otherwise un-
documented) ‘--no_nm_prn’ switches yields most desired verbosities:

% ncks -v three_dmn_rec_var -C -H ~/nco/data/in.nc

time[0]=1 lat[0]=-90 lon[0]=0 three_dmn_rec_var[0]=1

% ncks -Q -v three_dmn_rec_var -C -H ~/nco/data/in.nc

three_dmn_rec_var[0]=1

% ncks -V -v three_dmn_rec_var -C -H ~/nco/data/in.nc

1

% ncks -Q --no_nm_prn -v three_dmn_rec_var -C -H ~/nco/data/in.nc

1

% ncks --no_nm_prn -v three_dmn_rec_var -C -H ~/nco/data/in.nc

1 -90 0 1

One dimensional arrays of characters stored as netCDF variables are automatically
printed as strings, whether or not they are NUL-terminated, e.g.,

ncks -v fl_nm in.nc

The %c formatting code is useful for printing multidimensional arrays of characters repre-
senting fixed length strings

ncks -s ’%c’ -v fl_nm_arr in.nc

Using the %s format code on strings which are not NUL-terminated (and thus not technically
strings) is likely to result in a core dump.

Create netCDF out.nc containing all variables, and any associated coordinates, except
variable time, from netCDF in.nc:

ncks -x -v time in.nc out.nc

As a special case of this, consider how to remove a variable such as time_bounds that
is identified in a CF Convention (see Section 3.45 [CF Conventions], page 145) compliant
ancillary_variables, bounds, climatology, coordinates, or grid_mapping attribute.
NCO subsetting assumes the user wants all ancillary variables, axes, bounds and coordinates
associated with all extracted variables (see Section 3.13 [Subsetting Coordinate Variables],
page 52). Hence to exclude a ancillary_variables, bounds, climatology, coordinates,
or grid_mapping variable while retaining the “parent” variable (here time), one must use
the ‘-C’ switch:

ncks -C -x -v time_bounds in.nc out.nc

The ‘-C’ switch tells the operator NOT to necessarily include all the CF ancillary vari-
ables, axes, bounds, and coordinates. Hence the output file will contain time and not
time_bounds.

Extract variables time and pressure from netCDF in.nc. If out.nc does not exist it
will be created. Otherwise the you will be prompted whether to append to or to overwrite
out.nc:

286 NCO 5.0.1 User Guide

ncks -v time,pressure in.nc out.nc

ncks -C -v time,pressure in.nc out.nc

The first version of the command creates an out.nc which contains time, pressure, and
any coordinate variables associated with pressure. The out.nc from the second version is
guaranteed to contain only two variables time and pressure.

Create netCDF out.nc containing all variables from file in.nc. Restrict the dimensions
of these variables to a hyperslab. The specified hyperslab is: the fifth value in dimension
time; the half-open range lat > 0. in coordinate lat; the half-open range lon < 330. in
coordinate lon; the closed interval 0.3 < band < 0.5 in coordinate band; and cross-section
closest to 1000. in coordinate lev. Note that limits applied to coordinate values are specified
with a decimal point, and limits applied to dimension indices do not have a decimal point
See Section 3.16 [Hyperslabs], page 63.

ncks -d time,5 -d lat,,0.0 -d lon,330.0, -d band,0.3,0.5

-d lev,1000.0 in.nc out.nc

Assume the domain of the monotonically increasing longitude coordinate lon is 0 <
lon < 360. Here, lon is an example of a wrapped coordinate. ncks will extract a hyperslab
which crosses the Greenwich meridian simply by specifying the westernmost longitude as
min and the easternmost longitude as max, as follows:

ncks -d lon,260.0,45.0 in.nc out.nc

For more details See Section 3.22 [Wrapped Coordinates], page 74.

Chapter 4: Reference Manual 287

4.9 ncpdq netCDF Permute Dimensions Quickly

SYNTAX

ncpdq [-3] [-4] [-5] [-6] [-7] [-A] [-a [-]dim[,...]] [-C] [-c]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]] [-F] [--fl_fmt fl_fmt]

[-G gpe_dsc] [-g grp[,...]] [--glb ...]

[-h] [--hdf] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [-M pck_map] [--mrd]

[--no_cll_msr] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o output-file] [-P pck_plc] [-p path] [--ppc ...]

[-R] [-r] [--ram_all] [-t thr_nbr] [-U] [--unn] [-v var[,...]] [-X ...] [-x]

input-file [output-file]

DESCRIPTION

ncpdq performs one (not both) of two distinct functions per invocation: packing or di-
mension permutation. Without any options, ncpdq will pack data with default parameters.
The ‘-a’ option tells ncpdq to permute dimensions accordingly, otherwise ncpdq will pack
data as instructed/controlled by the ‘-M’ and ‘-P’ options. ncpdq is optimized to perform
these actions in a parallel fashion with a minimum of time and memory. The pdq may
stand for “Permute Dimensions Quickly”, “Pack Data Quietly”, “Pillory Dan Quayle”, or
other silly uses.

Packing and Unpacking Functions

The ncpdq packing (and unpacking) algorithms are described in Section 4.1.12 [Methods
and functions], page 173, and are also implemented in ncap2. ncpdq extends the func-
tionality of these algorithms by providing high level control of the packing policy so that
users can consistently pack (and unpack) entire files with one command. The user specifies
the desired packing policy with the ‘-P’ switch (or its long option equivalents, ‘--pck_plc’
and ‘--pack_policy’) and its pck plc argument. Four packing policies are currently im-
plemented:

Packing (and Re-Packing) Variables [default]
Definition: Pack unpacked variables, re-pack packed variables
Alternate invocation: ncpack
pck plc key values: ‘all_new’, ‘pck_all_new_att’

Packing (and not Re-Packing) Variables
Definition: Pack unpacked variables, copy packed variables
Alternate invocation: none
pck plc key values: ‘all_xst’, ‘pck_all_xst_att’

288 NCO 5.0.1 User Guide

Re-Packing Variables
Definition: Re-pack packed variables, copy unpacked variables
Alternate invocation: none
pck plc key values: ‘xst_new’, ‘pck_xst_new_att’

Unpacking
Definition: Unpack packed variables, copy unpacked variables
Alternate invocation: ncunpack
pck plc key values: ‘upk’, ‘unpack’, ‘pck_upk’

Equivalent key values are fully interchangeable. Multiple equivalent options are provided to
satisfy disparate needs and tastes of NCO users working with scripts and from the command
line.

Regardless of the packing policy selected, ncpdq no longer (as of NCO version 4.0.4
in October, 2010) packs coordinate variables, or the special variables, weights, and other
grid properties described in Section 3.45 [CF Conventions], page 145. Prior ncpdq versions
treated coordinate variables and grid properties no differently from other variables. How-
ever, coordinate variables are one-dimensional, so packing saves little space on large files,
and the resulting files are difficult for humans to read. ncpdq will, of course, unpack co-
ordinate variables and weights, for example, in case some other, non-NCO software packed
them in the first place.

Concurrently, Gaussian and area weights and other grid properties are often used to
derive fields in re-inflated (unpacked) files, so packing such grid properties causes a consid-
erable loss of precision in downstream data processing. If users express strong wishes to
pack grid properties, we will implement new packing policies. An immediate workaround
for those needing to pack grid properties now, is to use the ncap2 packing functions or to
rename the grid properties prior to calling ncpdq. We welcome your feedback.

To reduce required memorization of these complex policy switches, ncpdq may also be
invoked via a synonym or with switches that imply a particular policy. ncpack is a synonym
for ncpdq and behaves the same in all respects. Both ncpdq and ncpack assume a default
packing policy request of ‘all_new’. Hence ncpack may be invoked without any ‘-P’ switch,
unlike ncpdq. Similarly, ncunpack is a synonym for ncpdq except that ncpack implicitly
assumes a request to unpack, i.e., ‘-P pck_upk’. Finally, the ncpdq ‘-U’ switch (or its long
option equivalents ‘--unpack’) requires no argument. It simply requests unpacking.

Given the menagerie of synonyms, equivalent options, and implied options, a short list
of some equivalent commands is appropriate. The following commands are equivalent for
packing: ncpdq -P all_new, ncpdq --pck_plc=all_new, and ncpack. The following com-
mands are equivalent for unpacking: ncpdq -P upk, ncpdq -U, ncpdq --pck_plc=unpack,
and ncunpack. Equivalent commands for other packing policies, e.g., ‘all_xst’, follow by
analogy. Note that ncpdq synonyms are subject to the same constraints and recommen-
dations discussed in the secion on ncbo synonyms (see Section 4.3 [ncbo netCDF Binary
Operator], page 223). That is, symbolic links must exist from the synonym to ncpdq, or
else the user must define an alias.

Chapter 4: Reference Manual 289

The ncpdq packing algorithms must know to which type particular types of input vari-
ables are to be packed. The correspondence between the input variable type and the output,
packed type, is called the packing map. The user specifies the desired packing map with
the ‘-M’ switch (or its long option equivalents, ‘--pck_map’ and ‘--map’) and its pck map
argument. Six packing maps are currently implemented:

Pack Floating Precisions to NC_SHORT [default]
Definition: Pack floating precision types to NC_SHORT

Map: Pack [NC_DOUBLE,NC_FLOAT] to NC_SHORT

Types copied instead of packed: [NC_INT64,NC_UINT64,NC_INT,NC_UINT,NC_
SHORT,NC_USHORT,NC_CHAR,NC_BYTE,NC_UBYTE]
pck map key values: ‘flt_sht’, ‘pck_map_flt_sht’

Pack Floating Precisions to NC_BYTE

Definition: Pack floating precision types to NC_BYTE

Map: Pack [NC_DOUBLE,NC_FLOAT] to NC_BYTE

Types copied instead of packed: [NC_INT64,NC_UINT64,NC_INT,NC_UINT,NC_
SHORT,NC_USHORT,NC_CHAR,NC_BYTE,NC_UBYTE]
pck map key values: ‘flt_byt’, ‘pck_map_flt_byt’

Pack Higher Precisions to NC_SHORT

Definition: Pack higher precision types to NC_SHORT

Map: Pack [NC_DOUBLE,NC_FLOAT,NC_INT64,NC_UINT64,NC_INT,NC_UINT] to
NC_SHORT

Types copied instead of packed: [NC_SHORT,NC_USHORT,NC_CHAR,NC_BYTE,NC_
UBYTE]
pck map key values: ‘hgh_sht’, ‘pck_map_hgh_sht’

Pack Higher Precisions to NC_BYTE

Definition: Pack higher precision types to NC_BYTE

Map: Pack [NC_DOUBLE,NC_FLOAT,NC_INT64,NC_UINT64,NC_INT,NC_UINT,NC_
SHORT,NC_USHORT] to NC_BYTE

Types copied instead of packed: [NC_CHAR,NC_BYTE,NC_UBYTE]
pck map key values: ‘hgh_byt’, ‘pck_map_hgh_byt’

Pack to Next Lesser Precision
Definition: Pack each type to type of next lesser size
Map: Pack [NC_DOUBLE,NC_INT64,NC_UINT64] to NC_INT. Pack [NC_FLOAT,NC_
INT,NC_UINT] to NC_SHORT. Pack [NC_SHORT,NC_USHORT] to NC_BYTE.
Types copied instead of packed: [NC_CHAR,NC_BYTE,NC_UBYTE]
pck map key values: ‘nxt_lsr’, ‘pck_map_nxt_lsr’

290 NCO 5.0.1 User Guide

Pack Doubles to Floats
Definition: Demote (via type-conversion, not packing) double-precision vari-
ables to single-precision
Map: Demote NC_DOUBLE to NC_FLOAT. Types copied instead of packed: All
except NC_DOUBLE
pck map key values: ‘dbl_flt’, ‘pck_map_dbl_flt’, ‘dbl_sgl’,
‘pck_map_dbl_sgl’
The dbl_flt map was introduced in NCO version 4.7.7 (September, 2018).

Promote Floats to Doubles
Definition: Promote (via type-conversion, not packing) single-precision vari-
ables to double-precision
Map: Promote NC_FLOAT to NC_DOUBLE. Types copied instead of packed: All
except NC_FLOAT
pck map key values: ‘flt_dbl’, ‘pck_map_flt_dbl’, ‘sgl_dbl’,
‘pck_map_sgl_dbl’
The flt_dbl map was introduced in NCO version 4.9.1 (December, 2019).

The default ‘all_new’ packing policy with the default ‘flt_sht’ packing map reduces
the typical NC_FLOAT-dominated file size by about 50%. ‘flt_byt’ packing reduces an NC_

DOUBLE-dominated file by about 87%.

The “packing map” ‘pck_map_dbl_flt’ does a pure type-conversion (no packing is in-
volved) from NC_DOUBLE to NC_FLOAT. The resulting variables are not packed, they are just
single-precision floating point instead of double-precision floating point. This operation is
irreversible, and no attributes are created, modified, or deleted for these variables. Note
that coordinate and coordinate-like variables will not be demoted as best practices dictate
maintaining coordinates in the highest possible precision.

The “packing map” ‘pck_map_flt_dbl’ does a pure type-conversion (no packing is in-
volved) from NC_FLOAT to NC_DOUBLE. The resulting variables are not packed, they are
just double-precision floating point instead of single-precision floating point. This opera-
tion is irreversible, and no attributes are created, modified, or deleted for these variables.
All single-precision variables, including coordinates, are promoted. Note that this map can
double the size of a dataset.

The netCDF packing algorithm (see Section 4.1.12 [Methods and functions], page 173)
is lossy—once packed, the exact original data cannot be recovered without a full backup.
Hence users should be aware of some packing caveats: First, the interaction of packing
and data equal to the FillValue is complex. Test the _FillValue behavior by performing
a pack/unpack cycle to ensure data that are missing stay missing and data that are not
misssing do not join the Air National Guard and go missing. This may lead you to elect a
new FillValue. Second, ncpdq actually allows packing into NC_CHAR (with, e.g., ‘flt_chr’).
However, the intrinsic conversion of signed char to higher precision types is tricky for values
equal to zero, i.e., for NUL. Hence packing to NC_CHAR is not documented or advertised. Pack
into NC_BYTE (with, e.g., ‘flt_byt’) instead.

Chapter 4: Reference Manual 291

Dimension Permutation

ncpdq re-shapes variables in input-file by re-ordering and/or reversing dimensions specified
in the dimension list. The dimension list is a whitespace-free, comma separated list of
dimension names, optionally prefixed by negative signs, that follows the ‘-a’ (or long options
‘--arrange’, ‘--permute’, ‘--re-order’, or ‘--rdr’) switch. To re-order variables by a
subset of their dimensions, specify these dimensions in a comma-separated list following
‘-a’, e.g., ‘-a lon,lat’. To reverse a dimension, prefix its name with a negative sign in the
dimension list, e.g., ‘-a -lat’. Re-ordering and reversal may be performed simultaneously,
e.g., ‘-a lon,-lat,time,-lev’.

Users may specify any permutation of dimensions, including permutations which change
the record dimension identity. The record dimension is re-ordered like any other dimension.
This unique ncpdq capability makes it possible to concatenate files along any dimension.
See Section 2.6.1 [Concatenation], page 20 for a detailed example. The record dimension
is always the most slowly varying dimension in a record variable (see Section 3.15 [C and
Fortran Index Conventions], page 63). The specified re-ordering fails if it requires creating
more than one record dimension amongst all the output variables1.

Two special cases of dimension re-ordering and reversal deserve special mention. First,
it may be desirable to completely reverse the storage order of a variable. To do this,
include all the variable’s dimensions in the dimension re-order list in their original order,
and prefix each dimension name with the negative sign. Second, it may useful to transpose
a variable’s storage order, e.g., from C to Fortran data storage order (see Section 3.15 [C
and Fortran Index Conventions], page 63). To do this, include all the variable’s dimensions
in the dimension re-order list in reversed order. Explicit examples of these two techniques
appear below.

NB: fxm ncpdq documentation will evolve through Fall 2004. I will upload updates
to documentation linked to by the NCO homepage. ncpdq is a powerful operator, and I
am unfamiliar with the terminology needed to describe what ncpdq does. Sequences, sets,
sheesh! I just know that it does “The right thing” according to my gut feelings. Now do
you feel more comfortable using it?

Let D(x) represent the dimensionality of the variable x. Dimensionality describes the
order and sizes of dimensions. If x has rank N , then we may write D(x) as the N -element
vector

D(x) = [D1, D2, D3, . . . , Dn−1, Dn, Dn+1, . . . , DN−2, DN−1, DN]

where Dn is the size of the n’th dimension.

The dimension re-order list specified with ‘-a’ is the R-element vector

R = [R1, R2, R3, . . . , Rr−1, Rr, Rr+1, . . . , RR−2, RR−1, RR]

There need be no relation between N and R. Let the S-element vector S be the intersection
(i.e., the ordered set of unique shared dimensions) of D and R Then

S = R ∩D

= [S1, S2, S3, . . . , Ss−1, Ss, Ss+1, . . . , SS−2, SS−1, SS]

1 This limitation, imposed by the netCDF storage layer, may be relaxed in the future with netCDF4.

292 NCO 5.0.1 User Guide

S is empty if R /∈ D.

Re-ordering (or re-shaping) a variable means mapping the input state with dimension-
ality D(x) to the output state with dimensionality D′(x′). In practice, mapping occurs in
three logically distinct steps. First, we tranlate the user input to a one-to-one mappingM
between input and output dimensions, D 7→ D′. This tentative map is final unless external
constraints (typically netCDF restrictions) impose themselves. Second, we check and, if
necessary, refine the tentative mapping so that the re-shaped variables will co-exist in the
same file without violating netCDF-imposed storage restrictions. This refined map speci-
fies the final (output) dimensionality. Third, we translate the output dimensionality into
one-dimensional memory offsets for each datum according to the C language convention for
multi-dimensional array storage. Dimension reversal changes the ordering of data, though
not the rank or dimensionality, and so is part of the third step.

Dimensions R disjoint from D play no role in re-ordering. The first step taken to re-order
a variable is to determine S. R is constant for all variables, whereas D, and hence S, is
variable-specific. S is empty if R /∈ D. This may be the case for some extracted variables.
The user may explicitly specify the one-to-one mapping of input to output dimension order
by supplying (with ‘-a’) a re-order list R such that S = N . In this case D′n = Sn. The
degenerate case occurs when D = S. This produces the identity mapping D′n = Dn.

The mapping of input to output dimension order is more complex when S 6= N . In this
case D′n = Dn for the N − S dimensions D′n /∈ S. For the S dimensions D′n ∈ S, D′n = Ss.

EXAMPLES

Pack and unpack all variables in file in.nc and store the results in out.nc:

ncpdq in.nc out.nc # Same as ncpack in.nc out.nc

ncpdq -P all_new -M flt_sht in.nc out.nc # Defaults

ncpdq -P all_xst in.nc out.nc

ncpdq -P upk in.nc out.nc # Same as ncunpack in.nc out.nc

ncpdq -U in.nc out.nc # Same as ncunpack in.nc out.nc

The first two commands pack any unpacked variable in the input file. They also unpack
and then re-pack every packed variable. The third command only packs unpacked variables
in the input file. If a variable is already packed, the third command copies it unchanged to
the output file. The fourth and fifth commands unpack any packed variables. If a variable
is not packed, the third command copies it unchanged.

The previous examples all utilized the default packing map. Suppose you wish to archive
all data that are currently unpacked into a form which only preserves 256 distinct values.
Then you could specify the packing map pck map as ‘hgh_byt’ and the packing policy
pck plc as ‘all_xst’:

ncpdq -P all_xst -M hgh_byt in.nc out.nc

Many different packing maps may be used to construct a given file by performing the
packing on subsets of variables (e.g., with ‘-v’) and using the append feature with ‘-A’ (see
Section 2.4 [Appending Variables], page 19).

Chapter 4: Reference Manual 293

Users may wish to unpack data packed with the HDF convention, and then re-pack it
with the netCDF convention so that all their datasets use the same packing convention
prior to intercomparison.

One-step procedure: For NCO 4.4.0+, netCDF 4.3.1+

1. Convert, unpack, and repack HDF file into netCDF file

ncpdq --hdf_upk -P xst_new modis.hdf modis.nc # HDF4 files

ncpdq --hdf_upk -P xst_new modis.h5 modis.nc # HDF5 files

One-step procedure: For NCO 4.3.7--4.3.9

1. Convert, unpack, and repack HDF file into netCDF file

ncpdq --hdf4 --hdf_upk -P xst_new modis.hdf modis.nc # HDF4

ncpdq --hdf_upk -P xst_new modis.h5 modis.nc # HDF5

Two-step procedure: For NCO 4.3.6 and earlier

1. Convert HDF file to netCDF file

ncl_convert2nc modis.hdf

2. Unpack using HDF convention and repack using netCDF convention

ncpdq --hdf_upk -P xst_new modis.nc modis.nc

NCO now2 automatically detects HDF4 files. In this case it produces an output file
modis.nc which preserves the HDF packing used in the input file. The ncpdq command
first unpacks all packed variables using the HDF unpacking algorithm (as specified by
‘--hdf_upk’), and then repacks those same variables using the netCDF algorithm (be-
cause that is the only algorithm NCO packs with). As described above the ‘--P xst_new’
packing policy only repacks variables that are already packed. Not-packed variables are
copied directly without loss of precision3.

Re-order file in.nc so that the dimension lon always precedes the dimension lat and
store the results in out.nc:

ncpdq -a lon,lat in.nc out.nc

ncpdq -v three_dmn_var -a lon,lat in.nc out.nc

The first command re-orders every variable in the input file. The second command
extracts and re-orders only the variable three_dmn_var.

Suppose the dimension lat represents latitude and monotonically increases increases
from south to north. Reversing the lat dimension means re-ordering the data so that
latitude values decrease monotonically from north to south. Accomplish this with

% ncpdq -a -lat in.nc out.nc

2 Prior to NCO 4.4.0 and netCDF 4.3.1 (January, 2014), NCO requires the ‘--hdf4’ switch to correctly
read HDF4 input files. For example, ‘ncpdq --hdf4 --hdf_upk -P xst_new modis.hdf modis.nc’. That
switch is now obsolete, though harmless for backwards compatibility. Prior to version 4.3.7 (October,
2013), NCO lacked the software necessary to circumvent netCDF library flaws handling HDF4 files, and
thus NCO failed to convert HDF4 files to netCDF files. In those cases, use the ncl_convert2nc command
distributed with NCL to convert HDF4 files to netCDF.

3 ncpdq does not support packing data using the HDF convention. Although it is now straightforward to
support this, we think it might sow more confusion than it reaps. Let us know if you disagree and would
like NCO to support packing data with HDF algorithm.

294 NCO 5.0.1 User Guide

% ncks --trd -C -v lat in.nc

lat[0]=-90

lat[1]=90

% ncks --trd -C -v lat out.nc

lat[0]=90

lat[1]=-90

This operation reversed the latitude dimension of all variables. Whitespace immediately
preceding the negative sign that specifies dimension reversal may be dangerous. Quotes and
long options can help protect negative signs that should indicate dimension reversal from
being interpreted by the shell as dashes that indicate new command line switches.

ncpdq -a -lat in.nc out.nc # Dangerous? Whitespace before "-lat"

ncpdq -a ’-lat’ in.nc out.nc # OK. Quotes protect "-" in "-lat"

ncpdq -a lon,-lat in.nc out.nc # OK. No whitespace before "-"

ncpdq --rdr=-lat in.nc out.nc # Preferred. Uses "=" not whitespace

To create the mathematical transpose of a variable, place all its dimensions in the dimen-
sion re-order list in reversed order. This example creates the transpose of three_dmn_var:

% ncpdq -a lon,lev,lat -v three_dmn_var in.nc out.nc

% ncks --trd -C -v three_dmn_var in.nc

lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0

lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1

lat[0]=-90 lev[0]=100 lon[2]=180 three_dmn_var[2]=2

...

lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21

lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22

lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23

% ncks --trd -C -v three_dmn_var out.nc

lon[0]=0 lev[0]=100 lat[0]=-90 three_dmn_var[0]=0

lon[0]=0 lev[0]=100 lat[1]=90 three_dmn_var[1]=12

lon[0]=0 lev[1]=500 lat[0]=-90 three_dmn_var[2]=4

...

lon[3]=270 lev[1]=500 lat[1]=90 three_dmn_var[21]=19

lon[3]=270 lev[2]=1000 lat[0]=-90 three_dmn_var[22]=11

lon[3]=270 lev[2]=1000 lat[1]=90 three_dmn_var[23]=23

To completely reverse the storage order of a variable, include all its dimensions in the
re-order list, each prefixed by a negative sign. This example reverses the storage order of
three_dmn_var:

% ncpdq -a -lat,-lev,-lon -v three_dmn_var in.nc out.nc

% ncks --trd -C -v three_dmn_var in.nc

lat[0]=-90 lev[0]=100 lon[0]=0 three_dmn_var[0]=0

lat[0]=-90 lev[0]=100 lon[1]=90 three_dmn_var[1]=1

lat[0]=-90 lev[0]=100 lon[2]=180 three_dmn_var[2]=2

...

lat[1]=90 lev[2]=1000 lon[1]=90 three_dmn_var[21]=21

lat[1]=90 lev[2]=1000 lon[2]=180 three_dmn_var[22]=22

Chapter 4: Reference Manual 295

lat[1]=90 lev[2]=1000 lon[3]=270 three_dmn_var[23]=23

% ncks --trd -C -v three_dmn_var out.nc

lat[0]=90 lev[0]=1000 lon[0]=270 three_dmn_var[0]=23

lat[0]=90 lev[0]=1000 lon[1]=180 three_dmn_var[1]=22

lat[0]=90 lev[0]=1000 lon[2]=90 three_dmn_var[2]=21

...

lat[1]=-90 lev[2]=100 lon[1]=180 three_dmn_var[21]=2

lat[1]=-90 lev[2]=100 lon[2]=90 three_dmn_var[22]=1

lat[1]=-90 lev[2]=100 lon[3]=0 three_dmn_var[23]=0

Creating a record dimension named, e.g., time, in a file which has no existing record
dimension is simple with ncecat:

ncecat -O -u time in.nc out.nc # Create degenerate record dimension named "time"

Now consider a file with all dimensions, including time, fixed (non-record). Suppose the
user wishes to convert time from a fixed dimension to a record dimension. This may be
useful, for example, when the user wishes to append additional time slices to the data. As
of NCO version 4.0.1 (April, 2010) the preferred method for doing this is with ncks:

ncks -O --mk_rec_dmn time in.nc out.nc # Change "time" to record dimension

Prior to 4.0.1, the procedure to change an existing fixed dimension into a record di-
mension required three separate commands, ncecat followed by ncpdq, and then ncwa.
The recommended method is now to use ‘ncks --fix_rec_dmn’, yet it is still instructive
to present the original procedure, as it shows how multiple operators can achieve the same
ends by different means:

ncecat -O in.nc out.nc # Add degenerate record dimension named "record"

ncpdq -O -a time,record out.nc out.nc # Switch "record" and "time"

ncwa -O -a record out.nc out.nc # Remove (degenerate) "record"

The first step creates a degenerate (size equals one) record dimension named (by default)
record. The second step swaps the ordering of the dimensions named time and record.
Since time now occupies the position of the first (least rapidly varying) dimension, it be-
comes the record dimension. The dimension named record is no longer a record dimension.
The third step averages over this degenerate record dimension. Averaging over a degener-
ate dimension does not alter the data. The ordering of other dimensions in the file (lat, lon,
etc.) is immaterial to this procedure. See Section 4.5 [ncecat netCDF Ensemble Concate-
nator], page 251 and Section 4.8 [ncks netCDF Kitchen Sink], page 261 for other methods
of changing variable dimensionality, including the record dimension.

296 NCO 5.0.1 User Guide

4.10 ncra netCDF Record Averager

SYNTAX

ncra [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c] [--cb y1,y2,m1,m2,tpd]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride][,[subcycle][,[interleave]]]]]

[-F] [--fl_fmt fl_fmt]

[-G gpe_dsc] [-g grp[,...]] [--glb ...]

[-h] [--hdf] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [--mro] [-N] [-n loop]

[--no_cll_msr] [--no_cll_mth] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o output-

file] [-p path] [--ppc ...] [--prm_int] [--prw wgt_arr]

[-R] [-r] [--ram_all] [--rec_apn] [--rth_dbl|flt]

[-t thr_nbr] [--unn] [-v var[,...]] [-w wgt] [-X ...] [-x] [-y op_typ]

[input-files] [output-file]

DESCRIPTION

ncra computes statistics (including, though not limited to, averages) of record variables
across an arbitrary number of input-files. The record dimension is, by default, retained
as a degenerate (size 1) dimension in the output variables. See Section 2.6 [Statistics vs.
Concatenation], page 20, for a description of the distinctions between the various statistics
tools and concatenators. As a multi-file operator, ncra will read the list of input-files from
stdin if they are not specified as positional arguments on the command line (see Section 2.7
[Large Numbers of Files], page 21).

Input files may vary in size, but each must have a record dimension. The record coordi-
nate, if any, should be monotonic (or else non-fatal warnings may be generated). Hyperslabs
of the record dimension which include more than one file work correctly. ncra supports the
stride argument to the ‘-d’ hyperslab option (see Section 3.16 [Hyperslabs], page 63) for the
record dimension only, stride is not supported for non-record dimensions. ncra always aver-
ages coordinate variables (e.g., time) regardless of the arithmetic operation type performed
on non-coordinate variables (see Section 3.39 [Operation Types], page 128).

As of NCO version 4.4.9, released in May, 2015, ncra accepts user-specified weights with
the ‘-w’ (or long-option equivalent ‘--wgt’, ‘--wgt_var’, or ‘--weight’) switch. When no
weight is specified, ncra weights each record (e.g., time slice) in the input-files equally. ncra
does not attempt to see if, say, the time coordinate is irregularly spaced and thus would
require a weighted average in order to be a true time-average. Specifying unequal weights
is entirely the user’s responsibility.

Weights specified with ‘-w wgt’ may take one of two forms. In the first form, the ‘wgt’
argument is a comma-separated list of values by which to weight each file (recall that files
may have multiple timesteps). In this form the number of weights specified must equal the
number of files specified in the input file list, or else the program will exit. In the second
form, the ‘wgt’ argument is the name of a weighting variable present in every input file. The
variable may be a scalar or a one-dimensional record variable. Scalar weights are applied

Chapter 4: Reference Manual 297

uniformly to the entire file (i.e., this produces the same arithmetic result as supplying the
same value as a per-file weight option on the command-line). One-dimensional weights apply
to each corresponding record (i.e., per-record weights), and are suitable for dynamically
changing timesteps.

By default, any weights specified (whether by value or by variable name) are nor-
malized to unity by dividing each specified weight by the sum of all the weights. This
means, for example, that, ‘-w 0.25,0.75’ is equivalent to ‘-w 2.0,6.0’ since both are
equal when normalized. This behavior simplifies specifying weights based on count-
able items. For example, time-weighting monthly averages for March, April, and May
to obtain a spring seasonal average can be done with ‘-w 31,30,31’ instead of ‘-w
0.33695652173913043478,0.32608695652173913043,0.33695652173913043478’.

However, sometimes one wishes to use weights in “dot-product mode”, i.e., multiply
by the (non-normalized) weights. As of NCO version 4.5.2, released in July, 2015, ncra
accepts the ‘-N’ (or long-option equivalent ‘--no_nrm_by_wgt’) switch that prevents auto-
matic weight normalization. When this switch is used, the weights will not be normalized
(unless the user provides them as normalized), and the numerator of the weighted average
will not be divided by the sum of the weights (which is one for normalized weights).

As of NCO version 4.9.4, released in September, 2020, ncra supports the
‘--per_record_weights’ (or ‘--prw’) flag to utilize the command-line weights separately
specified by ‘-w wgt_arr’ (or ‘--wgt wgt_arr’) for per-record weights instead of per-file-
weights, where wgt arr is a 1-D array of weights. This is useful when computing weighted
averages with cyclically varying weights, since the weights given on the command line will
be repeated for the length of the timeseries. Consider, for example, a CMIP6 timeseries of
historical monthly mean emissions that one wishes to convert to a timeseries of annual-mean
emissions. One can now weight each month by its number of days via:

ncra --per_record_weights --mro -d time,,,12,12 --wgt \

31,28,31,30,31,30,31,31,30,31,30,31 ~/monthly.nc ~/annual.nc

Note that the twelve weights will be implicitly repeated throughtout the duration of the
input file(s), which in this case may therefore specify an interannual monthly timeseries
that is reduced to a timeseries of annual-means in the output.

Bear these exceptions in mind when weighting input: First, ncra only applies weights if
the arithmetic operation type is averaging (see Section 3.39 [Operation Types], page 128),
i.e., for timeseries mean and for timeseries mean absolute value. Weights are never applied
for minimization, square-roots, etc. Second, ncra never weights coordinate variables (e.g.,
time) regardless of the weighting performed on non-coordinate variables.

As of NCO version 4.9.4, released in September, 2020, ncra supports the
‘--promote_ints’ (or ‘prm_ints’) flags to output statistics of integer-valued input vari-
ables in floating-point precision in the output file. By default, arithmetic operators such as
ncra auto-promote integers to double-precision prior to arithmetic, then conduct the arith-
metic, then demote the values back to integers for final output. The final stage (demotion)
of this default behavior quantizes the mantissa of the values and prevents, e.g., retaining
the statisitical means of Boolean (0 or 1-valued) input data as floating point data. The
‘--promote_ints’ flag eliminates the demotion and causes the statistical means of integer

298 NCO 5.0.1 User Guide

(NC_BYTE, NC_SHORT, NC_INT, NC_INT64) inputs to be output as single-precision floating
point (NC_FLOAT) variables. This allows useful arithmetic to be performed on Boolean
values stored in the space-conserving NC_BYTE (single-byte) format.

ncra --prm_ints in*.nc out.nc

EXAMPLES

Average files 85.nc, 86.nc, . . . 89.nc along the record dimension, and store the results
in 8589.nc:

ncra 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc

ncra 8[56789].nc 8589.nc

ncra -n 5,2,1 85.nc 8589.nc

These three methods produce identical answers. See Section 3.6 [Specifying Input Files],
page 34, for an explanation of the distinctions between these methods.

Assume the files 85.nc, 86.nc, . . . 89.nc each contain a record coordinate time of
length 12 defined such that the third record in 86.nc contains data from March 1986, etc.
NCO knows how to hyperslab the record dimension across files. Thus, to average data from
December, 1985 through February, 1986:

ncra -d time,11,13 85.nc 86.nc 87.nc 8512_8602.nc

ncra -F -d time,12,14 85.nc 86.nc 87.nc 8512_8602.nc

The file 87.nc is superfluous, but does not cause an error. The ‘-F’ turns on the Fortran
(1-based) indexing convention. The following uses the stride option to average all the March
temperature data from multiple input files into a single output file

ncra -F -d time,3,,12 -v temperature 85.nc 86.nc 87.nc 858687_03.nc

See Section 3.17 [Stride], page 65, for a description of the stride argument.

Assume the time coordinate is incrementally numbered such that January, 1985 = 1 and
December, 1989 = 60. Assuming ‘??’ only expands to the five desired files, the following
averages June, 1985–June, 1989:

ncra -d time,6.,54. ??.nc 8506_8906.nc

ncra -y max -d time,6.,54. ??.nc 8506_8906.nc

The second example identifies the maximum instead of averaging. See Section 3.39
[Operation Types], page 128, for a description of all available statistical operations.

ncra includes the powerful subcycle and multi-record output features (see Section 3.19
[Subcycle], page 68). This example uses these features to compute and output winter (DJF)
averages for all winter seasons beginning with year 1990 and continuing to the end of the
input file:

ncra -O --mro -d time,"1990-12-01",,12,3 in.nc out.nc

The ‘-w wgt’ option weights input data per-file when explicit numeric weights are given
on the command-line, or per-timestep when the argument is a record variable that resides
in the file:

ncra -w 31,31,28 dec.nc jan.nc feb.nc out.nc # Per-file weights

Chapter 4: Reference Manual 299

ncra -w delta_t in1.nc in2.nc in3.nc out.nc # Per-timestep weights

The first example weights the input differently per-file to produce correctly weighted
winter seasonal mean statistics. The second example weights the input per-timestep to
produce correctly weighted mean statistics.

300 NCO 5.0.1 User Guide

4.11 ncrcat netCDF Record Concatenator

SYNTAX

ncrcat [-3] [-4] [-5] [-6] [-7] [-A] [-C] [-c]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride][,[subcycle][,[interleave]]]]]

[-F] [--fl_fmt fl_fmt]

[-G gpe_dsc] [-g grp[,...]] [--glb ...]

[-h] [--hdr_pad nbr] [--hpss]

[-L dfl_lvl] [-l path] [--md5_digest] [-n loop]

[--no_tmp_fl] [--no_cll_msr] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o output-

file] [-p path] [--ppc ...] [-R] [-r] [--ram_all] [--rec_apn]

[-t thr_nbr] [--unn] [-v var[,...]] [-X ...] [-x]

[input-files] [output-file]

DESCRIPTION

ncrcat concatenates record variables across an arbitrary number of input-files. The
final record dimension is by default the sum of the lengths of the record dimensions in the
input files. See Section 2.6 [Statistics vs. Concatenation], page 20, for a description of the
distinctions between the various statistics tools and concatenators. As a multi-file operator,
ncrcat will read the list of input-files from stdin if they are not specified as positional
arguments on the command line (see Section 2.7 [Large Numbers of Files], page 21).

Input files may vary in size, but each must have a record dimension. The record coordi-
nate, if any, should be monotonic (or else non-fatal warnings may be generated). Hyperslabs
along the record dimension that span more than one file are handled correctly. ncra sup-
ports the stride argument to the ‘-d’ hyperslab option for the record dimension only, stride
is not supported for non-record dimensions.

Concatenating a variable packed with different scales multiple datasets is beyond the
capabilities of ncrcat (and ncecat, the other concatenator (Section 2.6.1 [Concatenation],
page 20). ncrcat does not unpack data, it simply copies the data from the input-files, and
the metadata from the first input-file, to the output-file. This means that data compressed
with a packing convention must use the identical packing parameters (e.g., scale_factor
and add_offset) for a given variable across all input files. Otherwise the concatenated
dataset will not unpack correctly. The workaround for cases where the packing parameters
differ across input-files requires three steps: First, unpack the data using ncpdq. Second,
concatenate the unpacked data using ncrcat, Third, re-pack the result with ncpdq.

ncrcat applies special rules to ARM convention time fields (e.g., time_offset). See
Section 3.46 [ARM Conventions], page 149 for a complete description.

EXAMPLES

Concatenate files 85.nc, 86.nc, . . . 89.nc along the record dimension, and store the
results in 8589.nc:

ncrcat 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc

Chapter 4: Reference Manual 301

ncrcat 8[56789].nc 8589.nc

ncrcat -n 5,2,1 85.nc 8589.nc

These three methods produce identical answers. See Section 3.6 [Specifying Input Files],
page 34, for an explanation of the distinctions between these methods.

Assume the files 85.nc, 86.nc, . . . 89.nc each contain a record coordinate time of
length 12 defined such that the third record in 86.nc contains data from March 1986, etc.
NCO knows how to hyperslab the record dimension across files. Thus, to concatenate data
from December, 1985–February, 1986:

ncrcat -d time,11,13 85.nc 86.nc 87.nc 8512_8602.nc

ncrcat -F -d time,12,14 85.nc 86.nc 87.nc 8512_8602.nc

The file 87.nc is superfluous, but does not cause an error. When ncra and ncrcat en-
counter a file which does contain any records that meet the specified hyperslab criteria,
they disregard the file and proceed to the next file without failing. The ‘-F’ turns on the
Fortran (1-based) indexing convention.

The following uses the stride option to concatenate all the March temperature data from
multiple input files into a single output file

ncrcat -F -d time,3,,12 -v temperature 85.nc 86.nc 87.nc 858687_03.nc

See Section 3.17 [Stride], page 65, for a description of the stride argument.

