NCO User Guide

A suite of netCDF operators

Edition 5.0.1, for NCO Version 5.0.1
June 2021

by Charlie Zender
Departments of Earth System Science and Computer Science

University of California, Irvine

Copyright (©) 1995-2021 Charlie Zender.

This is the first edition of the NCO User Guide,

and is consistent with version 2 of texinfo.tex.

Published by Charlie Zender
Department of Earth System Science
3200 Croul Hall

University of California, Irvine
Irvine, CA 92697-3100 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. The license is available online at http://www.gnu.org/copyleft/fdl.html

We gratefully acknowledge support for NCO development and maintenance provided by
these institutions and programs: DOE ACME DE-SC0012998, LLNL-B625903, LLNL-B632442,
NASA ACCESS NNX12AF48A and NNX14AH55A, and NSF SEI IIS-0431203, AGS-1541031,
and OAC-2004993. This research was supported as part of the Energy Exascale Earth
System Model (E3SM) project, formerly known as Accelerated Climate Modeling for Energy
(ACME), funded by the U.S. Department of Energy, Office of Science, Office of Biological
and Environmental Research. This material is based upon work supported by the National
Science Foundation.

The original author of this software, Charlie Zender, wants to improve it with the help of
your suggestions, improvements, bug-reports, and patches.

Charlie Zender <surname at uci dot edu> (yes, my surname is zender)

Department of Earth System Science

3200 Croul Hall

University of California, Irvine

Irvine, CA 92697-3100

http://www.gnu.org/copyleft/fdl.html

Table of Contents

Foreword 1
SUMMATY 5
1 Introduction................... 7
1.1 Availabilityo 7

1.2 Howto Use This Guide ... 7
1.3 Operating systems compatible with NCO 8
1.3.1 Compiling NCO for Microsoft Windows OS................. 9

1.4 Symbolic Links ... 10
1.5 Libraries.oouuiim i 11
1.6 netCDF2/3/4 and HDF4/5 Support...............ooooiii... 11
1.7 Help Requests and Bug Reports.............. ...t 15

2 Operator Strategies........................... 17
2.1 Philosophyooo 17
2.2 Climate Model Paradigm............. ..o, 17
2.3 Temporary Output Fileso i 17
2.4 Appending Variables.............o i 19
2.5 Simple Arithmetic and Interpolation........................... 19
2.6 Statistics vs. Concatenation................oviiiiiiineennn.... 20
2.6.1 Concatenators ncrcat and ncecat.................ooonun. 20

2.6.2 Averagers nces, ncra, and NCWaovvrrrennnrnnn.n. 21

2.6.3 Interpolator ncflint.......... ..o 21

2.7 Large Numbers of Files......... ... o i, 21
2.8 Large Datasets..........uuuiiiiiiiiiiii 23
2.9 Memory Requirements ..., 24
2.9.1 Single and Multi-file Operators........................... 24

2.9.2 Memory for ncap2 ... 26

2.10 Performance............o i e 26

3 Shared Features 29
3.1 Internationalization i i 29
3.2 Metadata Optimizationcoiiiiiiiiiiii... 29
3.3 OpenMP Threading...........cooiuiiiiiiiiiiiiiii .. 30
3.4 Command Line Options..........cooiiiiiiiiiiiiii ... 31
3.4.1 Truncating Long Options. ..., 32

3.4.2 Multi-arguments 32

3.5 Sanitization of Input 33
3.6 Specifying Input Files......... ... 34
3.7 Specifying Output Files........ ..o i 37

3.8 Accessing Remote Files i 37

ii

NCO 5.0.1 User Guide

3.8.1 OPeNDAP .ttt 39
3.9 Retaining Retrieved Files i 42
3.10 File Formats and Conversioncciiiiiiiiia. .. 42

3.10.1 File Formats ... 43

3.10.2 Determining File Format............., 44

3.10.3 File Conversioncouueiiuienienienaneannn.. 45

3.10.4 AUtOCONVETrSION . ..ottt 46
3.11 Large File Support. 47
3.12 Subsetting Files. 48
3.13 Subsetting Coordinate Variables.................., 52
3.14 Group Path Editing........ ... oo i i 53

3.14.1 Deletion, Truncation, and Flattening of Groups.......... 54

3.14.2 MoOVING GIOUPS .-« v vttt et e 56

3.14.3 Dismembering Files......... ... i 56

3.14.4 Checking CF-complianceocoiiiiian.. 60
3.15 C and Fortran Index conventions.....................c..ouo... 63
3.16 Hyperslabs. ... 63
307 Stride. ..o e 65
3.18 Record Appendingc.ooiiiiiiiiii 67
3.19 Subcycle. ... 68
3.20 Imterleave....... ..o 69
3.21 Multislabso 71
3.22 Wrapped Coordinates............coouiiiiiiiiiiiiinne... 74
3.23 Auxiliary Coordinates.c.oooiiiiiiiiiiii .. 74
3.24 Grid Generationuiue it 7
3.25 Regridding.o 86

Renormalization i 87
3.26 Climatology and Bounds Support 96
3.27 UDUnits SUPpOrt . ..ot 98
3.28 Rebasing Time Coordinate.......... 101
3.29 Multiple Record Dimensions ..., 102
3.30 Missing valueso 103
3.31 Chunking...... ..o 104
3.32 COmPresSION . ..o vttt e 111

3.32.1 Linear Packing............coo i 111

3.32.2 Precision-Preserving Compression 112
3.33 Deflationo 121
3.34 MD5 digests ... 122
3.35 Buffersizes....... ..o 123
3.36 RAM disks .. .oouei 124
3.37 Unbuffered I/O 125
3.38 Packed data........... 126

Standard Packing Algorithm, 126

Standard (Default) Unpacking Algorithm....................... 127

Non-Standard Packing and Unpacking Algorithms.............. 127

Handling of Packed Data by Other Operators 128
3.39 Operation Types.ot 128

3.40 Type COnversion.ouueeeiiueeeenie i, 133

3.40.1 Automatic type conversionc.eeviuieeennn.. 134
3.40.2 Promoting Single-precision to Double................... 136
3.40.3 Manual type conversioncoiiiiiiiiiiii.. 142
3.41 Batch Mode 142
3.42 Global Attribute Addition L. 142
3.43 History Attribute......... ..o 143
3.44 File List Attributes ... 144
3.45 CF Conventions.couuuuee et 145
3.46 ARM Conventions.ouueeeniieeiniieeniieanae.. 149
3.47 Operator Versionouuuiiiniiiiiiiiinniieennna.. 150
Reference Manual............................ 151
4.1 ncap2 netCDF Arithmetic Processor 152
4.1.1 Syntax of ncap2 statementsc..coiiiii 153
4.1.2 EXPressionsooeueiinmii e 154
4.1.3 Dimensionsueeiiiiiiiimiiiiiiiiii i 157
4.1.4 Left hand castingcooviiiiiiiiii .. 158
4.1.5 Arrays and hyperslabs........... 160
4.1.6 Attributes ... 163
4.1.7 Value List. ... 165
4.1.8 Number literals i 166
4.1.9 ifstatement......... ... 167
4.1.10 Print & String methods............l 168
4.1.11 Missing values ncap2...........ccoiiuiiiiiiiiniiann, 171
4.1.12 Methods and functions..................ooi i, 173
4.1.13 RAM variableso 176
4.1.14 Where statement............ ... i, 177
4115 LOODS t e et 179
4.1.16 Include files.o 180
4.1.17 sort methods....... ..o 180
4.1.18 UDUnits SCript ... vvvn e 185
4.1.19 Vpointer.o e 187
4.1.20 Trregular Grids....... ..o 189
4.1.21 Bilinear interpolation oL 191
4.1.22 GSL special functions............... ..o 193
4.1.23 GSL interpolation. ... 201
4.1.24 GSL least-squares fitting oL 202
4.1.25 GSL statistics. . ..ot 204
4.1.26 GSL random number generation........................ 206
4.1.27 Examples ncap2oiiiiiiii 208
4.1.28 Intrinsic mathematical methods..................... ... 211
4.1.29 Operator precedence and associativity.................. 213
4.1.30 ID QUOtingoinutiitii e 213
4.1.31 make_bounds() function.............. oo 214
4.1.32 solar_zenith_angle function...................., 215
4.2 ncatted netCDF Attribute Editor 216
4.3 mncbo netCDF Binary Operator................ooooiiiiii.. 223