Assume the time coordinate is incrementally numbered such that January, 1985 = 1
and December, 1989 = 60. Assuming ?? only expands to the five desired files, the following
concatenates June, 1985–June, 1989:

ncrcat -d time,6.,54. ??.nc 8506_8906.nc

302 NCO 5.0.1 User Guide

4.12 ncremap netCDF Remapper

SYNTAX

ncremap [-3] [-4] [-5] [-6] [-7] [-a alg_typ] [--a2o] [--add_fll]

[-D dbg_lvl] [-d dst_fl] [--d2f] [--dpt] [--dpt_fl=dpt_fl]

[--dt_sng=dt_sng] [--esmf_typ=esmf_typ]

[--fl_fmt=fl_fmt] [-G grd_sng] [-g grd_dst]

[-I drc_in] [-i input-file] [-j job_nbr] [-L dfl_lvl]

[-M] [-m map_fl] [--mpi_nbr=mpi_nbr] [--mpi_pfx=mpi_pfx] [--msh_fl=msh_fl]

[--msk_apl] [--msk_dst=msk_dst] [--msk_out=msk_out] [--msk_src=msk_src] [--mss_val=mss_val]

[-n nco_opt] [--nm_dst=nm_dst] [--nm_src=nm_src]

[--no_cll_msr] [--no_frm_trm] [--no_permute] [--no_stdin] [--no_stg_grd]

[-O drc_out] [-o output-file] [-P prc_typ] [-p par_typ]

[--pdq=pdq_opt] [--ppc=ppc_opt] [--preserve=prs_stt]

[-R rgr_opt] [--rgn_dst] [--rgn_src] [--rnr_thr=rnr_thr]

[--rrg_bb_wesn=bb_wesn] [--rrg_dat_glb=dat_glb] [--rrg_grd_glb=grd_glb]

[--rrg_grd_rgn=grd_rgn] [--rrg_rnm_sng=rnm_sng]

[-s grd_src] [--sgs_frc=sgs_frc] [--sgs_msk=sgs_msk] [--sgs_nrm=sgs_nrm]

[--skl=skl-file] [--stdin] [-T drc_tmp] [-t thr_nbr]

[-U] [-u unq_sfx] [--ugrid=ugrid-file] [--uio]

[-V rgr_var] [-v var_lst[,...]] [--version] [--vrb=vrb_lvl]

[--vrt_fl=vrt_fl] [--vrt_ntp=vrt_ntp] [--vrt_xtr=vrt_xtr]

[-W wgt_opt] [-w wgt_cmd] [-x xtn_lst[,...]] [--xcl_var]

[--xtr_nsp=xtr_nsp] [--xtr_xpn=xtr_xpn]

[input-files] [output-file]

DESCRIPTION

ncremap remaps the data file(s) in input-file, in drc in, or piped through standard input,
to the horizontal grid specified by (in descending order of precedence) map fl, grd dst, or
dst fl and stores the result in output-file(s). If a vertical grid vrt fl is provided, ncremap will
(also) vertically interpolate the input file(s) to that grid. When no input-file is provided,
ncremap operates in “map-only” mode where it exits after producing an annotated map-file.
ncremap was introduced to NCO in version 4.5.4 (December, 2015).

ncremap is a “super-operator” that orchestrates the regridding features of several differ-
ent programs including other NCO operators. Under the hood NCO applies pre-computed
remapping weights or, when necessary, generates and infers grids, generates remapping
weights itself or calls external programs to generate the weights, and then applies the
weights (i.e., regrids).

Unlike the rest of NCO, ncremap and ncclimo are shell scripts, not compiled binaries1.
As of NCO 4.9.2 (February, 2020), the ncclimo and ncremap scripts export the environment
variable HDF5_USE_FILE_LOCKING with a value of FALSE. This prevents failures of these op-
erators that can occur with some versions of the underlying HDF library that attempt to lock

1 This means that newer (including user-modified) versions of ncremap work fine without re-compiling
NCO. Re-compiling is only necessary to take advantage of new features or fixes in the NCO binaries,
not to improve ncremap. One may download and give executable permissions to the latest source at
https://github.com/nco/nco/tree/master/data/ncremap without re-installing the rest of NCO.

https://github.com/nco/nco/tree/master/data/ncremap

Chapter 4: Reference Manual 303

files on file systems that cannot or do not support it. ncremap wraps the underlying regrid-
der (ncks) and external executables to produce a friendly interface to regridding. Without
any external dependencies, ncremap applies weights from a pre-exisiting map-file to a source
data file to produce a regridded dataset. Source and destination datasets may be on any
Swath, Curvilinear, Rectangular, or Unstructured Data (SCRUD) grid. ncremap will also use
its own algorithms or, when necessary, external programs ESMF’s ESMF_RegridWeightGen
(ERWG) or TempestRemap’s GenerateOverlapMesh/GenerateOfflineMap) to generate
weights and mapfiles. In order to use the weight-generation options, either invoke an inter-
nal NCO weight-generation algorithm (e.g., ‘--alg_typ=nco’), or ensure that one or both
of the external weight-generation packages is installed and on your $PATH. The recom-
mended way to obtain ERWG is as distributed in binary format. Many (most?) NCO

users already have NCL on their system(s), and NCL usually comes with ERWG. Since
about June, 2016, the Conda NCO package will also install ERWG2. Then be sure the direc-
tory containing the ERWG executable is on your $PATH before using ncremap. As a fallback,
ERWG may also be installed from source: https://earthsystemcog.org/projects/esmf/
download_last_public. ncremap can also generate and utilize mapfiles created by Tem-
pestRemap, https://github.com/ClimateGlobalChange/tempestremap. Until about
April, 2019, TempestRemap had to be built from source because there were no binary dis-
tributions of it. As of NCO version 4.8.0, released in May, 2019, the Conda NCO package
automatically installs the new TempestRemap Conda package so building from source is
not necessary. Please contact those projects for support on building and installing their
software, which makes ncremap more functional and user-friendly. Please ensure you have
the latest version of ERWG or TempestRemap before reporting any related problems to
NCO.

As mentioned above, ncremap orchestrates the regridding features of several different
programs. ncremap runs most quickly when it is supplied with a pre-computed mapfile.
However, ncremap will also (call other programs to) compute mapfiles when necessary and
when given sufficient grid information. Thus it is helpful to understand when ncremap will
and will not internally generate a mapfile. Supplying input data files and a pre-computed
mapfile without any other grid information causes ncremap to regrid the data files without
first pausing to internally generate a mapfile. On the other hand, supplying any grid
information (i.e., using any of the ‘-d’, ‘-G’, ‘-g’, or ‘-s’ switches described below), causes
ncremap to internally (re-)generate the mapfile by combining the supplied and inferred grid
information. A generated mapfile is given a default name unless a user-specified name is
supplied with ‘-m map_fl’.

Fields not regridded by ncremap

Most people ultimately use ncremap to regrid data, yet not all data can or should be
regridded in the sense of applying a sparse-matrix of weights to an input field to produce
and output field. Certain fields (e.g., the longitude coordinate) specify the grid. These
fields must be provided in order to compute the weights that are used to regrid. The
regridded usually copies these fields “as is” directly into regridded files, where they describe
the destination grid, and replace or supercede the source grid information. Other fields
are extensive grid properties (e.g., the number of cells adjacent to a given cell) that may

2 Install the Conda NCO package with ‘conda install -c conda-forge nco’.

https://earthsystemcog.org/projects/esmf/download_last_public
https://earthsystemcog.org/projects/esmf/download_last_public
https://github.com/ClimateGlobalChange/tempestremap

304 NCO 5.0.1 User Guide

apply only to the source (not the destination) grid, or be too difficult to re-compute for the
destination grid. ncremap contains an internal database of fields that it will not propagate
or regrid. First are variables with names identical to the coordinate names found in an
ever-growing collection of publicly available geoscience datasets (CMIP, NASA, etc.):

area, gridcell_area, gw, LAT, lat, Latitude, latitude, nav_lat, global_latitude0,
latitude0, slat, TLAT, ULAT, XLAT, XLAT_M, CO_Latitude, S1_Latitude, lat_bnds, lat_
vertices, latt_bounds, latu_bounds, latitude_bnds, LatitudeCornerpoints, bounds_
lat, LON, lon, Longitude, longitude, nav_lon, global_longitude0, longitude0, slon,
TLON, TLONG, ULON, ULONG, XLONG, XLONG_M, CO_Longitude, S1_Longitude, lon_bnds,
lon_vertices, lont_bounds, lonu_bounds, longitude_bnds, LongitudeCornerpoints,
bounds_lon, and w_stag.

Files produced by MPAS models may contain these variables that will not be regridded:

angleEdge, areaTriangle, cellsOnCell, cellsOnEdge, cellsOnVertex, dcEdge,
dvEdge, edgeMask, edgesOnCell, edgesOnEdge, edgesOnVertex, indexToCellID,
indexToEdgeID, indexToVertexID, kiteAreasOnVertex, latCell, latEdge, latVertex,
lonCell, lonEdge, lonVertex, maxLevelEdgeTop, meshDensity, nEdgesOnCell,
nEdgesOnEdge, vertexMask, verticesOnCell, verticesOnEdge, weightsOnEdge, xEdge,
yEdge, zEdge, xVertex, yVertex, and zVertex.

Most of these fields that ncremap will not regrid are also fields that NCO size-and-
rank-preserving operators will not modify, as described in Section 3.45 [CF Conventions],
page 145.

Options specific to ncremap

The following summarizes features unique to ncremap. Features common to many operators
are described in Chapter 3 [Shared features], page 29.

‘-a alg_typ (--alg_typ, --algorithm, --regrid_algorithm)’
Specifies the interpolation algorithm for weight-generation for use by ESMF_

RegridWeightGen (ERWG), NCO, and/or TempestRemap. ncremap unbundles
this algorithm choice from the rest of the weight-generator invocation syntax be-
cause users more frequently change interpolation algorithms than other options
(that can be changed with ‘-W wgt_opt’). ncremap can invoke all seven ERWG

weight generation algorithms, one NCO algorithm, and eight TempestRemap
algorithms.

The seven ERWG weight generation algorithms are: bilinear (default, accept-
able abbreviations are bilin, blin, bln), conserve (or conservative, cns,
c1, or aave), conserve2nd (or conservative2nd, c2, or c2nd) (NCO supports
conserve2nd as of version 4.7.4 (April, 2018)), nearestdtos (or nds or dtos or
ndtos), neareststod (or nsd or stod or nstod), and patch (or pch or patc).
See ERWG documentation here for detailed descriptions of ERWG algorithms.

ncremap implements its own internal weight-generation algorithm as of NCO

version 4.8.0 (May, 2019). The first NCO-native algorithm is a first-order con-
servative algorithm that competes well in accuracy with similar algorithms (e.g.,

http://www.earthsystemmodeling.org/esmf_releases/public/ESMF_6_3_0rp1/ESMF_refdoc/node3.html#SECTION03020000000000000000

Chapter 4: Reference Manual 305

ERWG’s conservative algorithm). This algorithm is built-in to NCO and requires
no external software so it is the default weight generation algorithm and is rec-
ommended for everyday use. The algorithm may also be explicitly invoked with
nco_con (or nco_cns, nco_conservative, or simply nco).

As of NCO version 4.9.4 (September, 2019) ncremap supports a second internal
weight-generation algorithm based on distance-weighted extrapolation (DWE).
DWE is similar to the ERWG nearestidavg extrapolation alorithm, and accepts
the same two parameters as input: ‘--xtr_xpn xtr_xpn’ sets the (absolute
value of) the exponent used in inverse distance weighting (default is 2.0), and
‘--xtr_nsp xtr_nsp’ sets the number of source points used in the extrapolation
(default is 8). Currently, ncremap applies NCO’s DWE to the entire destination
grid, not just to points with missing/masked values, whereas ERWG uses DWE

solely for extrapolation to missing data points. We intend NCO’s DWE to offer
both types of functionality in a future release.

ncremap --alg_typ=nco_dwe -s src.nc -d dst.nc -m map.nc

ncremap -a nco_dwe --xtr_xpn=1.0 -s src.nc -d dst.nc -m map.nc

ncremap -a nco_dwe --xtr_nsp=1 -s src.nc -d dst.nc -m map.nc

ncremap can invoke eight preconfigured TempestRemap weight-generation al-
gorithms, and one generic algorithm (tempest) for which users should provide
their own options. As of NCO version 4.7.2 (January, 2018), ncremap imple-
mented the six E3SM-recommended TempestRemap mapping algorithms be-
tween FV and SE flux, state, and other variables. ncremap originated some
(we hope) common-sense names for these algorithms (se2fv_flx, se2fv_stt,
se2fv_alt, fv2se_flx, fv2se_stt, and fv2se_alt), and also allows more
mathematically precise synonyms (shown below). As of NCO version 4.9.0 (De-
cember, 2019), ncremap added two further boutique mappings (fv2fv_flx and
fv2fv_stt). Finally, the ‘-a tempest’ algorithm can be specified with the pre-
cise TempestRemap options as arguments to the ‘-W’ (or ‘--wgt_opt’) option.
Note that support for the named algorithms requires TempestRemap version
2.0.0 or later (some option combinations fail with earlier versions).

Generate and use the recommended weights to remap fluxes from SE to FV

grids, for example, with

ncremap -a se2fv_flx --src_grd=se.g --dst_grd=fv.nc -m map.nc

ncremap -m map.nc in.nc out.nc

This causes ncremap to automatically invoke TempestRemap with the boutique
options ‘--in_type cgll --in_np 4 --out_type fv --mono’ that are recom-
mended by E3SM for conservative and monotone remapping of fluxes. Tem-
pestRemap options have the following meanings: mono specifies a monotone
remapping, i.e., one that does not generate any new extrema in the field vari-
ables.a cgll indicates the input or output are represented by a continuous
Galerkin method on Gauss-Lobatto-Legendre nodes. This is appropriate for
spectral element datasets. (TempestRemap also supports, although NCO does
not invoke, the dgll option for a discontinuous Galerkin method on Gauss-
Lobatto-Legendre nodes.) It is equivalent to, yet simpler to remember and to
invoke than

306 NCO 5.0.1 User Guide

ncremap -a tempest --src_grd=se.g --dst_grd=fv.nc -m map.nc \

-W ’--in_type cgll --in_np 4 --out_type fv --mono’

Specifying ‘-a tempest’ without additional options in the ‘-W’ clause causes
TempestRemap to employ defaults. The default configuration requires both
input and output grids to be FV, and produces a conservative, non-monotonic
mapping. The ‘-a fv2fv’ option described below may produce more desirable
results than this default for many users. Using ‘-a tempest’ alone without other
options for spectral element grids will lead to undefined and likely unintentional
results. In other words, ‘-a tempest’ is intended to be used in conjunction with
a ‘-W’ option clause to supply your own combination of TempestRemap options
that does not duplicate one of the boutique option collections that already has
its own name.

The full list of supported canonical algorithm names, their synonyms, and bou-
tique options passed to GenerateOfflineMap are:

se2fv_flx (synonyms mono_se2fv, conservative_monotone_se2fv)
Options: ‘--in_type cgll --in_np 4 --out_type fv --mono

--correct_areas’

fv2se_flx (synonyms monotr_fv2se, conservative_monotone_fv2se),
Options: ‘--in_type cgll --in_np 4 --out_type fv

--mono --correct_areas’. For fv2se_flx the weights are gen-
erated with options identical to se2fv_flx, and then the transpose
of the resulting weight matrix is employed.

se2fv_stt (synonyms highorder_se2fv,
accurate_conservative_nonmonotone_se2fv),

Options: ‘--in_type cgll --in_np 4 --out_type fv

--correct_areas’

fv2se_stt (synonyms highorder_fv2se,
accurate_conservative_nonmonotone_fv2se),

Options: ‘--in_type fv --in_np 2 --out_type cgll --out_np

4’

se2fv_alt (synonyms intbilin_se2fv,
accurate_monotone_nonconservative_se2fv),

Options: ‘--in_type cgll --in_np 4 --out_type fv --mono3

--noconserve --correct_areas’

fv2se_alt (synonyms mono_fv2se, conservative_monotone_fv2se_alt),
Options: ‘--in_type fv --in_np 1 --out_type cgll --out_np 4

--mono’

se2se (synonyms cs2cs, conservative_monotone_se2se),
Options: ‘--in_type cgll --in_np 4 --out_type cgll --out_np

4 --mono’

fv2fv (synonyms rll2rll),
Options: ‘--in_type fv --in_np 2 --out_type fv

--correct_areas’

Chapter 4: Reference Manual 307

fv2fv_flx (synonyms fv2fv_mono, conservative_monotone_fv2fv),
Options: ‘--in_type fv --in_np 1 --out_type fv --out_np 1

--correct_areas’

fv2fv_stt (synonyms fv2fv_highorder,
accurate_conservative_nonmonotone_fv2fv),

Options: ‘--in_type fv --in_np 2 --out_type fv

--correct_areas’

Thus these boutique options are specialized for SE grids with fourth order res-
olution (np = 4). Full documentation of the E3SM-recommended boutique
options for TempestRemap is here (may require E3SM-authorization to view).
Let us know if you would like other boutique TempestRemap switch sets added
as canonical options for ncremap.

‘--a2o (--a2o, --atm2ocn, --b2l, --big2ltl, --l2s, --lrg2sml)’
Use one of these flags (that take no arguments) to cause TempestRemap to
generate mapping weights from a source grid that has more coverage than the
destination grid, i.e., the destination grid is a subset of the source. When com-
puting the intersection of two meshes, TempestRemap uses an algorithm (in an
executable named GenerateOverlapMesh) that expects the mesh with less cov-
erage to be the first grid, and the grid with greater coverage to be the second, re-
gardless of the mapping direction. By default, ncremap supplies the source grid
first and the destination second, but this order causes GenerateOverlapMesh
(which is agnostic about ordering for grids of equal coverage) to fail when the
source grid covers regions not in the destination grid. For example, a global
atmosphere grid has more coverage than a global ocean grid, so that remapping
from atmosphere-to-ocean would require invoking the ‘--atm2ocn’ switch:

Use --a2o to generate weights for "big" to "little" remaps:

ncremap --a2o -a se2fv_flx --src_grd=atm_se_grd.nc \

--dst_grd=ocn_fv_grd.nc -m map.nc

Otherwise, omit it:

ncremap -a fv2se_flx --src_grd=ocn_fv_grd.nc \

--dst_grd=atm_se_grd.nc -m map.nc

ncremap -a se2fv_flx --src_grd=atm_se_grd.nc \

--dst_grd=atm_fv_grd.nc -m map.nc

Only necessary when generating, not applying, weights:

ncremap -m atm2ocn.nc in.nc out.nc

As shown in the second example above, remapping from global ocean-to-
atmosphere grids does not require (and should not invoke) this switch. The
third example shows that the switch is only needed when generating weights, not
when applying them. The switch is never needed (and is ignored) when generat-
ing weights with ERWG (which constructs the intersection mesh with a different
algorithm than TempestRemap). Attempting to remap a larger source grid to
a subset destination grid without using ‘--a2o’ causes GenerateOverlapMesh
to emit an error (and a potential workaround) like this:

....Nearest target face 130767

....ERROR: No overlapping face found

https://acme-climate.atlassian.net/wiki/spaces/Docs/pages/178848194/Transition+to+TempestRemap+for+Atmosphere+grids

308 NCO 5.0.1 User Guide

....This may be caused by mesh B being a subset of mesh A

....Try swapping order of mesh A and B, or override with \

--allow_no_overlap

....EXCEPTION (../src/OverlapMesh.cpp, Line 1738) Exiting

The ‘--a2o’ switch and its synonyms are available in version 4.7.3 (March,
2018) and later. As of NCO version 4.9.9 (May, 2021), ncremap automatically
transmits the option ‘--allow_no_overlap’ to GenerateOverlapMesh so that
regional meshes that do not completely overlap may be intersected. This is
thought to have no effect on global mappings. Please let us know if these
capabilities do not work for you.

‘--add_fll (--add_fll, --add_fill_value, --fll_mpt, --fill_empty)’
Introduced in NCO version 5.0.0 (released June, 2021), this switch (which takes
no argument) causes the regridder to add a _FillValue attribute to fields with
empty destination cells. Empty destination cells are those that have no non-zero
weights from the source grids. When a contiguous geophysical field (e.g., air
temperature) without a _FillValue is mapped to such a destination grid, the
empty destination values are normally set to zero (because no source grid cells
contribute). However, zero is a valid value for many geophysical fields. Use this
switch to ensure that empty destination gridcells are always set to _FillValue.
The default _FillValue will be used in the output file for input fields that
lack a _FillValue. This flag has no effect on input fields that already have a
_FillValue.

ncremap --add_fll -v FLNS -m map.nc in.nc out.nc

Note that --add_fll is automatically triggered by --msk_apl to ensure
that masked fields regridded with TempestRemap-generated map-files have _

FillValues consistent with map-files generated by ESMF and NCO.

‘--version (--version, --vrs, --config, --configuration, --cnf)’
This switch (which takes no argument) causes the operator to print its version
and configuration. This includes the copyright notice, URLs to the BSD and
NCO license, directories from which the NCO scripts and binaries are running,
and the locations of any separate executables that may be used by the script.

‘--d2f (--d2f, --d2s, --dbl_flt, --dbl_sgl, --double_float)’
This switch (which takes no argument) demotes all double precision non-
coordinate variables to single precision. Internally ncremap invokes ncpdq to
apply the dbl_flt packing map to an intermediate version of the input file be-
fore regridding it. This switch has no effect on files that are not regridded. To
demote the precision in such files, use ncpdq to apply the dbl_flt packing map
to the file directly. Files without any double precision fields will be unaltered.

‘-D dbg_lvl (--dbg_lvl, --dbg, --debug, --debug_level)’
Specifies a debugging level similar to the rest of NCO. If dbg lvl = 1, ncremap
prints more extensive diagnostics of its behavior. If dbg lvl = 2, ncremap prints
the commands it would execute at any higher or lower debugging level, but does
not execute these commands. If dbg lvl > 2, ncremap prints the diagnostic
information, executes all commands, and passes-through the debugging level to
the regridder (ncks) for additional diagnostics.

Chapter 4: Reference Manual 309

‘--devnull=dvn_flg (--devnull, --dev_nll, --dvn_flg)’
The dvn flg controls whether ncremap suppresses regridder output or sends it
to /dev/null. The default value of dvn flg is “Yes”, so that ncremap prints
little output to the terminal. Set dvn flg to “No” to allow the internal regridder
executables (mainly ncks) to send their output to the terminal.

‘--dpt (--dpt, --add_dpt, --depth, --add_depth)’
‘--dpt_fl=dpt_fl (--dpt_fl, --depth_file, --mpas_fl, --mpas_depth)’

The ‘--dpt’ switch (which takes no argument) and the ‘--dpt_fl=dpt_fl’
option which automatically sets the switch and also takes a filename argument,
both control the addition of a depth coordinate to MPAS ocean datasets. Depth
is the vertical distance below sea surface and, like pressure in the atmosphere,
is an important vertical coordinate whose explicit values are often omitted from
datasets yet may be computed from other variables (gridbox thickness, pressure
difference) and grid information. Moreover, users are often more interested in
the approximate depth, aka reference depth, of a given ocean layer independent
of its horizontal position. To invoke either of these options first obtain and
place the add_depth.py command on the executable path (i.e., $PATH), and
use ncremap --config to verify that it is found. These options tell ncremap to
invoke add_depth.py which uses the refBottomDepth variable in the current
data file or, if specified, the dpt fl, to create and add a depth coordinate to the
current file (before regridding).

As of NCO version 4.7.9 (February, 2019), the depth coordinate is an approx-
imate, one-dimensional, globally uniform coordinate that neglects horizontal
variations in depth that can occur near strong bathymetry or under ice shelves.
Like its atmospheric counterpart in many models, the lev pressure-coordinate,
depth is useful for plotting purposes and global studies. It would not be diffi-
cult to modify these options to add other depth information based on the 3D
cell-thickness field to ocean files (please ask Charlie if interested in this).

‘-d dst_fl (--dst_fl, --destination_file, --tpl, tpl_fl, --template_file,

--template)’
Specifies a data file to serve as a template for inferring the destination grid.
Currently dst fl must be a data file (not a gridfile, SCRIP or otherwise) from
which NCO can infer the destination grid. The more coordinate and boundary
information and metadata the better NCO will do at inferring the grid. If
dst fl has cell boundaries then NCO will use those. If dst fl has only cell-center
coordinates (and no edges), then NCO will guess-at (for rectangular grids) or
interpolate (for curvilinear grids) the edges. Unstructured grids must supply
cell boundary information, as it cannot be interpolated or guessed-at. NCO

only reads coordinate and grid data and metadata from dst fl. dst fl is not
modified, and may have read-only permissions.

‘--dt_sng=dt_sng (--dt_sng, --date_string)’
Specifies the date-string use in the full name of map-files created in MWF mode.
Map-file names include, by convention, a string to indicate the approximate date
(and thus algorithm versions employed) of weight generation. ncremap uses the
dt sng argument to encode the date into output map-file names of this format:

310 NCO 5.0.1 User Guide

map_nm_src_to_nm_dst_alg_typ.dt_sng.nc. MWF mode defaults dt sng to
the current date in YYYYMMDD-format.

‘--esmf_typ=esmf_typ (--esmf_typ, --esmf_mth, --esmf_extrap_type,

--esmf_extrap_method)’
Specifies the extrapolation method used to compute unmapped destination
point values with the ERWG weight generator. Valid values, their synonyms,
and their meanings are neareststod (synonyms stod and nsd) which uses the
nearest valid source value, nearestidavg (synonyms idavg and id) which uses
an inverse distance-weighted (with an exponent of xtr xpn) average of the near-
est xtr nsp valid source values, and none (synonyms nil and nowaydude) which
forbids extrapolation. Default is esmf typ = none. The arguments to options
‘--xtr_xpn=xtr_xpn’ (which defaults to 2.0) and ‘--xtr_nsp=xtr_nsp’ (which
defaults to 8) set the parameters that control the extrapolation nearestidavg

algorithm. For more information on ERWG extrapolation, see documentation
here. NCO supports this feature as of version 4.7.4 (April, 2018).

‘--xtr_nsp=xtr_nsp (--xtr_nsp, --esmf_pnt_src_nbr,

--esmf_extrap_num_src_pnts)’
Specifies the number of source points to use in extrapolating unmapped des-
tination point values with the ERWG weight generator. This option is only
useful in conjunction with explicitly requested extrapolation types esmf typ =
neareststod and esmf typ = nearestidavg. Default is xtr nsp = 8. For
more information on ERWG extrapolation, see documentation here. NCO sup-
ports this feature as of version 4.7.4 (April, 2018).

‘--xtr_xpn=xtr_xpn (--xtr_xpn, --esmf_pnt_src_nbr,

--esmf_extrap_num_src_pnts)’
Specifies the number of source points to use in extrapolating unmapped des-
tination point values with the ERWG weight generator. This option is only
useful in conjunction with explicitly requested extrapolation types esmf typ =
neareststod and esmf typ = nearestidavg. Default is xtr xpn = 2.0. For
more information on ERWG extrapolation, see documentation here. NCO sup-
ports this feature as of version 4.7.4 (April, 2018).

‘-g grd_dst (--grd_dst, --grid_dest, --dest_grid, --destination_grid)’
Specifies the destination gridfile. An existing gridfile may be in any format ac-
cepted by the weight generator. NCO will use ERWG or TempestRemap to com-
bine grd dst with a source gridfile (either inferred from input-file, supplied with
‘-s grd_src’, or generated from ‘-G grd_sng’) to produce remapping weights.
When grd dst is used as input, it is not modified, and may have read-only per-
missions. When grd dst is inferred from input-file or created from grd sng, it
will be generated in SCRIP format.

As of NCO version 4.6.8 (August, 2017), ncremap supports most of the file for-
mat options that the rest of NCO has long supported (see Section 3.10 [File
Formats and Conversion], page 42). This includes short flags (e.g., ‘-4’) and
key-value options (e.g., ‘--fl_fmt=netcdf4’) though not long-flags without val-
ues (e.g., ‘--netcdf4’). However, ncremap can only apply the full suite of file
format options to files that it creates, i.e., regridded files. The weight generators

http://www.earthsystemmodeling.org/esmf_releases/last_built/ESMF_refdoc/node3.html#SECTION03022300000000000000
http://www.earthsystemmodeling.org/esmf_releases/last_built/ESMF_refdoc/node3.html#SECTION03022300000000000000
http://www.earthsystemmodeling.org/esmf_releases/last_built/ESMF_refdoc/node3.html#SECTION03022300000000000000

Chapter 4: Reference Manual 311

(ERWG and TempestRemap) are limited in the file formats that they read and
write. Currently (August, 2017), ERWG supports CLASSIC, 64BIT_OFFSET, and
NETCDF4, while TempestRemap supports only CLASSIC. These can of course be
converted to other formats using ncks (see Section 3.10 [File Formats and Con-
version], page 42). However, map-files produced in other non-CLASSIC formats
can remap significantly larger grids than CLASSIC-format map-files.

‘-G grd_sng (--grd_sng, --grid_generation, --grid_gen, --grid_string)’
Specifies, with together with other options, a source gridfile to create3. ncremap
creates the gridfile in SCRIP format by default, and then, should the requisite
options for regridding be present, combines that with the destination grid (ei-
ther inferred from input-file or supplied with ‘-g grd_dst’ and generates map-
ping weights. Manual grid-file generation is not frequently used since ncremap

can infer many grids directly from the input-file, and few users wish to keep
track of SCRIP grids when they can be easily regenerated as intermediate files.
This option also allows one to visually tune a grid by rapidly generating candi-
dates and inspecting the results.

If a desired grid-file is unavailable, and no dataset on that grid is available (so
inferral cannot be used), then one must manually create a new grid. Users
create new grids for many reasons including dataset intercomparisons, regional
studies, and fine-tuned graphics. NCO and ncremap support manual generation
of the most common rectangular grids as SCRIP-format grid-files. Create a
grid by supplying ncremap with a grid-file name and “grid-formula” (grd sng)
that contains, at a minimum, the grid-resolution. The grid-formula is a hash-
separated string of name-value pairs each representing a grid parameter. All
parameters except grid resolution have reasonable defaults, so a grid-formula
can be as simple as ‘latlon=180,360’:

ncremap -g grd.nc -G latlon=180,360

The SCRIP-format grid-file grd.nc is a valid source or destination grid for
ncremap and other regridders.

Grid-file generation documentation in the NCO Users Guide at http://nco.
sf.net/nco.html#grid describes all the grid parameters and contains many
examples. Note that the examples in this section use grid generation API for
ncremap version 4.7.6 (August, 2018) and later. Earlier versions can use the
ncks API explained at Section 3.24 [Grid Generation], page 77 in the Users
Guide.

The most useful grid parameters (besides resolution) are latitude type (lat typ),
longitude type (lon typ), title (ttl), and, for regional grids, the SNWE bound-
ing box (snwe). The three supported varieties of global rectangular grids are
Uniform/equiangular (lat typ = uni), Cap/FV (lat typ = cap), and Gaus-
sian (lat typ = gss). The four supported varieties of longitude types are the

3 As of version 4.7.6 (August, 2018)), NCO’s syntax for gridfile generation is much improved and stream-
lined, and is the syntax described here. This is also called “Manual Grid-file Generation”. An earlier
syntax (described at see Section 3.24 [Grid Generation], page 77) accessed through ncks options still
underlies the new syntax, though it is less user-friendly. Both old and new syntax work well and produce
finer rectangular grids than any other software we know of.

http://nco.sf.net/nco.html#grid
http://nco.sf.net/nco.html#grid

312 NCO 5.0.1 User Guide

first (westernmost) gridcell centered at Greenwich (lon typ = grn_ctr), west-
ern edge at Greenwish (grn_wst), or at the Dateline (lon typ = 180_ctr and
lon typ = 180_wst, respectively). Grids are global, uniform, and have their
first longitude centered at Greenwich by default. The grid-formula for this
is ‘lat_typ=uni#lon_typ=grn_ctr’. Some examples (remember, this API re-
quires NCO 4.7.6+):

ncremap -g grd.nc -G latlon=180,360 # 1x1 Uniform grid

ncremap -g grd.nc -G latlon=180,360#lat_drc=n2s # 1x1 Uniform grid, N->S not S->N

ncremap -g grd.nc -G latlon=180,360#lon_typ=grn_wst # 1x1 Uniform grid, Greenwich-west edge

ncremap -g grd.nc -G latlon=129,256#lat_typ=cap # 1.4x1.4 FV grid

ncremap -g grd.nc -G latlon=94,192#lat_typ=gss # T62 Gaussian grid

ncremap -g grd.nc -G latlon=361,576#lat_typ=cap#lon_typ=180_ctr # MERRA2 FV grid

ncremap -g grd.nc -G latlon=94,192#lat_typ=gss#lat_drc=n2s # NCEP2 T62 Gaussian grid

Regional grids are a powerful tool in regional process analyses, and can be much
smaller in size than global datasets. Regional grids are always uniform. Specify
the rectangular bounding box, i.e., the outside edges of the region, in SNWE

order:

ncremap -g grd.nc -G ttl="Equi-Angular 1x1 Greenland grid"#latlon=30,90#snwe=55.0,85.0,-90.0,0.0

‘-I in_drc (--in_drc, --drc_in, --dir_in, --in_dir, input)’
Specifies the input directory, i.e., the directory which contains the input file(s).
If in fl is also specified, then the input filepath is constructed by appending
a slash and the filename to the directory: ‘in_drc/in_fl’. Specifying in drc
without in fl causes ncremap to attempt to remap every file in in drc that ends
with one of these suffixes: .nc, .nc3, .nc4, .nc5, .nc6, .nc7, .cdf, .hdf, .he5,
or .h5. When multiple files are regridded, each output file takes the name of the
corresponding input file. There is no namespace conflict because the input and
output files are in separate directories. Note that ncremap can instead accept
a list of input files through standard input (e.g., ‘ls *.nc | ncremap ...’) or
as positional command-line arguments (e.g., ‘ncremap in1.nc in2.nc ...’).

‘-i in_fl (--in_fl, --in_file, --input_file)’
Specifies the file containing data on the source grid to be remapped to the des-
tination grid. When provided with the optional map fl, ncremap only reads
data from in fl in order to regrid it. Without the optional map fl or src grd,
ncremap will try to infer the source grid from in fl, and so must read coordi-
nate and metatdata information from in fl. In this case the more coordinate
and boundary information and metadata, the better NCO will do at inferring
the source grid. If in fl has cell boundaries then NCO will use those. If in fl has
only cell-center coordinates (and no edges), then NCO will guess (for rectangular
grids) or interpolate (for curvilinear grids) the edges. Unstructured grids must
supply cell boundary information, as it cannot be interpolated or guessed-at.
in fl is not modified, and may have read-only permissions. Note that ncremap
can instead accept input file name(s) through standard input (e.g., ‘ls *.nc |

ncremap ...’) or as positional command-line arguments (e.g., ‘ncremap in1.nc

in2.nc ...’). When one or three-or-more positional arguments are given, they

Chapter 4: Reference Manual 313

are all interpreted as input filename(s). Two positional arguments are inter-
preted as a single input-file and its corresponding output-file.

‘-j job_nbr (--job_nbr, --job_number, --jobs)’
Specifies the number of simultaneous regridding processes to spawn during par-
allel execution for both Background and MPI modes. In both parallel modes
ncremap spawns processes in batches of job nbr jobs, then waits for those pro-
cesses to complete. Once a batch finishes, ncremap spawns the next batch. In
Background mode, all jobs are spawned to the local node. In MPI mode, all
jobs are spawned in round-robin fashion to all available nodes until job nbr
jobs are running.

If regridding consumes so much RAM (e.g., because variables are large and/or
the number of threads is large) that a single node can perform only one re-
gridding job at a time, then a reasonable value for job nbr is the number of
nodes, node nbr. Often, however, nodes can regrid multiple files simultane-
ously. It can be more efficient to spawn multiple jobs per node than to increase
the threading per job because I/O contention for write access to a single file
prevents threading from scaling indefinitely.

By default job nbr = 2 in Background mode, and job nbr = node nbr in
MPI mode. This helps prevent users from overloading nodes with too many
jobs. Subject to the availability of adequate RAM, expand the number of jobs
per node by increasing job nbr until, ideally, each core on the node is used.
Remember that processes and threading are multiplicative in core use. Four
jobs each with four threads each consumes sixteen cores.

As an example, consider regridding 100 files with a single map. Say you have a
five-node cluster, and each node has 16 cores and can simultaneously regrid two
files using eight threads each. (One needs to test a bit to optimize these param-
eters.) Then an optimal (in terms of wallclock time) invocation would request
five nodes with 10 simultaneous jobs of eight threads. On PBS or SLURM batch
systems this would involve a scheduler command like ‘qsub -l nodes=5 ...’
or ‘sbatch --nodes=5 ...’, respectively, followed by ‘ncremap --par_typ=mpi

--job_nbr=10 --thr_nbr=8 ...’. This job will likely complete between five
and ten-times faster than a serial-mode invocation of ncremap to regrid the
same files. The uncertainty range is due to unforeseeable, system-dependent
load and I/O charateristics. Nodes that can simultaneously write to more than
one file fare better with multiple jobs per node. Nodes with only one I/O
channel to disk may be better exploited by utilizing more threads per process.

‘-M (--mlt_map, --multimap, --no_multimap, --nomultimap)’
ncremap assumes that every input file is on a unique grid unless a source grid-
file is specified (with ‘-s grd_src’) or multiple-mapfile generation is explicitly
turned-off (with ‘-M’). The ‘-M’ switch is a toggle, it requires and accepts no
argument. Toggling ‘-M’ tells ncremap to generate at most one mapfile regard-
less of the number of input files. If ‘-M’ is not toggled (and neither ‘-m map_fl’
nor ‘-s grd_src’ is invoked) then ncremap will generate a new mapfile for each
input file. Generating new mapfiles for each input file is necessary for process-

314 NCO 5.0.1 User Guide

ing batches of data on different grids (e.g., swath-like data), and slow, tedious,
and unnecessary when batch processing data on the same grids.

‘-m map_fl (--map_fl, --map, --map_file, --rgr_map, --regrid_map)’
Specifies a mapfile (i.e., weight-file) to remap the source to destination grid. If
map fl is specified in conjunction with any of the ‘-d’, ‘-G’, ‘-g’, or ‘-s’ switches,
then ncremap will name the internally generated mapfile map fl. Otherwise
(i.e., if none of the source-grid switches are used), ncremap assumes that map fl
is a pre-computed mapfile. In that case, the map fl must be in SCRIP format,
although it may have been produced by any application (usually ERWG or
TempestRemap). If map fl has only cell-center coordinates (and no edges),
then NCO will guess-at or interpolate the edges. If map fl has cell boundaries
then NCO will use those. A pre-computed map fl is not modified, and may
have read-only permissions. The user will be prompted to confirm if a newly
generated map-file named map fl would overwrite an existing file. ncremap

adds provenance information to any newly generated map-file whose name was
specified with ‘-m map_fl’. This provenance includes a history attribute that
contains the command invoking ncremap, and the map-generating command
invoked by ncremap.

‘--mpi_pfx=mpi_pfx (--mpi_pfx, --mpi_prefix, --srun_cmd, --srun_command)’
‘--mpi_nbr=mpi_nbr (--mpi_nbr, --mpi_number, --tsk_nbr, --task_number)’

The ‘--mpi_pfx=mpi_pfx’ option specifies an appropriate job scheduler pre-
fix for MPI-enabled weight-generation executables such as ESMF’s ESMF_

RegridWeightGen and MoabTempest’s mbtempest. Other weight generators
(ncks, GenerateOfflineMap) are unaffected by this option since they are not
MPI-enabled. mpi pfx defaults to mpirun -n ${mpi_nbr} on all machines ex-
cept those whose $HOSTNAME matches an internal database of DOE-operated
supercomputers where mpi pfx defaults to srun -n ${mpi_nbr}. When invok-
ing ‘--mpi_pfx’, be sure to explicitly define the number of MPI tasks-per-node,
e.g.,

ncremap --mpi_pfx=’srun -n 16’ ...

ncremap --mpi_pfx=’srun --mpi=pmi2 -n 4’ ...