4.4 ncclimo netCDF Climatology Generator..................... 228

iii

v

NCO 5.0.1 User Guide

Timeseries Reshaping mode, aka Splitting 239
MPAS-O/I/L considerations................cooiiiiiiiiin.. 240
Annual climos ... 240
Regridding Climos and Other Files............., 241
Extended Climatologies ..., 241
Coupled RUNS. . ..o 244
Memory Considerations...........c.oooviuiiiiiiiiiinean.. 244
Single, Dedicated Nodes at LCFSoviiiiiiiiinnneen... 245
12 node MPI-mode Jobs. ... 247
What does ncclimo do?.. ...t 248
Assumptions, Approximations, and Algorithms (AAA) Employed:
... 248
4.5 ncecat netCDF Ensemble Concatenator...................... 251
4.6 nces netCDF Ensemble Statistics................ 254
4.7 ncflint netCDF File Interpolator 258
4.8 ncks netCDF Kitchen Sink................................... 261
Options Specific t0 NCKSottt 262
4.8.2 Filters for BCKS .. oo vi e 281
4.9 ncpdq netCDF Permute Dimensions Quickly 287
Packing and Unpacking Functions..................., 287
Dimension Permutation........... 291
4.10 ncra netCDF Record Averager.................ooiiiiii.. 296
4.11 ncrcat netCDF Record Concatenator....................... 300
4.12 ncremap netCDF Remapper ..., 302
Fields not regridded by ncremap ...t 303
Options specific to ncremapvvttii i 304
Limitations to ncremap ...ttt 334
4.13 ncrename netCDF Renamer......................coovi.... 339
4.14 ncwa netCDF Weighted Averager 345
4.14.1 Mask conditioncooviiiiiiiiiii 346
4.14.2 Normalization and Integration.......................... 347
Contributing.................................. 351
5.1 Contributors. ... 351
5.2 Ctation 353
5.3 Proposals for Institutional Funding........................... 354
Quick Start 355
6.1 Daily datainonefile......... ... i 355
6.2 Monthly datainone file............ i, 355
6.3 One time point one file.........o i i 356

6.4 Multiple files with multiple time points....................... 356

7 CMIP5 Example.............................. 357

7.1 Combine Files ... 357
7.2 Global Distribution of Long-term Average.................... 363
7.3 Annual Average over Regions 366
7.4 Monthly Cycle. ... e 373
7.5 Regrid MODIS Data. ... 376
7.6 Add Coordinates to MODIS Data.............c.cooiiiiaii .. 379
7.7 Permute MODIS Coordinates............ccoviiiiiiieeann... 380
8 Parallel................. 383
9 CCSM Example.............................. 385
10 References...................... 393

General Index 395

Foreword 1

Foreword

NCO is the result of software needs that arose while I worked on projects funded by NCAR,
NASA, and ARM. Thinking they might prove useful as tools or templates to others, it
is my pleasure to provide them freely to the scientific community. Many users (most of
whom I have never met) have encouraged the development of NCO. Thanks espcially to Jan
Polcher, Keith Lindsay, Arlindo da Silva, John Sheldon, and William Weibel for stimulating
suggestions and correspondence. Your encouragment motivated me to complete the NCO
User Guide. So if you like NCO, send me a note! I should mention that NCO is not connected
to or officially endorsed by Unidata, ACD, ASP, CGD, or Nike.

Charlie Zender
May 1997
Boulder, Colorado

Major feature improvements entitle me to write another Foreword. In the last five years
a lot of work has been done to refine NCO. NCO is now an open source project and appears
to be much healthier for it. The list of illustrious institutions that do not endorse NCO
continues to grow, and now includes UCI.

Charlie Zender
October 2000
Irvine, California

The most remarkable advances in NCO capabilities in the last few years are due to con-
tributions from the Open Source community. Especially noteworthy are the contributions
of Henry Butowsky and Rorik Peterson.

Charlie Zender
January 2003
Irvine, California

NCO was generously supported from 2004-2008 by US National Science Foundation
(NSF) grant 11S-0431203. This support allowed me to maintain and extend core NCO code,
and others to advance NCO in new directions: Gayathri Venkitachalam helped implement

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0431203

2 NCO 5.0.1 User Guide

MPI; Harry Mangalam improved regression testing and benchmarking; Daniel Wang de-
veloped the server-side capability, SWAMP; and Henry Butowsky, a long-time contributor,
developed ncap2. This support also led NCO to debut in professional journals and meetings.
The personal and professional contacts made during this evolution have been immensely
rewarding.

Charlie Zender
March 2008
Grenoble, France

The end of the NSF SEI grant in August, 2008 curtailed NCO development. Fortunately
we could justify supporting Henry Butowsky on other research grants until May, 2010 while
he developed the key ncap2 features used in our climate research. And recently the NASA
ACCESS program commenced funding us to support netCDF4 group functionality. Thus
NCO will grow and evade bit-rot for the foreseeable future.

I continue to receive with gratitude the thanks of NCO users at nearly every scientific
meeting [attend. People introduce themselves, shake my hand and extol NCO, often effu-
sively, while I grin in stupid embarassment. These exchanges lighten me like anti-gravity.
Sometimes I daydream how many hours NCO has turned from grunt work to productive
research for researchers world-wide, or from research into early happy-hours. It’s a cool
feeling.

Charlie Zender
April, 2012
Irvine, California

The NASA ACCESS 2011 program generously supported (Cooperative Agreement
NNX12AF48A) NCO from 2012-2014. This allowed us to produce the first iteration of
a Group-oriented Data Analysis and Distribution (GODAD) software ecosystem. Shifting
more geoscience data analysis to GODAD is a long-term plan. Then the NASA ACCESS 2013
program agreed to support (Cooperative Agreement NNX14AH55A) NCO from 2014-2016.
This support permits us to implement support for Swath-like Data (SLD). Most recently,
the DOE has funded me to implement NCO re-gridding and parallelization in support of
their ACME program. After many years of crafting NCO as an after-hours hobby, I finally
have the cushion necessary to give it some real attention. And I’'m looking forward to this
next, and most intense yet, phase of NCO development.

Charlie Zender
June, 2015

Foreword 3

Irvine, California

The DOE Energy Exascale Earth System Model (E3SM) project (formerly ACME) has
generously supported NCO development for the past four years. Supporting NCO for a
mission-driven, high-performance climate model development effort has brought unprece-
dented challenges and opportunities. After so many years of staid progress, the recent
development speed has been both exhilirating and terrifying.

Charlie Zender
May, 2019
Laguna Beach, California

Summary 5

Summary

This manual describes NCO, which stands for netCDF Operators. NCO is a suite of programs
known as operators. Each operator is a standalone, command line program executed at
the shell-level like, e.g., 1s or mkdir. The operators take netCDF files (including HDF5
files constructed using the netCDF API) as input, perform an operation (e.g., averaging or
hyperslabbing), and produce a netCDF file as output. The operators are primarily designed
to ald manipulation and analysis of data. The examples in this documentation are typical
applications of the operators for processing climate model output. This stems from their
origin, though the operators are as general as netCDF itself.

Chapter 1: Introduction 7

1 Introduction

1.1 Availability

The complete NCO source distribution is currently distributed as a compressed tarfile from
http://sf .net/projects/nco and from http://dust.ess.uci.edu/nco/nco.tar.
gz. The compressed tarfile must be uncompressed and untarred before building NCO.
Uncompress the file with ‘gunzip nco.tar.gz’. Extract the source files from the resulting
tarfile with ‘tar -xvf nco.tar’. GNU tar lets you perform both operations in one step
with ‘tar -xvzf nco.tar.gz’.

The documentation for NCO is called the NCO User Guide. The User Guide is available
in PDF, Postscript, HTML, DVI, TgXinfo, and Info formats. These formats are included
in the source distribution in the files nco.pdf, nco.ps, nco.html, nco.dvi, nco.texi,
and nco.infox*, respectively. All the documentation descends from a single source file,
nco.texi!. Hence the documentation in every format is very similar. However, some of the
complex mathematical expressions needed to describe ncwa can only be displayed in DVI,
Postscript, and PDF formats.

A complete list of papers and publications on/about NCO is available on the NCO home-
page. Most of these are freely available. The primary refereed publications are ZeM06 and
Zen08. These contain copyright restrictions which limit their redistribution, but they are
freely available in preprint form from the NCO.

If you want to quickly see what the latest improvements in NCO are (without downloading
the entire source distribution), visit the NCO homepage at http://nco.sf.net. The HTML
version of the User Guide is also available online through the World Wide Web at URL
http://nco.sf.net/nco.html. To build and use NCO, you must have netCDF installed.
The netCDF homepage is http://www.unidata.ucar.edu/software/netcdf.

New NCO releases are announced on the netCDF list and on the nco-announce mailing
list http://1lists.sf.net/mailman/listinfo/nco-announce.

1.2 How to Use This Guide

Detailed instructions about how to download the newest version, and how to complie source
code, as well as a FAQ and descriptions of Known Problems etc. are on our homepage
(http://nco.sf .net/).

There are twelve operators in the current version (5.0.1). The function of each is ex-
plained in Chapter 4 [Reference Manuall, page 151. Many of the tasks that NCO can accom-
plish are described during the explanation of common NCO Features (see Chapter 3 [Shared
features|, page 29). More specific use examples for each operator can be seen by visiting the
operator-specific examples in the Chapter 4 [Reference Manual], page 151. These can be
found directly by prepending the operator name with the xmp_ tag, e.g., http://nco.sf.

1 To produce these formats, nco.texi was simply run through the freely available programs texi2dvi,

dvips, texi2html, and makeinfo. Due to a bug in TEX, the resulting Postscript file, nco.ps, contains
the Table of Contents as the final pages. Thus if you print nco.ps, remember to insert the Table of
Contents after the cover sheet before you staple the manual.

http://sf.net/projects/nco
http://dust.ess.uci.edu/nco/nco.tar.gz
http://dust.ess.uci.edu/nco/nco.tar.gz
http://nco.sf.net
http://nco.sf.net/nco.html
http://www.unidata.ucar.edu/software/netcdf
http://lists.sf.net/mailman/listinfo/nco-announce
http://nco.sf.net/#Source
http://nco.sf.net/#bld
http://nco.sf.net/#bld
http://nco.sf.net/#FAQ
http://nco.sf.net/#bug
http://nco.sf.net/
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks

8 NCO 5.0.1 User Guide

net/nco.html#xmp_ncks. Also, users can type the operator name on the shell command
line to see all the available options, or type, e.g., ‘man ncks’ to see a help man-page.

NCO is a command-line language. You may either use an operator after the prompt
(e.g., ‘¢’ here), like,

$ operator [options] input [output]

or write all commands lines into a shell script, as in the CMIP5 Example (see Chapter 7
[CMIP5 Example], page 357).

If you are new to NCO, the Quick Start (see Chapter 6 [Quick Start], page 355) shows
simple examples about how to use NCO on different kinds of data files. More detailed “real-
world” examples are in the Chapter 7 [CMIP5 Example|, page 357. The [General Index],
page 395 is presents multiple keyword entries for the same subject. If these resources do
not help enough, please see Section 1.7 [Help Requests and Bug Reports|, page 15.

1.3 Operating systems compatible with NCO

In its time on Earth, NCO has been successfully ported and tested on so many 32- and 64-bit
platforms that if we did not write them down here we would forget their names: IBM AIX
4.x, 5.x, FreeBSD 4.x, GNU/Linux 2.x, LinuxPPC, LinuxAlpha, LinuxARM, LinuxSparc64,
LinuxAMD64, SGI IRIX 5.x and 6.x, MacOS X 10.x, DEC OSF, NEC Super-UX 10.x, Sun
SunOS 4.1.x, Solaris 2.x, Cray UNICOS 8.x-10.x, and Microsoft Windows (95, 98, NT, 2000,
XP, Vista, 7, 8, 10). If you port the code to a new operating system, please send me a note
and any patches you required.

The major prerequisite for installing NCO on a particular platform is the successful,
prior installation of the netCDF library (and, as of 2003, the UDUnits library). Unidata
has shown a commitment to maintaining netCDF and UDUnits on all popular UNIX plat-
forms, and is moving towards full support for the Microsoft Windows operating system (OS).
Given this, the only difficulty in implementing NCO on a particular platform is standard-
ization of various C-language API system calls. NCO code is tested for ANSI compliance
by compiling with C99 compilers including those from GNU (‘gcc -std=c99 -pedantic
-D_BSD_SOURCE -D_POSIX_SOURCE’ -Wall)?, Comeau Computing (‘como --c99’), Cray
(‘cc’), HP/Compaq/DEC (‘cc’), IBM (‘xlc -c -qlanglvl=extc99’), Intel (‘icc -std=c99’),
LLVM (‘clang’), NEC (‘cc’), PathScale (QLogic) (‘pathcc -std=c99’), PGI (‘pgcc -c9x’),
SGI (‘cc -c99’), and Sun (‘cc’). NCO (all commands and the libnco library) and
the C++ interface to netCDF (called libnco_c++) comply with the ISO C++ stan-
dards as implemented by Comeau Computing (‘como’), Cray (‘CC’), GNU (‘g++ -Wall’),
HP/Compaq/DEC (‘cxx’), IBM (‘x1C’), Intel (‘icc’), Microsoft (‘MVS’), NEC (‘c++’), Path-
Scale (Qlogic) (‘pathCC’), PGI (‘pgCC’), SGI (‘CC -LANG:std’), and Sun (‘CC -LANG:std’).
See nco/bld/Makefile and nco/src/nco_c++/Makefile.old for more details and exact
settings.

Until recently (and not even yet), ANSI-compliant has meant compliance with the 1989
ISO C-standard, usually called C89 (with minor revisions made in 1994 and 1995). C89 lacks
variable-size arrays, restricted pointers, some useful printf formats, and many mathemat-

2 The ‘_BSD_SOURCE’ token is required on some Linux platforms where gcc dislikes the network header
files like netinet/in.h).

http://nco.sf.net/nco.html#xmp_ncks
http://nco.sf.net/nco.html#xmp_ncks

Chapter 1: Introduction 9

ical special functions. These are valuable features of C99, the 1999 ISO C-standard. NCO
is C99-compliant where possible and C89-compliant where necessary. Certain branches in
the code are required to satisfy the native SGI and SunOS C compilers, which are strictly
ANST C89 compliant, and cannot benefit from C99 features. However, C99 features are fully
supported by modern AIX, GNU, Intel, NEC, Solaris, and UNICOS compilers. NCO requires
a C99-compliant compiler as of NCO version 2.9.8, released in August, 2004.

The most time-intensive portion of NCO execution is spent in arithmetic operations,
e.g., multiplication, averaging, subtraction. These operations were performed in Fortran
by default until August, 1999. This was a design decision based on the relative speed of
Fortran-based object code vs. C-based object code in late 1994. C compiler vectorization ca-
pabilities have dramatically improved since 1994. We have accordingly replaced all Fortran
subroutines with C functions. This greatly simplifies the task of building NCO on nominally
unsupported platforms. As of August 1999, NCO built entirely in C by default. This al-
lowed NCO to compile on any machine with an ANSI C compiler. In August 2004, the first
C99 feature, the restrict type qualifier, entered NCO in version 2.9.8. C compilers can
obtain better performance with C99 restricted pointers since they inform the compiler when
it may make Fortran-like assumptions regarding pointer contents alteration. Subsequently,
NCO requires a C99 compiler to build correctly?.

In January 2009, NCO version 3.9.6 was the first to link to the GNU Scientific Library
(GSL). GSL must be version 1.4 or later. NCO, in particular ncap2, uses the GSL spe-
cial function library to evaluate geoscience-relevant mathematics such as Bessel functions,
Legendre polynomials, and incomplete gamma functions (see Section 4.1.22 [GSL special
functions], page 193).

In June 2005, NCO version 3.0.1 began to take advantage of C99 mathematical spe-
cial functions. These include the standarized gamma function (called tgamma() for “true
gamma”). NCO automagically takes advantage of some GNU Compiler Collection (GCC)
extensions to ANSI C.

As of July 2000 and NCO version 1.2, NCO no longer performs arithmetic operations
in Fortran. We decided to sacrifice executable speed for code maintainability. Since no
objective statistics were ever performed to quantify the difference in speed between the
Fortran and C code, the performance penalty incurred by this decision is unknown. Sup-
porting Fortran involves maintaining two sets of routines for every arithmetic operation.
The USE_FORTRAN_ARITHMETIC flag is still retained in the Makefile. The file containing
the Fortran code, nco_fortran.F, has been deprecated but a volunteer (Dr. Frankenstein?)
could resurrect it. If you would like to volunteer to maintain nco_fortran.F please contact
me.

1.3.1 Compiling NCO for Microsoft Windows 0S

NCO has been successfully ported and tested on most Microsoft Windows operating systems
including: XP SP2/Vista/7/10. Support is provided for compiling either native Windows
executables, using the Microsoft Visual Studio Compiler (MVSC), or with Cygwin, the

3 NCO may still build with an ANSI or ISO C89 or C94/95-compliant compiler if the C pre-processor
undefines the restrict type qualifier, e.g., by invoking the compiler with ‘-Drestrict=""".