The separate ‘--mpi_nbr=mpi_nbr’ option specifies the number of tasks-per-
node that MPI-enabled weight generators will request. It preserves the default
job scheduler prefix (srun or mpirun):

ncremap --mpi_nbr=4 ... # 16 MPI tasks-per-node for ERWG/mbtempest

ncremap --mpi_nbr=16 ... # 4 MPI tasks-per-node for ERWG/mbtempest

Thus ‘--mpi_nbr=mpi_nbr’ can be used to create host-independent ncremap

commands to facilitate benchmarking the scaling of weight-generators across
hosts that work with the default value of mpi pfx. The ‘--mpi_pfx’ option will
prevail and ‘--mpi_nbr’ will be ignored if both are used in the same ncremap

invocation. Note that ‘mpi_pfx’ is only used internally by ncremap to exploit
the MPI capabilities of select weight-generators. It is not used to control and
does not affect the distribution of multiple ncremap commands among a cluster
of nodes.

Chapter 4: Reference Manual 315

‘--msh_fl=msh_fl (--msh_fl, --msh, --mesh, --mesh_file)’
Specifies a meshfile (aka intersection mesh, aka overlap mesh) that stores the
grid formed by the intersection of the source and destination grids. If not
specified then ncremap will name any internally generated meshfile with a tem-
porary name and delete the file prior to exiting. NCO and TempestRemap
support archiving the meshfile, and ERWG does not. NCO stores the meshfile
in SCRIP format, while TempestRemap stores it in Exodus format (with a ‘.g’
suffix). ncremap adds provenance information to any newly generated mesh-file
whose name was specified with ‘--msh_fl=msh_fl’. This provenance includes
a history attribute that contains the command invoking ncremap, and the
map-generating command invoked by ncremap.

‘--msk_apl (--msk_apl, --mask_apply, --msk_app)’
Introduced in NCO version 5.0.0 (released June, 2021), this switch (which takes
no argument) causes the regridder to apply msk out (i.e., mask_b) to vari-
ables after regridding. Some weight generators (e.g., Tempest) ignore masks
and thus produce non-zero weights for masked destination cells, and/or from
masked source cells. This flag causes regridded files produced with such map-
files to adhere to the destination mask rules (though source mask rules may
still be violated). This feature is especially useful in placing missing values
(aka, _FillValue) in destination cells that should be empty, so that regridded
files have _FillValue distributions identical with output from other weight-
generators such as ESMF and NCO.

ncremap --msk_apl -v FLNS -m map.nc in.nc out.nc

ncremap --msk_apl --add_fll -v FLNS -m map.nc in.nc out.nc # Equivalent

Note that --msk_apl automatically triggers --add_fll to ensure that masked
fields regridded with TempestRemap-generated map-files have _FillValues
consistent with map-files generated by ESMF and NCO.

‘--msk_dst=msk_dst (--msk_dst, --dst_msk, --mask_destination, --mask_dst)’
Specifies a template variable to use for the integer mask of the destination grid
when inferring grid files and/or creating map-files (i.e., generating weights).
Any variable on the same horizontal grid as a data file can serve as a mask
template for that grid. The mask will be one (i.e., gridcells will participate
in regridding) where msk dst has valid, non-zero values in the data file from
which NCO infers the destination grid. The mask will be zero (i.e., gridcells
will not participate in regridding) where msk nm has a missing value or is zero.
A typical example of this option would be to use Sea-surface Temperature
(SST) as a template variable for an ocean mask because SST is often defined
only over ocean, and missing values might denote locations to which regridded
quantities should never be placed. The special value msk dst = none prevents
the regridder from inferring and treating any variable (even one named, e.g.,
mask) in a source file as a mask variable. This guarantees that all points in the
inferred destination grid will be unmasked. msk dst, msk out, and msk src are
related yet distinct: msk dst is the mask template variable in the destination
file (whose grid will be inferred), msk out is the name to give the destination
mask in regridded data files, and msk src is the mask template variable in
the source file (whose grid will be inferred). msk src and msk dst only affect

316 NCO 5.0.1 User Guide

inferred grid files for the source and destination grids, respectively, whereas
msk out only affects regridded files.

‘--msk_out=msk_out (--msk_out, --out_msk, --mask_destination, --mask_out)’
Use of this option tells ncremap to include a variable named msk out in any
regridded file. The variable msk out will contain the integer-valued regridding
mask on the destination grid. The mask will be one (i.e., fields may have valid
values in this gridcell) or zero (i.e., fields will have missing values in this grid-
cell). By default, ncremap does not output the destination mask to the regrid-
ded file. This option changes that default behavior and causes ncremap to ingest
the default destination mask variable contained in the map-file. ERWG gener-
ates SCRIP-format map-files that contain the destination mask in the variable
named mask_b. SCRIP generates map-files that contain the destination mask in
the variable named dst_grid_imask. The msk_out option works with map-files
that adhere to either of these conventions. Tempest generates map-files that
do not typically contain the destination mask, and so the msk_out option has
no effect on files that Tempest regrids. msk dst, msk out, and msk src are re-
lated yet distinct: msk dst is the mask template variable in the destination file
(whose grid will be inferred), msk out is the name to give the destination mask
in regridded data files, and msk src is the mask template variable in the source
file (whose grid will be inferred). msk src and msk dst only affect inferred grid
files for the source and destination grids, respectively, whereas msk out only
affects regridded files.

‘--msk_src=msk_src (--msk_src, --src_msk, --mask_source, --mask_src)’
Specifies a template variable to use for the integer mask of the source grid
when inferring grid files and/or creating map-files (i.e., generating weights).
Any variable on the same horizontal grid as a data file can serve as a mask
template for that grid. The mask will be one (i.e., gridcells will participate
in regridding) where msk src has valid, non-zero values in the data file from
which NCO infers the source grid. The mask will be zero (i.e., gridcells will
not participate in regridding) where msk nm has a missing value or is zero. A
typical example of this option would be to use Sea-surface Temperature (SST)
as a template variable for an ocean mask because SST is often defined only
over ocean, and missing values might denote locations from which regridded
quantities should emanate. The special value msk src = none prevents the
regridder from inferring and treating any variable (even one named, e.g., mask)
in a source file as a mask variable. This guarantees that all points in the inferred
source grid will be unmasked. msk dst, msk out, and msk src are related yet
distinct: msk dst is the mask template variable in the destination file (whose
grid will be inferred), msk out is the name to give the destination mask in
regridded data files, and msk src is the mask template variable in the source
file (whose grid will be inferred). msk src and msk dst only affect inferred grid
files for the source and destination grids, respectively, whereas msk out only
affects regridded files.

‘--mss_val=mss_val (--mss_val, --fll_val, --missing_value, --fill_value)’
Specifies the numeric value that indicates missing data when processing MPAS

datasets, i.e., when ‘-P mpas’ is invoked. The default missing value is

Chapter 4: Reference Manual 317

-9.99999979021476795361e+33 which is correct for the MPAS ocean and sea-
ice models. Currently (January, 2018) the MPAS land-ice model uses -1.0e36
for missing values. Hence this option is usually invoked as ‘--mss_val=-1.0e36’
to facilitate processing of MPAS land-ice datasets.

‘-n nco_opt (--nco_opt, --nco_options, --nco)’
Specifies a string of options to pass-through unaltered to ncks. nco opt defaults
to ‘-O --no_tmp_fl’.

‘--nm_dst=nm_dst (--nm_dst, --name_dst, --name_short_destination,

--nm_sht_dst)’
Specifies the short name for the destination grid to use in the full name of map-
files created in MWF mode. Map-file names include, by convention, shortened
versions of both the source and destination grids. ncremap uses the nm dst
argument to encode the destination grid name into the output map-file name
of this format: map_nm_src_to_nm_dst_alg_typ.dt_sng.nc. MWF mode re-
quires this argument, there is no default.

‘--nm_src=nm_src (--nm_src, --name_src, --name_short_source, --nm_sht_src)’
Specifies the short name for the source grid to use in the full name of map-
files created in MWF mode. Map-file names include, by convention, shortened
versions of both the source and destination grids. ncremap uses the nm dst ar-
gument to encode the source grid name into the output map-file name of this for-
mat: map_nm_src_to_nm_dst_alg_typ.dt_sng.nc. MWF mode requires this
argument, there is no default.

‘--no_cll_msr (--no_cll_msr, --no_cll, --no_cell_measures, --no_area)’
This switch (which takes no argument) controls whether ncclimo and ncremap

add measures variables to the extraction list along with the primary variable
and other associated variables. See Section 3.45 [CF Conventions], page 145 for
a detailed description.

‘--no_frm_trm (--no_frm_trm, --no_frm, --no_formula_terms)’
This switch (which takes no argument) controls whether ncclimo and ncremap

add formula variables to the extraction list along with the primary variable and
other associated variables. See Section 3.45 [CF Conventions], page 145 for a
detailed description.

‘--no_stg_grd (--no_stg_grd, --no_stg, --no_stagger, --no_staggered_grid)’
This switch (which takes no argument) controls whether regridded output will
contain the staggered grid coordinates slat, slon, and w_stag (see Section 3.25
[Regridding], page 86). By default the staggered grid is output for all files
regridded from a Cap (aka FV) grid, except when the regridding is performed
as part of splitting (reshaping) into timeseries.

‘-O out_drc (--out_drc, --drc_out, --dir_out, --out_dir, --output)’
Specifies the output directory, i.e., the directory name to contain the output
file(s). If out fl is also specified, then the output filepath is constructed by
appending a slash and the filename to the directory: ‘out_drc/out_fl’. Speci-
fying out drc without out fl causes ncremap to name each output file the same

318 NCO 5.0.1 User Guide

as the corresponding input file. There is no namespace conflict because the
input and output files will be in separate directories.

‘-o out_fl (--out_fl, --output_file, --out_file)’
Specifies the output filename, i.e., the name of the file to contain the data
from in fl remapped to the destination grid. If out fl already exists it will be
overwritten. Specifying out fl when there are multiple input files (i.e., from
using ‘-I in_drc’ or standard input) generates an error (output files will be
named the same as input files). Two positional arguments are interpreted as a
single input-file and its corresponding output-file.

‘-P prc_typ (--prc_typ, --pdq_typ, --prm_typ, --procedure)’
Specifies the permutation mode desired. As of NCO version 4.5.5 (February,
2016), one can tell ncremap to invoke special processing procedures for
different types of input data. For instance, to automatically permute the
dimensions in the data file prior to regridding for a limited (though growing)
number of data-file types that encounter the ncremap limitation concerning
dimension ordering. Valid procedure types include ‘airs’ for NASA AIRS

satellite data, ‘eam’ or ‘cam’ for DOE EAM and NCAR CAM model data,
‘elm’ or ‘clm’ for DOE ELM and NCAR CLM model data, ‘cice’ for CICE ice
model data (must be on 2D grids), ‘cism’ for NCAR CISM land ice model
data, ‘mpascice’, ‘mpasseaice’, ‘mpas-seaice’, or ‘mpassi’ for MPAS sea-ice
model data, ‘mpaso’ or ‘mpas-ocean’ for MPAS ocean model data, ‘mod04’
for Level 2 MODIS MOD04 product, ‘mwf’ for making all weight-files for a
pair of grids, ‘sgs’ for datasets containing sub-gridscale (SGS) data (such
as CLM/CTSM/ELM land model data and CICE/MPAS-Seaice sea-ice model
data), and ‘nil’ (for none). The default prc typ is ‘nil’, which means
ncremap does not perform any special procedures prior to regridding. The
AIRS procedure calls ncpdq to permute dimensions from their order in the
input file to this order: StdPressureLev,GeoTrack,GeoXTrack. The ELM,
CLM, and CICE procedures set idiosyncratic model values and then invoke the
Sub-gridscale (SGS) procedure (see below). The MOD04 procedure unpacks in-
put data. The MPAS procedures permute input data dimensions into this order:
Time,depth,nVertInterfaces,nVertLevels,nVertLevelsP1,nZBGCTracers,nBioLayersP1,nAlgaeIceLayers,nDisIronIceLayers,nIceLayers,maxEdges,MaxEdges2,nCategories,R3,ONE,TWO,FOUR,nEdges,nCells,
and invokes renormalization. An MPAS dataset that contains any other
dimensions will fail to regrid until/unless those dimensions are added to the
ncremap dimension permutation option.

MWF-mode:
As mentioned above in other options, ncremap includes an MWF-mode (for
“Make All Weight Files”) that generates and names, with one command and
in a self-consistent manner, all combinations of (for instance, E3SM or CESM)
global atmosphere<->ocean maps with both ERWG and Tempest. MWF-mode
automates the laborious and error-prone process of generating numerous
map-files with various switches. Its chief use occurs when developing and
testing new global grid-pairs for the E3SM atmosphere and ocean components.
Invoke MWF-mode with a number of specialized options to control the naming
of the output map-files:

Chapter 4: Reference Manual 319

ncremap -P mwf -s grd_ocn -g grd_atm --nm_src=ocn_nm \

--nm_dst=atm_nm --dt_sng=date

where grd ocn is the "global" ocean grid, grd atm, is the global atmosphere
grid, nm src sets the shortened name for the source (ocean) grid as it will appear
in the output map-files, nm dst sets, similarly, the shortend named for the des-
tination (atmosphere) grid, and dt sng sets the date-stamp in the output map-
file name map_${nm_src}_to_${nm_dst}_${alg_typ}.${dt_sng}.nc. Setting
nm src, nm dst, and dt sng, is optional though highly recommended. For ex-
ample,

ncremap -P mwf -s ocean.RRS.30-10km_scrip_150722.nc \

-g t62_SCRIP.20150901.nc --nm_src=oRRS30to10 --nm_dst=T62 \

--dt_sng=20180901

produces the 10 ERWG map-files:

1. map_oRRS30to10_to_T62_aave.20180901.nc

2. map_oRRS30to10_to_T62_blin.20180901.nc

3. map_oRRS30to10_to_T62_ndtos.20180901.nc

4. map_oRRS30to10_to_T62_nstod.20180901.nc

5. map_oRRS30to10_to_T62_patc.20180901.nc

6. map_T62_to_oRRS30to10_aave.20180901.nc

7. map_T62_to_oRRS30to10_blin.20180901.nc

8. map_T62_to_oRRS30to10_ndtos.20180901.nc

9. map_T62_to_oRRS30to10_nstod.20180901.nc

10. map_T62_to_oRRS30to10_patc.20180901.nc

The ordering of source and destination grids is immaterial for ERWG maps since
MWF-mode produces all map combinations. However, as described above in the
TempestRemap section, the Tempest overlap-mesh generator must be called
with the smaller grid preceding the larger grid. For this reason, always invoke
MWF-mode with the smaller grid (i.e., the ocean) as the source, otherwise some
Tempest map-file will fail to generate. The six optimized SE<->FV Tempest
maps described above in the TempestRemap section will be generated when
the destination grid has a ‘.g’ suffix which ncremap interprets as indicating an
Exodus-format SE grid (NB: this assumption is an implementation convenience
that can be modified if necessary). For example,

ncremap -P mwf -s ocean.RRS.30-10km_scrip_150722.nc -g ne30.g \

--nm_src=oRRS30to10 --nm_dst=ne30np4 --dt_sng=20180901

produces the 6 TempestRemap map-files:

1. map_oRRS30to10_to_ne30np4_monotr.20180901.nc

2. map_oRRS30to10_to_ne30np4_highorder.20180901.nc

3. map_oRRS30to10_to_ne30np4_mono.20180901.nc

4. map_ne30np4_to_oRRS30to10_mono.20180901.nc

5. map_ne30np4_to_oRRS30to10_highorder.20180901.nc

6. map_ne30np4_to_oRRS30to10_intbilin.20180901.nc

320 NCO 5.0.1 User Guide

MWF-mode takes significant time to complete (~20 minutes on my Mac-
BookPro) for the above grids. To accelerate this, consider installing the MPI-
enabled instead of the serial version of ERWG. Then use the ‘--wgt_cmd’ option
to tell ncremap the MPI configuration to invoke ERWG with, for example:

ncremap -P mwf --wgt_cmd=’mpirun -np 12 ESMF_RegridWeightGen’ \

-s ocean.RRS.30-10km_scrip_150722.nc -g t62_SCRIP.20150901.nc \

--nm_src=oRRS30to10 --nm_dst=T62 --dt_sng=20180901

Background and distributed node parallelism (as described above in the the
Parallelism section) of MWF-mode are possible though not yet implemented.
Please let us know if this feature is desired.

RRG-mode:
EAM and CAM-SE will produce regional output if requested to with the
finclNlonlat namelist parameter. Output for a single region can be higher
temporal resolution than the host global simulation. This facilitates detailed
yet economical regional process studies. Regional output files are in a special
format that we call RRG (for “regional regridding”). An RRG file may con-
tain any number of rectangular regions. However, ncremap can process only
one region per invocation (change the argument to the ‘--rnm_sng’ option, de-
scribed below, in each invocation). The coordinates and variables for one region
do not interfere with other (possibly overlapping) regions because all variables
and dimensions are named with a per-region suffix string, e.g., lat_128e_to_
134e_9s_to_16s. ncremap can easily regrid RRG output from an atmospheric
FV-dycore because ncremap can infer (as discussed above) the regional grid
from any rectangular FV data file. Regridding regional SE data, however, is
more complex because SE gridcells are essentially weights without vertices and
SE weight-generators are not yet flexible enough to output regional weights. To
summarize, regridding RRG data leads to three SE-specific difficulties (#1–3
below) and two difficulties (#4–5) shared with FV RRG files:

1. RRG files contain only regional gridcell center locations, not weights

2. Global SE grids have well-defined weights not vertices for each gridpoint

3. Grid generation software (ESMF and TempestRemap) only create global
not regional SE grid files

4. Non-standard variable names and dimension names

5. Regional files can contain multiple regions

ncremap’s RRG mode resolves these issues to allow trouble-free regridding
of SE RRG files. The user must provide two additional input arguments,
‘--dat_glb=dat_glb’ (or synonynms ‘--rrg_dat_glb’, ‘--data_global’, or
‘--global_data’) and ‘--grd_glb=grd_glb’ (or synonyms ‘--rrg_grd_glb’,
‘--grid_global’, or ‘global_grid’) that point to a global SE dataset and
grid, respectively, of the same resolution as the model that generated the RRG

datasets. Hence a typical RRG regridding invocation is:

ncremap --dat_glb=dat_glb.nc --grd_glb=grd_glb.nc -g grd_rgn.nc \

dat_rgn.nc dat_rgr.nc

Chapter 4: Reference Manual 321

Here grd_rgn.nc is a regional destination grid-file, dat_rgn.nc is the RRG file
to regrid, and dat_rgr.nc is the regridded output. Typically grd_rgn.nc is a
uniform rectangular grid covering the same region as the RRG file. Generate this
as described in the last example in the section that describes Manual Grid-file
Generation with the ‘-G’ option. grd_glb.nc is the standard dual-grid grid-file
for the SE resolution, e.g., ne30np4_pentagons.091226.nc. ncremap regrids
the global data file dat_glb.nc to the global dual-grid in order to produce a
intermediate global file annotated with gridcell vertices. Then it hyperslabs
the lat/lon coordinates (and vertices) from the regional domain to use with
regridding the RRG file. A grd_glb.nc file with only one 2D field suffices (and
is fastest) for producing the information needed by the RRG procedure. One
can prepare an optimal dat_glb.nc file by subsetting any 2D variable from any
full global SE output dataset with, e.g., ‘ncks -v FSNT in.nc dat_glb.nc’.

ncremap RRG mode supports two additional options to override internal param-
eters. First, the per-region suffix string may be set with ‘--rnm_sng=rnm_sng’
(or synonyms ‘--rrg_rnm_sng’ or ‘--rename_string’). RRG mode will,
by default, regrid the first region it finds in an RRG file. Explicitly
set the desired region with rnm sng for files with multiple regions, e.g.,
‘--rnm_sng=_128e_to_134e_9s_to_16s’. Second, the regional bounding-box
may be explicitly set with ‘--bb_wesn=lon_wst,lon_est,lat_sth,lat_nrt’.
The normal parsing of the bounding-box string from the suffix string may fail
in (as yet undiscovered) corner cases, and the ‘--bb_wesn’ option provides a
workaround should that occur. The bounding-box string must include the en-
tire RRG region (not a subset thereof), specified in WESN order. The two
override options may be used independently or together, as in:

ncremap --rnm_sng=’_128e_to_134e_9s_to_16s’ --bb_wesn=’128,134,-16,-9’ \

--dat_glb=dat_glb.nc --grd_glb=grd_glb.nc -g grd_rgn.nc \

dat_rgn.nc dat_rgr.nc

RRG-mode supports most normal ncremap options, including input and output
methods and regridding algorithms.

SGS-mode:
ncremap has a sub-gridscale (SGS) mode that performs the special pre-
processing and weighting necessary to to conserve fields that represent frac-
tional spatial portions of a gridcell, and/or fractional temporal periods of the
analysis. Spatial fields output by most geophysical models are intensive, and
so by default the regridder attempts to conserve the integral of the area times
the field value such that the integral is equal on source and destination grids.
However some models (like ELM, CLM, CICE, and MPAS-Seaice) output gridcell
values intended to apply to only a fraction sgs frc (for “sub-gridscale fraction”)
of the gridcell. The sub-gridscale (SGS) fraction usually changes spatially with
the distribution of land and ocean, and spatiotemporally with the distribution
of sea ice and possibly vegetation. For concreteness consider a sub-grid field
that represents the land fraction. Land fraction is less than one in gridcells
that resolve coastlines or islands. ELM and CLM happily output temperature
values valid only for a small (i.e., sgs frc << 1) island within the larger grid-

322 NCO 5.0.1 User Guide

cell. Model architecture dictates this behavior and savvy researchers expect
it. The goal of the NCO weight-application algorithm is to treat SGS fields as
seamlessly as possible so that those less familiar with sub-gridscale models can
easily regrid them correctly.

Fortunately, models like ELM and CLM that run on the same horizontal grid
as the overlying atmosphere can use the same mapping-file as the atmosphere,
so long as the SGS weight-application procedure is invoked. Not invoking an
SGS-aware weight application algorithm is equivalent to assuming sgs frc = 1
everywhere. Regridding sub-grid values correctly versus incorrectly (e.g., with
and without SGS-mode) alters global-mean answers for land-based quantities
by about 1% for horizontal grid resolutions of about one degree. The resulting
biases are in intricately shaped regions (coasts, lakes, sea-ice floes) and so are
easy to overlook.

To invoke SGS mode and correctly regrid sub-gridscale data, specify the names
of the fractional area sgs frc and, if applicable, the mask variable sgs msk
(strictly, this is only necessary if these names differ from their respective defaults
landfrac and landmask). Trouble will ensue if sgs frc is a percentage or an ab-
solute area rather than a fractional area (between zero and one). ncremap must
know the normalization factor sgs nrm by which sgs frc must be divided (not
multiplied) to obtain a true, normalized fraction. Datasets (such as those from
CICE) that store sgs frc in percent should specify the option ‘--sgs_nrm=100’
to instruct ncremap to normalize the sub-grid area appropriately before regrid-
ding. ncremap will re-derive sgs msk based on the regridded values of sgs frc:
sgs msk = 1 is assigned to destination gridcells with sgs frc > 0.0, and all
others sgs msk = 0. As of NCO version 4.6.8 (released June, 2017), invoking
any of the options ‘--sgs_frc’, ‘--sgs_msk’, or ‘--sgs_nrm’, automatically
triggers SGS-mode, so that also invoking ‘-P sgs’ is redundant though legal.
As of NCO version 4.9.0 (released December, 2019), the values of the sgs frc
and sgs msk variables should be explicitly specified. In previous versions they
defaulted to landfrac and landmask, respectively, when ‘-P sgs’ was selected.
This behavior still exists but will likely be deprecated in a future version.

The area and sgs frc fields in the regridded file will be in units of sterradians
and fraction, respectively. However, ncremap offers custom options to reproduce
the idiosyncratic data and metadata format of two particular models, ELM

and CICE. When invoked with ‘-P elm’ (or ‘-P clm’), a final step converts
the output area from sterradians to square kilometers. When invoked with
‘-P cice’, the final step converts the output area from sterradians to square
meters, and the output sgs_frc from a fraction to a percent.

ELM/CLM: output "area" in [sr]

ncremap --sgs_frc=landfrac --sgs_msk=landmask in.nc out.nc

ncremap -P sgs in.nc out.nc # Deprecated in 4.9.0

ELM/CLM pedantic format: output "area" in [km2]

ncremap -P elm in.nc out.nc # Same as -P clm, alm, ctsm

CICE: output "area" in [sr]

ncremap --sgs_frc=aice --sgs_msk=tmask --sgs_nrm=100 in.nc out.nc

Chapter 4: Reference Manual 323

CICE pedantic format: output "area" in [m2], "aice" in [%]

ncremap -P cice in.nc out.nc

MPAS-Seaice: both commands are equivalent

ncremap -P mpasseaice in.nc out.nc

ncremap --sgs_frc=timeMonthly_avg_iceAreaCell in.nc out.nc

It is sometimes convenient to store the sgs frc field in an external file from the
field(s) to be regridded. For example, CMIP-style timeseries are often written
with only one variable per file. NCO supports this organization by accepting
sgs frc arguments in the form of a filename followed by a slash and then a
variable name:

ncremap --sgs_frc=sgs_landfrac_ne30.nc/landfrac -m map.nc in.nc out.nc

Files regridded using explicitly specified SGS options will differ slightly from
those regridded using the ‘-P elm’ or ‘-P cice’ options. The former will have
an area field in sterradians, the generic units used internally by the regridder.
The latter produces model-specific area fields in square kilometers (for ELM) or
square meters (for CICE), as expected in the raw output from these two models.
To convert from angular to areal values, NCO assumes a spherical Earth with
radius 6,371,220 m or 6,371,229 m, for ELM and CICE, respectively. The ouput
sgs frc field is expressed as a decimal fraction in all cases except for ‘-P cice’
which stores the fraction in percent. Thus the generic SGS and model-specific
convenience options produce equivalent results, and the latter is intended to be
indistinguishable (in terms of metadata and units) to raw model output. This
makes it more interoperable with many existing analysis scripts.

‘-p par_typ (--par_typ, --par_md, --parallel_type, --parallel_mode,

--parallel)’
Specifies the desired file-level parallelism mode, either Background, MPI, or
Serial. File-level parallelism accelerates throughput when regridding multiple
files in one ncremap invocation, and has no effect when only one file is to be
regridded. Note that the ncclimo and ncremap semantics for selecting file-
level parallelism are identical, though their defaults differ (Background mode
for ncclimo and Serial mode for ncremap). Select the desired mode with the
argument to ‘--par_typ=par_typ’. Explicitly select Background mode with
par typ values of bck, background, or Background. The values mpi or MPI

select MPI mode, and the srl, serial, Serial, nil, or none will select Serial
mode (which disables file-level parallelism, though still allows intra-file OpenMP
parallelism).

The default file-level parallelism for ncremap is Serial mode (i.e., no file-level
parallelism), in which ncremap processes one input file at a time. Background
and MPI modes implement true file-level parallelism. Typically both these par-
allel modes scale well with sufficent memory unless and until I/O contention
becomes the bottleneck. In Background mode ncremap issues all commands to
regrid the input file list as UNIX background processes on the local node. Nodes
with mutiple cores and sufficient RAM take advantage of this to simultaneously
regrid multiple files. In MPI mode ncremap issues commands to regrid the input
file list in round-robin fashion to all available compute nodes. Prior to NCO ver-

324 NCO 5.0.1 User Guide

sion 4.9.0 (released December, 2019), Background and MPI parallelism modes
both regridded all the input files at one time and there was no way to limit the
number of files being simultaneously regridded. Subsequent versions allow finer
grained parallelism by introducing the ability to limit the number of discrete
workflow elements or “jobs” (i.e., file regriddings) to perform simultaneously
within an ncremap invocation or “workflow”.

As of NCO version 4.9.0 (released December, 2019), the ‘--job_nbr=job_nbr’
option specifies the maximum number of files to regrid simultaneously on all
nodes being harnessed by the workflow. Thus job nbr is an additional param-
eter to fine-tune file level parallelism (it has no effect in Serial mode). Please
see the ncremap job nbr documentation for more details.

‘--pdq_opt pdq_opt (--pdq, --prm_opt, --prm, --permute)’
Specifies the dimension permutation option used by ncpdq prior to regrid-
ding. Synonyms include ‘--pdq’, ‘--prm’, ‘--prm_opt’, and ‘--permute’. Files
to be regridded must have their horizontal spatial dimension(s) in the last
(most-rapidly-varying) position. Most data files store variables with dimen-
sions arranged in this order, and ncremap internally sets the permutation op-
tion for datasets known (via the --prc_typ option) to require permutation.
Use ‘--pdq=pdq_opt’ to override the internally preset defaults. This is useful
when regridding files that contain new dimensions that ncremap has not en-
countered before. For example, if a development version of an MPAS model
inserts a new dimension new_dim after the horizontal spatial dimension nCells

in some variables, that would prevent the regridder from working because the
horizontal dimension(s) must be the last dimension(s). The workaround is to
instruct ncremap what the permutation option to ncpdq should be in order to
place the horizontal spatial dimension(s) at the end of all variables:

ncremap --pdq=’-a Time,new_dim,nCells’ --map=map.nc in.nc out.nc

ncremap --pdq=’-a time,new_dim,lat,lon’ --map=map.nc in.nc out.nc

‘--no_permute (--no_permute, --no_prm, --no_pdq, --no_ncpdq)’
Introduced in NCO version 5.0.0 (released June, 2021), this switch (which takes
no argument) causes the regridder to skip the default permutation of dimen-
sions before regridding (notably MPAS) datasets known to store data with non-
horizontal most-rapidly varying dimensions. ncremap normally ensures that
input fields are stored in the shape expected by regridder weights (horizontal
dimensions last) by permuting the dimensions with ncpdq. However, permuta-
tion consumes time and generates an extra intermediate file. Avoid this time
penalty by using the ‘--no_permute’ flag if the input fields are known to already
have trailing horizontal dimensions.

‘--preserve=prs_stt (--preserve, --prs_stt, --preserve_statistic)’
This is a simple, intuitive option to specify how weight application should treat
destination gridcells that are not completely overlapped by source gridcells
with valid values. Destination gridcells that are completely overlapped by valid
source values are unaffected. The two statistics that can be preserved for incom-
pletely overlapped gridcells are the mean and the integral of the source values.
Hence the two valid values for this option are ‘integral’ and ‘mean’. Speci-

Chapter 4: Reference Manual 325

fying --preserve=integral sets the destination gridcell equal to the sum of
the source weights times the source values. This is exactly equivalent to setting
--rnr=off, i.e., no renormalization (see Section 3.25 [Regridding], page 86).
Specifying --preserve=integral sets the destination gridcell equal to the sum
of the source weights times the source values. If the weights were generated by
a conservative algorithm then the output will be conservative. This is often de-
sired for regridding quantities that should be conserved, e.g., fluxes, and is the
default weight application method in ncremap (except in MPAS-mode). Spec-
ifying --preserve=mean sets the destination gridcell equal to the mean of the
source weights times the source values. This is exactly equivalent to setting
--rnr=0.0, i.e., renormalizing the integral value by the fractional area covered
(see Section 3.25 [Regridding], page 86). This is often desired for regridding
state variables, e.g., temperature, though it is not the default behavior and
must be explicitly requested (except in MPAS-mode).

‘-R rgr_opt (--rgr_opt, --regrid_options)’
ncremap passes rgr opt directly through to the regridder. This is useful to cus-
tomize output grids and metadata. One use is to rename output variables and
dimensions from the defaults provided by or derived from input data. The de-
fault value is ‘--rgr lat_nm_out=lat --rgr lon_nm_out=lon’, i.e., by default
ncremap always names latitude and longitude “lat” and “lon”, respectively,
regardless of their input names. Users might use this option to set different
canonical axes names, e.g., ‘--rgr lat_nm_out=y --rgr lon_nm_out=x’.

‘-r rnr_thr (--rnr_thr, --thr_rnr, --rnr, --renormalize,

--renormalization_threshold)’
Use this option to request renormalized (see Section 3.25 [Regridding], page 86)
weight-application and to specify the weight threshold, if any. For example, ‘-r
0.9’ tells the regridder to renormalize with a weight threshold of 90%, so that all
destination gridcells with at least 90% of their area contributed by valid source
gridcells will be contain valid (not missing) values that are the area-weighted
mean of the valid source values. If the weights are conservative, then the output
gridcells on the destination grid will preserve the mean of the input gridcells.
Specifying ‘-r 0.9’ and ‘--rnr_thr=0.9’ are equivalent. Renormalization can
be explicitly turned-off by setting rnr thr to either of the values ‘off’, or ‘none’.
The ‘--preserve=prs_stt’ option performs the same task as this option except
it does not allow setting an arbitrary threshold fraction.

‘--rgn_dst (--rgn_dst, --dst_rgn, --regional_destination)’
‘--rgn_src (--rgn_src, --src_rgn, --regional_source)’

Use these flags which take no argument to indicate that a user-supplied
(i.e., with ‘-s grd_src’ or ‘-g grd_dst’) grid is regional. The ERWG weight-
generator (at least all versions before 8.0) needs to be told whether the source,
destination, or both grids are regional or global in order to optimize weight
production. ncremap supplies this information to the regridder for grids it au-
tomatically infers from data files. However, the regridder needs to be explicitly
told if user-supplied (i.e., with either ‘-s grd_src’ or ‘-g grd_dst’) grids are
regional because the regridder does not examine supplied grids before calling
ERWG which assumes, unless told otherwise, that grids are global in extent.

326 NCO 5.0.1 User Guide

The sole effect of these flags is to add the arguments ‘--src_regional’ and/or
‘--dst_regional’ to ERWG calls. Supplying regional grids without invoking
these flags may dramatically increase the map-file size and time to compute.
According to E3SM MPAS documentation, ERWG “considers a mesh to be re-
gional when the mesh is not a full sphere (including if it is planar and does
not cover the full sphere). In other words, all MPAS-O and MPAS-LI grids are
regional” to ERWG.

‘-s grd_src (--grd_src, --grid_source, --source_grid, --src_grd)’
Specifies the source gridfile. NCO will use ERWG or TempestRemap weight-
generator to combine this with a destination gridfile (either inferred from
dst fl, or generated by supplying a ‘-G grd_sng’ option) to generate remap-
ping weights. grd src is not modified, and may have read-only permissions.
One appropriate circumstance to specify grd src is when the input-file(s) do
not contain sufficient information for NCO to infer an accurate or complete
source grid. (Unfortunately many dataset producers do not record information
like cell edges/vertices in their datasets. This is problematic for non-rectangular
grids.) NCO assumes that grd src, when supplied, applies to every input-file.
Thus NCO will call the weight generator only once, and will use that map fl to
regrid every input-file.

Although ncremap usually uses the contents of a pre-existing grd src to cre-
ate mapping weights, there are some situations where ncremap creates the file
specified by grd src (i.e., treats it as a location for storing output). When a
source grid is inferred or created from other user-specified input, ncremap will
store it in the location specified by grd src. This allows users to, for example,
name the grid on which an input dataset is stored when that grid is not known
a priori. This functionality is only available for SCRIP-format grids.

‘--skl_fl=skl_fl (--skl_fl, --skl, --skl_fl)’
Normally ncremap only creates a SCRIP-format gridfile named grd dst when it
receives the grd_sng option. The ‘--skl’ option instructs ncremap to also
produce a “skeleton” file based on the grd_sng argument. A skeleton file
is a bare-bones datafile on the specified grid. It contains the complete lati-
tude/longitude grid and an area field. Skeleton files are useful for validating
that the grid-creation instructions in grd sng perform as expected.

‘--no_stdin (--no_stdin, --no_inp_std, --no_redirect, --no_standard_input)’
First introduced in NCO version 4.8.0 (released May, 2019), this switch (which
takes no argument) disables checking standard input (aka stdin) for input files.
This is useful because ncclimo and ncremap may mistakenly expect input to
be provided on stdin in environments that use stdin for other purposes. Some
non-interactive environments (e.g., crontab, nohup, Azure CI, CWL), may use
standard input for their own purposes, and thus confuse NCO into thinking
that you provided the input files names via the stdin mechanism. In such
cases users may disable the automatic checks for standard input by explicitly
invoking the ‘--no_stdin’ flag. This switch is usually not required for jobs in
an interactive shell. Interactive SLURM shells can also commandeer stdin, as

Chapter 4: Reference Manual 327

is the case on the DOE machine named Chrysalis. This behavior appears to vary
depending on the SLURM implementation.

srun -N 1 -n 1 ncremap --no_stdin -m map.nc in.nc out.nc

‘-T tmp_drc (--tmp_drc, --drc_tmp, --tmp_dir, --dir_tmp, --tmp_drc)’
Specifies the directory in which to place intermediate output files. Depending
on how it is invoked, ncremap may generate a few or many intermediate files
(grids and maps) that it will, by default, remove upon successful completion.
These files can be large, so the option to set tmp drc is offered to ensure their
location is convenient to the system. If the user does not specify tmp drc, then
ncremap uses the value of $TMPDIR, if any, or else /tmp if it exists, or else it
uses the current working director ($PWD).

‘-t thr_nbr (--thr_nbr, --thr, --thread_number, --threads)’
Specifies the number of threads used per regridding process (see Section 3.3
[OpenMP Threading], page 30). ncremap can use OpenMP shared-memory
techniques to simultaneosly regrid multiple variables within a single file. This
shared memory parallelism is quite efficient because it uses a single copy of
the regridding weights in physical memory to regrid multiple variable simul-
taneously. Even so, simultaneously regridding multiple variables, especially at
high resolution, may be memory-limited, meaning that the insufficient RAM

can often limit the number of variables that the system can simultaneously
regrid. By convention all variables to be regridded share the same regridding
weights stored in a map-file, so that only one copy of the weights needs to be
in memory, just as in Serial mode. However, the per-thread (i.e., per-variable)
OpenMP memory demands are considerable, with the memory required to re-
grid variables amounting to no less than about 5–7 times (for type NC_FLOAT)
and 2.5–3.5 times (for type NC_DOUBLE) the size of the uncompressed variable,
respectively. Memory requirements are so high because the regridder performs
all arithmetic in double precision to retain the highest accuracy, and must al-
locate separate buffers to hold the input and output (regridded) variable, a
tally array to count the number of missing values and an array to sum the of
the weights contributing to each output gridcell (the last two arrays are only
necessary for variables with a _FillValue attribute). The input, output, and
weight-sum arrays are always double precision, and the tally array is composed
of four-byte integers. Given the high memory demands, one strategy to opti-
mize thr nbr for repetitious workflows is to increase it to keep doubling it (1,
2, 4, . . .) until throughput stops improving. With sufficient RAM, the NCO

regridder scales well up to 8–16 threads.

‘-U (--unpack, --upk, --upk_inp)’
This switch (which takes no argument) causes ncremap to unpack (see
Section 3.38 [Packed data], page 126) input data before regridding it. This
switch causes unpacking at the regridding stage that occurs after map genera-
tion. Hence this switch does not benefit grid inferral. Grid inferral examines
only the coordinate variables in a dataset. If coordinates are packed (a terrible
practice) in a file from which a grid will be inferred, users should first manually

328 NCO 5.0.1 User Guide

unpack the file (this option will not help). Fortunately, coordinate variables are
usually not packed, even in files with other packed data.

Many institutions (like NASA) pack datasets to conserve space before distribut-
ing them. This option allows one to regrid input data without having to man-
ually unpack it first. Beware that NASA uses at least three different and in-
compatible versions of packing in its L2 datasets. The unpacking algorithm
employed by this option is the default netCDF algorithm, which is appropri-
ate for MOD04 and is inappropriate for MOD08 and MOD13. See Section 3.38
[Packed data], page 126 for more details and workarounds.

‘--ugrid_fl=ugrid_fl (--ugrid_fl, --ugrid, --ugrid_fl)’
Normally ncremap only infers a gridfile named grd dst in SCRIP-format. The
‘ugrid_fl’ option instructs ncremap to infer both a SCRIP-format gridfile
named grd dst and a UGRID-format gridfile named ugrid fl. This is an ex-
perimental feature and the UGRID file is only expected to be valid for global
rectangular grids.