10 NCO 5.0.1 User Guide

UNIX-emulating compatibility layer with the GNU toolchain. The switches necessary to
accomplish both are included in the standard distribution of NCO.

With Microsoft Visual Studio compiler, one must build NCO with C++ since MVSC does
not support C99. Support for Qt, a convenient integrated development environment, was
deprecated in 2017. As of NCO version 4.6.9 (September, 2017) please build native Windows
executables with CMake:

cd ~/nco/cmake
cmake .. -DCMAKE_INSTALL_PREFIX=${HOME}
make install

The file nco/cmake/build.bat shows how deal with various path issues.

As of NCO version 4.7.1 (December, 2017) the Conda package for NCO is available from
the conda-forge channel on all three smithies: Linux, MacOS, and Windows.

Recommended install with Conda

conda config --add channels conda-forge # Permananently add conda-forge
conda install nco

Or, specify conda-forge explicitly as a one-off:

conda install -c conda-forge nco

Using the freely available Cygwin (formerly gnu-win32) development environment?, the
compilation process is very similar to installing NCO on a UNIX system. Set the PVM_ARCH
preprocessor token to WIN32. Note that defining WIN32 has the side effect of disabling
Internet features of NCO (see below). NCO should now build like it does on UNIX.

The least portable section of the code is the use of standard UNIX and Internet protocols
(e.g., ftp, rcp, scp, sftp, getuid, gethostname, and header files <arpa/nameser.h> and
<resolv.h>). Fortunately, these UNIX-y calls are only invoked by the single NCO subroutine
which is responsible for retrieving files stored on remote systems (see Section 3.8 [Remote
storage|, page 37). In order to support NCO on the Microsoft Windows platforms, this
single feature was disabled (on Windows OS only). This was required by Cygwin 18.x—
newer versions of Cygwin may support these protocols (let me know if this is the case).
The NCO operators should behave identically on Windows and UNIX platforms in all other
respects.

1.4 Symbolic Links

NCO relies on a common set of underlying algorithms. To minimize duplication of source
code, multiple operators sometimes share the same underlying source. This is accomplished
by symbolic links from a single underlying executable program to one or more invoked
executable names. For example, nces and ncrcat are symbolically linked to the ncra
executable. The ncra executable behaves slightly differently based on its invocation name
(i.e., ‘argv[0]’), which can be nces, ncra, or ncrcat. Logically, these are three different
operators that happen to share the same executable.

4 The Cygwin package is available from
http://sourceware.redhat.com/cygwin
Currently, Cygwin 20.x comes with the GNU C/C++ compilers (gcc, g++. These GNU compilers may be
used to build the netCDF distribution itself.

Chapter 1: Introduction 11

For historical reasons, and to be more user friendly, multiple synonyms (or pseudonyms)
may refer to the same operator invoked with different switches. For example, ncdiff is
the same as ncbo and ncpack is the same as ncpdqg. We implement the symbolic links and
synonyms by the executing the following UNIX commands in the directory where the NCO
executables are installed.

In -s -f ncbo ncdiff # ncbo --op_typ=’-’

In -s -f ncra nces # ncra --pseudonym=’nces’
In -s -f ncra ncrcat # ncra --pseudonym=’ncrcat’
In -s -f ncbo ncadd # ncbo --op_typ="+’

In -s -f ncbo ncsubtract # ncbo --op_typ=’-’

In -s -f ncbo ncmultiply # ncbo --op_typ=’*’

1n -s -f ncbo ncdivide # ncbo --op_typ=’/’

In -s -f ncpdq ncpack # ncpdq

In -s -f ncpdq ncunpack # ncpdq --unpack

NB: Windows/Cygwin executable/link names have ’.exe’ suffix, e.g.,
In -s -f ncbo.exe ncdiff.exe

The imputed command called by the link is given after the comment. As can be seen,
some these links impute the passing of a command line argument to further modify the
behavior of the underlying executable. For example, ncdivide is a pseudonym for ncbo
—-op_typ="/".

1.5 Libraries

Like all executables, the NCO operators can be built using dynamic linking. This reduces
the size of the executable and can result in significant performance enhancements on mul-
tiuser systems. Unfortunately, if your library search path (usually the LD_LIBRARY_PATH
environment variable) is not set correctly, or if the system libraries have been moved, re-
named, or deleted since NCO was installed, it is possible NCO operators will fail with a
message that they cannot find a dynamically loaded (aka shared object or ‘.so’) library.
This will produce a distinctive error message, such as ‘1d.so.1: /usr/local/bin/nces:
fatal: libsunmath.so.1: can’t open file: errno=2’. If you received an error message
like this, ask your system administrator to diagnose whether the library is truly missing®,
or whether you simply need to alter your library search path. As a final remedy, you may
re-compile and install NCO with all operators statically linked.

1.6 netCDF2/3/4 and HDF4/5 Support

netCDF version 2 was released in 1993. NCO (specifically ncks) began soon after this
in 1994. netCDF 3.0 was released in 1996, and we were not exactly eager to convert all
code to the newer, less tested netCDF implementation. One netCDF3 interface call (nc_
ing_libvers) was added to NCO in January, 1998, to aid in maintainance and debugging.
In March, 2001, the final NCO conversion to netCDF3 was completed (coincidentally on

5 The 1dd command, if it is available on your system, will tell you where the executable is looking for each
dynamically loaded library. Use, e.g., 1dd ‘which nces‘.

12 NCO 5.0.1 User Guide

the same day netCDF 3.5 was released). NCO versions 2.0 and higher are built with the
-DNO_NETCDF_2 flag to ensure no netCDF2 interface calls are used.

However, the ability to compile NCO with only netCDF2 calls is worth maintaining
because HDF version 4, aka HDF4 or simply HDF,® (available from HDF) supports only
the netCDF2 library calls (see http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#
47784). There are two versions of HDF. Currently HDF version 4.x supports the full
netCDF2 API and thus NCO version 1.2.x. If NCO version 1.2.x (or earlier) is built with
only netCDF2 calls then all NCO operators should work with HDF4 files as well as netCDF
files”. The preprocessor token NETCDF2_ONLY exists in NCO version 1.2.x to eliminate all
netCDF3 calls. Only versions of NCO numbered 1.2.x and earlier have this capability.

HDF version 5 became available in 1999, but did not support netCDF (or, for that matter,
Fortran) as of December 1999. By early 2001, HDF5 did support Fortran90. Thanks to an
NSF-funded “harmonization” partnership, HDF began to fully support the netCDF3 read
interface (which is employed by NCO 2.x and later). In 2004, Unidata and THG began a
project to implement the HDF5 features necessary to support the netCDF API. NCO version
3.0.3 added support for reading/writing netCDF4-formatted HDF5 files in October, 2005.
See Section 3.10 [File Formats and Conversion|, page 42 for more details.

HDF support for netCDF was completed with HDF5 version version 1.8 in 2007. The
netCDF front-end that uses this HDF5 back-end was completed and released soon after as
netCDF version 4. Download it from the netCDF4 website.

NCO version 3.9.0, released in May, 2007, added support for all netCDF4 atomic data
types except NC_STRING. Support for NC_STRING, including ragged arrays of strings, was
finally added in version 3.9.9, released in June, 2009. Support for additional netCDF4
features has been incremental. We add one netCDF4 feature at a time. You must build
NCO with netCDF4 to obtain this support.

NCO supports many netCDF4 features including atomic data types, Lempel-Ziv com-
pression (deflation), chunking, and groups. The new atomic data types are NC_UBYTE,
NC_USHORT, NC_UINT, NC_INT64, and NC_UINT64. Eight-byte integer support is an espe-
cially useful improvement from netCDF3. All NCO operators support these types, e.g.,
ncks copies and prints them, ncra averages them, and ncap2 processes algebraic scripts
with them. ncks prints compression information, if any, to screen.

NCO version 3.9.1 (June, 2007) added support for netCDF4 Lempel-Ziv deflation.
Lempel-Ziv deflation is a lossless compression technique. See Section 3.33 [Deflation],
page 121 for more details.

NCO version 3.9.9 (June, 2009) added support for netCDF4 chunking in ncks and
ncecat. NCO version 4.0.4 (September, 2010) completed support for netCDF4 chunking in
the remaining operators. See Section 3.31 [Chunking], page 104 for more details.

6 The Hierarchical Data Format, or HDF, is another self-describing data format similar to, but more
elaborate than, netCDF. HDF comes in two flavors, HDF4 and HDF5. Often people use the shorthand
HDF to refer to the older format HDF4. People almost always use HDF5 to refer to HDF5.