‘-u unq_sfx (--unq_sfx, --unique_suffix, --suffix)’
Specifies the suffix used to label intermediate (internal) files generated by the
regridding workflow. Unique names are required to avoid interference among
parallel invocations of ncremap. The default unq sfx generated internally by
ncremap is ‘.pidPID’ where PID is the process ID. Applications can provide
their own more or less informative suffixes using the ‘--unq_sfx=unq_sfx’
option. The suffix should be unique so that no two simultaneously execut-
ing instances of ncremap can generate the same file. For example, when the
ncclimo climatology script issues a dozen ncremap commands to regrid all
twelve months simultaneously, it uses ‘--unq_sfx=mth_idx’ to encode the cli-
matological month index in the unique suffix. Note that the controlling pro-
cess PID is insufficient to disambiguate all the similar temporary files when
the input file list is divided into multiple concurrent jobs (controlled by the
‘--job_nbr=job_nbr’ option). Those files have their user-provided or inter-
nally generated unq sfx extended by fl idx, their position in the input file list,
so that their full suffix is ‘.pidPID.fl_idx’. Finally, a special value of unq sfx
is available to aid developers: if unq sfx is ‘noclean’ then ncremap retains (not
removes) all intermediate files after completion.

‘-v var_lst (--var_lst, --var, --vars, --variables, --variable_list)’
The ‘-v’ option causes ncremap to regrid only the variables in var lst. It behaves
like subsetting (see Section 3.12 [Subsetting Files], page 48) in the rest of NCO.

‘-V var_rgr (--var_rgr, --rgr_var, --var_cf, --cf_var, cf_variable)’
The ‘-V’ option tells ncremap to use the same grid as var rgr in the input
file. If var rgr adheres to the CF coordinates convention described here, then
ncclimo will infer the grid as represented by those coordinate variables. This
option simplifies inferring grids when the grid coordinate names are unknown,
since ncclimo will follow the CF convention to learn the identity of the grid
coordinates.

Until NCO version 4.6.0 (May, 2016), ncremap would not follow CF conventions
to identify coordinate variables. Instead, ncremap used an internal database of

http://cfconventions.org/cf-conventions/cf-conventions.html#coordinate-system

Chapter 4: Reference Manual 329

“usual suspects” to identify latitude and longitude coordinate variables. Now, if
var rgr is CF-compliant, then ncremap will automatically identify the horizontal
spatial dimensions. If var rgr is supplied but is not CF-compliant, then ncremap

will still attempt to identify horizontal spatial dimensions using its internal
database of “likely names”. If both these automated methods fail, manually
supply ncremap with the names of the horizontal spatial dimensions

Method used to obtain horizontal spatial coordinates:

ncremap -V var_rgr -d dst.nc -O ~/rgr in.nc # CF coordinates convention

ncremap -d dst.nc -O ~/rgr in.nc # Internal database

ncremap -R "--rgr lat_nm=xq --rgr lon_nm=zj" -d dst.nc -O ~/rgr in.nc # Manual

‘--vrb=vrb_lvl (--vrb_lvl, --vrb, --verbosity, --verbosity_level)’
Specifies a verbosity level similar to the rest of NCO. If vrb lvl = 0, ncremap
prints nothing except potentially serious warnings. If vrb lvl = 1, ncremap
prints the basic filenames involved in the remapping. If vrb lvl = 2, ncremap
prints helpful comments about the code path taken. If vrb lvl > 2, ncremap
prints even more detailed information. Note that vrb lvl is distinct from dbg lvl
which is passed to the regridder (ncks) for additional diagnostics.

‘--vrt_fl=vrt_fl (--vrt_fl, --vrt, --vrt_crd, --vertical_file)’
The ‘--vrt_fl=vrt_fl’ option instructs ncremap to vertically interpolate the
input file to the vertical coordinate grid contained in the file vrt fl. This option
first appeared in NCO version 4.8.0, released in May, 2019. The vertical gridfile
vrt fl must specify a vertical gridtype that ncremap understands, currently
either pure-pressure or hybrid-coordinate pressure. We plan to add pure-sigma
coordinates in the future.

Besides the vertical grid-type, the main assumptions, constraints, and priorities
for future development of vertical regridding are:

1. Input datasets must have netCDF (and thus C-based) dimension-ordering
all other dimensions, a single vertical dimension, then one or two horizon-
tal dimensions so that the horizontal dimension(s) vary more rapidly than
the vertical. Eliminating this constraint will remain low priority until we
are lobbied with compelling use-cases.

2. The vertical interpolation algorithm defaults to linear in log(pressure).
This assumption is more natural for gases (like the atmosphere) than for
condensed media (like oceans or Earth’s interior). To instead interpolate
linearly in the vertical coordinate, use the ‘ntp_mth=lin’ options (as of
NCO 4.9.0).

3. Vertical interpolation and horizontal regridding may be invoked simulta-
neously (as of NCO 4.9.0) by the user simply by supplying both a map-file
and a vertical grid-file to ncremap. When this occurs, ncremap internally
performs the vertical interpolation prior to the horizontal regridding.

4. The default extrapolation method uses nearest neighbor except for tem-
perature and geopotential (those extrapolation methods are described be-
low). These defaults are well-suited to extrapolate valid initial conditions
from data on older vertical grids. Note that the default approximation
used for geopotential is inaccurate in cold regions. As of July 2019 and

330 NCO 5.0.1 User Guide

NCO version 4.8.1, one may instead set points outside the input domain to
missing-values with the ‘--xtr_opt=mss_val’ option. Other extrapolation
options, not yet exposed to user-access, include: dying, setting to 0.0, and
linear extrapolation. Supporting these other methods, or improving the
existing special-case approximations for temperature or geopotential, will
remain low priority until we are lobbied with compelling use-cases for other
algorithms.

5. Missing values are not (yet) treated specially Eliminating this constraint is
not a priority because atmospheric datasets often contain no missing data.
This could become a high priority issue if ocean modelers show interest
in employing this tool to regrid to/from depth coordinates where missing
values indicate bathymetry.

6. Time-varying vertical grids are only allowed for hybrid grids (not pure pres-
sure grids), and these must store the time dimension as a record dimension.
This constraint applies to the vertical grid only, not to the other fields in
the dataset. Hence this does not preclude interpolating timeseries to/from
time-invariant vertical grids. For example, time-varying hybrid grid data
such as temperature may be interpolated to timeseries on a time-invariant
pressure grid. Eliminating this constraint will not be a priority unless/until
an important use-case is identified.

7. Variable names for input and output vertical grids must match
E3SM/CESM, ECMWF, and NCEP implementations. These names include
hyai, hyam, hybi, hybm, ilev, lev, P0, and PS (for E3SM/CESM hybrid
grids), lev, lev_2, and lnsp (for ECMWF hybrid grids only), and plev

(for pure-pressure grids). The infrastructure to provide alternate names
for any of these input/output variables names is straightforward, and is
heavily used for horizontal spatial regridding. Allowing this functionality
will not be a priority until we are presented with a compelling use-case.

The simplest vertical grid-type, a pure-pressure grid, contains the horizontally
uniform vertical pressure levels in a one-dimensional coordinate array named
plev. The plev dimension may have any number of levels and the values
must monotonically increase or decrease. A 17-level NCEP pressure grid, for
example, is easy to create:

Construct monotonically decreasing 17-level NCEP pressure grid

ncap2 -O -v -s ’defdim("plev",17);plev[$plev]={100000,92500,85000, \

70000,60000,50000,40000,30000,25000,20000,15000,10000,7000,5000, \

3000,2000,1000};’ vrt_prs_ncep_L17.nc

Hybrid-coordinate grids are a hybrid between a sigma-coordinate grid (where
each pressure level is a fixed fraction of a spatiotemporally varying surface pres-
sure) and a pure-pressure grid that is spatially invariant (as described above).
The so-called hybrid A and B coefficients specify the fractional weight of the
pure-pressure and sigma-grids, respectively, at each level. The hybrid grid-
file must specify A and B coefficients for both layer midpoints and interfaces
with these standard (as employed by CESM and E3SM) names and dimensions:
hyai(ilev), hybi(ilev), hyam(lev), and hybm(lev). The reference pressure

Chapter 4: Reference Manual 331

and surface pressure must be named P0 and PS, respectively. The pressures at
all midpoints and interfaces are then defined as

prs_mdp[time,lev, lat,lon]=hyam*P0+hybm*PS # Midlayer

prs_ntf[time,ilev,lat,lon]=hyai*P0+hybi*PS # Interface

The scalar reference pressure P0 is typically 100000 Pa (or 1000 mb) while the
surface pressure PS is a (possibly time-varying) array with one or two spatial
dimensions, and its values are in the same dimensional units (e.g., Pa or hPa)
as P0.

It is often useful to create a vertical grid file from existing model or reanalysis
output. We call vertical grid files “skinny” if they contain only the vertical
information. Skinny grid-files are easy to create with ncks, e.g.,

ncks -C -v hyai,hyam,hybi,hybm,P0 in_L128.nc vrt_hyb_L128.nc

Such files are extremely small and portable, and represent all the hybrid files
created by the model because the vertical grid parameters are time-invariant.
A “fat” vertical grid file would also include the time-varying grid information,
i.e., the surface pressure field. Fat grid-files are also easy to create with ncks,
e.g.,

ncks -C -v hyai,hyam,hybi,hybm,P0,PS in_L128.nc vrt_hyb_L128.nc

The full (layer-midpoint) and half (layer-interface) pressure fields prs_mdp and
prs_ntf, respectively, can be reconstructed from any fat grid-file with an ncap2

command:

ncap2 -s ’prs_mdp[time,lat,lon,lev]=P0*hyam+PS*hybm’ \

-s ’prs_ntf[time,lat,lon,ilev]=P0*hyai+PS*hybi’ in.nc out.nc

Hybrid-coordinate grids define a pure-sigma or pure-pressure grid when either
their A or B coefficients are zero, respectively. For example, the following cre-
ates the hybrid-coordinate representation of a pure-pressure grid with midpoints
every 100 mb from 100 mb to 1000 mb:

ncap2 -O -v -s ’defdim("ilev",11);defdim("lev",10);P0=100000.0; \

hyai=array(0.05,0.1,$ilev);hyam=array(0.1,0.1,$lev); \

hybi=0.0*hyai;hybm=0.0*hyam;’ vrt_hyb_prs_L10.nc

NCO currently has no other means of representing pure sigma vertical grids (as
opposed to pure pressure grids).

As of July 2019 and NCO version 4.8.1, NCO supports regridding ECMWF

datasets in IFS hybrid vertical coordinate format to CESM/E3SM-format hy-
brid vertical grids. The native IFS hybrid datasets that we have seen store
pressure coordinates in terms of a slightly different formula that employs the
log of surface pressure (lnsp) instead of surface pressure PS, that redefines hyai
and hyam to be pure-pressure offsets (rather than coefficients), and that omits
P0:

prs_mdp[time,lev, lat,lon]=hyam+hybm*exp(lnsp) # Midlayer

prs_ntf[time,lev_2,lat,lon]=hyai+hybi*exp(lnsp) # Interface

Note that ECMWF also alters the names of the vertical half-layer coordinate
and employs distinct dimensions (nhym and nhyi) for the hybrid variables
hyai(nhyi), hybi(nhyi), hyam(nhym), and hybm(nhym). ECMWF uses the

332 NCO 5.0.1 User Guide

vertical coordinates lev and lev_2 for full-layer (i.e., midlayer) and half-layer
(i.e., interface) for all other variables.

The lev and ilev coordinates of a hybrid grid are defined by the hybrid coef-
ficients and reference pressure, and are by convention stored in millibars (not
Pascals) as follows:

ilev[ilev]=P0*(hyai+hybi)/100.0;

lev[lev]=P0*(hyam+hybm)/100.0;

A vertical hybrid grid file vrt fl must contain at least hyai, hybi, hyam,
hybm(lev) and P0; PS, lev, and ilev are optional. (Exceptions for ECMWF

grids are noted above). All hybrid-coordinate data files must contain PS. In-
terpolating a pure-pressure coordinate data file to hybrid coordinates requires,
therefore, that the hybrid-coordinate vrt fl must contain PS and/or the input
data file must contain PS. If both contain PS then the PS from the vrt fl takes
precedence and will be used to construct the hybrid grid and then copied with-
out to the output file.

In all cases lev and ilev are optional in input hybrid-coordinate data files
and vertical grid-files. They are diagnosed from the other parameters using the
above definitions. The minimal requirements—a plev coordinate for a pure-
pressure grid or five parameters for a hybrid grid—allow vertical gridfiles to
be much smaller than horizontal gridfiles such as SCRIP files. Moreover, data
files from ESMs or analyses (NCEP, MERRA2, ERA5) are also valid gridfiles.
The flexibility in gridfile structure makes it easy to intercompare data from the
same or different sources.

ncremap supports vertical interpolation between all combinations of pure-
pressure and hybrid-pressure grids. The input and output (aka source and
destination) pressure grids may monotonically increase or decrease indepen-
dently of eachother (i.e., one may increase and the other may decrease). When
an output pressure level is outside the input pressure range for that column,
then all variables must be extrapolated (not interpolated) to that/those level(s).
By default ncremap sets all extrapolated values to the nearest valid value.

Temperature and geopotential height are exceptions to this rule. Temperature
variables (those named T or ta, anyway) are extrapolated upwards towards
space using the nearest neighbor assumption, and downwards beneath the sur-
face assuming a moist adiabatic lapse rate of 6.5 degrees centigrade per 100
millibars. Geopotential variables (those named Z3 or zg, anyway) are extrapo-
lated upwards and downwards using the hypsometric equation4 with constant
global mean virtual temperature T = 288K. This assumption leads to unre-
alistic values where T differs significantly from the global mean surface tem-
perature. Using the local T itself would be a much better approximation, yet
would require a time-consuming implementation. Please let us know if accurate
surface geopotential extrapolation in cold regions is important to you.

Interpolation to and from hybrid coordinate grids works on both midpoint and
interface fields (i.e., on variables with lev or ilev dimensions), while interpo-
lation to and from pure-pressure grids applies to fields with, or places output

4 Z2 − Z1 = (Rd ∗ Tv/g0) ∗ ln(p1/p2) = (Rd ∗ Tv/g0) ∗ (ln(p1)− ln(p2))

Chapter 4: Reference Manual 333

of fields on, a plev dimension. All other fields pass through the interpola-
tion procedure unscathed. Input can be rectangular (aka RLL), curvilinear, or
unstructured.

‘--vrt_ntp=vrt_ntp (--vrt_ntp, --ntp_mth, --interpolation_type,

--interpolation_method)’
Specifies the interpolation method for destination points within the vertical
range of the input data during vertical interpolation. Valid values and their syn-
onyms are lin (synonyms linear and lnr), and log (synonyms logarithmic
and lgr). Default is vrt ntp = log. The vertical interpolation algorithm de-
faults to linear in log(pressure). Logarithmic interpolation is more natural for
gases like the atmosphere, because it is compressible, than for condensed media
like oceans or Earth’s interior, which are incompressible. To instead interpolate
linearly in the vertical coordinate, use the ‘ntp_mth=lin’ option. NCO supports
this feature as of version 4.9.0 (December, 2019).

‘--vrt_xtr=vrt_xtr (--vrt_xtr, --xtr_mth, --extrapolation_type,

--extrapolation_method)’
Specifies the extrapolation method for destination points outside the vertical
range of the input data during vertical interpolation. Valid values and their
synonyms are mss_val (synonyms msv and missing_value), and nrs_ngh (syn-
onyms nn and nearest_neighbor). Default is vrt xtr = nrs_ngh. NCO sup-
ports this feature as of version 4.8.1 (July, 2019).

‘-W wgt_opt (--wgt_opt, --weight_options, --esmf_opt, --esmf_options,

--tps_opt, --tempest_options)’
ncremap passes wgt opt directly through to the weight-generator (cur-
rently ERWG or TempestRemap’s GenerateOfflineMap) (and not to
GenerateOverlapMesh). The user-specified contents of wgt opt, if any, su-
percede the default contents for the weight-generator. The default option for
ERWG is ‘--ignore_unmapped’). ncremap 4.7.7 and later additionally set the
ERWG ‘--ignore_degenerate’ option, though if the run-time ERWG reports
its version is 7.0 (March, 2018) or later. This is done to preserve backwards
compatibility since, ERWG 7.1.0r and later require ‘--ignore_degenerate’ to
successfully regrid some datasets (e.g., CICE) that previous ERWG versions han-
dle fine. Users of earlier versions of ncremap that call ESMF 7.1.0r and later can
explicitly pass the base ERWG options with ncremap’s ‘--esmf_opt’ option:

Use when NCO <= 4.7.6 and ERWG >= 7.1.0r

ncremap --esmf_opt=’--ignore_unmapped --ignore_degenerate’ ...

The ERWG and TempestRemap documentation shows all available options. For
example, to cause ERWG to output to a netCDF4 file, pass ‘-W "--netcdf4"’
to ncremap.

By default, ncremap runs GenerateOfflineMap without any options. To cause
GenerateOfflineMap to use a _FillValue of −1, pass ‘-W ’--fillvalue

-1.0’’ to ncremap. Other common options include enforcing monotonicity
(which is not the default in TempestRemap) constraints. To guarantee mono-
tonicity in regridding from Finite Volume FV to FV maps (e.g., MPAS-to-
rectangular), pass ‘-W ’-in_np 1’’ to ncremap. To guarantee monotonicity in

334 NCO 5.0.1 User Guide

regridding from Finite Element FE to FV maps, pass ‘-W ’--mono’’. Common
sets of specialized options recommended for TempestRemap are collected into
six boutique algorithms invokable with ‘--alg_typ’ as described above.

‘-w wgt_cmd (--wgt_cmd, --weight_command, --wgt_gnr, --weight_generator)’
Specifies a (possibly extended) command to use to run the weight-generator
when a map-file is not provided. This command overrides the default exe-
cutable executable for the weight generator, which is ESMF_RegridWeightGen
for ESMF and GenerateOfflineMap for TempestRemap. (There is cur-
rently no way to override GenerateOverlapMesh for TempestRemap). The
wgt cmd must accept the same arguments as the default command. Examples
include ‘mpirun -np 24 ESMF_RegridWeightGen’, ‘mpirun-openmpi-mp -np 16

ESMF_RegridWeightGen’, and other ways of exploiting parallelism that are
system-dependent. Specifying wgt cmd and supplying (with ‘-m’) a map-file
is not permitted (since the weight-generator would not be used).

‘--xcl_var (--xcl_var, --xcl, --exclude, --exclude_variables)’
This flag (which takes no argument) changes var lst, as set by the --var_lst

option, from an extraction list to an exclusion list so that variables in var lst
will not be processed, and variables not in var lst will be processed. Thus the
option ‘-v var_lst’ must also be present for this flag to take effect. Variables
explicitly specified for exclusion by ‘--xcl --vars=var_lst[,...]’ need not
be present in the input file.

‘-x xtn_lst (--xtn_lst, --xtn_var, --var_xtn, --extensive,

--extensive_variables)’
The ‘-x’ option causes ncremap to treat the variables in xtn lst as extensive,
meaning that their value depends on the gridcell boundaries. Support for ex-
tensive variables during regridding is nascent. Currently variables marked as
extensive are summed, not regridded. We are interested in “real-world” situa-
tions that require regridding extensive variables, please contact us if you have
one.

Limitations to ncremap

ncremap has two significant limitations to be aware of. First, for two-dimensional input
grids the fields to be regridded must have latitude and longitude, or, in the case of curvi-
linear data, the two equivalent horizontal dimensions, as the final two dimensions in in fl.
Fields with other dimension orders (e.g., ‘lat,lev,lon’) will not regrid properly. To cir-
cumvent this limitation one can employ ncpdq (see Section 4.9 [ncpdq netCDF Permute
Dimensions Quickly], page 287) to permute the dimensions before (and un-permute them
after) regridding. ncremap utilizes this method internally for some common input grids.
For example,

AIRS Level2 vertical profiles

ncpdq -a StdPressureLev,GeoTrack,GeoXTrack AIRS_L2.hdf AIRS_L2_ncpdq.nc

ncremap -i AIRS_L2_ncpdq.nc -d dst_1x1.nc -O ~/rgr

MPAS-O fields

ncpdq -a Time,nVertLevels,maxEdges,MaxEdges2,nEdges,nCells mpas.nc mpas_ncpdq.nc

ncremap -R "--rgr col_nm=nCells" -i mpas_ncpdq.nc -m mpas120_to_t62.nc -O ~/rgr

Chapter 4: Reference Manual 335

The previous two examples occur so frequently that ncremap has been specially equipped
to handle AIRS and MPAS files. As of NCO version 4.5.5 (February, 2016), the follow-
ing ncremap commands with the ‘-P prc_typ’ option automagically perform all required
permutation and renaming necessary:

AIRS Level2 vertical profiles

ncremap -P airs -i AIRS_L2.nc -d dst_1x1.nc -O ~/rgr

MPAS-O/I fields

ncremap -P mpas -i mpas.nc -m mpas120_to_t62.nc -O ~/rgr

The machinery to handle permutations and special options for other datafiles is relatively
easy to extend with new prc typ options. If you work with common datasets that could
benefit from their own pre-processing options, contact us and we will try to implement
them.

The second limitation is that to perform regridding, ncremap must read weights from
an on-disk mapfile, and cannot yet compute weights itself and use them directly from
RAM. This makes ncremap an “offline regridder” and unnecessarily slow compared to
an “integrated regridder” that computes weights and immediately applies them in RAM

without any disk-access. In practice, the difference is most noticeable when the weights are
easily computable “on the fly”, e.g., rectangular-to-rectangular mappings. Otherwise the
weight-generation takes much more time than the weight-application, at which ncremap

is quite fast. As of NCO version 4.9.0, released in December, 2019, regridder supports
generation of intersection grids and overlap weights for all finite volume grid combinations.
However these weights are first stored in an offline mapfile, are not usable otherwise.

One side-effect of ncremap being an offline regridder is that, when necessary, it can
generate files to store intermediate versions of grids, maps, and data. These files are
named, by default, ncremap_tmp_att.nc${unq_sfx}, ncremap_tmp_d2f.nc${unq_sfx},
ncremap_tmp_grd_dst.nc${unq_sfx}, ncremap_tmp_grd_src.nc${unq_sfx}, ncremap_

tmp_gnr_out.nc${unq_sfx}, ncremap_tmp_map_*.nc${unq_sfx}, ncremap_tmp_msh_

ovr_*.nc${unq_sfx}, and ncremap_tmp_pdq.nc${unq_sfx}. They are placed in drc out
with the output file(s). In general, no intermediate grid or map files are generated when the
map-file is provided. Intermediate files are always generated when the ‘-P prm_typ’ option
is invoked. By default these files are automatically removed upon successful completion of
the script, unless ncremap was invoked by ‘--unq_sfx=noclean’ to explitly override this
“self-cleaning” behavior. Nevertheless, early or unexpected termination of ncremap will
almost always leave behind a collection of these intermediate files. Should intermediate files
proliferate and/or annoy you, locate and/or remove all such files under the current directory
with

find . -name ’ncremap_tmp*’

rm ‘find . -name ’ncremap_tmp*’‘

EXAMPLES

Regrid input file in.nc to the spatial grid in file dst.nc and write the output to out.nc:

ncremap -d dst.nc in.nc out.nc

ncremap -d dst.nc -i in.nc -o out.nc

336 NCO 5.0.1 User Guide

ncremap -d dst.nc -O regrid in.nc out.nc

ncremap -d dst.nc in.nc regrid/out.nc

ncremap -d dst.nc -O regrid in.nc # output named in.nc

NCO infers the destination spatial grid from dst.nc by reading its coordinate variables and
CF attributes. In the first example, ncremap places the output in out.nc. In the second
and third examples, the output file is regrid/out.nc. In the fourth example, ncremap
places the output in the specified output directory. Since no output filename is provided,
the output file will be named regrid/in.nc.

Generate a mapfile with ncremap and store it for later re-use. A pre-computed mapfile
(supplied with ‘-m map_fl’) eliminates time-consuming weight-generation, and thus consid-
erably reduces wallclock time:

ncremap -m map.nc in.nc out.nc

ncremap -m map.nc -I drc_in -O regrid

As of NCO version 4.7.2 (January, 2018), ncremap supports “canonical” argument or-
dering of command line arguments most frequently desired for one-off regridding, where a
single input and output filename are supplied as command-line positional arguments with-
out switches, pipes, or redirection:

ncremap -m map.nc in.nc out.nc # Requires 4.7.2+

ncremap -m map.nc -i in.nc -o out.nc

ncremap -m map.nc -o out.nc in.nc

ncremap -m map.nc -O out_dir in1.nc in2.nc

ncremap -m map.nc -o out.nc < in.nc

ls in.nc | ncremap -m map.nc -o out.nc

These are all equivalent methods, but the canonical ordering shown in the first example
only works in NCO version 4.7.2 and later.

ncremap annotates the gridfiles and mapfiles that it creates with helpful metadata con-
taining the full provenance of the command. Consequently, ncremap is a sensible tool for
generating mapfiles for later use. To generate a mapfile with the specified (non-default)
name map.nc, and then regrid a single file,

ncremap -d dst.nc -m map.nc in.nc out.nc

To test the remapping workflow, regrid only one or a few variables instead of the entire
file:

ncremap -v T,Q,FSNT -m map.nc in.nc out.nc

Regridding generally scales linearly with the size of data to be regridded, so eliminating
unnecessary variables produces a snappier response.

Regrid multiple input files with a single mapfile map.nc and write the output to the
regrid directory:

ncremap -m map.nc -I drc_in -O regrid

ls drc_in/*.nc | ncremap -m map.nc -O regrid

Chapter 4: Reference Manual 337

The three ways NCO obtains the destination spatial grid are, in decreasing order of prece-
dence, from map fl (specified with ‘-m’), from grd dst (specified with ‘-g’), and (inferred)
from dst fl (specified with ‘-d’). In the first example all likely data files from drc in are
regridded using the same specified mapfile, map fl = map.nc. Each output file is written to
drc out = regrid with the same name as the corresponding input file. The second example
obtains the input file list from standard input, and uses the mapfile and output directory
as before.

If multiple input files are on the same grid, yet the mapfile does not exist in advance,
one can still regrid all input files without incurring the time-penalty of generating multiple
mapfiles. To do so, provide the (known-in-advance) source gridfile or toggle the ‘-M’ switch:

ncremap -M -I drc_in -d dst.nc -O regrid

ls drc_in/*.nc | ncremap -M -d dst.nc -O regrid

ncremap -I drc_in -s grd_src.nc -d dst.nc -O regrid

ls drc_in/*.nc | ncremap -s grd_src.nc -d dst.nc -O regrid

ncremap -I drc_in -s grd_src.nc -g grd_dst.nc -O regrid

ls drc_in/*.nc | ncremap -s grd_src.nc -g grd_dst.nc -O regrid

The first two examples explicitly toggle the multi-map-generation switch (with ‘-M’), so
that ncremap refrains from generating multiple mapfiles. In this case the source grid is
inferred from the first input file, the destination grid is inferred from dst.nc, and ncremap

uses ERWG to generate a single mapfile and uses that to regrid every input file. The
next four examples are variants on this theme. In these cases, the user provides (with ‘-s
grd_src.nc’) the source gridfile, which will be used directly instead of being inferred. Any
of these styles works well when each input file is known in advance to be on the same grid,
e.g., model data for successive time periods in a simulation.

The most powerful, time-consuming (yet simultaneously time-saving!) feature of
ncremap is its ability to regrid multiple input files on unique grids. Both input and output
can be on any CRUD grid.

ncremap -I drc_in -d dst.nc -O regrid

ls drc_in/*.nc | ncremap -d dst.nc -O regrid

ncremap -I drc_in -g grd_dst.nc -O regrid

ls drc_in/*.nc | ncremap -g grd_dst.nc -O regrid

There is no pre-supplied map fl or grd src in these examples, so ncremap first infers the
output grid from dst.nc (first two examples), or directly uses the supplied gridfile grd_dst
(second two examples), and calls ERWG to generate a new mapfile for each input file, whose
grid it infers. This is necessary when each input file is on a unique grid, e.g., swath-like
data from satellite observations or models with time-varying grids. These examples require
remarkably little input, since ncremap automates most of the work.

Finally, ncremap uses the parallelization options ‘-p par_typ’ and ‘-j job_nbr’ to help
manage high-volume workflow. On a single node such as a local workstation, use Back-
ground mode to regrid multiple files in parallel

ls drc_in/*.nc | ncremap -p bck -d dst.nc -O regrid

ls drc_in/*.nc | ncremap -p bck -j 4 -d dst.nc -O regrid

338 NCO 5.0.1 User Guide

Both examples will eventually regrid all input files. The first example regrids two at a time
because two is the default batch size ncremap employs. The second example regrids files in
batches of four at a time. Increasing job nbr will increase throughput so long as the node
is not I/O-limited.

Multi-node clusters can exploit inter-node parallelism in MPI-mode:

qsub -I -A CLI115 -V -l nodes=4 -l walltime=03:00:00 -N ncremap

ls drc_in/*.nc | ncremap -p mpi -j 4 -d dst.nc -O regrid

This example shows a typical request for four compute nodes. After receiving the login
prompt from the interactive master node, execute the ncremap command with ‘-p mpi’.
ncremap will send regridding jobs in round-robin fashion to all available compute nodes
until all jobs finish. It does this by internally prepending an MPI execution command,
like ‘mpirun -H node_name -npernode 1 -n 1’, to the usual regridding command. MPI-
mode typically has excellent scaling because most nodes have independent access to hard
storage. This is the easiest way to speed your cumbersome job by factors of ten or more.
As mentioned above under Limitations, parallelism is currently only supported when all
regridding uses the same map-file.

Chapter 4: Reference Manual 339

4.13 ncrename netCDF Renamer

SYNTAX

ncrename [-a old_name,new_name] [-a ...] [-D dbg]

[-d old_name,new_name] [-d ...] [-g old_name,new_name] [-g ...]

[--glb ...] [-h] [--hdf] [--hdr_pad nbr] [--hpss]

[-l path] [-O] [-o output-file] [-p path] [-R] [-r]

[-v old_name,new_name] [-v ...]

input-file [[output-file]]

DESCRIPTION

ncrename renames netCDF dimensions, variables, attributes, and groups. Each object
that has a name in the list of old names is renamed using the corresponding name in the list
of new names. All the new names must be unique. Every old name must exist in the input
file, unless the old name is preceded by the period (or “dot”) character ‘.’. The validity of
old name is not checked prior to the renaming. Thus, if old name is specified without the
‘.’ prefix that indicates the presence of old name is optional, and old name is not present
in input-file, then ncrename will abort. The new name should never be prefixed by a ‘.’
(or else the period will be included as part of the new name). As of NCO version 4.4.6
(released October, 2014), the old name and new name arguments may include (or be, for
groups) partial or full group paths. The OPTIONS and EXAMPLES show how to select
specific variables whose attributes are to be renamed.� �

Caveat lector: Unforunately from 2007–present (March, 2021) the netCDF library (ver-
sions 4.0.0–4.7.4) contains bugs or limitations that sometimes prevent NCO from correctly
renaming coordinate variables, dimensions, and groups in netCDF4 files. (To our knowledge
the netCDF library calls for renaming always work well on netCDF3 files so one workaround
to many netCDF4 issues is convert to netCDF3, rename, then convert back). To understand
the renaming limitations associated with particular netCDF versions, read the ncrename

documentation below in its entirety.
 	
Although ncrename supports full pathnames for both old name and new name, this is

really “window dressing”. The full-path to new name must be identical to the full-path to
old name in all classes of objects (attributes, variables, dimensions, or groups). In other
words, ncrename can change only the local names of objects, it cannot change the location
of the object in the group hierarchy within the file. Hence using a full-path in new name is
redundant. The object name is the terminal path component of new name and this object
must already exist in the group specified by the old name path.

ncrename is an exception to the normal NCO rule that the user will be interactively
prompted before an existing file is changed, and that a temporary copy of an output file
is constructed during the operation. If only input-file is specified, then ncrename changes
object names in the input-file in place without prompting and without creating a temporary
copy of input-file. This is because the renaming operation is considered reversible if the
user makes a mistake. The new name can easily be changed back to old name by using
ncrename one more time.

340 NCO 5.0.1 User Guide

Note that renaming a dimension to the name of a dependent variable can be used to invert
the relationship between an independent coordinate variable and a dependent variable.
In this case, the named dependent variable must be one-dimensional and should have no
missing values. Such a variable will become a coordinate variable.

According to the netCDF User Guide, renaming objects in netCDF files does not incur
the penalty of recopying the entire file when the new name is shorter than the old name.
Thus ncrename may run much faster (at least on netCDF3 files) if judicious use of header
padding (see Section 3.2 [Metadata Optimization], page 29) was made when producing the
input-file. Similarly, using the ‘--hdr_pad’ option with ncrename helps ensure that future
metadata changes to output-file occur as swifly as possible.

OPTIONS

‘-a old_name,new_name’
Attribute renaming. The old and new names of the attribute are specified
with ‘-a’ (or ‘--attribute’) by the associated old name and new name values.
Global attributes are treated no differently than variable attributes. This option
may be specified more than once. As mentioned above, all occurrences of the
attribute of a given name will be renamed unless the ‘.’ form is used, with one
exception. To change the attribute name for a particular variable, specify the
old name in the format old var name@old att name. The ‘@’ symbol delimits
the variable from the attribute name. If the attribute is uniquely named (no
other variables contain the attribute) then the old var name@old att name
syntax is redundant. The old var name variable names global and group have
special significance. They indicate that old att nm should only be renamed
where it occurs as a global (i.e., root group) metadata attribute (for global),
or (for group) as any group attribute, and not where it occurs as a variable
attribute. The var name@att name syntax is accepted, though not required,
for the new name.

‘-d old_name,new_name’
Dimension renaming. The old and new names of the dimension are speci-
fied with ‘-d’ (or ‘--dmn’, ‘--dimension’) by the associated old name and
new name values. This option may be specified more than once.

‘-g old_name,new_name’
Group renaming. The old and new names of the group are specified with ‘-g’
(or ‘--grp’, ‘--group’) by the associated old name and new name values. This
option may be specified more than once. This functionality is only available
in NCO version 4.3.7 (October, 2013) or later, and only when built on netCDF
library version 4.3.1-rc1 (August, 2013) or later.

‘-v old_name,new_name’
Variable renaming. The old and new names of the variable are specified with
‘-v’ (or ‘--variable’) by the associated old name and new name values. This
option may be specified more than once.

EXAMPLES

Chapter 4: Reference Manual 341

Rename the variable p to pressure and t to temperature in netCDF in.nc. In this
case p must exist in the input file (or ncrename will abort), but the presence of t is optional:

ncrename -v p,pressure -v .t,temperature in.nc

Rename the attribute long_name to largo_nombre in the variable u, and no other vari-
ables in netCDF in.nc.

ncrename -a u@long_name,largo_nombre in.nc

Rename the group g8 to g20 in netCDF4 file in_grp.nc:

ncrename -g g8,g20 in_grp.nc

Rename the variable /g1/lon to longitude in netCDF4 in_grp.nc:

ncrename -v /g1/lon,longitude in_grp.nc

ncrename -v /g1/lon,/g1/longitude in_grp.nc # Alternate

ncrename does not automatically attach dimensions to variables of the same name. This
is done to make renaming an easy way to change whether a variable is a coordinate. If you
want to rename a coordinate variable so that it remains a coordinate variable, you must
separately rename both the dimension and the variable:

ncrename -d lon,longitude -v lon,longitude in.nc

Unfortunately, the netCDF4 library had a longstanding bug (all versions until 4.3.1-rc5
released in December, 2013) that crashed NCO when performing this operation. Simultane-
ously renaming variables and dimensions in netCDF4 files with earlier versions of netCDF is
impossible; it must instead be done in two separate ncrename invocations (e.g., first rename
the variable, then rename the dimension) to avoid triggering the libary bug.

A related bug causes unintended side-effects with ncrename also built with all versions of
the netCDF4 library until 4.3.1-rc5 released in December, 2013): This bug caused renaming
either a dimension or its associated coordinate variable (not both, which would fail as above)
in a netCDF4 file to inadvertently rename both:

Demonstrate bug in netCDF4/HDF5 library prior to netCDF-4.3.1-rc5

ncks -O -h -m -M -4 -v lat_T42 ~/nco/data/in.nc ~/foo.nc

ncrename -O -v lat_T42,lat ~/foo.nc ~/foo2.nc # Also renames dimension

ncrename -O -d lat_T42,lat ~/foo.nc ~/foo2.nc # Also renames variable

To avoid this faulty behavior, either build NCO with netCDF version 4.3.1-rc5 or later, or
convert the file to netCDF3 first, then rename as intended, then convert back. Unforunately
while this bug and the related coordinate renaming bug were fixed in 4.3.1-rc5 (released in
December, 2013), a new and related bug was discovered in October 2014.

Another netCDF4 bug that causes unintended side-effects with ncrename affects (at
least) versions 4.3.1–4.3.2 and all snapshots of the netCDF4 library until January, 2015.
This bug (fixed in 4.3.3 in February, 2015) corrupts values or renamed netCDF4 coordinate
variables (i.e., variables with underlying dimensions of the same name) and other (non-
coordinate) variables that include an underlying dimension that was renamed. In other
words, renaming coordinate variables and dimensions succeeds yet it corrupts the values

342 NCO 5.0.1 User Guide

contained by the affected array variables. This bug corrupts affected variables by replacing
their values with the default _FillValue for that variable’s type:

Demonstrate bug in netCDF4 libraries prior to version 4.3.3

ncks -O -4 -C -M -v lat ~/nco/data/in.nc ~/bug.nc

ncrename -O -v lat,tal ~/bug.nc ~/foo.nc # Broken until netCDF-4.3.3

ncrename -O -d lat,tal ~/bug.nc ~/foo.nc # Broken until netCDF-4.3.3

ncrename -O -d lat,tal -v lat,tal ~/bug.nc ~/foo.nc # Broken too

ncks ~/foo.nc

To avoid this faulty behavior, either build NCO with netCDF version 4.3.3 or later, or
convert the file to netCDF3 first, then rename as intended, then convert back. This bug
does not affect renaming of groups or of attributes.

Yet another netCDF4 bug that causes unintended side-effects with ncrename affects only
snapshots from January–February, 2015, and released version 4.3.3 (February, 2015). It was
fixed in (and was the reason for releasing) netCDF version 4.3.3.1 (March, 2015). This bug
causes renamed attributes of coordinate variables in netCDF4 to files to disappear:

Demonstrate bug in netCDF4 library version 4.3.3

ncrename -O -h -a /g1/lon@units,new_units ~/nco/data/in_grp.nc ~/foo.nc

ncks -v /g1/lon ~/foo.nc # Shows units and new_units are both gone

Clearly, renaming dimensions in netCDF4 files is non-trivial. The penultimate chapter
in this saga is a netCDF4 bug discovered in September, 2015, and present in versions 4.3.3.1
(and possibly earlier versions too) and later. As of this writing (February, 2018), this bug is
still present in netCDF4 version 4.6.0.1-development. This bug causes ncrename to create
corrupted output files when attempting to rename two or more dimensions simultaneously.
The workaround is to rename the dimensions sequentially, in two separate ncrename calls.

Demonstrate bug in netCDF4 library versions 4.3.3.1--4.6.1+

ncrename -O -d lev,z -d lat,y -d lon,x ~/nco/data/in_grp.nc ~/foo.nc # Completes but file is unreadable

ncks -v one ~/foo.nc # File is unreadable (multiple dimensions with same ID?)

A new netCDF4 renaming bug was discovered in March, 2017. It is present in versions
4.4.1–4.6.0 (and possibly earlier versions). This bug was fixed in netCDF4 version 4.6.1
(Yay Ed!). This bug caused ncrename to fail to rename a variable when the result would
become a coordinate.

Demonstrate bug in netCDF4 library versions 4.4.1--4.6.0

ncrename -O -v non_coord,coord ~/nco/data/in_grp.nc ~/foo.nc # Fails (HDF error)

The fix is to upgrade to netCDF version 4.6.1. The workaround is to convert to netCDF3,
then rename, then convert back to netCDF4.