" One must link the NCO code to the HDF4 MFHDF library instead of the usual netCDF library. Apparently
‘MF’ stands for Multi-file not for Mike Folk. In any case, until about 2007 the MFHDF library only
supported netCDF2 calls. Most people will never again install NCO 1.2.x and so will never use NCO to
write HDF4 files. It is simply too much trouble.

http://hdfgroup.org
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4

Chapter 1: Introduction 13

NCO version 4.2.2 (October, 2012) added support for netCDF4 groups in ncks and
ncecat. Group support for these operators was complete (e.g., regular expressions to select
groups and Group Path Editing) as of NCO version 4.2.6 (March, 2013). See Section 3.14
[Group Path Editing], page 53 for more details. Group support for all other operators was
finished in the NCO version 4.3.x series completed in December, 2013.

Support for netCDF4 in the first arithmetic operator, ncbo, was introduced in NCO
version 4.3.0 (March, 2013). NCO version 4.3.1 (May, 2013) completed this support and
introduced the first example of automatic group broadcasting. See Section 4.3 [ncbo netCDF
Binary Operator|, page 223 for more details.

netCDF4-enabled NCO handles netCDF3 files without change. In addition, it automag-
ically handles netCDF4 (HDF5) files: If you feed NCO netCDF3 files, it produces netCDF3
output. If you feed NCO netCDF4 files, it produces netCDF4 output. Use the handy-dandy
‘-4’ switch to request netCDF4 output from netCDF3 input, i.e., to convert netCDF3 to
netCDF4. See Section 3.10 [File Formats and Conversion|, page 42 for more details.

When linked to a netCDF library that was built with HDF4 support®, NCO automatically
supports reading HDF4 files and writing them as netCDF3/netCDF4/HDF5 files. NCO can
only write through the netCDF API, which can only write netCDF3/netCDF4/HDF5 files.
So NCO can read HDF4 files, perform manipulations and calculations, and then it must
write the results in netCDF format.

NCO support for HDF4 has been quite functional since December, 2013. For best results
install NCO versions 4.4.0 or later on top of netCDF versions 4.3.1 or later. Getting to this
point has been an iterative effort where Unidata improved netCDF library capabilities in
response to our requests. NCO versions 4.3.6 and earlier do not explicitly support HDF4,
yet should work with HDF4 if compiled with a version of netCDF (4.3.2 or later?) that does
not unexpectedly die when probing HDF4 files with standard netCDF calls. NCO versions
4.3.7-4.3.9 (October-December, 2013) use a special flag to circumvent netCDF HDF4 issues.
The user must tell these versions of NCO that an input file is HDF4 format by using the
‘--hdf4’ switch.

When compiled with netCDF version 4.3.1 (20140116) or later, NCO versions 4.4.0 (Jan-
uary, 2014) and later more gracefully handle HDF4 files. In particular, the ‘--hdf4’ switch
is obsolete. Current versions of NCO use netCDF to determine automatically whether
the underlying file is HDF4, and then take appropriate precautions to avoid netCDF4 API
calls that fail when applied to HDF4 files (e.g., nc_inq_var_chunking(), nc_ing_var_
deflate()). When compiled with netCDF version 4.3.2 (20140423) or earlier, NCO will
report that chunking and deflation properties of HDF4 files as HDF4_UNKNOWN, because de-
termining those properties was impossible. When compiled with netCDF version 4.3.3-rc2
(20140925) or later, NCO versions 4.4.6 (October, 2014) and later fully support chunking
and deflation features of HDF4 files. Unfortunately, netCDF version 4.7.4 (20200327) intro-
duced a regression that breaks this functionality for all NCO versions until we first noticed
the regression a year later implemented a workaround to restore this functionality as of
4.9.9-alpha02 (20210327). The ‘--hdf4’ switch is supported (for backwards compatibility)
yet redundant (i.e., does no harm) with current versions of NCO and netCDF.

8 The procedure for doing this is documented at http://www.unidata.ucar.edu/software/netcdf/docs/
build_hdf4.html.

http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html
http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

14 NCO 5.0.1 User Guide

Converting HDF4 files to netCDF: Since NCO reads HDF4 files natively, it is now easy
to convert HDF4 files to netCDF files directly, e.g.,

ncks fl1.hdf fl.nc # Convert HDF4->netCDF4 (NCO 4.4.0+, netCDF 4.3.1+4)
ncks —--hdf4 f1.hdf fl.nc # Convert HDF4->netCDF4 (NCO 4.3.7-4.3.9)

The most efficient and accurate way to convert HDF4 data to netCDF format is to
convert to netCDF4 using NCO as above. Many HDF4 producers (NASA!) love to use
netCDF4 types, e.g., unsigned bytes, so this procedure is the most typical. Conversion of
HDF4 to netCDF4 as above suffices when the data will only be processed by NCO and other
netCDF4-aware tools.

However, many tools are not fully netCDF4-aware, and so conversion to netCDF3 may
be desirable. Obtaining any netCDF file from an HDF4 is easy:

ncks -3 fl.hdf fl.nc # HDF4->netCDF3 (NCO 4.4.0+, netCDF 4.3.1+)
ncks -4 f1.hdf fl.nc # HDF4->netCDF4 (NCO 4.4.0+, netCDF 4.3.1+)
ncks -6 fl.hdf fl.nc # HDF4->netCDF3 64-bit (NCO 4.4.0+, ...)
ncks -7 -L 1 fl.hdf fl.nc # HDF4->netCDF4 classic (NCO 4.4.0+, ...)

ncks --hdf4 -3 fl.hdf fl.nc # HDF4->netCDF3 (netCDF 4.3.0-)
ncks —--hdf4 -4 f1.hdf fl.nc # HDF4->netCDF4 (netCDF 4.3.0-)
ncks --hdf4 -6 fl.hdf fl.nc # HDF4->netCDF3 64-bit (netCDF 4.3.0-)
ncks --hdf4 -7 f1.hdf fl.nc # HDF4->netCDF4 classic (netCDF 4.3.0-)

As of NCO version 4.4.0 (January, 2014), these commands work even when the HDF4
file contains netCDF4 atomic types (e.g., unsigned bytes, 64-bit integers) because NCO can
autoconvert everything to atomic types supported by netCDF3°.

As of NCO version 4.4.4 (May, 2014) both ncl_convert2nc and NCO have built-in,
automatic workarounds to handle element names that contain characters that are legal in
HDF though are illegal in netCDF. For example, slashes and leading special characters
are are legal in HDF and illegal in netCDF element (i.e., group, variable, dimension, and
attribute) names. NCO converts these forbidden characters to underscores, and retains the

original names of variables in automatically produced attributes named hdf_name’.

Finally, in February 2014, we learned that the HDF group has a project called H4CF
(described here) whose goal is to make HDF4 files accessible to CF tools and conventions.

9 Prior to NCO version 4.4.0 (January, 2014), we recommended the ncl_convert2nc tool to convert HDF
to netCDF3 when both these are true: 1. You must have netCDF3 and 2. the HDF file contains netCDF4
atomic types. More recent versions of NCO handle this problem fine, and include other advantages so we
no longer recommend ncl_convert2nc because ncks is faster and more space-efficient. Both automati-
cally convert netCDF4 types to netCDF3 types, yet ncl_convert2nc cannot produce full netCDF4 files.
In contrast, ncks will happily convert HDF straight to netCDF4 files with netCDF4 types. Hence ncks
can and does preserve the variable types. Unsigned bytes stay unsigned bytes. 64-bit integers stay 64-bit
integers. Strings stay strings. Hence, ncks conversions often result in smaller files than ncl_convert2nc
conversions. Another tool useful for converting netCDF3 to netCDF4 files, and whose functionality is,
we think, also matched or exceeded by ncks, is the Python script nc3tonc4 by Jeff Whitaker.

Two real-world examples: NCO translates the NASA CERES dimension (FOV) Footprints to _FOV_
Footprints, and Cloud & Aerosol, Cloud Only, Clear Sky w/Aerosol, and Clear Sky (yes, the dimen-
sion name includes whitespace and special characters) to Cloud & Aerosol, Cloud Only, Clear Sky w_
Aerosol, and Clear Sky ncl_convert2nc makes the element name netCDF-safe in a slightly different
manner, and also stores the original name in the hdf_name attribute.

10

http://hdfeos.org/software/h4cflib.php

Chapter 1: Introduction 15

Their project includes a tool named h4tonccf that converts HDF4 files to netCDF3 or
netCDF4 files. We are not yet sure what advantages or features hdtonccf has that are not
in NCO, though we suspect both methods have their own advantages. Corrections welcome.