A potentially new netCDF4 bug was discovered in November, 2017 and is now fixed.
It is present in versions 4.4.1.1–4.6.0 (and possibly earlier versions too). This bug causes
ncrename to fail to rename a variable when the result would become a coordinate. Oddly
this issue shows that simultaneously renaming a dimension and coordinate can succeed (in
contrast to a bug described above), and that separating that into two steps can fail.

Demonstrate bug in netCDF4 library versions 4.4.1--4.6.0

20171107: https://github.com/Unidata/netcdf-c/issues/597

Chapter 4: Reference Manual 343

Create test dataset

ncks -O -C -v lon ~/nco/data/in_grp.nc ~/in_grp.nc

ncks -O -x -g g1,g2 ~/in_grp.nc ~/in_grp.nc

Rename dimension then variable

ncrename -d lon,longitude ~/in_grp.nc # works

ncrename -v lon,longitude ~/in_grp.nc # borken "HDF error"

Rename variable then dimension

ncrename -v lon,longitude ~/in_grp.nc # works

ncrename -d lon,longitude ~/in_grp.nc # borken "nc4_reform_coord_var: Assertion ‘dim_datasetid > 0’ failed."

Oddly renaming both simultaneously works:

ncrename -d lon,longitude -v lon,longitude ~/in_grp.nc # works

The fix is to upgrade to netCDF version 4.6.1. The workaround is to convert to netCDF3,
then rename, then convert back to netCDF4.

A new netCDF3 bug was discovered in April, 2018 and is now fixed. It is present in
netCDF versions 4.4.1–4.6.0 (and possibly earlier versions too). This bug caused ncrename

to fail to rename many coordinates and dimensions simultaneously. This bug affects
netCDF3 64BIT_OFFSET files and possibly other formats as well. As such it is the first
and so far only bug we have identified that affects netCDF3 files.

cp /glade/scratch/gus/GFDL/exp/CM3_test/pp/0001/0001.land_month_crop.AllD.nc ~/correa_in.nc

ncrename -O -d grid_xt,lon -d grid_yt,lat -v grid_xt,lon -v grid_yt,lat \

-v grid_xt_bnds,lon_bnds -v grid_yt_bnds,lat_bnds ~/correa_in.nc ~/correa_out.nc

The fix is to upgrade to netCDF version 4.6.1.

Create netCDF out.nc identical to in.nc except the attribute _FillValue is changed to
missing_value, the attribute units is changed to CGS_units (but only in those variables
which possess it), the attribute hieght is changed to height in the variable tpt, and in the
variable prs_sfc, if it exists.

ncrename -a _FillValue,missing_value -a .units,CGS_units \

-a tpt@hieght,height -a prs_sfc@.hieght,height in.nc out.nc

The presence and absence of the ‘.’ and ‘@’ features cause this command to execute
successfully only if a number of conditions are met. All variables must have a _FillValue

attribute and _FillValue must also be a global attribute. The units attribute, on the
other hand, will be renamed to CGS_units wherever it is found but need not be present in
the file at all (either as a global or a variable attribute). The variable tpt must contain the
hieght attribute. The variable prs_sfc need not exist, and need not contain the hieght

attribute.

Rename the global or group attribute Convention to Conventions

ncrename -a Convention,Conventions in.nc # Variable and group atts.

ncrename -a .Convention,Conventions in.nc # Variable and group atts.

ncrename -a @Convention,Conventions in.nc # Group atts. only

ncrename -a @.Convention,Conventions in.nc # Group atts. only

ncrename -a global@Convention,Conventions in.nc # Group atts. only

ncrename -a .global@.Convention,Conventions in.nc # Group atts. only

344 NCO 5.0.1 User Guide

ncrename -a global@Convention,Conventions in.nc # Global atts. only

ncrename -a .global@.Convention,Conventions in.nc # Global atts. only

The examples without the @ character attempt to change the attribute name in both
Global or Group and variable attributes. The examples with the @ character attempt to
change only global and group Convention attributes, and leave unchanged any Convention

attributes attached directly to variables. Attributes prefixed with a period (.Convention)
need not be present. Attributes not prefixed with a period (Convention) must be present.
Variables prefixed with a period (. or .global) need not be present. Variables not prefixed
with a period (global) must be present.

Chapter 4: Reference Manual 345

4.14 ncwa netCDF Weighted Averager

SYNTAX

ncwa [-3] [-4] [-5] [-6] [-7] [-A] [-a dim[,...]] [-B mask_cond] [-b] [-C] [-c]

[--cnk_byt sz_byt] [--cnk_csh sz_byt] [--cnk_dmn nm,sz_lmn]

[--cnk_map map] [--cnk_min sz_byt] [--cnk_plc plc] [--cnk_scl sz_lmn]

[-D dbg] [-d dim,[min][,[max][,[stride]]] [-F] [--fl_fmt fl_fmt]

[-G gpe_dsc] [-g grp[,...]] [--glb ...] [-h] [--hdr_pad nbr] [--hpss] [-I]

[-L dfl_lvl] [-l path] [-M mask_val] [-m mask_var] [-N]

[--no_cll_msr] [--no_cll_mth] [--no_frm_trm] [--no_tmp_fl]

[-O] [-o output-

file] [-p path] [--ppc ...] [-R] [-r] [--ram_all] [--rth_dbl|flt]

[-T mask_comp] [-t thr_nbr] [--unn] [-v var[,...]] [-w weight]

[-X ...] [-x] [-y op_typ]

input-file [output-file]

DESCRIPTION

ncwa performs statistics (including, but not limited to, averages) on variables in a single
file over arbitrary dimensions, with options to specify weights, masks, and normalization.
See Section 2.6 [Statistics vs. Concatenation], page 20, for a description of the distinctions
between the various statistics tools and concatenators. The default behavior of ncwa is to
arithmetically average every numerical variable over all dimensions and to produce a scalar
result for each.

Averaged dimensions are, by default, eliminated as dimensions. Their corresponding
coordinates, if any, are output as scalar variables. The ‘-b’ switch (and its long option
equivalents ‘--rdd’ and ‘--retain-degenerate-dimensions’) causes ncwa to retain aver-
aged dimensions as degenerate (size 1) dimensions. This maintains the association between
a dimension (or coordinate) and variables after averaging and simplifies, for instance, later
concatenation along the degenerate dimension.

To average variables over only a subset of their dimensions, specify these dimensions
in a comma-separated list following ‘-a’, e.g., ‘-a time,lat,lon’. As with all arithmetic
operators, the operation may be restricted to an arbitrary hyperslab by employing the ‘-d’
option (see Section 3.16 [Hyperslabs], page 63). ncwa also handles values matching the
variable’s _FillValue attribute correctly. Moreover, ncwa understands how to manipulate
user-specified weights, masks, and normalization options. With these options, ncwa can
compute sophisticated averages (and integrals) from the command line.

mask var and weight, if specified, are broadcast to conform to the variables being aver-
aged. The rank of variables is reduced by the number of dimensions which they are averaged
over. Thus arrays which are one dimensional in the input-file and are averaged by ncwa

appear in the output-file as scalars. This allows the user to infer which dimensions may
have been averaged. Note that that it is impossible for ncwa to make make a weight or
mask var of rank W conform to a var of rank V if W > V. This situation often arises when
coordinate variables (which, by definition, are one dimensional) are weighted and averaged.
ncwa assumes you know this is impossible and so ncwa does not attempt to broadcast weight
or mask var to conform to var in this case, nor does ncwa print a warning message telling

346 NCO 5.0.1 User Guide

you this, because it is so common. Specifying dbg > 2 does cause ncwa to emit warnings in
these situations, however.

Non-coordinate variables are always masked and weighted if specified. Coordinate vari-
ables, however, may be treated specially. By default, an averaged coordinate variable, e.g.,
latitude, appears in output-file averaged the same way as any other variable containing
an averaged dimension. In other words, by default ncwa weights and masks coordinate
variables like all other variables. This design decision was intended to be helpful but for
some applications it may be preferable not to weight or mask coordinate variables just like
all other variables. Consider the following arguments to ncwa: -a latitude -w lat_wgt -d

latitude,0.,90. where lat_wgt is a weight in the latitude dimension. Since, by default
ncwa weights coordinate variables, the value of latitude in the output-file depends on the
weights in lat wgt and is not likely to be 45.0, the midpoint latitude of the hyperslab. Op-
tion ‘-I’ overrides this default behavior and causes ncwa not to weight or mask coordinate
variables1. In the above case, this causes the value of latitude in the output-file to be 45.0,
an appealing result. Thus, ‘-I’ specifies simple arithmetic averages for the coordinate vari-
ables. In the case of latitude, ‘-I’ specifies that you prefer to archive the arithmetic mean
latitude of the averaged hyperslabs rather than the area-weighted mean latitude.2.

As explained in See Section 3.39 [Operation Types], page 128, ncwa always averages
coordinate variables regardless of the arithmetic operation type performed on the non-
coordinate variables. This is independent of the setting of the ‘-I’ option. The mathematical
definition of operations involving rank reduction is given above (see Section 3.39 [Operation
Types], page 128).

4.14.1 Mask condition

Each xi also has an associated masking weight mi whose value is 0 or 1 (false or true). The
value of mi is always 1 unless a mask var is specified (with ‘-m’). As noted above, mask var
is broadcast, if possible, to conform to the variable being averaged. In this case, the value
of mi depends on the mask condition also known as the truth condition. As expected,
mi = 1 when the mask condition is true and mi = 0 otherwise.

The mask condition has the syntax mask var mask comp mask val. The preferred
method to specify the mask condition is in one string with the ‘-B’ or ‘--mask_condition’
switches. The older method is to use the three switches ‘-m’, ‘-T’, and ‘-M’ to specify the
mask var, mask comp, and mask val, respectively.3. The mask condition string is auto-
matically parsed into its three constituents mask var, mask comp, and mask val.

Here mask var is the name of the masking variable (specified with ‘-m’,
‘--mask-variable’, ‘--mask_variable’, ‘--msk_nm’, or ‘--msk_var’). The truth
mask comp argument (specified with ‘-T’, ‘--mask_comparator’, ‘--msk_cmp_typ’, or
‘--op_rlt’ may be any one of the six arithmetic comparators: eq, ne, gt, lt, ge, le.
These are the Fortran-style character abbreviations for the logical comparisons =, 6=, >,

1 The default behavior of (‘-I’) changed on 19981201—before this date the default was not to weight or
mask coordinate variables.

2 If lat_wgt contains Gaussian weights then the value of latitude in the output-file will be the area-
weighted centroid of the hyperslab. For the example given, this is about 30 degrees.

3 The three switches ‘-m’, ‘-T’, and ‘-M’ are maintained for backward compatibility and may be deprecated
in the future. It is safest to write scripts using ‘--mask_condition’.

Chapter 4: Reference Manual 347

<, ≥, ≤. The mask comparator defaults to eq (equality). The mask val argument to ‘-M’
(or ‘--mask-value’, or ‘--msk_val’) is the right hand side of the mask condition. Thus for
the i’th element of the hyperslab to be averaged, the mask condition is maski mask comp
mask val.

Each xi is also associated with an additional weight wi whose value may be user-specified.
The value of wi is identically 1 unless the user specifies a weighting variable weight (with
‘-w’, ‘--weight’, or ‘--wgt var’). In this case, the value of wi is determined by the weight
variable in the input-file. As noted above, weight is broadcast, if possible, to conform to
the variable being averaged.

M is the number of input elements xi which actually contribute to output element xj.
M is also known as the tally and is defined as

M =
i=N∑
i=1

µimi

M is identical to the denominator of the generic averaging expression except for the omission
of the weight wi. Thus M = N whenever no input points are missing values or are masked.
Whether an element contributes to the output, and thus increments M by one, has more to
do with the above two criteria (missing value and masking) than with the numeric value of
the element per se. For example, xi = 0.0 does contribute to xj (assuming the _FillValue
attribute is not 0.0 and location i is not masked). The value xi = 0.0 will not change the
numerator of the generic averaging expression, but it will change the denominator (unless
its weight wi = 0.0 as well).

4.14.2 Normalization and Integration

ncwa has one switch which controls the normalization of the averages appearing in the
output-file. Short option ‘-N’ (or long options ‘--nmr’ or ‘--numerator’) prevents ncwa

from dividing the weighted sum of the variable (the numerator in the averaging expression)
by the weighted sum of the weights (the denominator in the averaging expression). Thus ‘-N’
tells ncwa to return just the numerator of the arithmetic expression defining the operation
(see Section 3.39 [Operation Types], page 128).

With this normalization option, ncwa can integrate variables. Averages are first com-
puted as sums, and then normalized to obtain the average. The original sum (i.e., the
numerator of the expression in Section 3.39 [Operation Types], page 128) is output if de-
fault normalization is turned off (with ‘-N’). This sum is the integral (not the average) over
the specified (with ‘-a’, or all, if none are specified) dimensions. The weighting variable, if
specified (with ‘-w’), plays the role of the differential increment and thus permits more so-
phisticated integrals (i.e., weighted sums) to be output. For example, consider the variable
lev where lev = [100, 500, 1000] weighted by the weight lev_wgt where lev wgt = [10, 2, 1].
The vertical integral of lev, weighted by lev_wgt, is the dot product of lev and lev wgt.
That this is is 3000.0 can be seen by inspection and verified with the integration command

ncwa -N -a lev -v lev -w lev_wgt in.nc foo.nc;ncks foo.nc

EXAMPLES

Given file 85_0112.nc:

348 NCO 5.0.1 User Guide

netcdf 85_0112 {

dimensions:

lat = 64 ;

lev = 18 ;

lon = 128 ;

time = UNLIMITED ; // (12 currently)

variables:

float lat(lat) ;

float lev(lev) ;

float lon(lon) ;

float time(time) ;

float scalar_var ;

float three_dmn_var(lat, lev, lon) ;

float two_dmn_var(lat, lev) ;

float mask(lat, lon) ;

float gw(lat) ;

}

Average all variables in in.nc over all dimensions and store results in out.nc:

ncwa in.nc out.nc

All variables in in.nc are reduced to scalars in out.nc since ncwa averages over all dimen-
sions unless otherwise specified (with ‘-a’).

Store the zonal (longitudinal) mean of in.nc in out.nc:

ncwa -a lon in.nc out1.nc

ncwa -a lon -b in.nc out2.nc

The first command turns lon into a scalar and the second retains lon as a degenerate
dimension in all variables.

% ncks --trd -C -H -v lon out1.nc

lon = 135

% ncks --trd -C -H -v lon out2.nc

lon[0] = 135

In either case the tally is simply the size of lon, i.e., 180 for the 85_0112.nc file described
by the sample header above.

Compute the meridional (latitudinal) mean, with values weighted by the corresponding
element of gw4:

ncwa -w gw -a lat in.nc out.nc

Here the tally is simply the size of lat, or 64. The sum of the Gaussian weights is 2.0.

Compute the area mean over the tropical Pacific:

ncwa -w gw -a lat,lon -d lat,-20.,20. -d lon,120.,270. in.nc out.nc

Here the tally is 64× 128 = 8192.

4 gw stands for Gaussian weight in many climate models.

Chapter 4: Reference Manual 349

Compute the area-mean over the globe using only points for which ORO < 0.55:

ncwa -B ’ORO < 0.5’ -w gw -a lat,lon in.nc out.nc

ncwa -m ORO -M 0.5 -T lt -w gw -a lat,lon in.nc out.nc

It is considerably simpler to specify the completemask cond with the single string argument
to ‘-B’ than with the three separate switches ‘-m’, ‘-T’, and ‘-M’6. If in doubt, enclose the
mask cond within quotes since some of the comparators have special meanings to the shell.

Assuming 70% of the gridpoints are maritime, then here the tally is 0.70× 8192 ≈ 5734.

Compute the global annual mean over the maritime tropical Pacific:

ncwa -B ’ORO < 0.5’ -w gw -a lat,lon,time \

-d lat,-20.0,20.0 -d lon,120.0,270.0 in.nc out.nc

ncwa -m ORO -M 0.5 -T lt -w gw -a lat,lon,time \

-d lat,-20.0,20.0 -d lon,120.0,270.0 in.nc out.nc

Further examples will use the one-switch specification of mask cond.

Determine the total area of the maritime tropical Pacific, assuming the variable area
contains the area of each gridcell

ncwa -N -v area -B ’ORO < 0.5’ -a lat,lon \

-d lat,-20.0,20.0 -d lon,120.0,270.0 in.nc out.nc

Weighting area (e.g., by gw) is not appropriate because area is already area-weighted
by definition. Thus the ‘-N’ switch, or, equivalently, the ‘-y ttl’ switch, correctly integrate
the cell areas into a total regional area.

Mask a file to contain FillValue everywhere except where thr min <= msk var <=
thr max:

Set masking variable and its scalar thresholds

export msk_var=’three_dmn_var_dbl’ # Masking variable

export thr_max=’20’ # Maximum allowed value

export thr_min=’10’ # Minimum allowed value

ncecat -O in.nc out.nc # Wrap out.nc in degenerate "record" dimension

ncwa -O -a record -B "${msk_var} <= ${thr_max}" out.nc out.nc

ncecat -O out.nc out.nc # Wrap out.nc in degenerate "record" dimension

ncwa -O -a record -B "${msk_var} >= ${thr_min}" out.nc out.nc

After the first use of ncwa, out.nc contains FillValue where ${msk_var} >= ${thr_

max}. The process is then repeated on the remaining data to filter out points where ${msk_
var} <= ${thr_min}. The resulting out.nc contains valid data only where thr min <=
msk var <= thr max.

5 ORO stands for Orography in some climate models and in those models ORO < 0.5 selects ocean
gridpoints.

6 Unfortunately the ‘-B’ and ‘--mask_condition’ options are unsupported on Windows (with the MVS

compiler), which lacks a free, standard parser and lexer.

Chapter 5: Contributing 351

5 Contributing

We welcome contributions from anyone. The project homepage at https://sf.net/

projects/nco contains more information on how to contribute.

Financial contributions to NCO development may be made through PayPal. NCO has
been shared for over 10 years yet only two users have contributed any money to the
developers1. So you could be the third!

5.1 Contributors

NCO would not exist without the dedicated efforts of the remarkable software engineers who
conceive, develop, and maintain netCDF, UDUnits, and OPeNDAP. Since 1995 NCO has
received support from, I believe, the entire staff of all these projects, including Russ Rew,
John Caron, Glenn Davis, Steve Emmerson, Ward Fisher, James Gallagher, Ed Hartnett,
and Dennis Heimbigner. In addition to their roles in maintaining the software stack on
which NCO perches, Yertl-like, some of these gentlemen have advised or contributed to
NCO specifically. That support is acknowledged separately below.

The primary contributors to NCO development have been:

Charlie Zender
All concept, design and implementation from 1995–2000. Since then auto-
tools, bug-squashing, CDL, chunking, documentation, anchoring, recursion,
GPE, packing, regridding, CDL/XML backends, compression, NCO library re-
design, ncap2 features, ncbo, ncpdq, SMP threading and MPI parallelization,
netCDF4 integration, external funding, project management, science research,
releases.

Henry Butowsky
Non-linear operations and min(), max(), total() support in ncra and ncwa.
Type conversion for arithmetic. Migration to netCDF3 API. ncap2 parser,
lexer, GSL-support, and I/O. Multislabbing algorithm. Variable wildcarding.
JSON backend. Numerous hacks. ncap2 language.

Rorik Peterson
Original autotools build support. Long command-line options. Original
UDUnits support. Debianization. Numerous bug-fixes.

Joe Hamman
Python bindings (PyNCO).

Milan Klower, Rostislav Kouznetsov
Quantization by rounding

Daniel Wang
Script Workflow Analysis for MultiProcessing (SWAMP). RPM support.

1 Happy users have sent me a few gifts, though. This includes a box of imported chocolate. Mmm.
Appreciation and gifts are definitely better than money. Naturally, I’m too lazy to split and send gifts
to the other developers. However, unlike some NCO developers, I have a steady "real job". My intent is
to split monetary donations among the active developers and to send them their shares via PayPal.

https://sf.net/projects/nco
https://sf.net/projects/nco
https://www.paypal.com/xclick/business=zender%40uci.edu&item_name=NCO+development&item_number=nco_dnt_dvl&no_note=1&tax=0¤cy_code=USD

352 NCO 5.0.1 User Guide

Harry Mangalam
Benchmarking. OPeNDAP configuration.

Pedro Vicente
Windows Visual Studio support. netCDF4 groups. CMake build-engine.

Jerome Mao
Multi-argument parsing.

Joseph O’Rourke
Routines from his book “Computational Geometry in C”.

Russ Rew Advice on NCO structural algorithms.

Brian Mays
Original packaging for Debian GNU/Linux, nroff man pages.

George Shapovalov
Packaging for Gentoo GNU/Linux.

Bill Kocik Memory management.

Len Makin
NEC SX architecture support.

Jim Edwards
AIX architecture support.

Juliana Rew
Compatibility with large PIDs.

Karen Schuchardt
Auxiliary coordinate support.

Gayathri Venkitachalam
MPI implementation.

Scott Capps
Large work-load testing

Xylar Asay-Davis, Sterling Baldwin, Dave Blodgett, Philip Cameron-Smith, Peter
Campbell, Martin Dix, Mark Flanner, Barron Henderson, Aleksandar Jelenak, Markus
Liebig, Keith Lindsay, Daniel Macks, Daniel Neumann, Mike Page, Martin Schmidt,
Michael Schulz, Lori Sentman, Rich Signell, Bob Simons, Gary Strand, Matthew
Thompson, Adrian Tompkins, George White Andrew Wittenberg, Min Xu, Remik
Ziemlinski

Excellent bug reports and feature requests.

Filipe Fernandes, Isuru Fernando, Craig MacLachlan, Hugo Oliveira, Rich Signell, Kyle
Wilcox

Anaconda packaging

Xylar Asay-Davis, Daniel Baumann, Nick Bower, Luk Claebs, Bas Couwenberg, Barry
deFreese, Francesco Lovergine, Matej Vela

Cygwin packaging

Chapter 5: Contributing 353

Marco Atzeri
Debian packaging

Patrice Dumas, Ed Hill, Orion Poplawski
RedHat packaging

George Shapavalov, Patrick Kursawe, Manfred Schwarb
Gentoo packaging

Filipe Fernandes
OpenSuse packaging

Takeshi Enomoto, Alexander Hansen, Ian Lancaster, Alejandro Soto
Mac OS packaging

Eric Blake Autoconf/M4 help

Gavin Burris, Kyle Wilcox
RHEL and CentOS build scripts and bug reports.

Andrea Cimatoribus
NCO Spiral Logo

Martin Otte, Etienne Tourigny
Single bug reports and fixes

Wenshan Wang
CMIP5 and MODIS processing documentation, reference card

Todd Mitchell
Financial support

Please let me know if your name was omitted!

5.2 Citation

The recommended citations for NCO software are

Zender, C. S. (2008), Analysis of Self-describing Gridded Geoscience

Data with netCDF Operators (NCO), Environ. Modell. Softw., 23(10),

1338-1342, doi:10.1016/j.envsoft.2008.03.004.

Zender, C. S. and H. J. Mangalam (2007), Scaling Properties of Common

Statistical Operators for Gridded Datasets, Int. J. High

Perform. Comput. Appl., 21(4), 485-498, doi:10.1177/1094342007083802.

Zender, C. S. (2016), Bit Grooming: Statistically accurate

precision-preserving quantization with compression, evaluated in the

netCDF Operators (NCO, v4.4.8+), Geosci. Model Dev., 9, 3199-3211,

doi:10.5194/gmd-9-3199-2016.

Zender, C. S. (Year), netCDF Operator (NCO) User Guide,

http://nco.sf.net/nco.pdf.

354 NCO 5.0.1 User Guide

Use the first when referring to overall design, purpose, and optimization of NCO, the
second for the speed and throughput of NCO, the third for compressions, and the fourth
for specific features and/or the User Guide itself, or in a non-academic setting. A complete
list of NCO publications and presentations is at http://nco.sf.net#pub. This list links
to the full papers and seminars themselves.

5.3 Proposals for Institutional Funding

From 2004–2007, NSF funded a project to improve Distributed Data Reduction & Analysis
(DDRA) by evolving NCO parallelism (OpenMP, MPI) and Server-Side DDRA (SSDDRA)
implemented through extensions to OPeNDAP and netCDF4. The SSDDRA features were
implemented in SWAMP, the PhD Thesis of Daniel Wang. SWAMP dramatically reduced
bandwidth usage for NCO between client and server.

With this first NCO proposal funded, the content of the next NCO proposal became clear.
We had long been interested in obtaining NASA support for HDF-specific enhancements to
NCO. From 2012–2015 the NASA ACCESS program funded us to implement support support
netCDF4 group functionality. Thus NCO will grow and evade bit-rot for the foreseeable
future.

We are considering other interesting ideas for still more proposals. Please contact us if
you wish to be involved with any future NCO-related proposals. Comments on the proposals
and letters of support are also very welcome.

http://nco.sf.net#pub
http://nco.sf.net#prp_sei

Chapter 6: Quick Start 355

6 Quick Start

Simple examples in Bash shell scripts showing how to average data with different file struc-
tures. Here we include monthly, seasonal and annual average with daily or monthly data
in either one file or multiple files.

6.1 Daily data in one file

Suppose we have daily data from Jan 1st, 1990 to Dec. 31, 2005 in the file of in.nc with
the record dimension as time.

Monthly average:

for yyyy in {1990..2005}; do # Loop over years

for moy in {1..12}; do # Loop over months

mm=$(printf "%02d" ${moy}) # Change to 2-digit format

Average specific month yyyy-mm

ncra -O -d time,"${yyyy}-${mm}-01","${yyyy}-${mm}-31" \

in.nc in_${yyyy}${mm}.nc

done

done

Concatenate monthly files together

ncrcat -O in_??????.nc out.nc

Annual average:

for yyyy in {1990..2005}; do # Loop over years

ncra -O -d time,"${yyyy}-01-01","${yyyy}-12-31" in.nc in_${yyyy}.nc

done

Concatenate annual files together

ncrcat -O in_????.nc out.nc

The -O switch means to overwrite the pre-existing files (see Section 3.41 [Batch Mode],
page 142). The -d option is to specify the range of hyperslabs (see Section 3.16 [Hyperslabs],
page 63). There are detailed instructions on ncra (see Section 4.10 [ncra netCDF Record
Averager], page 296 and ncrcat (see Section 4.11 [ncrcat netCDF Record Concatenator],
page 300). NCO supports UDUnits so that we can use readable dates as time dimension
(see Section 3.27 [UDUnits Support], page 98).

6.2 Monthly data in one file

Inside the input file in.nc, the record dimension time is from Jan 1990 to Dec 2005.

Seasonal average (e.g., DJF):

ncra -O --mro -d time,"1990-12-01",,12,3 in.nc out.nc

Annual average:

356 NCO 5.0.1 User Guide

ncra -O --mro -d time,,,12,12 in.nc out.nc

Here we use the subcycle feature (i.e., the number after the fourth comma: ‘3’ in the
seasonal example and the second ‘12’ in the annual example) to retrieve groups of records
separated by regular intervals (see Section 3.19 [Subcycle], page 68). The option --mro

switches ncra to produce a Multi-Record Output instead of a single-record output. For
example, assume snd is a 3D array with dimensions time * latitude * longitude and
time includes every month from Jan. 1990 to Dec. 2005, 192 months as total, which are 16
years. Consider the following two command lines:

ncra --mro -v snd -d time,"1990-12-01",,12,3 in.nc out_mro.nc

ncra -v snd -d time,"1990-12-01",,12,3 in.nc out_sro.nc

In the first output file, out_mro.nc, snd is still a 3D array with dimensions time *
latitude * longitude, but the length of time now is 16, meaning 16 winters. In the
second output file, out_sro.nc, the length of time is only 1. It is now the average of all
the 16 winters.

When using ‘-d dim,min[,max]’ to specify the hyperslabs, you can leave it blank if you
want to include the minimum or the maximum of the data, like we did above.

6.3 One time point one file

This means if you have daily data of 30 days, there will be 30 data files. Or if you have
monthly data of 12 months, there will be 12 data files. Dealing with this kind of files, you
need to specify the file names in shell scripts and pass them to NCO operators. For example,
your daily data files may look like snd_19900101.nc, snd_19900102.nc, snd_19900103.nc
... If you want to know the monthly average of Jan 1990, you can write like,

ncra -O snd_199001??.nc out.nc

You might want to use loop if you need the average of each month.

for moy in {1..12}; do # Loop over months

mm=$(printf "%02d" ${moy}) # Change to 2-digit format

ncra -O snd_????${mm}??.nc out_${mm}.nc

done

6.4 Multiple files with multiple time points

Similar as the last one, it’s more about shell scripts. Suppose you have daily data with one
month of them in one data file. The monthly average is simply to apply ncra on the specific
data file. And for seasonal averages, you can specify the three months by shell scripts.

Chapter 7: CMIP5 Example 357

7 CMIP5 Example

The fifth phase of the Coupled Model Intercomparison Project (CMIP5) provides a multi-
model framework for comparing the mechanisms and responses of climate models from
around the world. However, it is a tremendous workload to retrieve a single climate statistic
from all these models, each of which includes several ensemble members. Not only that, it
is too often a tedious process that impedes new research and hypothesis testing. Our NASA

ACCESS 2011 project simplified and accelerated this process.

Traditional geoscience data analysis requires users to work with numerous flat (data in
one level or namespace) files. In that paradigm instruments or models produce, and then
repositories archive and distribute, and then researchers request and analyze, collections of
flat files. NCO works well with that paradigm, yet it also embodies the necessary algorithms
to transition geoscience data analysis from relying solely on traditional (or “flat”) datasets
to allowing newer hierarchical (or “nested”) datasets.

Hierarchical datasets support and enable combining all datastreams that meet user-
specified criteria into a single or small number of files that hold all the science-relevant
data. NCO (and no other software to our knowledge) exploits this capability now. Data
and metadata may be aggregated into and analyzed in hierarchical structures. We call the
resulting data storage, distribution, and analysis paradigm Group-Oriented Data Analysis
and Distribution (GODAD). GODAD lets the scientific question organize the data, not the
ad hoc granularity of all relevant datasets. This chapter illustrates GODAD techniques
applied to analysis of the CMIP5 dataset.

To begin, we document below a prototypical example of CMIP5 analysis and evaluation
using traditional NCO commands on netCDF3-format model and HDF-EOS format observa-
tional (NASA MODIS satellite instrument) datasets. These examples complement the NCO

User Guide by detailing in-depth data analysis in a frequently encountered “real world”
context. Graphical representations of the results (NCL scripts available upon request) are
provided to illustrate physical meaning of the analysis. Since NCO can process hierarchical
datasets, i.e., datasets stored with netCDF4 groups, we present sample scripts illustrating
group-based processing as well.

7.1 Combine Files

Sometimes, the data of one ensemble member will be stored in several files to reduce single
file size. It is more convenient to concatenate these files into a single timeseries, and the
following script illustrates how. Key steps include:

1. Obtain number and names (or partial names) of files in a directory

2. Concatenate files along the record dimension (usually time) using ncrcat (see
Section 4.11 [ncrcat netCDF Record Concatenator], page 300).

#!/bin/bash # shell type

shopt -s extglob # enable extended globbing

#===

Some of the models cut one ensemble member into several files,

http://cmip-pcmdi.llnl.gov/cmip5/index.html?submenuheader=0

358 NCO 5.0.1 User Guide

which include data of different time periods.

We’d better concatenate them into one at the beginning so that

we won’t have to think about which files we need if we want

to retrieve a specific time period later.

#

Method:

- Make sure ’time’ is the record dimension (i.e., left-most)

- ncrcat

#

Input files like:

/data/cmip5/snc_LImon_bcc-csm1-1_historical_r1i1p1_185001-190012.nc

/data/cmip5/snc_LImon_bcc-csm1-1_historical_r1i1p1_190101-200512.nc

#

Output files like:

/data/cmip5/snc_LImon_bcc-csm1-1_historical_r1i1p1_185001-200512.nc

#

Online: http://nco.sourceforge.net/nco.html#Combine-Files

#

Execute this script: bash cmb_fl.sh

#===

drc_in=’/home/wenshanw/data/cmip5/’ # Directory of input files

var=(’snc’ ’snd’) # Variables

rlm=’LImon’ # Realm

xpt=(’historical’) # Experiment (could be more)

for var_id in {0..1}; do # Loop over two variables

Names of all the models (ls [get file names];

cut [get model names];

sort; uniq [remove duplicates]; awk [print])

mdl_set=$(ls ${drc_in}${var[var_id]}_${rlm}_*_${xpt[0]}_*.nc | \

cut -d ’_’ -f 3 | sort | uniq -c | awk ’{print $2}’)

Number of models (echo [print contents]; wc [count])

mdl_nbr=$(echo ${mdl_set} | wc -w)

echo "=============================="

echo "There are" ${mdl_nbr} "models for" ${var[var_id]}.

for mdl in ${mdl_set}; do # Loop over models

Names of all the ensemble members

nsm_set=$(ls ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_*.nc | \

cut -d ’_’ -f 5 | sort | uniq -c | awk ’{print $2}’)

Number of ensemble members in each model

nsm_nbr=$(echo ${nsm_set} | wc -w)

echo "------------------------------"

echo "Model" ${mdl} "includes" ${nsm_nbr} "ensemble member(s):"

echo ${nsm_set}"."

Chapter 7: CMIP5 Example 359

for nsm in ${nsm_set}; do # Loop over ensemble members

Number of files in this ensemble member

fl_nbr=$(ls ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_${nsm}_*.nc \

| wc -w)

If there is only 1 file, continue to next loop

if [${fl_nbr} -le 1]

then

echo "There is only 1 file in" ${nsm}.

continue

fi

echo "There are" ${fl_nbr} "files in" ${nsm}.

Starting date of data

(sed [the name of the first file includes the starting date])

yyyymm_str=$(ls ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_${nsm}_*.nc\

| sed -n ’1p’ | cut -d ’_’ -f 6 | cut -d ’-’ -f 1)

Ending date of data

(sed [the name of the last file includes the ending date])

yyyymm_end=$(ls ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_${nsm}_*.nc\

| sed -n "${fl_nbr}p" | cut -d ’_’ -f 6 | cut -d ’-’ -f 2)

Concatenate one ensemble member files

into one along the record dimension (now is time)

ncrcat -O ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_${nsm}_*.nc \

${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_\

${nsm}_${yyyymm_str}-${yyyymm_end}

Remove useless files

rm ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_${nsm}_\

!(${yyyymm_str}-${yyyymm_end})

done

done

done

CMIP5 model data downloaded from the Earth System Grid Federation (ESGF) does not
contain group features yet. Therefore users must aggregate flat files into hierarchical ones
themselves. The following script shows how. Each dataset becomes a group in the output
file. There can be several levels of groups. In this example, we employ two experiments
(“scenarios”) as the top-level. The second-level comprises different models (e.g., CCSM4,
CESM1-BGC). Many models are run multiple times with slight perturbed initial conditions
to produce an ensemble of realizations. These ensemble members comprise the third level of
the hierarchy. The script selects two variables, snc and snd (snow cover and snow depth).

#!/bin/bash

#

http://pcmdi9.llnl.gov/esgf-web-fe/

360 NCO 5.0.1 User Guide

#==

Aggregate models to one group file

#

Method:

- Create files with groups by ncecat --gag

- Append groups level by level using ncks

#

Input files like:

snc_LImon_CCSM4_historical_r1i1p1_199001-200512.nc

snd_LImon_CESM1-BGC_esmHistorical_r1i1p1_199001-200512.nc

#

Output files like:

sn_LImon_199001-200512.nc

#

Online: http://nco.sourceforge.net/nco.html#Combine-Files

#

Execute this script: bash cmb_fl_grp.sh

#==

Directories

drc_in=’../data/’

drc_out=’../data/grp/’

Constants

rlm=’LImon’ # Realm: LandIce; Time frequency: monthly

tms=’200001-200512’ # Timeseries

flt=’nc’ # File Type

Geographical weights

Can be skipped when ncap2 works on group data

Loop over all snc files

for fn in $(ls ${drc_in}snc_${rlm}_*_${tms}.${flt}); do

ncap2 -O -s \

’gw = float(cos(lat*3.1416/180.)); gw@long_name="geographical weight";’\

${fn} ${fn}

done

var=(’snc’ ’snd’)

xpt=(’esmHistorical’ ’historical’)

mdl=(’CCSM4’ ’CESM1-BGC’ ’CESM1-CAM5’)

for i in {0..1}; do # Loop over variables

for j in {0..1}; do # Loop over experiments

for k in {0..2}; do # Loop over models

ncecat -O --glb_mtd_spp -G ${xpt[j]}/${mdl[k]}/${mdl[k]}_ \

${drc_in}${var[i]}_${rlm}_${mdl[k]}_${xpt[j]}_*_${tms}.${flt} \

${drc_out}${var[i]}_${rlm}_${mdl[k]}_${xpt[j]}_all-nsm_${tms}.${flt}

Chapter 7: CMIP5 Example 361

ncks -A \

${drc_out}${var[i]}_${rlm}_${mdl[k]}_${xpt[j]}_all-nsm_${tms}.${flt} \

${drc_out}${var[i]}_${rlm}_${mdl[0]}_${xpt[j]}_all-nsm_${tms}.${flt}

done # Loop done: models

ncks -A \

${drc_out}${var[i]}_${rlm}_${mdl[0]}_${xpt[j]}_all-nsm_${tms}.${flt} \

${drc_out}${var[i]}_${rlm}_${mdl[0]}_${xpt[0]}_all-nsm_${tms}.${flt}

done # Loop done: experiments

ncks -A \

${drc_out}${var[i]}_${rlm}_${mdl[0]}_${xpt[0]}_all-nsm_${tms}.${flt} \

${drc_out}${var[0]}_${rlm}_${mdl[0]}_${xpt[0]}_all-nsm_${tms}.${flt}

done # Loop done: variables

Rename output file

mv ${drc_out}${var[0]}_${rlm}_${mdl[0]}_${xpt[0]}_all-nsm_${tms}.${flt} \

${drc_out}sn_${rlm}_all-mdl_all-xpt_all-nsm_${tms}.${flt}

Remove temporary files

rm ${drc_out}sn?_${rlm}*.nc

#- Rename Group:

E.g., file snc_LImon_CESM1-CAM5_historical_r1i1p1_199001-200512.nc

is now group /historical/CESM1-CAM5/CESM1-CAM5_00.

You can rename it to /historical/CESM1-CAM5/r1i1p1 to make more sense.

Note: You don’t need to write the full path of the new name.

ncrename -g ${xpt}/${mdl}/${mdl}_00,r1i1p1 \

${drc_out}${var}_${rlm}_${mdl}_all-nsm_${tms}.${flt}

#--

Output file structure

#--

esmHistorical

{

CESM1-BGC

{

CESM1-BGC_00

{

snc(time, lat, lon)

snd(time, lat, lon)

}

}

}

historical

{

CCSM4

{

CCSM4_00

{

362 NCO 5.0.1 User Guide

snc(time, lat, lon)

snd(time, lat, lon)

}

CCSM4_01

{

snc(time, lat, lon)

snd(time, lat, lon)

}

CCSM4_02 { ... }

CCSM4_03 { ... }

CCSM4_04 { ... }

}

CESM1-BGC

{

CESM1-BGC_00 { ... }

}

CESM1-CAM5

{

r1i1p1 { ... }

CESM1-CAM5_01 { ... }

CESM1-CAM5_02 { ... }

}

}

Chapter 7: CMIP5 Example 363

7.2 Global Distribution of Long-term Average

Figure 7.1: Global Distribution of Long-term Average.

This section illustrates how to calculate the global distribution of long-term average (see
Figure 7.1) with either flat files or group file. Key steps include:

1. Average ensemble members of each model using nces (see Section 4.6 [nces netCDF
Ensemble Statistics], page 254)

2. Average the record dimension using ncra (see Section 4.10 [ncra netCDF Record Av-
erager], page 296)

3. Store results of each model as a distinct group in a single output file using ncecat (see
Section 4.11 [ncrcat netCDF Record Concatenator], page 300) with the --gag option

The first example shows how to process flat files.