As of 2012, netCDF4 is relatively stable software. Problems with netCDF4 and HDF
libraries have mainly been fixed. Binary NCO distributions shipped as RPMs and as debs
have used the netCDF4 library since 2010 and 2011, respectively.

One must often build NCO from source to obtain netCDF4 support. Typically, one
specifies the root of the netCDF4 installation directory. Do this with the NETCDF4_R0OOT
variable. Then use your preferred NCO build mechanism, e.g.,

export NETCDF4_R0O0T=/usr/local/netcdf4 # Set netCDF4 location
cd “/nco;./configure --enable-netcdf4 # Configure mechanism -or-
cd “/nco/bld;./make NETCDF4=Y allinone # 01d Makefile mechanism

We carefully track the netCDF4 releases, and keep the netCDF4 atomic type support
and other features working. Our long term goal is to utilize more of the extensive new
netCDF4 feature set. The next major netCDF4 feature we are likely to utilize is parallel
I/O. We will enable this in the MPI netCDF operators.

1.7 Help Requests and Bug Reports

We generally receive three categories of mail from users: help requests, bug reports, and
feature requests. Notes saying the equivalent of “Hey, NCO continues to work great and it
saves me more time everyday than it took to write this note” are a distant fourth.

There is a different protocol for each type of request. The preferred etiquette for all
communications is via NCO Project Forums. Do not contact project members via personal
e-mail unless your request comes with money or you have damaging information about our
personal lives. Please use the Forums—they preserve a record of the questions and answers
so that others can learn from our exchange. Also, since NCO is both volunteer-driven and
government-funded, this record helps us provide program officers with information they
need to evaluate our project.

Before posting to the NCO forums described below, you might first register your name
and email address with SourceForge.net or else all of your postings will be attributed to
nobody. Once registered you may choose to monitor any forum and to receive (or not) email
when there are any postings including responses to your questions. We usually reply to the
forum message, not to the original poster.

If you want us to include a new feature in NCO, please consider implementing the feature
yourself and sending us the patch. If that is beyond your ken, then send a note to the NCO
Discussion forum.

Read the manual before reporting a bug or posting a help request. Sending questions
whose answers are not in the manual is the best way to motivate us to write more docu-
mentation. We would also like to accentuate the contrapositive of this statement. If you
think you have found a real bug the most helpful thing you can do is simplify the problem to
a manageable size and then report it. The first thing to do is to make sure you are running
the latest publicly released version of NCO.

https://sf.net/account/register.php
http://sf.net/p/nco/discussion/9829
http://sf.net/p/nco/discussion/9829

16 NCO 5.0.1 User Guide

Once you have read the manual, if you are still unable to get NCO to perform a docu-
mented function, submit a help request. Follow the same procedure as described below for
reporting bugs (after all, it might be a bug). That is, describe what you are trying to do,
and include the complete commands (run with ‘-D 5’), error messages, and version of NCO
(with ‘-r’). Some commands behave differently depending on the exact order and rank of
dimensions in the pertinent variables. In such cases we need you to provide that metadata,
e.g., the text results of ‘ncks -m’ on your input and/or output files. Post your help request
to the NCO Help forum.

If you think you used the right command when NCO misbehaves, then you might have
found a bug. Incorrect numerical answers are the highest priority. We usually fix those
within one or two days. Core dumps and sementation violations receive lower priority.
They are always fixed, eventually.

How do you simplify a problem that reveal a bug? Cut out extraneous variables, di-
mensions, and metadata from the offending files and re-run the command until it no longer
breaks. Then back up one step and report the problem. Usually the file(s) will be very
small, i.e., one variable with one or two small dimensions ought to suffice. Run the op-
erator with ‘-r’ and then run the command with ‘-D 5’ to increase the verbosity of the
debugging output. It is very important that your report contain the exact error messages
and compile-time environment. Include a copy of your sample input file, or place one on a
publicly accessible location, of the file(s). If you are sure it is a bug, post the full report to
the NCO Project buglist. Otherwise post all the information to NCO Help forum.

Build failures count as bugs. Our limited machine access means we cannot fix all build
failures. The information we need to diagnose, and often fix, build failures are the three files
output by GNU build tools, nco.config.log.${GNU_TRP}.foo, nco.configure.${GNU_
TRP}.foo, and nco.make.${GNU_TRP}.foo. The file configure.eg shows how to produce
these files. Here ${GNU_TRP} is the “GNU architecture triplet”, the chip-vendor-OS string
returned by config.guess. Please send us your improvements to the examples supplied in
configure.eg. The regressions archive at http://dust.ess.uci.edu/nco/rgr contains
the build output from our standard test systems. You may find you can solve the build
problem yourself by examining the differences between these files and your own.

http://sf.net/p/nco/discussion/9830
http://sf.net/p/nco/bugs
http://sf.net/p/nco/discussion/9830
http://dust.ess.uci.edu/nco/rgr

Chapter 2: Operator Strategies 17

2 Operator Strategies

2.1 Philosophy

The main design goal is command line operators which perform useful, scriptable operations
on netCDF files. Many scientists work with models and observations which produce too
much data to analyze in tabular format. Thus, it is often natural to reduce and massage
this raw or primary level data into summary, or second level data, e.g., temporal or spatial
averages. These second level data may become the inputs to graphical and statistical pack-
ages, and are often more suitable for archival and dissemination to the scientific community.
NCO performs a suite of operations useful in manipulating data from the primary to the
second level state. Higher level interpretive languages (e.g., IDL, Yorick, Matlab, NCL, Perl,
Python), and lower level compiled languages (e.g., C, Fortran) can always perform any task
performed by NCO, but often with more overhead. NCO, on the other hand, is limited to
a much smaller set of arithmetic and metadata operations than these full blown languages.

Another goal has been to implement enough command line switches so that frequently
used sequences of these operators can be executed from a shell script or batch file. Finally,
NCO was written to consume the absolute minimum amount of system memory required to
perform a given job. The arithmetic operators are extremely efficient; their exact memory

/]

usage is detailed in Section 2.9 [Memory Requirements|, page 24.

2.2 Climate Model Paradigm

NCO was developed at NCAR to aid analysis and manipulation of datasets produced by
General Circulation Models (GCMs). GCM datasets share many features with other gridded
scientific datasets and so provide a useful paradigm for the explication of the NCO operator
set. Examples in this manual use a GCM paradigm because latitude, longitude, time,
temperature and other fields related to our natural environment are as easy to visualize for
the layman as the expert.

2.3 Temporary Output Files

NCO operators are designed to be reasonably fault tolerant, so that a system failure or user-
abort of the operation (e.g., with C-c) does not cause loss of data. The user-specified output-
file is only created upon successful completion of the operation!. This is accomplished by
performing all operations in a temporary copy of output-file. The name of the temporary
output file is constructed by appending .pid<process ID>.<operator name>.tmp to the
user-specified output-file name. When the operator completes its task with no fatal errors,
the temporary output file is moved to the user-specified output-file. This imbues the pro-
cess with fault-tolerance since fatal error (e.g., disk space fills up) affect only the temporary
output file, leaving the final output file not created if it did not already exist. Note the con-
struction of a temporary output file uses more disk space than just overwriting existing files
“in place” (because there may be two copies of the same file on disk until the NCO operation
successfully concludes and the temporary output file overwrites the existing output-file).

! The ncrename and ncatted operators are exceptions to this rule. See Section 4.13 [ncrename netCDF
Renamer], page 339.

18 NCO 5.0.1 User Guide

Also, note this feature increases the execution time of the operator by approximately the
time it takes to copy the output-file?>. Finally, note this fault-tolerant feature allows the
output-file to be the same as the input-file without any danger of “overlap”.

Over time many “power users” have requested a way to turn-off the fault-tolerance safety
feature that automatically creates a temporary file. Often these users build and execute
production data analysis scripts that are repeated frequently on large datasets. Obviating
an extra file write can then conserve significant disk space and time. For this purpose NCO
has, since version 4.2.1 in August, 2012, made configurable the controls over temporary
file creation. The ‘--wrt_tmp_f1’ and equivalent ‘--write_tmp_f1’ switches ensure NCO
writes output to an intermediate temporary file. This is and has always been the default
behavior so there is currently no need to specify these switches. However, the default may
change some day, especially since writing to RAM disks (see Section 3.36 [RAM disks],
page 124) may some day become the default. The ‘--no_tmp_f1’ switch causes NCO to
write directly to the final output file instead of to an intermediate temporary file. “Power
users” may wish to invoke this switch to increase performance (i.e., reduce wallclock time)
when manipulating large files. When eschewing temporary files, users may forsake the
ability to have the same name for both output-file and input-file since, as described above,
the temporary file prevented overlap issues. However, if the user creates the output file in
RAM (see Section 3.36 [RAM disks|, page 124) then it is still possible to have the same
name for both output-file and input-file.

ncks in.nc out.nc # Default: create out.pid.tmp.nc then move to out.nc
ncks --wrt_tmp_fl in.nc out.nc # Same as default

ncks --no_tmp_fl in.nc out.nc # Create out.nc directly on disk

ncks --no_tmp_fl in.nc in.nc # ERROR-prone! Overwrite in.nc with itself
ncks --create_ram --no_tmp_fl in.nc in.nc # Create in RAM, write to disk
ncks --open_ram --no_tmp_fl in.nc in.nc # Read into RAM, write to disk

There is no reason to expect the fourth example to work. The behavior of overwriting a
file while reading from the same file is undefined, much as is the shell command ‘cat foo
> foo’. Although it may “work” in some cases, it is unreliable. One way around this is
to use ‘--create_ram’ so that the output file is not written to disk until the input file is
closed, See Section 3.36 [RAM disks|, page 124. However, as of 20130328, the behavior of
the ‘--create_ram’ and ‘--open_ram’ examples has not been thoroughly tested.

The NCO authors have seen compelling use cases for utilizing the RAM switches, though
not (yet) for combining them with ‘~-no_tmp_£f1’. NCO implements both options because
they are largely independent of eachother. It is up to “power users” to discover which best
fit their needs. We welcome accounts of your experiences posted to the forums.

Other safeguards exist to protect the user from inadvertently overwriting data. If the
output-file specified for a command is a pre-existing file, then the operator will prompt
the user whether to overwrite (erase) the existing output-file, attempt to append to it, or
abort the operation. However, in processing large amounts of data, too many interactive
questions slows productivity. Therefore NCO also implements two ways to override its own
safety features, the ‘-0’ and ‘-A’ switches. Specifying ‘-0’ tells the operator to overwrite
any existing output-file without prompting the user interactively. Specifying ‘-A’ tells the

2 The OS-specific system move command is used. This is mv for UNIX, and move for Windows.

Chapter 2: Operator Strategies 19

operator to attempt to append to any existing output-file without prompting the user inter-
actively. These switches are useful in batch environments because they suppress interactive
keyboard input.

2.4 Appending Variables

Adding variables from one file to another is often desirable. This is referred to as appending,
although some prefer the terminology merging® or pasting. Appending is often confused
with what NCO calls concatenation. In NCO, concatenation refers to splicing a variable
along the record dimension. The length along the record dimension of the output is the
sum of the lengths of the input files. Appending, on the other hand, refers to copying a
variable from one file to another file which may or may not already contain the variable?.
NCO can append or concatenate just one variable, or all the variables in a file at the same
time.

In this sense, ncks can append variables from one file to another file. This capability is
invoked by naming two files on the command line, input-file and output-file. When output-
file already exists, the user is prompted whether to overwrite, append/replace, or exit from
the command. Selecting overwrite tells the operator to erase the existing output-file and
replace it with the results of the operation. Selecting exit causes the operator to exit—the
output-file will not be touched in this case. Selecting append/replace causes the operator
to attempt to place the results of the operation in the existing output-file, See Section 4.8
[ncks netCDF Kitchen Sink], page 261.

The simplest way to create the union of two files is
ncks -A f1_1.nc f1_2.nc

This puts the contents of £1_1.nc into £1_2.nc. The ‘-A’ is optional. On output,
f1_2.nc is the union of the input files, regardless of whether they share dimensions and
variables, or are completely disjoint. The append fails if the input files have differently
named record dimensions (since netCDF supports only one), or have dimensions of the
same name but different sizes.

2.5 Simple Arithmetic and Interpolation

Users comfortable with NCO semantics may find it easier to perform some simple mathe-
matical operations in NCO rather than higher level languages. ncbo (see Section 4.3 [ncho
netCDF Binary Operator|, page 223) does file addition, subtraction, multiplication, divi-
sion, and broadcasting. It even does group broadcasting. ncflint (see Section 4.7 [ncflint
netCDF File Interpolator], page 258) does file addition, subtraction, multiplication and in-
terpolation. Sequences of these commands can accomplish simple yet powerful operations
from the command line.

3 The terminology merging is reserved for an (unwritten) operator which replaces hyperslabs of a variable
in one file with hyperslabs of the same variable from another file

4 Yes, the terminology is confusing. By all means mail me if you think of a better nomenclature. Should
NCO use paste instead of append?

20 NCO 5.0.1 User Guide

2.6 Statistics vs. Concatenation

The most frequently used operators of NCO are probably the statisticians (i.e., tools that do
statistics) and concatenators. Because there are so many types of statistics like averaging
(e.g., across files, within a file, over the record dimension, over other dimensions, with or
without weights and masks) and of concatenating (across files, along the record dimension,
along other dimensions), there are currently no fewer than five operators which tackle these
two purposes: ncra, nces, ncwa, ncrcat, and ncecat. These operators do share many
capabilities®, though each has its unique specialty. Two of these operators, ncrcat and
ncecat, concatenate hyperslabs across files. The other two operators, ncra and nces,
compute statistics across (and/or within) files®. First, let’s describe the concatenators,
then the statistics tools.

2.6.1 Concatenators ncrcat and ncecat

Joining together independent files along a common record dimension is called concatena-
tion. ncrcat is designed for concatenating record variables, while ncecat is designed for
concatenating fixed length variables. Consider five files, 85.nc, 86.nc, ... 89.nc each con-
taining a year’s worth of data. Say you wish to create from them a single file, 85689.nc
containing all the data, i.e., spanning all five years. If the annual files make use of the
same record variable, then ncrcat will do the job nicely with, e.g., ncrcat 87.nc 8589.nc.
The number of records in the input files is arbitrary and can vary from file to file. See
Section 4.11 [ncrcat netCDF Record Concatenator], page 300, for a complete description of
ncrcat.

However, suppose the annual files have no record variable, and thus their data are all
fixed length. For example, the files may not be conceptually sequential, but rather members
of the same group, or ensemble. Members of an ensemble may have no reason to contain
a record dimension. ncecat will create a new record dimension (named record by default)
with which to glue together the individual files into the single ensemble file. If ncecat is
used on files which contain an existing record dimension, that record dimension is converted
to a fixed-length dimension of the same name and a new record dimension (named record)
is created. Consider five realizations, 85a.nc, 85b.nc, ... 85e.nc of 1985 predictions from
the same climate model. Then ncecat 857.nc 85_ens.nc glues together the individual
realizations into the single file, 85_ens.nc. If an input variable was dimensioned [lat,lon],
it will have dimensions [record,lat,lon] in the output file. A restriction of ncecat is that
the hyperslabs of the processed variables must be the same from file to file. Normally this
means all the input files are the same size, and contain data on different realizations of the
same variables. See Section 4.5 [ncecat netCDF Ensemble Concatenator|, page 251, for a
complete description of ncecat.

ncpdq makes it possible to concatenate files along any dimension, not just the record
dimension. First, use ncpdq to convert the dimension to be concatenated (i.e., extended

5 Currently nces and ncrcat are symbolically linked to the ncra executable, which behaves slightly differ-
ently based on its invocation name (i.e., ‘argv[0]’). These three operators share the same source code,
and merely have different inner loops.

The third averaging operator, ncwa, is the most sophisticated averager in NCO. However, ncwa is in
a different class than ncra and nces because it operates on a single file per invocation (as opposed to
multiple files). On that single file, however, ncwa provides a richer set of averaging options—including
weighting, masking, and broadcasting.

Chapter 2: Operator Strategies 21

with data from other files) into the record dimension. Second, use ncrcat to concatenate
these files. Finally, if desirable, use ncpdq to revert to the original dimensionality. As
a concrete example, say that files x_01.nc, x_02.nc, ... x_10.nc contain time-evolving
datasets from spatially adjacent regions. The time and spatial coordinates are time and x,
respectively. Initially the record dimension is time. Our goal is to create a single file that
contains joins all the spatially adjacent regions into one single time-evolving dataset.

for idx in 01 02 03 04 05 06 07 08 09 10; do # Bourne Shell
ncpdg -a x,time x_${idx}.nc foo_${idx}.nc # Make x record dimension
done
ncrcat foo_77.nc out.nc # Concatenate along x
ncpdq -a time,x out.nc out.nc # Revert to time as record dimension

Note that ncrcat will not concatenate fixed-length variables, whereas ncecat concate-
nates both fixed-length and record variables along a new record variable. To conserve system
memory, use ncrcat where possible.