#!/bin/bash

#===

After cmb_fl.sh

http://nco.sourceforge.net/nco.html#index-groups

364 NCO 5.0.1 User Guide

Example: Long-term average of each model globally

#

Input files like:

/data/cmip5/snc_LImon_bcc-csm1-1_historical_r1i1p1_185001-200512.nc

#

Output files like:

/data/cmip5/output/snc/snc_LImon_all-mdl_historical_all-nsm_clm.nc

#

Online:

http://nco.sourceforge.net/nco.html#Global-Distribution-of-Long_002dterm-Average

#

Execute this script: bash glb_avg.sh

#===

#---

Parameters

drc_in=’/home/wenshanw/data/cmip5/’ # Directory of input files

drc_out=’/home/wenshanw/data/cmip5/output/’ # Directory of output files

var=(’snc’ ’snd’) # Variables

rlm=’LImon’ # Realm

xpt=(’historical’) # Experiment (could be more)

fld_out=(’snc/’ ’snd/’) # Folders of output files

#---

for var_id in {0..1}; do # Loop over two variables

Names of all models

(ls [get file names]; cut [get the part for model names];

sort; uniq [remove duplicates]; awk [print])

mdl_set=$(ls ${drc_in}${var[var_id]}_${rlm}_*_${xpt[0]}_*.nc | \

cut -d ’_’ -f 3 | sort | uniq -c | awk ’{print $2}’)

Number of models (echo [print contents]; wc [count])

mdl_num=$(echo ${mdl_set} | wc -w)

for mdl in ${mdl_set}; do # Loop over models

Average all the ensemble members of each model

Use nces file ensembles mode: --nsm_fl

nces --nsm_fl -O -4 -d time,"1956-01-01 00:00:0.0","2005-12-31 23:59:9.9" \

${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_*.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}\

_all-nsm_195601-200512.nc

Average along time

ncra -O ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}\

_all-nsm_195601-200512.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${mdl}.nc

Chapter 7: CMIP5 Example 365

echo Model ${mdl} done!

done

Remove temporary files

rm ${drc_out}${fld_out[var_id]}${var[var_id]}*historical*.nc

Store models as groups in the output file

ncecat -O --gag ${drc_out}${fld_out[var_id]}${var[var_id]}_*.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

all-mdl_${xpt[0]}_all-nsm_clm.nc

echo Var ${var[var_id]} done!

done

With the use of group, the above script will be shortened to ONE LINE.

Data from cmb_fl_grp.sh

ensemble averaging

nces -O --nsm_grp --nsm_sfx=’_avg’ \

sn_LImon_all-mdl_all-xpt_all-nsm_200001-200512.nc \

sn_LImon_all-mdl_all-xpt_nsm-avg.nc

The input file, sn_LImon_all-mdl_all-xpt_all-nsm_200001-200512.nc, produced by
cmb_fl_grp.sh, includes all the ensemble members as groups. The option ‘--nsm_grp’
denotes that we are using group ensembles mode of nces, instead of file ensembles mode,
‘--nsm_fl’. The option ‘--nsm_sfx=’_avg’’ instructs nces to store the output as a new
child group /[model]/[model name]_avg/var; otherwise, the output will be stored directly
in the parent group /[model]/var. In the final output file, sn_LImon_all-mdl_all-xpt_
nsm-avg_tm-avg.nc, sub-groups with a suffix of ‘avg’ are the long-term averages of each
model. One thing to notice is that for now, ensembles with only one ensemble member will
be left untouched.

http://nco.sf.net/nco.html#nsm_grp
http://nco.sf.net/nco.html#nsm_fl

366 NCO 5.0.1 User Guide

7.3 Annual Average over Regions

Figure 7.2: Annual Average over Regions.

This section illustrates how to calculate the annual average over specific regions (see
Figure 7.2). Key steps include:

1. Spatial average using ncap2 (see Section 4.1 [ncap2 netCDF Arithmetic Processor],
page 152) and ncwa (see Section 4.14 [ncwa netCDF Weighted Averager], page 345);

2. Change dimension order using ncpdq (see Section 4.9 [ncpdq netCDF Permute Dimen-
sions Quickly], page 287);

3. Annual average using ncra (see Section 4.10 [ncra netCDF Record Averager], page 296);

4. Anomaly from long-term average using ncbo (see Section 4.3 [ncbo netCDF Binary
Operator], page 223);

5. Standard deviation using ncbo (see Section 4.3 [ncbo netCDF Binary Operator],
page 223) and nces (see Section 4.6 [nces netCDF Ensemble Statistics], page 254);

6. Rename variables using ncrename (see Section 4.13 [ncrename netCDF Renamer],
page 339);

7. Edit attributions using ncatted (see Section 4.2 [ncatted netCDF Attribute Editor],
page 216);

8. Linear regression using ncap2 (see Section 4.1 [ncap2 netCDF Arithmetic Processor],
page 152);

Chapter 7: CMIP5 Example 367

9. Use ncap2 (see Section 4.1 [ncap2 netCDF Arithmetic Processor], page 152) with nco
script file (i.e., .nco file);

10. Move variables around using ncks (see Section 4.8 [ncks netCDF Kitchen Sink],
page 261).

Flat files example

#!/bin/bash

Includes gsl_rgr.nco

#===

After cmb_fl.sh

Example: Annual trend of each model over Greenland and Tibet

(time- and spatial-average, standard deviation,

anomaly and linear regression)

#

Input files:

/data/cmip5/snc_LImon_bcc-csm1-1_historical_r1i1p1_185001-200512.nc

#

Output files:

/data/cmip5/outout/snc/snc_LImon_all-mdl_historical_all-nsm_annual.nc

#

Online: http://nco.sourceforge.net/nco.html#Annual-Average-over-Regions

#

Execute this script: bash ann_avg.sh

#===

#---

Parameters

drc_in=’/home/wenshanw/data/cmip5/’ # Directory of input files

drc_out=’/home/wenshanw/data/cmip5/output/’ # Directory of output files

var=(’snc’ ’snd’) # Variables

rlm=’LImon’ # Realm

xpt=(’historical’) # Experiment (could be more)

fld_out=(’snc/’ ’snd/’) # Folders of output files

--

for var_id in {0..1}; do # Loop over two variables

Names of all models

(ls [get file names]; cut [get the part for model names];

sort; uniq [remove duplicates]; awk [print])

mdl_set=$(ls ${drc_in}${var[var_id]}_${rlm}_*_${xpt[0]}_*.nc | \

cut -d ’_’ -f 3 | sort | uniq -c | awk ’{print $2}’)

for mdl in ${mdl_set}; do # Loop over models

368 NCO 5.0.1 User Guide

Loop over ensemble members

for fn in $(ls ${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_*.nc); do

pfx=$(echo ${fn} | cut -d’/’ -f6 | cut -d’_’ -f1-5)

Two regions

Geographical weight

ncap2 -O -s ’gw = cos(lat*3.1415926/180.); gw@long_name="geographical weight"\

;gw@units="ratio"’ ${fn} ${drc_out}${fld_out[var_id]}${pfx}_gw.nc

Greenland

ncwa -O -w gw -d lat,60.0,75.0 -d lon,300.0,340.0 -a lat,lon \

${drc_out}${fld_out[var_id]}${pfx}_gw.nc \

${drc_out}${fld_out[var_id]}${pfx}_gw_1.nc

Tibet

ncwa -O -w gw -d lat,30.0,40.0 -d lon,80.0,100.0 -a lat,lon \

${drc_out}${fld_out[var_id]}${pfx}_gw.nc \

${drc_out}${fld_out[var_id]}${pfx}_gw_2.nc

Aggregate 2 regions together

ncecat -O -u rgn ${drc_out}${fld_out[var_id]}${pfx}_gw_?.nc \

${drc_out}${fld_out[var_id]}${pfx}_gw_rgn4.nc

Change dimensions order

ncpdq -O -a time,rgn ${drc_out}${fld_out[var_id]}${pfx}_gw_rgn4.nc \

${drc_out}${fld_out[var_id]}${pfx}_gw_rgn4.nc

Remove temporary files (optional)

rm ${drc_out}${fld_out[var_id]}${pfx}_gw_?.nc \

${drc_out}${fld_out[var_id]}${pfx}_gw.nc

Annual average (use the feature of ’Duration’)

ncra -O --mro -d time,"1956-01-01 00:00:0.0","2005-12-31 23:59:9.9",12,12 \

${drc_out}${fld_out[var_id]}${pfx}_gw_rgn4.nc \

${drc_out}${fld_out[var_id]}${pfx}_yrly.nc

Anomaly

Long-term average

ncwa -O -a time ${drc_out}${fld_out[var_id]}${pfx}_yrly.nc \

${drc_out}${fld_out[var_id]}${pfx}_clm.nc

Subtract long-term average

ncbo -O --op_typ=- ${drc_out}${fld_out[var_id]}${pfx}_yrly.nc \

${drc_out}${fld_out[var_id]}${pfx}_clm.nc \

${drc_out}${fld_out[var_id]}${pfx}_anm.nc

done

rm ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_*_yrly.nc

Average over all the ensemble members

Chapter 7: CMIP5 Example 369

ncea -O -4 ${drc_out}${fld_out[var_id]}${var[var_id]}_\

${rlm}_${mdl}_${xpt[0]}_*_anm.nc ${drc_out}${fld_out[var_id]}\

${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_all-nsm_anm.nc

Standard deviation ------------------------------

for fn in $(ls ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_\

${xpt[0]}_*_anm.nc); do

pfx=$(echo ${fn} | cut -d’/’ -f8 | cut -d’_’ -f1-5)

Difference between each ensemble member and the average of all members

ncbo -O --op_typ=- ${fn} \

${drc_out}${fld_out[var_id]}${var[var_id]}_\

${rlm}_${mdl}_${xpt[0]}_all-nsm_anm.nc \

${drc_out}${fld_out[var_id]}${pfx}_dlt.nc

done

RMS

ncea -O -y rmssdn ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_*_dlt.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_all-nsm_sdv.nc

Rename variables

ncrename -v ${var[var_id]},sdv \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_all-nsm_sdv.nc

Edit attributions

ncatted -a standard_name,sdv,a,c,"_standard_deviation_over_ensemble" \

-a long_name,sdv,a,c," Standard Deviation over Ensemble" \

-a original_name,sdv,a,c," sdv" \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_all-nsm_sdv.nc

#--

Linear regression ---

#!!!

Have to change the name of variable in the commands file

of gsl_rgr.nco manually (gsl_rgr.nco is listed below)

ncap2 -O -S gsl_rgr.nco \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_all-nsm_anm.nc ${drc_out}${fld_out[var_id]}${var[var_id]}\

${rlm}${mdl}_${xpt[0]}_all-nsm_anm_rgr.nc

#!!!

Get rid of temporary variables

ncks -O -v c0,c1,pval,${var[var_id]},gw \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_\

${xpt[0]}_all-nsm_anm_rgr.nc \

370 NCO 5.0.1 User Guide

${drc_out}${fld_out[var_id]}${var[var_id]}_${mdl}.nc

#--

Move the variable ’sdv’ into the anomaly files (i.e., *anm.nc files)

ncks -A -v sdv \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_all-nsm_sdv.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${mdl}.nc

rm ${drc_out}${fld_out[var_id]}${var[var_id]}_*historical*

echo Model ${mdl} done!

done

Store models as groups in the output file

ncecat -O --gag ${drc_out}${fld_out[var_id]}${var[var_id]}_*.nc

${drc_out}${fld_out[var_id]}${var[var_id]}_\

${rlm}_all-mdl_${xpt[0]}_all-nsm_annual.nc

echo Var ${var[var_id]} done!

done

gsl rgr.nco

// Linear Regression

// Called by ann_avg.sh

// Caution: make sure the variable name is

// in agreement with the main script (now is ’snd’)

// Online: http://nco.sourceforge.net/nco.html#Annual-Average-over-Regions

// Declare variables

*c0[$rgn]=0.; // Intercept

*c1[$rgn]=0.; // Slope

*sdv[$rgn]=0.; // Standard deviation

*covxy[$rgn]=0.; // Covariance

*x = double(time);

for (*rgn_id=0;rgn_id<$rgn.size;rgn_id++) // Loop over regions

{

gsl_fit_linear(time,1,snd(:,rgn_id),1,$time.size, \

&tc0, &tc1, &cov00, &cov01,&cov11,&sumsq); // Linear regression function

c0(rgn_id) = tc0; // Output results

c1(rgn_id) = tc1;

covxy(rgn_id) = gsl_stats_covariance(time,1,\

$time.size,double(snd(:,rgn_id)),1,$time.size); // Covariance function

sdv(rgn_id) = gsl_stats_sd(snd(:,rgn_id), \

1, $time.size); // Standard deviation function

}

Chapter 7: CMIP5 Example 371

// P value--

*time_sdv = gsl_stats_sd(time, 1, $time.size);

*r_value = covxy/(time_sdv*sdv);

*t_value = r_value/sqrt((1-r_value^2)/($time.size-2));

pval = abs(gsl_cdf_tdist_P(t_value, $time.size-2) - \

gsl_cdf_tdist_P(-t_value, $time.size-2));

//--

// Write RAM variables to disk

//--

// Usually NCO writes the outputs directly to disk

// Using RAM variables, declared by *, will shorten running time

// Output the final results using ram_write()

//--

ram_write(c0);

ram_write(c1);

With the group feature, all the loops over experiments, models and ensemble members
can be omitted. As we are working on implementing group feature in all NCO operators,
some functions (e.g., regression and standard deviation over ensemble members) may have
to wait until the new versions.

#!/bin/bash

#

#==

Group data output by cmb_fl_grp.sh

Annual trend of each model over Greenland and Tibet

Time- and spatial-average, standard deviation and anomaly

No regression yet (needs ncap2)

#

Input files:

sn_LImon_all-mdl_all-xpt_all-nsm_200001-200512.nc

#

Online: http://nco.sourceforge.net/nco.html#Annual-Average-over-Regions

#

Execute this script: bash ann_avg_grp.sh

#===

Input and output directory

drc=’../data/grp/’

Constants

pfx=’sn_LImon_all-mdl_all-xpt_all-nsm’

tms=’200001-200512’ # Time series

Greenland

ncwa -O -w gw -d lat,60.0,75.0 -d lon,300.0,340.0 -a lat,lon \

${drc}${pfx}_${tms}.nc \

${drc}${pfx}_${tms}_grl.nc

372 NCO 5.0.1 User Guide

Tibet

ncwa -O -w gw -d lat,30.0,40.0 -d lon,80.0,100.0 -a lat,lon \

${drc}${pfx}_${tms}.nc \

${drc}${pfx}_${tms}_tbt.nc

Aggregate 2 regions together

ncecat -O -u rgn ${drc}${pfx}_${tms}_???.nc \

${drc}${pfx}_${tms}_rgn2.nc

Change dimensions order

ncpdq -O -a time,rgn ${drc}${pfx}_${tms}_rgn2.nc \

${drc}${pfx}_${tms}_rgn2.nc

Remove temporary files (optional)

rm ${drc}${pfx}_${tms}_???.nc

#Annual average

ncra -O --mro -d time,,,12,12 ${drc}${pfx}_${tms}_rgn2.nc \

${drc}${pfx}_${tms}_rgn2_ann.nc

Anomaly

#--

Long-term average

ncwa -O -a time ${drc}${pfx}_${tms}_rgn2_ann.nc \

${drc}${pfx}_${tms}_rgn2_clm.nc

Subtract

ncbo -O --op_typ=- ${drc}${pfx}_${tms}_rgn2_ann.nc \

${drc}${pfx}_${tms}_rgn2_clm.nc \

${drc}${pfx}_${tms}_rgn2_anm.nc

#--

Standard Deviation: inter-annual variability

RMS of the above anomaly

ncra -O -y rmssdn ${drc}${pfx}_${tms}_rgn2_anm.nc \

${drc}${pfx}_${tms}_rgn2_stddev.nc

Chapter 7: CMIP5 Example 373

7.4 Monthly Cycle

Figure 7.3: Monthly Cycle.

This script illustrates how to calculate the monthly anomaly from the annual average (see
Figure 7.3). In order to keep only the monthly cycle, we will subtract the annual average
of each year from the monthly data, instead of subtracting the long-term average. This is
a little more complicated in coding since we need to loop over years.

Flat files example

#!/bin/bash

#==

After cmb_fl.sh

Example: Monthly cycle of each model in Greenland

#

Input files:

/data/cmip5/snc_LImon_bcc-csm1-1_historical_r1i1p1_185001-200512.nc

#

Output files:

/data/cmip5/snc/snc_LImon__all-mdl_historical_all-nsm_GN_mthly-anm.nc

#

Online: http://nco.sourceforge.net/nco.html#Monthly-Cycle

#

Execute this script: bash mcc.sh

#==

#--

Parameters

drc_in=’/home/wenshanw/data/cmip5/’ # Directory of input files

drc_out=’/home/wenshanw/data/cmip5/output/’ # Directory of output files

var=(’snc’ ’snd’) # Variables

374 NCO 5.0.1 User Guide

rlm=’LImon’ # Realm

xpt=(’historical’) # Experiment (could be more)

fld_out=(’snc/’ ’snd/’) # Folders of output files

#--

for var_id in {0..1}; do # Loop over two variables

names of all models

(ls [get file names]; cut [get the part for model names];

sort; uniq [remove duplicates]; awk [print])

mdl_set=$(ls ${drc_in}${var[var_id]}_${rlm}_*_${xpt[0]}_*.nc | \

cut -d ’_’ -f 3 | sort | uniq -c | awk ’{print $2}’)

for mdl in ${mdl_set}; do ## Loop over models

Average all the ensemble members of each model

ncea -O -4 -d time,"1956-01-01 00:00:0.0","2005-12-31 23:59:9.9" \

${drc_in}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_*.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_all-nsm.nc

Greenland

Geographical weight

ncap2 -O -s \

’gw = cos(lat*3.1415926/180.); \

gw@long_name="geographical weight";gw@units="ratio"’ \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_all-nsm.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_all-nsm.nc

ncwa -O -w gw -d lat,60.0,75.0 -d lon,300.0,340.0 -a lat,lon \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_all-nsm.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_all-nsm_GN.nc

Anomaly--

for moy in {1..12}; do # Loop over months

mm=$(printf "%02d" ${moy}) # Change to 2-digit format

for yr in {1956..2005}; do # Loop over years

If January, calculate the annual average

if [${moy} -eq 1]; then

ncra -O -d time,"${yr}-01-01 00:00:0.0","${yr}-12-31 23:59:9.9" \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_\

${xpt[0]}_all-nsm_GN.nc ${drc_out}${fld_out[var_id]}${var[var_id]}_\

${rlm}_${mdl}_${xpt[0]}_all-nsm_GN_${yr}.nc

fi

The specific month

ncks -O -d time,"${yr}-${mm}-01 00:00:0.0","${yr}-${mm}-31 23:59:9.9" \

${drc_out}${fld_out[var_id]}${var[var_id]}_\

${rlm}_${mdl}_${xpt[0]}_all-nsm_GN.nc \

Chapter 7: CMIP5 Example 375

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_\

all-nsm_GN_${yr}${mm}.nc

Subtract the annual average from the monthly data

ncbo -O --op_typ=- ${drc_out}${fld_out[var_id]}${var[var_id]}_\

${rlm}_${mdl}_${xpt[0]}_all-nsm_GN_${yr}${mm}.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_${xpt[0]}_\

all-nsm_GN_${yr}.nc ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_\

${mdl}_${xpt[0]}_all-nsm_GN_${yr}${mm}_anm.nc

done

Average over years

ncra -O ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_\

${xpt[0]}_all-nsm_GN_????${mm}_anm.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_\

${xpt[0]}_all-nsm_GN_${mm}_anm.nc

done

#--

Concatenate months together

ncrcat -O ${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_${mdl}_\

${xpt[0]}_all-nsm_GN_??_anm.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${mdl}.nc

echo Model ${mdl} done!

done

rm -f ${drc_out}${fld_out[var_id]}${var[var_id]}*historical*

Store models as groups in the output file

ncecat -O --gag -v ${var[var_id]} \

${drc_out}${fld_out[var_id]}${var[var_id]}_*.nc \

${drc_out}${fld_out[var_id]}${var[var_id]}_${rlm}_all-mdl_\

${xpt[0]}_all-nsm_GN_mthly-anm.nc

echo Var ${var[var_id]} done!

done

Using group feature and hyperslabs of ncbo, the script will be shortened.

#!/bin/bash

#==

Monthly cycle of each ensemble member in Greenland

#

Input file from cmb_fl_grpsh

sn_LImon_all-mdl_all-xpt_all-nsm_199001-200512.nc

Online: http://nco.sourceforge.net/nco.html#Monthly-Cycle

#

http://nco.sourceforge.net/nco.html#Hyperslabs

376 NCO 5.0.1 User Guide

Execute this script in command line: bash mcc_grp.sh

#==

Input and output directory

drc=’../data/grp/’

Constants

pfx=’sn_LImon_all-mdl_all-xpt_all-nsm_200001-200512’

Greenland

ncwa -O -w gw -d lat,60.0,75.0 -d lon,300.0,340.0 -a lat,lon \

${drc}${pfx}.nc ${drc}${pfx}_grl.nc

Anomaly from annual average of each year

for yyyy in {2000..2005}; do

Annual average

ncwa -O -d time,"${yyyy}-01-01","${yyyy}-12-31" \

${drc}${pfx}_grl.nc ${drc}${pfx}_grl_${yyyy}.nc

Anomaly

ncbo -O --op_typ=- -d time,"${yyyy}-01-01","${yyyy}-12-31" \

${drc}${pfx}_grl.nc ${drc}${pfx}_grl_${yyyy}.nc \

${drc}${pfx}_grl_${yyyy}_anm.nc

done

Monthly cycle

for moy in {1..12}; do

mm=$(printf "%02d" ${moy}) # Change to 2-digit format

ncra -O -d time,"2000-${mm}-01",,12 \

${drc}${pfx}_grl_????_anm.nc ${drc}${pfx}_grl_${mm}_anm.nc

done

Concatenate 12 months together

ncrcat -O ${drc}${pfx}_grl_??_anm.nc \

${drc}${pfx}_grl_mth_anm.nc

7.5 Regrid MODIS Data

In order to compare the results between MODIS and CMIP5 models, one usually regrids one
or both datasets so that the spatial resolutions match. Here, the script illustrates how to
regrid MODIS data. Key steps include:

1. Regrid using bilinear interpolation (see Section 4.1.21 [Bilinear interpolation], page 191)

2. Rename variables, dimensions and attributions using ncrename (see Section 4.13 [ncre-
name netCDF Renamer], page 339).

Main Script

#!/bin/bash

include bi_interp.nco

Chapter 7: CMIP5 Example 377

#===

Example for

- regrid (using bi_interp.nco): the spatial resolution of MODIS data

is much finer than those of CMIP5 models. In order to compare

the two, we can regrid MODIS data to comform to CMIP5.

#

Input files (Note: the .hdf files downloaded have to be converted to .nc at

the present):

/modis/mcd43c3/MCD43C3.A2000049.005.2006271205532.nc

#

Output files:

/modis/mcd43c3/cesm-grid/MCD43C3.2000049.regrid.nc

#

Online: http://nco.sourceforge.net/nco.html#Regrid-MODIS-Data

#

Execute this script: bash rgr.sh

#===

var=(’MCD43C3’) # Variable

fld_in=(’monthly/’) # Folder of input files

fld_out=(’cesm-grid/’) # Folder of output files

drc_in=’/media/grele_data/wenshan/modis/mcd43c3/’ # Directory of input files

for fn in $(ls ${drc_in}${fld_in}${var}.*.nc); do # Loop over files

sfx=$(echo $fn | cut -d ’/’ -f 8 | cut -d ’.’ -f 2) # Part of file names

Regrid

ncap2 -O -S bi_interp.nco ${fn} ${drc_in}${fld_out}${var}.${sfx}.regrid.nc

Keep only the new variables

ncks -O -v wsa_sw_less,bsa_sw_less ${drc_in}${fld_out}${var}.${sfx}.regrid.nc \

${drc_in}${fld_out}${var}.${sfx}.regrid.nc

Rename the new variables, dimensions and attributions

ncrename -O -d latn,lat -d lonn,lon -v latn,lat -v lonn,lon \

-v wsa_sw_less,wsa_sw -v bsa_sw_less,bsa_sw -a missing_value,_FillValue \

${drc_in}${fld_out}${var}.${sfx}.regrid.nc

echo $sfx done.

done

bi interp.nco

// Bilinear interpolation

// Included by rgr.sh

// Online: http://nco.sourceforge.net/nco.html#Regrid-MODIS-Data

defdim("latn",192); // Define new dimension: latitude

defdim("lonn",288); // Define new dimension: longitude

378 NCO 5.0.1 User Guide

latn[$latn] = {90,89.0576 ,88.1152 ,87.1728 ,86.2304 ,85.288 ,\

84.3456 ,83.4031 ,82.4607 ,81.5183 ,80.5759 ,79.6335 ,78.6911 ,\

77.7487 ,76.8063 ,75.8639 ,74.9215 ,73.9791 ,73.0367 ,72.0942 ,\

71.1518 ,70.2094 ,69.267 ,68.3246 ,67.3822 ,66.4398 ,65.4974 ,\

64.555 ,63.6126 ,62.6702 ,61.7277 ,60.7853 ,59.8429 ,58.9005 ,\

57.9581 ,57.0157 ,56.0733 ,55.1309 ,54.1885 ,53.2461 ,52.3037 ,\

51.3613 ,50.4188 ,49.4764 ,48.534 ,47.5916 ,46.6492 ,45.7068 ,\

44.7644 ,43.822 ,42.8796 ,41.9372 ,40.9948 ,40.0524 ,39.11 ,\

38.1675 ,37.2251 ,36.2827 ,35.3403 ,34.3979 ,33.4555 ,32.5131 ,\

31.5707 ,30.6283 ,29.6859 ,28.7435 ,27.8011 ,26.8586 ,25.9162 ,\

24.9738 ,24.0314 ,23.089 ,22.1466 ,21.2042 ,20.2618 ,19.3194 ,\

18.377 ,17.4346 ,16.4921 ,15.5497 ,14.6073 ,13.6649 ,12.7225 ,\

11.7801 ,10.8377 ,9.89529 ,8.95288 ,8.01047 ,7.06806 ,6.12565 ,\

5.18325 ,4.24084 ,3.29843 ,2.35602 ,1.41361 ,0.471204,-0.471204,\

-1.41361,-2.35602,-3.29843,-4.24084,-5.18325,-6.12565,-7.06806,\

-8.01047,-8.95288,-9.89529,-10.8377,-11.7801,-12.7225,-13.6649,\

-14.6073,-15.5497,-16.4921,-17.4346,-18.377 ,-19.3194,-20.2618,\

-21.2042,-22.1466,-23.089 ,-24.0314,-24.9738,-25.9162,-26.8586,\

-27.8011,-28.7435,-29.6859,-30.6283,-31.5707,-32.5131,-33.4555,\

-34.3979,-35.3403,-36.2827,-37.2251,-38.1675,-39.11 ,-40.0524,\

-40.9948,-41.9372,-42.8796,-43.822 ,-44.7644,-45.7068,-46.6492,\

-47.5916,-48.534 ,-49.4764,-50.4188,-51.3613,-52.3037,-53.2461,\

-54.1885,-55.1309,-56.0733,-57.0157,-57.9581,-58.9005,-59.8429,\

-60.7853,-61.7277,-62.6702,-63.6126,-64.555 ,-65.4974,-66.4398,\

-67.3822,-68.3246,-69.267 ,-70.2094,-71.1518,-72.0942,-73.0367,\

-73.9791,-74.9215,-75.8639,-76.8063,-77.7487,-78.6911,-79.6335,\

-80.5759,-81.5183,-82.4607,-83.4031,-84.3456,-85.288,-86.2304,\

-87.1728,-88.1152,-89.0576,-90}; // Copy of CCSM4 latitude

lonn[$lonn] = {-178.75,-177.5,-176.25,-175,-173.75,-172.5,-171.25,\

-170,-168.75,-167.5,-166.25,-165,-163.75,-162.5,-161.25,-160,\

-158.75,-157.5,-156.25,-155,-153.75,-152.5,-151.25,-150,-148.75,\

-147.5,-146.25,-145,-143.75,-142.5,-141.25,-140,-138.75,-137.5,\

-136.25,-135,-133.75,-132.5,-131.25,-130,-128.75,-127.5,-126.25,\

-125,-123.75,-122.5,-121.25,-120,-118.75,-117.5,-116.25,-115,\

-113.75,-112.5,-111.25,-110,-108.75,-107.5,-106.25,-105,-103.75,\

-102.5,-101.25,-100,-98.75,-97.5,-96.25,-95,-93.75,-92.5,-91.25,\

-90,-88.75,-87.5,-86.25,-85,-83.75,-82.5,-81.25,-80,-78.75,-77.5,\

-76.25,-75,-73.75,-72.5,-71.25,-70,-68.75,-67.5,-66.25,-65,-63.75,\

-62.5,-61.25,-60,-58.75,-57.5,-56.25,-55,-53.75,-52.5,-51.25,-50,\

-48.75,-47.5,-46.25,-45,-43.75,-42.5,-41.25,-40,-38.75,-37.5,\

-36.25,-35,-33.75,-32.5,-31.25,-30,-28.75,-27.5,-26.25,-25,-23.75,\

-22.5,-21.25,-20,-18.75,-17.5,-16.25,-15,-13.75,-12.5,-11.25,-10,\

-8.75,-7.5,-6.25,-5,-3.75,-2.5,-1.25,0,1.25,2.5,3.75,5,6.25,7.5,\

8.75,10,11.25,12.5,13.75,15,16.25,17.5,18.75,20,21.25,22.5,23.75,\

25,26.25,27.5,28.75,30,31.25,32.5,33.75,35,36.25,37.5,38.75,40,\

41.25,42.5,43.75,45,46.25,47.5,48.75,50,51.25,52.5,53.75,55,56.25,\

57.5,58.75,60,61.25,62.5,63.75,65,66.25,67.5,68.75,70,71.25,72.5,\

Chapter 7: CMIP5 Example 379

73.75,75,76.25,77.5,78.75,80,81.25,82.5,83.75,85,86.25,87.5,88.75,\

90,91.25,92.5,93.75,95,96.25,97.5,98.75,100,101.25,102.5,103.75,\

105,106.25,107.5,108.75,110,111.25,112.5,113.75,115,116.25,117.5,\

118.75,120,121.25,122.5,123.75,125,126.25,127.5,128.75,130,131.25,\

132.5,133.75,135,136.25,137.5,138.75,140,141.25,142.5,143.75,145,\

146.25,147.5,148.75,150,151.25,152.5,153.75,155,156.25,157.5,\

158.75,160,161.25,162.5,163.75,165,166.25,167.5,168.75,170,171.25,\

172.5,173.75,175,176.25,177.5,178.75,180}; // Copy of CCSM4 longitude

*out[$time,$latn,$lonn]=0.0; // Output structure

// Bi-linear interpolation

bsa_sw_less=bilinear_interp_wrap(bsa_sw,out,latn,lonn,lat,lon);

wsa_sw_less=bilinear_interp_wrap(wsa_sw,out,latn,lonn,lat,lon);

// Add attributions

latn@units = "degree_north";

lonn@units = "degree_east";

latn@long_name = "latitude";

lonn@long_name = "longitude";

bsa_sw_less@hdf_name = "Albedo_BSA_shortwave";

bsa_sw_less@calibrated_nt = 5;

bsa_sw_less@missing_value = 32767.0;

bsa_sw_less@units = "albedo, no units";

bsa_sw_less@long_name = "Global_Albedo_BSA_shortwave";

wsa_sw_less@hdf_name = "Albedo_WSA_shortwave";

wsa_sw_less@calibrated_nt = 5;

wsa_sw_less@missing_value = 32767.0;

wsa_sw_less@units = "albedo, no units";

wsa_sw_less@long_name = "Global_Albedo_WSA_shortwave";

7.6 Add Coordinates to MODIS Data

Main Script

#!/bin/bash

#==

Example for

- regrid (using bi_interp.nco): the spatial resolution of MODIS data

is much finer than those of CMIP5 models. In order to compare

the two, we can regrid MODIS data to comform to CMIP5.

- add coordinates (using coor.nco): there is no coordinate information

in MODIS data. We have to add it manually now.

#

Input files:

/modis/mcd43c3/cesm-grid/MCD43C3.2000049.regrid.nc

#

380 NCO 5.0.1 User Guide

Output files:

/modis/mcd43c3/cesm-grid/MCD43C3.2000049.regrid.nc

#

Online: http://nco.sourceforge.net/nco.html#Add-Coordinates-to-MODIS-Data

#

Execute this script: bash add_crd.sh

#==

var=(’MOD10CM’) # Variable

fld_in=(’snc/nc/’) # Folder of input files

drc_in=’/media/grele_data/wenshan/modis/’ # directory of input files

for fn in $(ls ${drc_in}${fld_in}${var}*.nc); do # Loop over files

sfx=$(echo ${fn} | cut -d ’/’ -f 8 | cut -d ’.’ -f 2-4) # Part of file names

echo ${sfx}

Rename dimension names

ncrename -d YDim_MOD_CMG_Snow_5km,lat -d XDim_MOD_CMG_Snow_5km,lon -O \

${drc_in}${fld_in}${var}.${sfx}.nc ${drc_in}${fld_in}${var}.${sfx}.nc

Add coordinates

ncap2 -O -S crd.nco ${drc_in}${fld_in}${var}.${sfx}.nc \

${drc_in}${fld_in}${var}.${sfx}.nc

done

crd.nco

// Add coordinates to MODIS HDF data

// Included by add_crd.sh

// Online: http://nco.sourceforge.net/nco.html#Add-Coordinates-to-MODIS-Data

lon = array(0.f, 0.05, $lon) - 180;

lat = 90.f- array(0.f, 0.05, $lat);

7.7 Permute MODIS Coordinates

MODIS orders latitude data from 90◦N to -90◦N, and longitude from -180◦E to 180◦E.
However, CMIP5 orders latitude from -90◦N to 90◦N, and longitude from 0◦E to 360◦E.
This script changes the MODIS coordinates to follow the CMIP5 convention.

#!/bin/bash

##===

Example for

- permute coordinates: the grid of MODIS is

from (-180 degE, 90 degN), the left-up corner, to

(180 degE, -90 degN), the right-low corner. However, CMIP5 is

from (0 degE, -90 degN) to (360 degE, 90 degN). The script

here changes the MODIS grid to CMIP5 grid.

##

Chapter 7: CMIP5 Example 381

Input files:

/modis/mcd43c3/cesm-grid/MCD43C3.2000049.regrid.nc

##

Output files:

/modis/mcd43c3/cesm-grid/MCD43C3.2000049.regrid.nc

##

Online: http://nco.sourceforge.net/nco.html#Permute-MODIS-Coordinates

##

Execute this script: bash pmt_crd.sh

##===

##---

Permute coordinates

- Inverse lat from (90,-90) to (-90,90)

- Permute lon from (-180,180) to (0,360)

for fn in $(ls MCD43C3.*.nc); do # Loop over files

sfx=$(echo ${fn} | cut -d ’.’ -f 1-3) # Part of file names

echo ${sfx}

Lat

ncpdq -O -a -lat ${fn} ${fn} # Inverse latitude (NB: there is ’-’ before ’lat’)

Lon

ncks -O --msa -d lon,0.0,180.0 -d lon,-180.0,-1.25 ${fn} ${fn}

Add new longitude coordinates

ncap2 -O -s ’lon=array(0.0,1.25,$lon)’ ${fn} ${fn}

done

Chapter 8: Parallel 383

8 Parallel

This section will describe NCO scripting strategies. Many techniques can be used to exploit
script-level parallelism, including GNU Parallel and Swift.

ls *historical*.nc | parallel ncks -O -d time,"1950-01-01","2000-01-01" {} 50y/{}

Chapter 9: CCSM Example 385

9 CCSM Example

This chapter illustrates how to use NCO to process and analyze the results of a CCSM

climate simulation.

**

Task 0: Finding input files

x**

The CCSM model outputs files to a local directory like:

/ptmp/zender/archive/T42x1_40

Each component model has its own subdirectory, e.g.,

/ptmp/zender/archive/T42x1_40/atm

/ptmp/zender/archive/T42x1_40/cpl

/ptmp/zender/archive/T42x1_40/ice

/ptmp/zender/archive/T42x1_40/lnd

/ptmp/zender/archive/T42x1_40/ocn

within which model output is tagged with the particular model name

/ptmp/zender/archive/T42x1_40/atm/T42x1_40.cam2.h0.0001-01.nc

/ptmp/zender/archive/T42x1_40/atm/T42x1_40.cam2.h0.0001-02.nc

/ptmp/zender/archive/T42x1_40/atm/T42x1_40.cam2.h0.0001-03.nc

...

/ptmp/zender/archive/T42x1_40/atm/T42x1_40.cam2.h0.0001-12.nc

/ptmp/zender/archive/T42x1_40/atm/T42x1_40.cam2.h0.0002-01.nc

/ptmp/zender/archive/T42x1_40/atm/T42x1_40.cam2.h0.0002-02.nc

...

or

/ptmp/zender/archive/T42x1_40/lnd/T42x1_40.clm2.h0.0001-01.nc

/ptmp/zender/archive/T42x1_40/lnd/T42x1_40.clm2.h0.0001-02.nc

/ptmp/zender/archive/T42x1_40/lnd/T42x1_40.clm2.h0.0001-03.nc

...

**

Task 1: Regional processing

**

A common task in data processing is often creating seasonal cycles.

Imagine a 100-year simulation with its 1200 monthly mean files.

Our goal is to create a single file containing 12 months of data.

Each month in the output file is the mean of 100 input files.

Normally, we store the "reduced" data in a smaller, local directory.

386 NCO 5.0.1 User Guide

caseid=’T42x1_40’

#drc_in="${DATA}/archive/${caseid}/atm"

drc_in="${DATA}/${caseid}"

drc_out="${DATA}/${caseid}"

mkdir -p ${drc_out}

cd ${drc_out}

Method 1: Assume all data in directory applies

for mth in {1..12}; do

mm=‘printf "%02d" $mth‘

ncra -O -D 1 -o ${drc_out}/${caseid}_clm${mm}.nc \

${drc_in}/${caseid}.cam2.h0.*-${mm}.nc

done # end loop over mth

Method 2: Use shell ’globbing’ to construct input filenames

for mth in {1..12}; do

mm=‘printf "%02d" $mth‘

ncra -O -D 1 -o ${drc_out}/${caseid}_clm${mm}.nc \

${drc_in}/${caseid}.cam2.h0.00??-${mm}.nc \

${drc_in}/${caseid}.cam2.h0.0100-${mm}.nc

done # end loop over mth

Method 3: Construct input filename list explicitly

for mth in {1..12}; do

mm=‘printf "%02d" $mth‘

fl_lst_in=’’

for yr in {1..100}; do

yyyy=‘printf "%04d" $yr‘

fl_in=${caseid}.cam2.h0.${yyyy}-${mm}.nc

fl_lst_in="${fl_lst_in} ${caseid}.cam2.h0.${yyyy}-${mm}.nc"

done # end loop over yr

ncra -O -D 1 -o ${drc_out}/${caseid}_clm${mm}.nc -p ${drc_in} \

${fl_lst_in}

done # end loop over mth

Make sure the output file averages correct input files!

ncks --trd -M prints global metadata:

ncks --trd -M ${drc_out}/${caseid}_clm01.nc

The input files ncra used to create the climatological monthly mean

will appear in the global attribute named ’history’.

Use ncrcat to aggregate the climatological monthly means

ncrcat -O -D 1 \

Chapter 9: CCSM Example 387

${drc_out}/${caseid}_clm??.nc ${drc_out}/${caseid}_clm_0112.nc

Finally, create climatological means for reference.

The climatological time-mean:

ncra -O -D 1 \

${drc_out}/${caseid}_clm_0112.nc ${drc_out}/${caseid}_clm.nc

The climatological zonal-mean:

ncwa -O -D 1 -a lon \

${drc_out}/${caseid}_clm.nc ${drc_out}/${caseid}_clm_x.nc

The climatological time- and spatial-mean:

ncwa -O -D 1 -a lon,lat,time -w gw \

${drc_out}/${caseid}_clm.nc ${drc_out}/${caseid}_clm_xyt.nc

This file contains only scalars, e.g., "global mean temperature",

used for summarizing global results of a climate experiment.

Climatological monthly anomalies = Annual Cycle:

Subtract climatological mean from climatological monthly means.

Result is annual cycle, i.e., climate-mean has been removed.

ncbo -O -D 1 -o ${drc_out}/${caseid}_clm_0112_anm.nc \

${drc_out}/${caseid}_clm_0112.nc ${drc_out}/${caseid}_clm_xyt.nc

**

Task 2: Correcting monthly averages

**

The previous step appoximates all months as being equal, so, e.g.,

February weighs slightly too much in the climatological mean.

This approximation can be removed by weighting months appropriately.

We must add the number of days per month to the monthly mean files.

First, create a shell variable dpm:

unset dpm # Days per month

declare -a dpm

dpm=(0 31 28.25 31 30 31 30 31 31 30 31 30 31) # Allows 1-based indexing

Method 1: Create dpm directly in climatological monthly means

for mth in {1..12}; do

mm=‘printf "%02d" ${mth}‘

ncap2 -O -s "dpm=0.0*date+${dpm[${mth}]}" \

${drc_out}/${caseid}_clm${mm}.nc ${drc_out}/${caseid}_clm${mm}.nc

done # end loop over mth

388 NCO 5.0.1 User Guide

Method 2: Create dpm by aggregating small files

for mth in {1..12}; do

mm=‘printf "%02d" ${mth}‘

ncap2 -O -v -s "dpm=${dpm[${mth}]}" ~/nco/data/in.nc \

${drc_out}/foo_${mm}.nc

done # end loop over mth

ncecat -O -D 1 -p ${drc_out} -n 12,2,2 foo_${mm}.nc foo.nc

ncrename -O -D 1 -d record,time ${drc_out}/foo.nc

ncatted -O -h \

-a long_name,dpm,o,c,"Days per month" \

-a units,dpm,o,c,"days" \

${drc_out}/${caseid}_clm_0112.nc

ncks -A -v dpm ${drc_out}/foo.nc ${drc_out}/${caseid}_clm_0112.nc

Method 3: Create small netCDF file using ncgen

cat > foo.cdl << ’EOF’

netcdf foo {

dimensions:

time=unlimited;

variables:

float dpm(time);

dpm:long_name="Days per month";

dpm:units="days";

data:

dpm=31,28.25,31,30,31,30,31,31,30,31,30,31;

}

EOF

ncgen -b -o foo.nc foo.cdl

ncks -A -v dpm ${drc_out}/foo.nc ${drc_out}/${caseid}_clm_0112.nc

Another way to get correct monthly weighting is to average daily

output files, if available.

**

Task 3: Regional processing

**

Let’s say you are interested in examining the California region.

Hyperslab your dataset to isolate the appropriate latitude/longitudes.

ncks -O -D 1 -d lat,30.0,37.0 -d lon,240.0,270.0 \

${drc_out}/${caseid}_clm_0112.nc \

${drc_out}/${caseid}_clm_0112_Cal.nc

The dataset is now much smaller!

To examine particular metrics.

Chapter 9: CCSM Example 389

**

Task 4: Accessing data stored remotely

**

OPeNDAP server examples:

UCI DAP servers:

ncks --trd -M -p http://dust.ess.uci.edu/cgi-bin/dods/nph-dods/dodsdata in.nc

ncrcat -O -C -D 3 \

-p http://dust.ess.uci.edu/cgi-bin/dods/nph-dods/dodsdata \

-l /tmp in.nc in.nc ~/foo.nc

Unidata DAP servers:

ncks --trd -M -p http://thredds-test.ucar.edu/thredds/dodsC/testdods in.nc

ncrcat -O -C -D 3 \

-p http://thredds-test.ucar.edu/thredds/dodsC/testdods \

-l /tmp in.nc in.nc ~/foo.nc

NOAA DAP servers:

ncwa -O -C -a lat,lon,time -d lon,-10.,10. -d lat,-10.,10. -l /tmp -p \

http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface \

pres.sfc.1969.nc ~/foo.nc

LLNL PCMDI IPCC OPeNDAP Data Portal:

ncks --trd -M -p http://username:password@esgcet.llnl.gov/cgi-bin/dap-cgi.py/ipcc4/sresa1b/ncar_ccsm3_0 pcmdi.ipcc4.ncar_ccsm3_0.sresa1b.run1.atm.mo.xml

Earth System Grid (ESG): http://www.earthsystemgrid.org

caseid=’b30.025.ES01’

CCSM3.0 1% increasing CO2 run, T42_gx1v3, 200 years starting in year 400

Atmospheric post-processed data, monthly averages, e.g.,

/data/zender/tmp/b30.025.ES01.cam2.h0.TREFHT.0400-01_cat_0449-12.nc

/data/zender/tmp/b30.025.ES01.cam2.h0.TREFHT.0400-01_cat_0599-12.nc

ESG supports password-protected FTP access by registered users

NCO uses the .netrc file, if present, for password-protected FTP access

Syntax for accessing single file is, e.g.,

ncks -O -D 3 \

-p ftp://climate.llnl.gov/sresa1b/atm/mo/tas/ncar_ccsm3_0/run1 \

-l /tmp tas_A1.SRESA1B_1.CCSM.atmm.2000-01_cat_2099-12.nc ~/foo.nc

Average surface air temperature tas for SRESA1B scenario

This loop is illustrative and will not work until NCO correctly

translates ’*’ to FTP ’mget’ all remote files

for var in ’tas’; do

for scn in ’sresa1b’; do

for mdl in ’cccma_cgcm3_1 cccma_cgcm3_1_t63 cnrm_cm3 csiro_mk3_0 \

gfdl_cm2_0 gfdl_cm2_1 giss_aom giss_model_e_h giss_model_e_r \

390 NCO 5.0.1 User Guide

iap_fgoals1_0_g inmcm3_0 ipsl_cm4 miroc3_2_hires miroc3_2_medres \

miub_echo_g mpi_echam5 mri_cgcm2_3_2a ncar_ccsm3_0 ncar_pcm1 \

ukmo_hadcm3 ukmo_hadgem1’; do

for run in ’1’; do

ncks -R -O -D 3 -p ftp://climate.llnl.gov/${scn}/atm/mo/${var}/${mdl}/run${run} -l ${DATA}/${scn}/atm/mo/${var}/${mdl}/run${run} ’*’ ${scn}_${mdl}_${run}_${var}_${yyyymm}_${yyyymm}.nc

done # end loop over run

done # end loop over mdl

done # end loop over scn

done # end loop over var

cd sresa1b/atm/mo/tas/ukmo_hadcm3/run1/

ncks -H -m -v lat,lon,lat_bnds,lon_bnds -M tas_A1.nc | m

bds -x 096 -y 073 -m 33 -o ${DATA}/data/dst_3.75x2.5.nc # ukmo_hadcm3

ncview ${DATA}/data/dst_3.75x2.5.nc

msk_rgn is California mask on ukmo_hadcm3 grid

area is correct area weight on ukmo_hadcm3 grid

ncks -A -v area,msk_rgn ${DATA}/data/dst_3.75x2.5.nc \

${DATA}/sresa1b/atm/mo/tas/ukmo_hadcm3/run1/area_msk_ukmo_hadcm3.nc

Template for standardized data:

${scn}_${mdl}_${run}_${var}_${yyyymm}_${yyyymm}.nc

e.g., raw data

${DATA}/sresa1b/atm/mo/tas/ukmo_hadcm3/run1/tas_A1.nc

becomes standardized data

Level 0: raw from IPCC site--no changes except for name

Make symbolic link name match raw data

Template: ${scn}_${mdl}_${run}_${var}_${yyyymm}_${yyyymm}.nc

ln -s -f tas_A1.nc sresa1b_ukmo_hadcm3_run1_tas_200101_209911.nc

area_msk_ukmo_hadcm3.nc

Level I: Add all variables (not standardized in time)

to file containing msk_rgn and area

Template: ${scn}_${mdl}_${run}_${yyyymm}_${yyyymm}.nc

/bin/cp area_msk_ukmo_hadcm3.nc sresa1b_ukmo_hadcm3_run1_200101_209911.nc

ncks -A -v tas sresa1b_ukmo_hadcm3_run1_tas_200101_209911.nc \

sresa1b_ukmo_hadcm3_run1_200101_209911.nc

ncks -A -v pr sresa1b_ukmo_hadcm3_run1_pr_200101_209911.nc \

sresa1b_ukmo_hadcm3_run1_200101_209911.nc

If already have file then:

mv sresa1b_ukmo_hadcm3_run1_200101_209911.nc foo.nc

/bin/cp area_msk_ukmo_hadcm3.nc sresa1b_ukmo_hadcm3_run1_200101_209911.nc

Chapter 9: CCSM Example 391

ncks -A -v tas,pr foo.nc sresa1b_ukmo_hadcm3_run1_200101_209911.nc

Level II: Correct # years, months

Template: ${scn}_${mdl}_${run}_${var}_${yyyymm}_${yyyymm}.nc

ncks -d time,....... file1.nc file2.nc

ncrcat file2.nc file3.nc sresa1b_ukmo_hadcm3_run1_200001_209912.nc

Level III: Many derived products from level II, e.g.,

A. Global mean timeseries

ncwa -w area -a lat,lon \

sresa1b_ukmo_hadcm3_run1_200001_209912.nc \

sresa1b_ukmo_hadcm3_run1_200001_209912_xy.nc

B. Califoria average timeseries

ncwa -m msk_rgn -w area -a lat,lon \

sresa1b_ukmo_hadcm3_run1_200001_209912.nc \

sresa1b_ukmo_hadcm3_run1_200001_209912_xy_Cal.nc

Chapter 10: References 393

10 References

• [ZeM07] Zender, C. S., and H. J. Mangalam (2007), Scaling Properties of Common
Statistical Operators for Gridded Datasets, Int. J. High Perform. Comput. Appl.,
21(4), 485-498, doi:10.1177/1094342007083802.

• [Zen08] Zender, C. S. (2008), Analysis of Self-describing Gridded Geoscience Data
with netCDF Operators (NCO), Environ. Modell. Softw., 23(10), 1338-1342,
doi:10.1016/j.envsoft.2008.03.004.

• [WZJ07] Wang, D. L., C. S. Zender, and S. F. Jenks (2007), DAP-enabled Server-side
Data Reduction and Analysis, Proceedings of the 23rd AMS Conference on Interac-
tive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and
Hydrology, Paper 3B.2, January 14-18, San Antonio, TX. American Meteorological
Society, AMS Press, Boston, MA.

• [ZMW06] Zender, C. S., H. Mangalam, and D. L. Wang (2006), Improving Scaling
Properties of Common Statistical Operators for Gridded Geoscience Datasets, Eos
Trans. AGU, 87(52), Fall Meet. Suppl., Abstract IN53B-0827.

• [ZeW07] Zender, C. S., and D. L. Wang (2007), High performance distributed data
reduction and analysis with the netCDF Operators (NCO), Proceedings of the 23rd
AMS Conference on Interactive Information and Processing Systems (IIPS) for Mete-
orology, Oceanography, and Hydrology, Paper 3B.4, January 14-18, San Antonio, TX.
American Meteorological Society, AMS Press, Boston, MA.

• [WZJ06] Wang, D. L., C. S. Zender, and S. F. Jenks (2006), Server-side netCDF
Data Reduction and Analysis, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract
IN53B-0826.

• [WZJ073] Wang, D. L., C. S. Zender, and S. F. Jenks (2007), Server-side parallel
data reduction and analysis, in Advances in Grid and Pervasive Computing, Second
International Conference, GPC 2007, Paris, France, May 2-4, 2007, Proceedings. IEEE
Lecture Notes in Computer Science, vol. 4459, edited by C. Cerin and K.-C. Li, pp.
744-750, Springer-Verlag, Berlin/Heidelberg, doi:10.1007/978-3-540-72360-8 67.

• [WZJ074] Wang, D. L., C. S. Zender and S. F. Jenks (2007), A System for Scripted
Data Analysis at Remote Data Centers, Eos Trans. AGU, 88(52), Fall Meet. Suppl.,
Abstract IN11B-0469.

• [WZJ081] Wang, D. L., C. S. Zender and S. F. Jenks (2008), Cluster Workflow Execu-
tion of Retargeted Data Analysis Scripts, Proceedings of the 8th IEEE Int’l Symposium
on Cluster Computing and the Grid (IEEE CCGRID ’08), pp. 449-458, Lyon, France,
May 2008.

• [WZJ091] Wang, D. L., C. S. Zender, and S. F. Jenks (2009), Efficient Clustered
Server-side Data Analysis Workflows using SWAMP, Earth Sci. Inform., 2(3), 141-155,
doi:10.1007/s12145-009-0021-z.

• [PFT88] Press, Flannery, Teukolsky, and Vetterling (1988), Numerical Recipes in C,
Cambridge Univ. Press, New York, NY.

General Index 395

General Index

"
" (double quote) . 219

#
#include . 153

$
$ (wildcard character) . 51

%
% (modulus) . 211

’
’ (end quote) . 219

*
* . 223
* (filename expansion) . 51
* (multiplication) . 211
* (wildcard character) . 51

+
+ . 223
+ (addition) . 211
+ (wildcard character) . 51

-
- . 223
- (subtraction) . 211
--3 . 42
--4 . 42
--5 . 42
--6 . 42
--64bit_data . 42
--64bit_offset . 42
--7 . 42
--a2o . 307
--abc . 263
--add_depth . 309
--add_dpt . 309
--add_fill_value . 308, 315
--add_fll . 308, 315
--alg_typ . 304
--algorithm . 304
--allow_no_overlap . 307
--alphabetize . 263

--amwg_links . 233
--apn . 18, 142, 283
--append . 18, 142, 283
--area_wgt . 264
--atm2ocn . 307
--auxiliary . 74
--auxiliary lon_min,lon_max,lat_min,lat_max

. 74
--b2l . 307
--bfr_sz_hnt . 123
--big2ltl . 307
--binary . 263
--bnr . 263
--calendar . 263
--case . 230
--caseid . 230
--cb . 96
--cdl . 270
--cell_methods . 149
--cf_var . 328
--cf_variable . 328
--chk_map . 264
--chk_nan . 269
--chunk_byte . 104
--chunk_cache . 104
--chunk_cache sz . 105
--chunk_dimension . 104
--chunk_map . 104
--chunk_min . 104
--chunk_policy . 104
--chunk_scalar . 104
--climatology . 229
--climatology_information 96
--climatology_mode . 229
--cll_mth . 149
--clm_bnd . 96
--clm_md . 229
--clm_nfo . 96
--cln_lgb . 263
--cnf . 238, 308
--cnk_byt . 104
--cnk_csh . 104
--cnk_csh sz . 105
--cnk_dmn . 104
--cnk_map . 104
--cnk_map cnk_map . 107
--cnk_min . 104
--cnk_plc . 104
--cnk_scl . 104
--config . 238, 308
--configuration . 238, 308
--coords . 52, 148
--crd . 52, 148
--create_ram . 18, 124
--create_share . 125

396 NCO 5.0.1 User Guide

--csn . 236
--csn_lst . 236
--d2f . 231, 308
--d2s . 231, 308
--data . 272
--date_format . 263
--date_string . 309
--datestamp . 263
--days-per-file . 231
--dbg . 308
--dbg_lvl . 231, 308
--dbg_lvl debug-level 16, 24, 31
--dbl . 136
--dbl_flt . 231, 308
--dbl_sgl . 231, 308
--dcm_md . 229
--debug . 308
--debug-level debug-level 16, 24
--debug_level . 231, 308
--dec_md . 229
--dec_mode . 229
--december_mode . 229
--deflate . 121, 233
--depth . 309
--depth_file . 231, 309
--dest_grid . 310
--destination_file . 309
--destination_grid . 310
--dev_nll . 308
--devnull . 308
--dfl . 233
--dfl_lvl . 121, 233
--dimension

dim,[min],[max],[stride],[subcycle] . . 68
--dimension

dim,[min],[max],[stride],[subcycle],[interleave]

. 69
--dimension dim,[min],[max],stride 65
--dimension dim,[min][,[max][,[stride]]]

. 63, 71, 74, 98
--dir_in . 232, 312
--dir_out . 235, 317
--dir_rgr . 234
--dir_tmp . 327
--diskless_all . 24, 124
--dmn dim,[min],[max],[stride],subcycle]

. 68
--dmn

dim,[min],[max],[stride],subcycle],[interleave]

. 69
--dmn dim,[min],[max],stride 65
--dmn dim,[min][,[max][,[stride]]] 63, 71,

74, 98
--double_float . 231, 308
--dpf . 231
--dpf=dpf . 231
--dpt . 309
--dpt_fl=dpt_fl . 231, 309

--drc_in . 232, 312
--drc_out . 235, 317
--drc_prv . 243
--drc_prv_rgr . 243
--drc_rgr . 234
--drc_rgr_prv . 243
--drc_rgr_xtn . 243
--drc_tmp . 327
--drc_xtn . 243
--drc_xtn_rgr . 243
--dst_fl . 309
--dst_msk . 315
--dst_rgn . 325
--dt_fmt . 263
--dt_sng . 309
--dt_sng=dt_sng . 309
--dvn_flg . 308
--end . 231
--end_month . 236
--end_mth . 236
--end_year . 231
--end_yr . 231
--ensemble_file . 255
--ensemble_group . 255
--ensemble_suffix . 255
--esmf_extrap_method . 310
--esmf_extrap_num_src_pnts 310
--esmf_extrap_type . 310
--esmf_mth . 310
--esmf_opt . 333
--esmf_options . 333
--esmf_pnt_src_nbr . 310
--esmf_typ . 310
--esmf_typ=esmf_typ . 310
--exclude . 48, 239, 283, 334
--exclude_variables 239, 334
--extended . 243
--extended_regridded . 243
--extensive . 334
--extensive_variables . 334
--extrapolation_method . 333
--extrapolation_type . 333
--family . 231
--family_name . 231
--file_format . 42
--file_format_ncremap . 310
--file_list . 144
--fill_empty . 308
--fill_value . 316
--fix_rec_dmn all . 47
--fix_rec_dmn dim . 269
--fl_bnr . 263
--fl_fmt . 42
--fl_fmt_ncremap . 310
--fl_lst_in . 144
--fl_out fl_out . 37
--fl_prn . 278
--fl_spt . 152

General Index 397

--fll_mpt . 308
--fll_val . 316
--flt . 136
--fml . 231
--fml_nm . 231
--fmt_val . 278
--fnc_tbl . 213
--fortran . 63
--frac_b_nrm . 264, 269
--gaa . 142
--gaa key=val . 32
--gag . 252, 359
--glb . 142
--glb att_nm=att_val . 142
--glb_att_add . 142
--glb_avg . 234
--global_average . 234
--gpe gpe_dsc . 53
--grd_dst . 310
–grd sng . 311
--grd_src . 326
--grid_dest . 310
--grid_gen . 311
--grid_generation . 311
--grid_source . 326
--grid_string . 311
--group grp . 48
--grp grp . 48
--grp_xtr_var_xcl . 48
--gxvx . 48
--hdf_unpack . 126
--hdf_upk . 126
‘--hdf4’ . 13
--hdn . 270
--hdr_pad hdr_pad . 29
--header_pad hdr_pad . 29
--hidden . 270
--hieronymus . 272
--history . 143, 232
--history_name . 232
--hst . 143
--hst_nm . 232
--in_dir . 312
--in_drc . 232, 312
--in_file . 312
--in_fl . 312
--inp_std . 237
--input . 232, 312
--input_file . 312
--interpolation_method . 333
--interpolation_type . 333
--intersection . 50
--job_nbr . 232, 313
--job_number . 232, 313
--jobs . 232, 313
--jsn . 273
--jsn_fmt . 273
--json . 273

--l2s . 307
--lcl output-path . 37
--link_flag . 233
--lnk_flg . 233
--local output-path . 37
--lrg2sml . 307
--map . 77, 86, 236, 314
--map cnk_map . 107
--map pck_map . 288
–map-file . 86
--map_file . 314
--map_fl . 314
--mask-value mask_val . 347
--mask-variable mask_var 345
--mask_apply . 308, 315
--mask_comparator mask_comp 346
--mask_condition mask_cond 345, 346
--mask_destination . 315, 316
--mask_dst . 315
‘--mask_out’ . 93, 316
--mask_source . 316
--mask_src . 316
--mask_value mask_val . 347
--mask_variable mask_var 345
--md5_dgs . 122
--md5_digest . 122
--md5_write_attribute . 122
--md5_wrt_att . 122
--mdl . 234
--mdl_nm . 234
--mesh . 314
--mesh_file . 314
--metadata . 277
--Metadata . 276
--missing_value . 316
--mk_rec_dmn dim . 253, 272
--mlt_map . 313
--mode . 229
--model . 234
--model_name . 234
--mono . 305
--month_end . 236
--month_start . 236
--mpas_depth . 231, 309
--mpas_fl . 231, 309
--mpi_nbr . 314
--mpi_nbr=mpi_nbr . 314
--mpi_number . 314
--mpi_pfx . 314
--mpi_pfx=mpi_pfx . 314
--mpi_prefix . 314
--mrd . 102
--mro . 68, 69
--msa . 71
--msa_user_order . 71
--msa_usr_rdr . 71
--msh . 314
--msh_fl . 314

398 NCO 5.0.1 User Guide

--msh_fl=msh_fl . 314
--msk_apl . 308, 315
--msk_app . 315
--msk_cmp_typ mask_comp . 346
--msk_cnd mask_cond . 345
--msk_cnd_sng mask_cond . 346
--msk_dst . 315
--msk_dst=msk_dst . 315
--msk_nm mask_var . 345
‘--msk_out’ . 93, 316
--msk_out=msk_out . 316
--msk_src . 316
--msk_src=msk_src . 316
--msk_val mask_val . 347
--msk_var mask_var . 345
--mss_val . 316
--mss_val=mss_val . 316
--mtd . 277
--Mtd . 276
--mth_end . 236
--mth_srt . 236
--multimap . 313
--multiple_record_dimensions 102
--name_dst . 317
--name_short_destination 317
--name_short_source . 317
--name_src . 317
--ncml . 279
--nco . 234, 317
--nco_opt . 234, 317
--nco_options . 234, 317
--netcdf4 . 42
--nintap loop . 34
--nm_dst . 317
--nm_dst=nm_dst . 317
--nm_sht_dst . 317
--nm_sht_src . 317
--nm_src . 317
--nm_src=nm_src . 317
--no-abc . 263
--no-alphabetize . 263
--no-blank . 277
--no_abc . 263
--no_alphabetize . 263
--no_amwg . 233
--no_amwg_links . 233
--no_area . 234, 317
--no_blank . 277, 284
--no_cell_measures . 234, 317
--no_cell_methods . 149
--no_cll . 234, 317
‘--no_cll_msr’ . 92, 234, 317
--no_cll_mth . 149
--no_coords . 52, 148
--no_crd . 52, 148
--no_dmn_var_nm . 279, 285
--no_formula_terms . 234, 317
--no_frm . 234, 317

--no_frm_trm . 234, 317
--no_glb_mtd . 252
--no_inp_std . 237, 326
‘--no_mask’ . 93
‘--no_msk’ . 93
--no_multimap . 313
--no_native . 235
--no_nm_prn . 279, 285
--no_ntv . 235
--no_ntv_tms . 235
--no_permute . 324
--no_rec_dmn dim . 269
--no_redirect . 237, 326
--no_stagger . 93, 235, 317
--no_staggered_grid 235, 317
--no_standard_input 237, 326
--no_stdin . 237, 326
--no_stg . 93, 235, 317
--no_stg_grd . 93, 235, 317
--no_tmp_fl . 18, 125
--noblank . 277
--nomultimap . 313
--normalize . 258
--nrm . 258
--nsm_fl . 255
--nsm_grp . 255
--nsm_sfx . 255
--nsx . 50
--ntp_mth . 333
--omp_num_threads thr_nbr 30
--op_rlt mask_comp . 346
--op_typ op_typ . 128, 223
--open_ram . 18, 24, 124
--open_share . 125
--operation op_typ . 128, 223
--orphan_dimensions . 278
--out_dir . 317
--out_drc . 235, 317
--out_file . 318
–out fl . 318
--out_msk . 316
--output . 235, 317
--output fl_out . 37
--output_file . 318
--overwrite . 18, 142
--ovr . 18, 142
--pack_policy pck_plc . 287
--par_md . 235, 323
--par_typ . 235, 323
--parallel . 235, 323
--parallel_mode . 235, 323
--parallel_type . 235, 323
--path input-path . 34, 37
--pck_map pck_map . 288
--pck_plc pck_plc . 287
--pdq . 324
--pdq_opt . 324
--pdq_typ . 318

General Index 399

--per_record_weights . 297
--permute . 324
--ppc . 111, 235
--ppc key=val . 32
--ppc=ppc_prc . 235
--ppc_prc . 235
--prc_typ . 318
--precision . 235
--precision_preserving_compression 111
--preserve . 324
--preserve=prs_stt . 324
--preserve_statistic . 324
--previous . 243
--previous_end . 242
--previous_regridded . 243
--previous_start . 242
--print . 277
--prm . 324
--prm_ints . 297
--prm_opt . 324
--prm_typ . 318
--prn . 277
--prn_fl . 278
--prn_fnc_tbl . 213
--prn_lgb . 263
--procedure . 318
--promote_ints . 297
--prs_stt . 324
--prv_drc . 243
--prv_yr_end . 242
--prv_yr_srt . 242
--prw . 297
--pseudonym . 10
--pth input-path . 34, 37
--quantize . 111, 235
--quench . 278
--quiet . 278, 285
--rad . 278
--ram_all . 24, 124
‘--rcd_nm ulm_nm’ . 251
--rec_apn . 67
--record_append . 67
--redirect . 237
--regional_destination . 325
--regional_source . 325
--regrid . 234
--regrid_algorithm . 304
--regrid_map . 236, 314
--regrid_options . 236, 325
--regridded_extended . 243
--regridded_previous . 243
--remove_native . 235
--renormalization_threshold 87, 325
--renormalize . 87, 325
--retain . 42
--retain_all_dimensions 278
--revision . 16, 150
--rgn_dst . 325

--rgn_src . 325
‘--rgr area_out=area_nm’ . 92
‘--rgr col_nm=col_nm’ . 90
‘--rgr frc_nm=frc_nm’ . 92
‘--rgr grd_ttl=grd_ttl’ . 78
‘--rgr grid=scrip_grid’ . 78
‘--rgr ilev_dmn_nm=ilev_dmn_nm’ 91
‘--rgr ilev_nm=ilev_nm’ . 91
--rgr infer . 83
--rgr key=val . 32, 77, 86
‘--rgr lat_bnd_nm=lat_bnd_nm’ 91
‘--rgr lat_dmn_nm=lat_dmn_nm’ 90
‘--rgr lat_drc=lat_drc’ . 80
‘--rgr lat_nbr=lat_nbr’ . 80
‘--rgr lat_nm=lat_nm’ . 90
‘--rgr lat_nrt=lat_nrt’ . 80
‘--rgr lat_typ=lat_typ’ . 78
‘--rgr lat_weight=lat_wgt_nm’ 93
‘--rgr latlon=lat_nbr,lon_nbr’ 80
‘--rgr lev_dmn_nm=lev_dmn_nm’ 91
‘--rgr lev_nm=lev_nm’ . 91
‘--rgr lon_bnd_nm=lon_bnd_nm’ 91
‘--rgr lon_dmn_nm=lon_dmn_nm’ 90
‘--rgr lon_nbr=lon_nbr’ . 80
‘--rgr lon_nm=lon_nm’ . 90
‘--rgr lon_typ=lon_typ’ . 78
‘--rgr msk_nm=msk_nm’ . 93
--rgr nfr . 83
‘--rgr no_area’ . 92
‘--rgr no_area_out’ . 92
‘--rgr no_mask’ . 93
‘--rgr no_msk_out’ . 93
‘--rgr plev_nm=plev_nm’ . 91
‘--rgr scrip=scrip_grid’ . 78
--rgr skl . 86
‘--rgr snwe=lat_sth,lat_nrt,lon_wst,lon_est’

. 80
--rgr ugrid . 83
‘--rgr wesn=lon_wst,lon_est,lat_sth,lon_nrt’

. 80
--rgr_drc . 234
--rgr_map . 86, 236, 314
--rgr_opt . 236, 325
--rgr_rnr . 87
--rgr_var . 328
--rnr . 87, 325
--rnr_thr . 325
--rph_dmn . 278
--rrg_bb_wesn=bb_wesn . 320
--rrg_dat_glb=dat_glb . 320
--rrg_grd_glb=grd_glb . 320
--rrg_grd_rgn=grd_rgn . 320
--rrg_rnm_sng=rnm_sng . 320
--rth_dbl . 136
--rth_flt . 136
--rtn . 42
--scr . 279
--script . 152

400 NCO 5.0.1 User Guide

--script-file . 152
--seasons . 236
--seasons=csn_lst . 236
--secret . 279
--sgs_frc=sgs_frc . 321
--sgs_msk=sgs_msk . 321
--sgs_nrm=sgs_nrm . 321
--share_all . 125
--skeleton . 326
--skeleton_file . 326
--skl . 326
--skl_fl . 326
--skl_fl=skl_fl . 326
--sng_fmt . 278, 284
--source_grid . 326
--spt . 152
--src_grd . 326
--src_msk . 316
--src_rgn . 325
--srt_mth . 236
--srt_yr . 236
--srun_cmd . 314
--srun_command . 314
--ssh . 279
--stagger . 93
--standard_input . 237
--start . 236
--start_month . 236
--start_year . 236
--std_flg . 237
--stdin . 237
--stg . 93
--stg_grd . 93
--string . 278, 284
--suffix . 328
--suppress_global_metadata 252
--task_nbr . 314
--tempest_options . 333
--template . 309
--template_file . 309
--thr . 237, 327
--thr_nbr . 237, 327
--thr_nbr thr_nbr . 30
--thr_rnr . 325
--thread_number . 237, 327
--threads . 237, 327
--threads thr_nbr . 30
--timesteps_per_day . 238
--tmp . 327
--tmp_dir . 327
--tmp_drc . 327
--tpd . 238
--tpd_out . 238
--tpdtpd_out . 238
--tpl . 309
--tpl_fl . 309
--tps_opt . 333
--traditional . 261, 279

--trd . 261, 279
‘--trr’ . 32
--trr key=val . 32
--tsk_nbr . 314
--ugrid . 328
--ugrid_file . 328
--ugrid_fl . 328
--ugrid_fl=ugrid_fl . 328
--uio . 125
‘--ulm_nm ulm_nm’ . 251
--unbuffered_io . 125
--union . 48, 50
--unique_suffix . 328
--units . 279
--unn . 48, 50
--unpack . 288, 327
--unq_sfx . 328
--upk . 327
--upk_inp . 327
--val_fmt . 278
--val_var . 279, 285
--value_format . 278
--var . 238, 328
--var_cf . 328
--var_lst . 238, 328
--var_rgr . 328
--var_xtn . 334
--var_xtr . 238
--variable var . 48, 283
--variable_list . 238, 328
--variables . 238, 328
--vars . 238, 328
--verbosity . 329
--verbosity_level . 329
--version . 16, 150, 238, 308
--vertical_file . 329
--vrb . 329
--vrb=vrb_lvl . 329
--vrb_lvl . 329
--vrs . 16, 150, 238, 308
--vrt . 329
--vrt_crd . 329
--vrt_fl=vrt_fl . 329
--vrt_ntp . 333
--vrt_ntp=vrt_ntp . 333
--vrt_xtr . 333
--vrt_xtr=vrt_xtr . 333
--weight weight . 345
--weight wgt1[,wgt2] . 258
--weight_command . 334
--weight_generator . 334
--weight_options . 333
--wgt_cmd . 334
--wgt_gnr . 334
--wgt_opt . 333
--wgt_var weight . 345
--wgt_var wgt1[,wgt2] . 258
--write_tmp_fl . 18

General Index 401

--wrt_tmp_fl . 18
--xcl . 48, 239, 283, 334
--xcl_ass_var . 52
--xcl_var . 239, 334
--xml . 279
--xml_no_location . 280
--xml_spr_chr . 280
--xml_spr_nmr . 280
--xtn_drc . 243
--xtn_lst . 334
--xtn_var . 334
--xtr_ass_var . 52
--xtr_mth . 333
--xtr_nsp . 310
--xtr_nsp=xtr_nsp . 310
--xtr_xpn . 310
--xtr_xpn=xtr_xpn . 310
--year_end . 231
--year_start . 236
--ypf_max . 239
--ypf_max ypf_max . 239
--yr_end_prv . 242
--yr_srt_prv . 242
-0 . 63
-3 . 13, 42, 310
-4 . 13, 42, 310
-5 . 42, 310
-6 . 42, 310
-7 . 42, 310
-a . 283
-a alg_typ . 304
-a dec_md . 229
-A . 18, 142, 283, 292
‘-b’ . 210, 225, 263
-B mask_cond . 345, 346
-c . 52, 148
-c caseid . 230
-C . 52, 148, 210
-C clm_md . 229
-d dim,[min],[max],[stride],[subcycle] 68
-d

dim,[min],[max],[stride],[subcycle],[interleave]

. 69
-d dim,[min],[max],stride 65
-d dim,[min][,[max][,[stride]]] 63, 71, 74,

98
-d dim,[min][,[max]] . 345
-d dst_fl . 309
-D . 16
-D dbg_lvl . 231, 308
-D debug-level . 16, 24, 31
-e end_yr . 231
-E yr_end_prv . 242
-f . 213
-f fml_nm . 231
-F . 63
-g grd_dst . 310
-g grp . 48

-G gpe_dsc . 53
-G grd_sng . 311
-h . 143, 216
-h hst_nm . 232
-H . 144, 272
-i drc_in . 232
-i in_fl . 312
-I . 346
-I in_drc . 312
-j job_nbr . 232, 313
-l . 233
-l output-path . 37, 39
-L . 121, 233
-m . 277
-m map_fl . 314
-m mask_var . 345
-m mdl_nm . 234
-M . 44, 252, 276, 313
-M cnk_map . 107
-M pck_map . 288
-n loop . 21, 23, 34
-n nco_opt . 234, 317
-N . 130, 258, 347
-o drc_out . 235
-o fl_out . 22, 37
-o out_fl . 318
-O . 18, 142
-O drc_rgr . 234
-O out_drc . 317
-p input-path . 34, 39
-p par_typ . 235, 323
-P . 277
-P pck_plc . 287
-P prc_typ . 318
-q . 278
-Q . 278, 285
-r . 16, 150
-r rgr_map . 236
-r rnr_thr . 325
-R . 42
-R rgr_opt . 236, 325
-s . 278, 284
-s grd_src . 326
-s srt_yr . 236
-S yr_srt_prv . 242
-t thr_nbr . 26, 30, 237, 327
-T tmp_drc . 327
-u . 279
‘-u ulm_nm’ . 251
-u unq_sfx . 328
-U . 288, 327
‘-v’ . 292
-v var . 48, 283
-v var_lst . 238, 328
-v xtn_lst . 334
-V . 279, 285
-V rgr_var . 328
-w weight . 345

402 NCO 5.0.1 User Guide

-w wgt_cmd . 334
-w wgt1[,wgt2] . 258
-W wgt_opt . 333
-x . 48, 283, 285
-x drc_prv . 243
-X . 74
-X drc_xtn . 243
-X lon_min,lon_max,lat_min,lat_max 74
-y drc_rgr_prv . 243
-y op_typ . 128, 223
-Y drc_rgr_xtn . 243

.

. 339

. (wildcard character) . 51

.bashrc . 281

.netrc . 37

.rhosts . 37

/
/ . 223
/ (division) . 211
/*...*/ (comment) . 153
// (comment) . 153

:
: (separator character) . 54

;
; (end of statement) . 153

<
<arpa/nameser.h> . 10
<resolv.h> . 10

?
? (filename expansion) . 51
? (question mark) . 219
? (wildcard character) . 51

@
@ (attribute) . 153
@ (separator character) . 54

[
[] (array delimiters) . 153

^
^ (power) . 211

^ (wildcard character) . 51

_ChunkSizes . 270
_DeflateLevel . 270
_Endianness . 270
_FillValue . . 87, 103, 126, 216, 220, 259, 290, 308,

315, 343
_Fletcher32 . 270
_Format . 270
_IsNetcdf4 . 270
_NCProperties . 270
_NOFILL . 270
_Shuffle . 270
_SOURCE_FORMAT . 270
_Storage . 270
_SuperblockVersion . 270

\
\ (backslash) . 219
\" (protected double quote) 219
\’ (protected end quote) . 219
\? (protected question mark) 219
\\ (ASCII \, backslash) . 219
\\ (protected backslash) . 219
\a (ASCII BEL, bell) . 219
\b (ASCII BS, backspace) . 219
\f (ASCII FF, formfeed) . 219
\n (ASCII LF, linefeed) . 219
\n (linefeed) . 284
\r (ASCII CR, carriage return) 219
\t (ASCII HT, horizontal tab) 219
\t (horizontal tab) . 284
\v (ASCII VT, vertical tab) 219

|
| (wildcard character) . 51

0
0 (NUL) . 219

3
32-bit offset file format . 44

6
64-bit data file format . 44
64-bit offset file format . 44
64BIT_DATA files . 42
64BIT_OFFSET files . 42

General Index 403

A
a2o . 307
aave . 304
abs . 211
absolute value . 211
accurate_conservative_nonmonotone_fv2se

. 305
accurate_conservative_nonmonotone_se2fv

. 305
accurate_monotone_nonconservative_se2fv

. 305
ACME conventions . 145
acos . 211
acosh . 211
add . 223
add_depth.py . 231, 309
add offset 27, 126, 252, 287, 300
adding data . 223, 258
addition . 211, 223, 258
Adrian Tompkins . 352
aggregation . 359
Alejandro Soto . 353
Aleksandar Jelenak . 352
Alexander Hansen . 353
alg typ . 304
alias . 224, 281, 288
‘all’ . 106
alphabetization . 263
alphabetize output . 283
alternate invocations . 223
AMWG . 93
Anaconda . 10
anchor . 49
anchoring . 49
ancillary variables convention 147, 148
ancillary_variables attribute 147, 285
Andrea Cimatoribus . 353
Andrew Wittenberg . 352
angleEdge . 145, 304
annual average . 366
annual average from daily data 355
annual average from monthly data 355
anomalies . 225, 366, 373
ANSI . 8
ANSI C . 212
appending data . 210, 262
appending to files . 18, 142, 283
appending variables 18, 19, 152, 292
AR4 . 255
arccosine function . 211
arcsine function . 211
arctangent function . 211
area . 92, 145, 304
area-averaging . 366
area nm . 92
areaCell . 145
areaTriangle . 145, 304
arithmetic operators 103, 104, 345

arithmetic processor . 152
ARM conventions . 149, 300
array . 160
array function . 160
array indexing . 153
array storage . 153
array syntax . 153
arrays . 160
arrival value . 258
ASCII . 219
asin . 211
asinh . 211
asort . 180
assignment statement . 153
asynchronous file access . 37
atan . 211
atanh . 211
attribute concatenation . 164
attribute inheritance . 164
attribute names . 216, 339
attribute propagation . 164
attribute syntax . 153
attribute, units . 98
attributes . 216
attributes, appending . 217
attributes, creating . 217
attributes, deleting . 217
attributes, editing 217, 366, 376
attributes, global 22, 142, 143, 144, 150, 217,

221, 261, 262, 283, 340, 343
attributes, modifying 217, 366, 376
attributes, nappending . 217
attributes, overwriting 217, 366, 376
attributesncap2 . 163
autoconf . 16
autoconversion . 46
automagic . 9, 21
automatic type conversion 134, 212
auxiliary coordinates 74, 90, 148
average 128, 298, 346, 355, 356, 363, 366, 373
averaging data 103, 254, 296, 345
avg . 128
avg() . 173
avgsqr . 128
axes . 90
Azure CI . 237, 326

B
Barron Henderson . 352
Barry deFreese . 352
Bas Couwenberg . 352
base_time . 149
bash . 52, 281
Bash shell . 224, 281
Bash Shell . 227
batch mode . 142
bb wesn . 320

404 NCO 5.0.1 User Guide

beer . 141
benchmarks . 31
Bessel function . 194
BIL format . 32
bilin . 304
bilinear . 304
bilinear interpolation . 376
Bill Kocik . 352
binary climatology (climo) . 241
binary format . 263
binary operations . 26, 223
binary Operators . 155
BIP format . 32
Bit-Grooming . 112, 235
bitmask . 113
blacklist . 33
blank . 277
blin . 304
blocksize . 105
Bob Simons . 352
Boolean values . 297
bounds . 91
bounds attribute . 113, 147, 285
bounds convention . 147
bounds_lat . 304
bounds_lon . 304
Bourne Shell . 66, 227
Brian Mays . 352
broadcasting . 226
broadcasting groups 13, 225, 226
broadcasting variables 154, 224, 260, 345
BSD . 31
BSQ format . 32
Buffer sizes . 123
buffering . 26
bugs, reporting . 15
Burrows-Wheeler algorithm 118
byte() . 176
bzip2 . 118

C
c++ . 8
C index convention . 63
C language 9, 103, 135, 136, 153, 154, 219, 278
C Shell . 66, 227
C++ . 8
C format . 27
C89 . 8, 9
C99 . 9, 10, 113
cache size . 105
caching . 125
calendar dates . 263
CAM . 93, 120
CAM-FV grid . 77, 81
CAM3 . 139
caseid . 230
cc . 8

CC . 8
CCM Processor . 34, 298, 300
CCSM . 354, 385
CCSM conventions . 145
CDF5 . 42
CDF5 files . 42
CDL . 270
ceil . 211
ceiling function . 211
cell measures convention 147, 148
cell methods convention . 149
cell-based grid . 75
cell_area . 92
cell_measures attribute 147, 234, 317
cell_methods . 92, 149
cellMask . 145
cellsOnCell . 145, 304
cellsOnEdge . 145, 304
cellsOnVertex . 145, 304
CF . 90
CF compliance checker . 60
CF conventions 53, 74, 100, 113, 145, 225, 285
CF-JSON . 273
cfchecker . 60
cgll . 305
change_miss() . 172
char() . 176
characters, special . 219
Charlie Zender . 1, 351
chocolate . 351
Chris Barker . 108
Chrysalis . 237, 326
chunk cache size . 105
chunking . 12, 104, 277
chunking map . 105, 107
chunking policy . 105
chunksize . 105
citation . 353
clang . 8
CLASSIC files . 42
client-server . 39
Climate and Forecast Metadata Convention . . . 100
climate model 17, 20, 36, 252, 348
climatology . 228
climatology attribute 113, 147, 285
climatology convention . 147
climo . 228
clipping operators . 157
clm md . 229
CMake . 10
CMIP . 251, 255
CMIP5 . 357
‘cnk_all’ . 106
‘cnk_dmn’ . 108
‘cnk_g2d’ . 106
‘cnk_g3d’ . 106
‘cnk_lfp’ . 108
cnk map . 107

General Index 405

‘cnk_nc4’ . 108
‘cnk_nco’ . 108
‘cnk_prd’ . 108
‘cnk_r1d’ . 106
‘cnk_rd1’ . 108
‘cnk_rew’ . 108
‘cnk_scl’ . 108
‘cnk_xpl’ . 106
‘cnk_xst’ . 106, 108
CO_Latitude . 304
CO_Longitude . 304
col nm . 90
Comeau . 8
command line options . 31
command line switches 17, 29, 37, 151
comments . 153
Common Workflow Language 237, 326
como . 8
Compaq . 8
comparator . 346
compatability . 8
compilers . 37
complementary error function 211
compliance checker . 60
compression . 121, 277
concatenation 19, 251, 291, 300
concurrent access . 125
Conda . 10, 302
conditional Operator . 156
config.guess . 16
configure.eg . 16
conservative regridding . 87
conservative_monotone_fv2se 305
conservative_monotone_fv2se_alt 305
conservative_monotone_se2fv 305
conserve . 304
conserve2nd . 304
constraint expressions . 40
contents . 7
contributing . 351
contributors . 351
coordinate limits . 63
coordinate variable 98, 129, 148, 225, 346
coordinate variables . 341
coordinates . 74, 148, 379
coordinates attribute 113, 285
coordinates convention . 148
coordinates, modifying . 380
core dump . 15, 23, 285
cos . 211
cosh . 211
cosine function . 211
covariance . 209
cp . 49
Craig MacLachlan . 352
Cray . 8, 23
crontab . 230
cs2cs . 305

csh . 52
Csh shell . 281
csn lst . 236
cubed-sphere grid . 87
current climatology (climo) 241
CWL . 237, 324, 326
cxx . 8
Cygwin . 10

D
d2f . 231, 290, 308
daily data . 355, 356
Daniel Baumann . 352
Daniel Macks, . 352
Daniel Neumann . 352
Daniel Wang . 351
DAP . 39
dat glb . 320
data access protocol . 39
data safety . 17, 339
data, missing . 87, 103, 216
date . 145
date formats . 263
date_written . 147
datesec . 145
Dave Blodgett . 352
dbg lvl . 16, 24, 31, 231, 308
‘dbl_flt’ . 289
dcEdge . 145, 304
DDRA . 354
Debian . 15
debug-level . 16, 24
debugging . 16, 24, 31
dec md . 229
Decimal Significant Digits 112, 235
DEC . 8
defdim() . 157
defining dimensions in ncap2 157
DEFLATE . 114
deflation . 12, 121, 277
degenerate dimension 107, 132, 210, 225, 253,

259, 295, 296, 345, 348
degrees_east . 90
degrees_north . 90
delete (groups) . 54
delete_miss() . 172
demotion . 134
Dennis Heimbigner . 351
Depth . 231, 309
derived fields . 152, 153
dgll . 305
digest . 122
Digital . 8
dimension limits . 63
dimension names . 339
dimension order . 366
dimensions, growing . 209

406 NCO 5.0.1 User Guide

disaggregate . 56
disjoint files . 19
diskless files . 124
dismember . 56
distance-weighted extrapolation 304, 310
distance_weighted . 304
Distributed Data Reduction & Analysis 354
Distributed Oceanographic Data System 39
divide . 223
dividing data . 223
division . 211
djf . 229
DJF . 229
‘dmn’ . 108
documentation . 7
DODS . 39, 42
DODS_ROOT . 39
DOE . 32
dot product . 347
double() . 176
double-precision . 212
dpf . 231
dpt . 309
dpt fl . 231, 309
drc in . 232
drc out . 235
drc prv . 243
drc rgr . 234
drc rgr prv . 243
drc rgr xtn . 243
drc xtn . 243
DSD . 112
dsort . 180
dst fl . 309
dt sng . 309
dtos . 304
duration . 68
dvEdge . 145, 304
dwe . 304
DWE . 304
dynamic linking . 11

E
E3SM conventions . 145
ECMWF ERA5 grid . 81
ECMWF IFS grid . 81
Ed Hartnett . 351
Ed Hill . 353
eddy covariance . 209
edgeMask . 304
edgesOnCell . 145, 304
edgesOnEdge . 145, 304
edgesOnVertex . 145, 304
editing attributes . 216
egrep . 51
Elliptic integrals . 194
end yr . 231

ensemble . 20, 254
ensemble average . 254
ensemble concatenation . 251
ENVI . 32
Equi-Angular grid . 77
Equi-angular grid . 81
equiangular grid . 87
ERDDAP . 273
erf . 211
erfc . 211
Eric Blake . 353
error function . 211
error tolerance . 17
ERWG . 302
esmf typ . 310
ESMF . 77, 86
ESMF_RegridWeightGen . 302
Etienne Tourigny . 353
exclusion . 48, 283, 285
execution time 11, 18, 26, 29, 104, 216, 340
exists() . 175
exp . 211
exponent . 140
exponentiation . 211
exponentiation function . 211
expressions . 153
extended climatology (climo) 241
extended file format . 44
extended regular expressions 22, 51, 210, 217,

221
extensive variable . 92
extraction . 48, 283, 285
extrapolation . 310

F
f90 . 10
features, requesting . 15
File buffers . 123
file combination . 357
file deletion . 42
file multiplication . 260
file removal . 42
file retention . 42
files, multiple . 35
files, numerous input . 21
Filipe Fernandes . 352, 353
filters . 281
findgen-equivalent . 160
fix record dimension 251, 253, 272
fixed dimension 251, 253, 269, 272
flags . 209
flatten (groups) . 54
flattening . 47
float . 212
float() . 176
floor . 211
floor function . 211

General Index 407

‘flt_byt’ . 289
‘flt_dbl’ . 289
‘flt_sht’ . 289
fml nm . 231
for() . 179
force append . 142
force overwrite . 142
foreword . 1
formula_terms attribute 148, 234, 317, 330
Fortran . 136, 298, 301
Fortran index convention . 63
FORTRAN format . 27
Francesco Lovergine . 352
frc . 92
frc nm . 92
ftp . 10, 37
FTP . 42
funding . 354
fv2fv . 305
fv2fv_flx . 305
fv2fv_stt . 305
fv2se_alt . 305
fv2se_flx . 305
fv2se_stt . 305
FV . 93
FV grid . 77, 87

G
g++ . 8, 10
‘g2d’ . 106
‘g3d’ . 106
GAG . 251
Galerkin methods . 305
gamma . 9, 211
gamma function . 194, 211
Gary Strand . 352
Gaussian grid . 77, 87
Gaussian weight . 93
Gaussian weights . 348
Gavin Burris . 353
Gayathri Venkitachalam . 352
gcc . 8, 10
GCM . 17, 120, 139
GenerateOfflineMap . 302
GenerateOverlapMesh 302, 307
geographical weight . 373
George Shapavalov . 353
George Shapovalov . 352
George White . 352
get_miss() . 172
getdims() . 175
gethostname . 10
getopt . 31
getopt.h . 31
getopt_long . 31
getuid . 10
Glenn Davis . 351

global attribute . 221, 340
global attributes . . 22, 142, 143, 144, 150, 217, 221,

261, 262, 283, 340, 343
global_latitude0 . 304
global_longitude0 . 304
globbing 22, 34, 52, 210, 224, 298, 300
gmtime() . 147
GMT . 147
gnu-win32 . 10
GNU . 31, 51
GNU/Linux . 23
GNUmakefile . 10
God . 100
GODAD . 357
grd dst . 310
grd glb . 320
grd rgn . 320
grd src . 326
grd ttl . 78
Gregorian dates . 263
grep -E . 51
grid, CAM-FV . 77
grid, Equi-Angular . 77
grid, Fixed . 77
grid, FV . 77
grid, Gaussian . 77
grid, Offset . 77
grid-file . 86
grid_mapping attribute 148, 285
gridcell_area . 304
gridfile . 77
group aggregation . 251, 359
group attributes . 343
group names . 339
group path . 54
group, aggregation . 371
group, anomaly . 371
group, dimension permutation 371
group, spatial averaging . 371
group, standard deviation . 371
group, temporal averaging . 371
groups . 12, 221
groups, averaging . 365
groups, creating . 359
groups, moving . 56
groups, renaming . 56
growing dimensions . 209
gsl sf bessel Jn . 194
gsl sf gamma . 194
gsl_sf_legendre_Pl . 195
GSL . 9, 193, 201
gunzip . 114
gw . 93, 145, 304, 348
gzip . 111, 114

H
h4_ncgen . 270

408 NCO 5.0.1 User Guide

h4tonccf . 14
H4CF . 14
Harry Mangalam . 351
has_miss() . 172
hash . 122
hdf_name . 14
HDF . 12, 42, 270, 354
HDF unpacking . 127
HDF4 . 13, 270
HDF4_UNKNOWN . 13
HDF5 . 12, 13, 114
HDF5_USE_FILE_LOCKING 228, 302
hdp . 270
help . 15
Henry Butowsky . 351
‘hgh_byt’ . 289
‘hgh_sht’ . 289
hidden attributes . 270
hidden features . 279
Hierarchical Data Format . 12
highorder_fv2se . 305
highorder_se2fv . 305
history 23, 37, 143, 150, 216, 252, 283
history_of_appended_files 144
hncgen . 270
HP . 8
HPSS . 38
hsi . 38
hst nm . 232
HTML . 7
HTTP protocol . 39
Huffman coding . 111
Hugo Oliveira . 352
hyai . 145, 147, 330
hyam . 145, 330
hybi . 145, 147, 330
hybm . 145, 330
hybrid coordinate system . 158
hyperbolic arccosine function 211
hyperbolic arcsine function 211
hyperbolic arctangent function 211
hyperbolic cosine function . 211
hyperbolic sine function . 211
hyperbolic tangent . 211
hyperslab 63, 106, 251, 254, 296, 300, 345
hyperslabs . 161

I
I/O . 41, 63, 72
I/O block size . 123
I18N . 29
Ian Lancaster . 353
IBM . 8
icc . 8
ID Quoting . 213
IDL . 17
IEEE . 113, 135

IEEE 754 . 113
IEEE NaN . 220
if() . 167
ilev . 147
ilev dmn nm . 91
ilev nm . 91
ilimit . 24
illegal names . 14
implicit conversion . 136
in drc . 312
in fl . 312
include . 180
including files . 153
incremental climatology (climo) 241
index convention . 63
indexToCellID . 145, 304
indexToEdgeID . 145, 304
indexToVertexID . 145, 304
indgen-equivalent . 160
indicator option . 77, 113, 143
inexact conversion . 212
infer . 83, 93, 310, 328
Info . 7
input files . 22, 34, 37
input-path . 34, 39
installation . 8, 16
int() . 176
int64() . 176
intbilin_se2fv . 305
integration . 347
integrity . 122
Intel . 8
interleave . 69
Internationalization . 29
interoperability . 127
interpolation . 258, 376
intersection . 48, 50
introduction . 7
invert_map . 180
IPCC . 255, 354
irregular grids . 189
ISO . 8
Isuru Fernando . 352

J
James Gallagher . 351
JavaScript . 273
Jeff Whitaker . 115
Jerome Mao . 352
jfd . 229
JFD . 229
Jim Edwards . 352
job nbr . 232, 313
Joe Hamman . 351
John Caron . 115, 351
Joseph O’Rourke . 352
JSN . 273

General Index 409

jsonlint . 276
JSON . 273
Juliana Rew . 352

K
Karen Schuchardt . 352
Keith Lindsay . 352
kitchen sink . 261
kiteAreasOnVertex . 145, 304
Kyle Wilcox . 352, 353

L
L10N . 29
large datasets . 23, 30
Large File Support . 23, 47
lat . 90, 304
lat bnd nm . 91
lat_bnds . 91, 145, 304
lat dmn nm . 90
lat drc . 80
lat est . 80
lat nbr . 80
lat nm . 90
lat nrt . 80
lat sth . 80
lat typ . 78
lat_vertices . 91, 304
lat wgt nm . 93
lat wst . 80
latCell . 145, 304
latEdge . 145, 304
latitude . 90, 304
Latitude . 304
latitude_bnds . 304
latitude0 . 304
LatitudeCornerpoints . 304
latt_bounds . 304
latu_bounds . 304
latVertex . 145, 304
LAT . 304
LD_LIBRARY_PATH . 11
Least Significant Digit . 112
least_significant_digit 115
left hand casting . 26, 158
Legendre polynomial . 195
Lempel-Ziv deflation . 121
Len Makin . 352
lev . 147
lev dmn nm . 91
lev nm . 91
lexer . 152
‘lfp’ . 108
LFS . 23, 47
LHS . 158
libnco . 8
libraries . 11

linkers . 37
Linux . 213
LLVM . 8
ln . 211
ln -s . 224, 288
log . 211
log10 . 211
logarithm, base 10 . 211
logarithm, natural . 211
lon . 90, 304
lon bnd nm . 91
lon_bnds . 91, 145, 304
lon dmn nm . 90
lon nbr . 80
lon nm . 90
lon typ . 78
lon_vertices . 91, 304
lonCell . 145, 304
lonEdge . 145, 304
long double . 212
long options . 31, 294
long-term average . 363
Longitude . 304
longitude . 74, 90, 304
longitude_bnds . 304
longitude0 . 304
LongitudeCornerpoints . 304
lont_bounds . 304
lonu_bounds . 304
lonVertex . 145, 304
LON . 304
Lori Sentman . 352
lossy compression . 111
lrint(). 135
lround(). 135
LSD . 112
Luk Claes . 352

M
mabs . 128
mabs() . 174
Macintosh . 8
Make-Weight-Files (MWF) . 318
make bounds() function . 214
Makefile . 8, 10, 40
malloc() . 26
Manfred Schwarb . 353
mantissa . 140
manual type conversion . 134
map . 86
map-file . 86, 264
‘map_dmn’ . 108
map fl . 314
‘map_lfp’ . 108
‘map_nc4’ . 108
‘map_nco’ . 108
‘map_prd’ . 108

410 NCO 5.0.1 User Guide

‘map_rd1’ . 108
‘map_rew’ . 108
‘map_scl’ . 108
‘map_xst’ . 108
mapping_file . 93
Marco Atzeri . 352
Mark Flanner . 352
Markus Liebig . 352
Martin Dix . 352
Martin Otte . 353
Martin Schmidt . 352
Martin Schultz . 60
mask . 93, 189, 209
mask condition . 346, 349
masked average . 345
Mass Store System . 37
Matej Vela . 352
mathematical functions . 211
Matlab . 17
Matthew Thompson . 352
max . 128
max() . 173
maximum . 128, 282
maxLevelCell . 145
maxLevelEdgeTop . 304
MD5 digest . 122
mdl nm . 234
mean . 128
mebs . 128
mebs() . 174
median . 282
memory available . 24, 124
memory leaks . 26
memory requirements 24, 50, 124
merging files . 19, 262
meshDensity . 145, 304
metadata . 277
metadata optimization . 29
metadata, global . 252, 276
mibs . 128
mibs() . 174
Michael Decker . 60
Michael Prather . 140
Michael Schulz . 352
Microsoft . 8, 9
Microsoft Visual Studio . 9
Mike Folk . 12
Mike Page . 352
Milan Klower . 351
min . 128
Min Xu . 352
min() . 173
minimum . 128, 282
missing value . 308, 315
missing values 87, 103, 129, 216, 259, 277
missing values ncap2 . 171
missing(), mask_miss() . 172
missing_value 87, 103, 126, 343

MKS units . 98, 100
mode . 282
MODIS . 376, 379
modulus . 211
mono . 305
mono_fv2se . 305
mono_se2fv . 305
monotonic coordinates . 27
monotr_fv2se . 305
monthly average . 355, 373
monthly data . 355, 356
move groups . 56
MPAS . 220, 231, 309, 329
MPAS conventions . 145
mpi nbr . 314
mpi pfx . 314
MRO . 68
MSA . 71
msh fl . 314
msk_* . 145
msk dst . 315
msk nm . 93
msk out . 316
msk src . 316
msrcp . 38, 42
msread . 38
mss val . 316
MSS . 37
MTA . 32
multi-arguments . 77, 113, 143
Multi-arguments . 32
multi-file operators . . 24, 35, 37, 252, 255, 296, 300
multi-hyperslab . 71
Multi-Record Operator . 68
multiplication . 211, 223, 260
multiply . 223
multiplying data . 223, 258
multislab . 71
mv . 49
MVS . 8, 9
MWF-mode . 318

N
n2s . 80
naked characters . 224
NaN . 220, 269
NaNf . 269
NARR (North American Regional Reanalysis)a

. 178
NASA . 354
NASA CMG grid . 81
NASA EOSDIS . 21
NASA MERRA2 grid . 81
National Virtual Ocean Data System 39
nav_lat . 304
nav_lon . 304
nbnd . 91

General Index 411

nc__enddef() . 29
nc3tonc4 . 14
‘nc4’ . 108
NC_BYTE . 289
NC_CHAR . 65, 166, 225, 289
NC_DISKLESS . 124
NC_DOUBLE . 212, 289
NC_FLOAT . 289
NC_FORMATX_DAP2 . 44
NC_FORMATX_DAP4 . 44
NC_FORMATX_NC_HDF4 . 44
NC_FORMATX_NC_HDF5 . 44
NC_FORMATX_NC3 . 44
NC_FORMATX_PNETCDF . 44
NC_INT . 289
NC_INT64 . 12, 289
NC_SHARE . 125
NC_SHORT . 289
NC_STRING . 166
NC_UBYTE . 12, 289
NC_UINT . 12, 289
NC_UINT64 . 12, 289
NC_USHORT . 12, 289
ncadd . 223
ncap . 152
ncap2 . 9, 26, 30, 142, 152, 287
NCAR . 17, 120
NCAR MSS . 37
ncatted 51, 103, 104, 142, 144, 216
ncattget . 216, 281
ncavg . 281
ncbo . 104, 223
ncclimo . 228
ncdiff . 223
ncdismember . 56, 60
ncdivide . 223
ncdmnlst . 281
ncdmnsz . 281
ncdump . 45, 270, 277, 279
ncecat . 20, 251
NCEP2 grid . 81, 312
nces . 21, 104, 254
ncextr . 261
ncflint . 21, 104, 258
ncgen . 270
ncgen-hdf . 270
ncgrplst . 281
ncks . 44, 122, 210, 261
ncl_convert2nc . 14, 293
nclst . 281
NCL . 17, 293, 302
ncmax . 281
ncmdn . 281
ncmin . 281
NcML . 279
ncmult . 223
ncmultiply . 223
‘nco’ . 108, 304

nco script file . 366
nco.config.log.${GNU_TRP}.foo 16
nco.configure.${GNU_TRP}.foo 16
nco.make.${GNU_TRP}.foo . 16
nco_cns . 304
nco_con . 304
nco_conserve . 304
nco_dwe . 304
nco_input_file_list . 22, 144
nco_input_file_number 22, 144
nco_nearest_neighbor . 304
nco_openmp_thread_number 30
nco opt . 234, 317
NCO availability . 7
NCO homepage . 7
NCO User Guide . 7
ncol . 90
ncpack . 287
ncpdq 20, 30, 106, 231, 252, 287, 300, 308, 324
ncra . 21, 104, 210, 296
ncrcat . 20, 30, 300
ncrecsz . 281
ncremap . 302
ncrename . 103, 339
ncrng . 281
NCSA . 12
ncsub . 223
ncsubtract . 223
nctypget . 281
ncunits . 281
ncunpack . 287
ncvardmnlatlon . 281
ncvardmnlst . 281
ncwa . 21, 30, 104, 210, 345
ndims() . 174
nds . 304
ndtos . 304
nearbyint . 211
nearest integer function (exact) 211
nearest integer function (inexact) 211
nearest-neighbor extrapolation 304
nearestdtos . 304
neareststod . 304
NEC . 8
nEdgesOnCell . 145, 304
nEdgesOnEdge . 145, 304
Neil Davis . 135
nesting . 153
netCDF . 7
netCDF2 . 11, 42
NETCDF2_ONLY . 12
netCDF3 . 11, 42
netCDF3 classic file format . 44
netCDF4 . 12, 42, 102
netCDF4 classic file format . 44
netCDF4 file format . 44
NETCDF4 files . 42
NETCDF4_CLASSIC files . 42

412 NCO 5.0.1 User Guide

NETCDF4_ROOT . 15
Nick Bower . 352
NINTAP . 34, 298, 300
nm dst . 317
nm src . 317
no stagger . 93
NO_NETCDF_2 . 12
noclean . 328
nohup . 230
non-coordinate grid properties 146
non-rectangular grids . 189
non-standard grids . 189
normalization . 258, 347
North American Regional Reanalysis (NARR)

. 178
Not-a-Number . 220
NRA . 354
nrnet . 38
nsd . 304
NSD . 112
NSF . 354
nstod . 304
NT (Microsoft operating system) 9
NUL-termination . 219
null operation . 260
NUL . 219, 290
number literals ncap2 . 166
Number of Significant Digits 112, 235
number_miss() . 172
number_of_significant_digits 115
numerator . 130, 347
nv . 91
NVODS . 39
‘nxt_lsr’ . 289

O
oceanography . 39
octal dump . 45
od . 45
OMP_NUM_THREADS . 30
on-line documentation . 7
open source . 1, 39
Open-source Project for a Network Data Access

Protocol . 39
OPeNDAP. 39
OpenMP . 24, 26, 30, 86
operation types . 128, 296, 346
operator speed 11, 18, 26, 29, 104, 216, 340
operators . 5
Options, multi-argument . 32
Options, truncating . 32
OptIPuter . 354
Orion Poplawski . 353
ORO . 145, 348
orphan dimensions . 278
OS . 8
out drc . 317

output file . 22, 37
output-path . 39
overview . 26
overwriting files . 18, 142

P
P0 . 330
pack() . 174
pack(x) . 126
pack byte() . 174
pack int() . 174
pack short() . 174
packing 41, 106, 126, 252, 287, 300
packing map . 288
packing policy . 287
papers . 26
par typ . 235, 323
parallel . 383
Parallel . 383
parallelism . 30, 354
parser . 152
pasting variables . 19
patc . 304
patch . 304
pathcc . 8
pathCC . 8
PathScale . 8
Patrice Dumas . 353
Patrick Kursawe . 353
pattern matching 22, 51, 217, 221
PayPal . 351
PBS . 237
pch . 304
pck map . 288
pck plc . 287
pdq opt . 324
peak memory usage . 24, 124
Pedro Vicente . 352
per-record-weights . 297
performance 11, 18, 26, 29, 104, 216, 340
Perl . 17, 23, 219
permute . 324
permute dimensions . 287
permute() . 163
Peter Campbell . 352
pgcc . 8
pgCC . 8
PGI . 8
Philip Cameron-Smith . 352
philosophy . 17
pipes . 22
‘plc_all’ . 106
‘plc_g2d’ . 106
‘plc_g3d’ . 106
‘plc_r1d’ . 106
‘plc_xpl’ . 106
‘plc_xst’ . 106

General Index 413

plev nm . 91
PnetCDF file format . 44
portability . 8
positional arguments . 37
POSIX . 31, 51
pow . 211
power . 211
power function . 211
ppc prc . 235
PPC . 112
prc typ . 318
‘prd’ . 108
Precision . 231, 308
precision . 212
preprocessor tokens . 10
presentations . 7
previous climatology (climo) 241
print file . 278
print() ncap2 . 168
printf . 8
printf() . 219, 278, 284
printing files contents . 261
printing variables . 261
Processor . 298, 300
Processor, CCM . 34
promotion . 134, 136, 212, 297
proposals . 354
provenance . 22, 23, 144, 252
prs stt . 324
pseudonym . 10
PS . 330
publications . 7
push . 164
Python . 230

Q
QLogic . 8
quadruple-precision . 212
quantization . 111, 112
quench . 278
Quick Start . 355
quotes . 52, 210, 224, 294

R
‘r1d’ . 106
RAG . 251
ram delete() . 177
ram write() . 177
RAM . 24, 124
RAM disks . 18, 124
RAM files . 18, 124
RAM variables . 124, 176
random walk . 140
range . 282
rank . 154, 224, 225, 226, 345
rcp . 10, 37

RCS . 150
‘rd1’ . 108
re-dimension . 287
re-order dimensions . 287
record aggregation . 251
record append . 67
record average . 296, 297
record concatenation . 300
record dimension . . 19, 63, 111, 251, 253, 254, 269,

272, 291, 295, 296, 300
record variable . 63, 291
rectangular grids . 189
recursion . 49
recursive . 49
regex . 51
regression . 366
regressions archive . 16
regrid . 302, 376
regridding . 86
Regridding ReGional Data (RRG) 320
regular expressions 22, 34, 51, 210, 217, 221
remap . 180, 302
Remik Ziemlinski . 352
remote files . 10, 37
rename groups . 56
renaming attributes . 339, 376
renaming dimensions . 339, 376
renaming groups . 339
renaming variables 339, 366, 376
renormalized regridding . 87
reporting bugs . 15
reshape variables . 287
restrict . 9
reverse data . 294
reverse dimensions 287, 293, 294
reverse() . 163
‘rew’ . 108
rgn dst . 325
rgn src . 325
rgr map . 236
rgr opt . 236, 325
rgr var . 328
Rich Signell . 115, 352
rint . 211
rint() . 113
rll2rll . 305
rms . 128
rmssdn . 128
rmssdn() . 174
rnm sng . 320
rnr thr . 88, 325
root-mean-square . 128
Rorik Peterson . 351
Rostislav Kouznetsov . 351
round . 211
rounding . 111, 140
rounding functions . 211
RPM . 15

414 NCO 5.0.1 User Guide

rrg_bb_wesn . 320
rrg_dat_glb . 320
rrg_grd_glb . 320
rrg_grd_rgn . 320
rrg_rnm_sng . 320
RRG-mode . 320
running average . 296
Russ Rew . 351, 352

S
s2n . 80
S1_Latitude . 304
S1_Longitude . 304
safeguards . 17, 339
sanitize . 33
scale_factor 126, 252, 287, 300
scale format . 27
scaling . 26, 260
Scientific Data Operators . 354
‘scl’ . 108
Scott Capps . 352
scp . 10, 37
scrip grid . 78
script file . 152
SCRIP . 77, 86
SDO . 354
se2fv_alt . 305
se2fv_flx . 305
se2fv_stt . 305
se2se . 305
seasonal average . 298, 355
security . 33, 122
SEIII . 354
semi-colon . 153
separator . 280
server . 23, 39, 42
Server-Side Distributed Data Reduction &

Analysis . 354
server-side processing . 40, 354
set_miss() . 171
sftp . 10, 37
SGI . 8
sgs frc . 321
sgs msk . 321
sgs nrm . 321
SGS-mode . 321
Sh shell . 281
shared access . 125
shared memory machines . 24
shared memory parallelism . 30
shell . 22, 52, 99, 210, 224, 281
signedness . 27
significand . 113
simple_fill_miss() . 173
sin . 211
sine function . 211
single-precision . 212

sinh . 211
size() . 174
SI . 92
skeleton . 86, 326
skl fl . 326
slat . 93, 235, 304, 317
SLD (Swath-like Data) . 178
slon . 93, 235, 304, 317
SLURM . 237, 324, 326
SMP . 30
snwe . 80
solar zenith angle function 215
solid angle . 92
sort . 180
sort alphabetically . 263, 283
source code . 7
source_file . 93
spatial distribution . 363
special attributes . 270
special characters . 219
speed 11, 18, 24, 26, 29, 104, 216, 340
sqravg . 128
sqravg() . 173
sqrt . 128, 211
square root function . 211
srt yr . 236
SSDDRA . 354
sshort() . 176
SSH . 10, 42
stagger . 93
staggered-grid . 93
standard deviation 128, 132, 366
standard input 22, 229, 252, 255, 296, 300
standard_name . 74, 90
stat() system call . 123
statement . 153
static linking . 11
stdin . . . 22, 144, 229, 230, 252, 255, 296, 300, 312
steradian . 92
Sterling Baldwin . 352
Steve Emmerson . 351
stod . 304
stride 64, 65, 71, 99, 296, 298, 300, 301
strings . 219
Stu Muller . 352
stub . 39
sub-cycle . 68
Sub-gridscale (SGS) data . 321
subcycle . 68, 298
subsetting 48, 52, 148, 283, 285
subtract . 223
subtracting data . 223
subtraction . 211, 223
summary . 5
Sun . 8
swap space . 23, 24, 124
Swath-like Data (SLD) . 178
Swift . 383

General Index 415

switches . 31
symbolic links 10, 20, 23, 224, 288
synchronous file access . 37
synonym . 10
syntax . 153
System calls . 123

T
tabs . 128
tabs() . 174
Takeshi Enomoto . 353
tan . 211
tanh . 211
Tempest2 . 305
TempestRemap . 86, 302, 305
temporary files . 17, 125
temporary output files 17, 125, 339
Terraref . 32
TEXinfo . 7
thr nbr . 30, 237, 327
threads . 24, 26, 30
time . 99, 149
time-averaging . . . 210, 298, 355, 356, 363, 366, 373
time_bnds . 91
time_offset . 149
time_written . 147
timestamp . 143
TLAT . 304
TLON . 304
TLONG . 304
tmp drc . 327
Todd Mitchell . 353
total . 128
tpd . 238
traditional . 261
transpose . 63, 291, 294
TREFHT . 139
trunc . 211
trunc() . 135
truncate (groups) . 54
Truncating options . 32
truncation function . 211
truth condition . 346, 349
TR . 86
ttl . 128
ttl() . 174
type conversion . 133
type() . 175

U
ubyte() . 176
UDUnits . 8, 98, 145, 185
UDUNITS2_XML_PATH . 99
ugrid fl . 328
UGRID . 83
uint() . 176

ULAT . 304
ulimit . 23
ULON . 304
ULONG . 304
unary operations . 26
unbuffered I/O . 125
underlying file format . 44
UNICOS . 23
Unidata . 8, 12, 98
union . 48, 50
union of files . 19
unit64() . 176
units . 90, 98, 99, 221, 260
UNIX . 8, 10, 22, 31, 34, 281
unlimited dimension . 251
unmap . 180
unpack() . 174
unpack(x) . 126
unpacking 41, 126, 252, 287, 300
unq sfx . 328
unstructured grid . 75
URL . 37
User Guide . 7
ushort() . 176

V
value list . 165
value listncap2 . 165
var lst . 238, 328
var xtr . 238
variable names . 339
variables, appending . 366
variance . 128
version . 150
vertexMask . 145, 304
Vertical coordinate . 329
verticesOnCell . 145, 304
verticesOnEdge . 145, 304
Vista (Microsoft operating system) 9
vpointer . 187
vrb lvl . 329
vrt . 329
vrt fl . 329
vrt ntp . 333
vrt xtr . 333

W
w_stag . 93, 235, 304, 317
Ward Fisher . 351
Weather and Research Forecast (WRF) Model

. 178
weighted average 254, 256, 297, 345, 373
weighted_fill_miss() . 173
weights . 254, 256, 297, 345
weightsOnEdge . 145, 304
Wenshan Wang . 353

416 NCO 5.0.1 User Guide

wesn . 80
wget . 37
wgt_* . 145
wgt cmd . 334
wgt opt . 333
where() . 177
while() . 179
whitelist . 33
whitespace . 99
wildcards . 34, 51, 217, 221
WIN32 . 10
Windows . 8, 9
wrapped coordinates 65, 74, 190, 286
wrapped filenames . 36
WRF . 191
WRF (Weather and Research Forecast Model)

. 178
WWW documentation . 7

X
X axis . 90
xargs . 22, 37
xCell . 145
xEdge . 145, 304
XLAT . 304
XLAT_M . 304
xlc . 8
xlC . 8

XLONG . 304
XLONG_M . 304
XML . 279
XP (Microsoft operating system) 9
‘xpl’ . 106
‘xst’ . 106, 108
xtn lst . 334
xtr nsp . 310
xtr xpn . 310
xVertex . 145, 304
Xylar Asay-Davis . 352

Y
Y axis . 90
yCell . 145
yEdge . 145, 304
Yorick . 17, 27
ypf max . 239
yr end prv . 242
yr srt prv . 242
yVertex . 145, 304

Z
zCell . 145
zEdge . 145, 304
zlib . 111
zVertex . 145, 304

	Foreword
	Summary
	Introduction
	Availability
	How to Use This Guide
	Operating systems compatible with NCO
	Compiling NCO for Microsoft Windows OS

	Symbolic Links
	Libraries
	netCDF2/3/4 and HDF4/5 Support
	Help Requests and Bug Reports

	Operator Strategies
	Philosophy
	Climate Model Paradigm
	Temporary Output Files
	Appending Variables
	Simple Arithmetic and Interpolation
	Statistics vs. Concatenation
	Concatenators ncrcat and ncecat
	Averagers nces, ncra, and ncwa
	Interpolator ncflint

	Large Numbers of Files
	Large Datasets
	Memory Requirements
	Single and Multi-file Operators
	Memory for ncap2

	Performance

	Shared Features
	Internationalization
	Metadata Optimization
	OpenMP Threading
	Command Line Options
	Truncating Long Options
	Multi-arguments

	Sanitization of Input
	Specifying Input Files
	Specifying Output Files
	Accessing Remote Files
	OPeNDAP

	Retaining Retrieved Files
	File Formats and Conversion
	File Formats
	Determining File Format
	File Conversion
	Autoconversion

	Large File Support
	Subsetting Files
	Subsetting Coordinate Variables
	Group Path Editing
	Deletion, Truncation, and Flattening of Groups
	Moving Groups
	Dismembering Files
	Checking CF-compliance

	C and Fortran Index conventions
	Hyperslabs
	Stride
	Record Appending
	Subcycle
	Interleave
	Multislabs
	Wrapped Coordinates
	Auxiliary Coordinates
	Grid Generation
	Regridding
	Renormalization

	Climatology and Bounds Support
	UDUnits Support
	Rebasing Time Coordinate
	Multiple Record Dimensions
	Missing values
	Chunking
	Compression
	Linear Packing
	Precision-Preserving Compression

	Deflation
	MD5 digests
	Buffer sizes
	RAM disks
	Unbuffered I/O
	Packed data
	Standard Packing Algorithm
	Standard (Default) Unpacking Algorithm
	Non-Standard Packing and Unpacking Algorithms
	Handling of Packed Data by Other Operators

	Operation Types
	Type Conversion
	Automatic type conversion
	Promoting Single-precision to Double
	Manual type conversion

	Batch Mode
	Global Attribute Addition
	History Attribute
	File List Attributes
	CF Conventions
	ARM Conventions
	Operator Version

	Reference Manual
	ncap2 netCDF Arithmetic Processor
	Syntax of ncap2 statements
	Expressions
	Dimensions
	Left hand casting
	Arrays and hyperslabs
	Attributes
	Value List
	Number literals
	if statement
	Print & String methods
	Missing values ncap2
	Methods and functions
	RAM variables
	Where statement
	Loops
	Include files
	sort methods
	UDUnits script
	Vpointer
	Irregular Grids
	Bilinear interpolation
	GSL special functions
	GSL interpolation
	GSL least-squares fitting
	GSL statistics
	GSL random number generation
	Examples ncap2
	Intrinsic mathematical methods
	Operator precedence and associativity
	ID Quoting
	make_bounds() function
	solar_zenith_angle function

	ncatted netCDF Attribute Editor
	ncbo netCDF Binary Operator
	ncclimo netCDF Climatology Generator
	Timeseries Reshaping mode, aka Splitting
	MPAS-O/I/L considerations
	Annual climos
	Regridding Climos and Other Files
	Extended Climatologies
	Coupled Runs
	Memory Considerations
	Single, Dedicated Nodes at LCFs
	12 node MPI-mode Jobs
	What does ncclimo do?
	Assumptions, Approximations, and Algorithms (AAA) Employed:

	ncecat netCDF Ensemble Concatenator
	nces netCDF Ensemble Statistics
	ncflint netCDF File Interpolator
	ncks netCDF Kitchen Sink
	Options specific to ncks
	Filters for ncks

	ncpdq netCDF Permute Dimensions Quickly
	Packing and Unpacking Functions
	Dimension Permutation

	ncra netCDF Record Averager
	ncrcat netCDF Record Concatenator
	ncremap netCDF Remapper
	Fields not regridded by ncremap
	Options specific to ncremap
	Limitations to ncremap

	ncrename netCDF Renamer
	ncwa netCDF Weighted Averager
	Mask condition
	Normalization and Integration

	Contributing
	Contributors
	Citation
	Proposals for Institutional Funding

	Quick Start
	Daily data in one file
	Monthly data in one file
	One time point one file
	Multiple files with multiple time points

	CMIP5 Example
	Combine Files
	Global Distribution of Long-term Average
	Annual Average over Regions
	Monthly Cycle
	Regrid MODIS Data
	Add Coordinates to MODIS Data
	Permute MODIS Coordinates

	Parallel
	CCSM Example
	References
	General Index