2.6.2 Averagers nces, ncra, and ncwa

The differences between the averagers ncra and nces are analogous to the differences be-
tween the concatenators. ncra is designed for averaging record variables from at least one
file, while nces is designed for averaging fixed length variables from multiple files. ncra per-
forms a simple arithmetic average over the record dimension of all the input files, with each
record having an equal weight in the average. nces performs a simple arithmetic average
of all the input files, with each file having an equal weight in the average. Note that ncra
cannot average fixed-length variables, but nces can average both fixed-length and record
variables. To conserve system memory, use ncra rather than nces where possible (e.g., if
each input-file is one record long). The file output from nces will have the same dimensions
(meaning dimension names as well as sizes) as the input hyperslabs (see Section 4.6 [nces
netCDF Ensemble Statistics|, page 254, for a complete description of nces). The file out-
put from ncra will have the same dimensions as the input hyperslabs except for the record
dimension, which will have a size of 1 (see Section 4.10 [ncra netCDF Record Averager],
page 296, for a complete description of ncra).

2.6.3 Interpolator ncflint

ncflint can interpolate data between or two files. Since no other operators have this ability,
the description of interpolation is given fully on the ncflint reference page (see Section 4.7
[ncflint netCDF File Interpolator|, page 258). Note that this capability also allows ncflint
to linearly rescale any data in a netCDF file, e.g., to convert between differing units.

2.7 Large Numbers of Files

Occasionally one desires to digest (i.e., concatenate or average) hundreds or thousands of
input files. Unfortunately, data archives (e.g., NASA EOSDIS) may not name netCDF files
in a format understood by the ‘-n loop’ switch (see Section 3.6 [Specifying Input Files],
page 34) that automagically generates arbitrary numbers of input filenames. The ‘-n loop’
switch has the virtue of being concise, and of minimizing the command line. This helps keeps
output file small since the command line is stored as metadata in the history attribute (see
Section 3.43 [History Attribute|, page 143). However, the ‘-n loop’ switch is useless when

22 NCO 5.0.1 User Guide

there is no simple, arithmetic pattern to the input filenames (e.g., h00001.nc, h00002.nc,
... h90210.nc). Moreover, filename globbing does not work when the input files are too
numerous or their names are too lengthy (when strung together as a single argument) to be
passed by the calling shell to the NCO operator’. When this occurs, the ANSI C-standard
argc-argv method of passing arguments from the calling shell to a C-program (i.e., an
NCO operator) breaks down. There are (at least) three alternative methods of specifying
the input filenames to NCO in environment-limited situations.

The recommended method for sending very large numbers (hundreds or more, typically)
of input filenames to the multi-file operators is to pass the filenames with the UNIX standard
input feature, aka stdin:

Pipe large numbers of filenames to stdin
/bin/1ls | grep ${CASEID}_’...... ’.nc | ncecat -o foo.nc

This method avoids all constraints on command line size imposed by the operating
system. A drawback to this method is that the history attribute (see Section 3.43 [History
Attribute], page 143) does not record the name of any input files since the names were
not passed as positional arguments on the command line. This makes it difficult later to
determine the data provenance. To remedy this situation, multi-file operators store the
number of input files in the nco_input_file_number global attribute and the input file list
itself in the nco_input_file_list global attribute (see Section 3.44 [File List Attributes],
page 144). Although this does not preserve the exact command used to generate the file,
it does retains all the information required to reconstruct the command and determine the
data provenance.

A second option is to use the UNIX xargs command. This simple example selects as
input to xargs all the filenames in the current directory that match a given pattern. For
illustration, consider a user trying to average millions of files which each have a six character
filename. If the shell buffer cannot hold the results of the corresponding globbing operator,

pattern as an extended regular expression, \.nc (see Section 3.12 [Subsetting Files],
page 48). We use grep to filter the directory listing for this pattern and to pipe the results
to xargs which, in turn, passes the matching filenames to an NCO multi-file operator, e.g.,
ncecat.

Use xargs to transfer filenames on the command line
/bin/ls | grep ${CASEID}_’...... ’.nc | xargs -x ncecat -o foo.nc

The single quotes protect the only sensitive parts of the extended regular expression
(the grep argument), and allow shell interpolation (the ${CASEID} variable substitution)
to proceed unhindered on the rest of the command. xargs uses the UNIX pipe feature
to append the suitably filtered input file list to the end of the ncecat command options.
The -o foo.nc switch ensures that the input files supplied by xargs are not confused with
the output file name. xargs does, unfortunately, have its own limit (usually about 20,000
characters) on the size of command lines it can pass. Give xargs the ‘-x’ switch to ensure it

" The exact length which exceeds the operating system internal limit for command line lengths varies
across OSs and shells. GNU bash may not have any arbitrary fixed limits to the size of command
line arguments. Many OSs cannot handle command line arguments (including results of file globbing)
exceeding 4096 characters.

Chapter 2: Operator Strategies 23

dies if it reaches this internal limit. When this occurs, use either the stdin method above,
or the symbolic link presented next.

Even when its internal limits have not been reached, the xargs technique may not
be sophisticated enough to handle all situations. A full scripting language like Perl or
Python can handle any level of complexity of filtering input filenames, and any number
of filenames. The technique of last resort is to write a script that creates symbolic links
between the irregular input filenames and a set of regular, arithmetic filenames that the ‘-n
loop’ switch understands. For example, the following Perl script creates a monotonically
enumerated symbolic link to up to one million .nc files in a directory. If there are 999,999
netCDF files present, the links are named 000001 .nc to 999999 .nc:

Create enumerated symbolic links

/bin/1ls | grep \.nc | perl -e \

’$idx=1;while (<STDIN>){chop;symlink $_,sprintf("%06d.nc",$idx++);}’
ncecat -n 999999,6,1 000001.nc foo.nc

Remove symbolic links when finished

The ‘-n loop’ option tells the NCO operator to automatically generate the filnames of
the symbolic links. This circumvents any OS and shell limits on command-line size. The
symbolic links are easily removed once NCO is finished. One drawback to this method is that
the history attribute (see Section 3.43 [History Attribute], page 143) retains the filename
list of the symbolic links, rather than the data files themselves. This makes it difficult to
determine the data provenance at a later date.

2.8 Large Datasets

Large datasets are those files that are comparable in size to the amount of random access
memory (RAM) in your computer. Many users of NCO work with files larger than 100 MB.
Files this large not only push the current edge of storage technology, they present special
problems for programs which attempt to access the entire file at once, such as nces and
ncecat. If you work with a 300 MB files on a machine with only 32 MB of memory then you
will need large amounts of swap space (virtual memory on disk) and NCO will work slowly,
or even fail. There is no easy solution for this. The best strategy is to work on a machine
with sufficient amounts of memory and swap space. Since about 2004, many users have
begun to produce or analyze files exceeding 2 GB in size. These users should familiarize
themselves with NCO’s Large File Support (LFS) capabilities (see Section 3.11 [Large File
Support|, page 47). The next section will increase your familiarity with NCO’s memory
requirements. With this knowledge you may re-design your data reduction approach to
divide the problem into pieces solvable in memory-limited situations.

If your local machine has problems working with large files, try running NCO from a
more powerful machine, such as a network server. If you get a memory-related core dump
(e.g., ‘Error exit (core dumped)’) on a GNU/Linux system, or the operation ends before
the entire output file is written, try increasing the process-available memory with ulimit:

ulimit -f unlimited

24 NCO 5.0.1 User Guide

This may solve constraints on clusters where sufficient hardware resources exist yet where
system administrators felt it wise to prevent any individual user from consuming too much
of resource. Certain machine architectures, e.g., Cray UNICOS, have special commands
which allow one to increase the amount of interactive memory. On Cray systems, try to
increase the available memory with the ilimit command.

The speed of the NCO operators also depends on file size. When processing large files
the operators may appear to hang, or do nothing, for large periods of time. In order to see
what the operator is actually doing, it is useful to activate a more verbose output mode.
This is accomplished by supplying a number greater than 0 to the ‘-D debug-level’ (or
‘~-debug-level’, or ‘--dbg_1v1’) switch. When the debug-level is non-zero, the operators
report their current status to the terminal through the stderr facility. Using ‘-D’ does
not slow the operators down. Choose a debug-level between 1 and 3 for most situations,
e.g., nces -D 2 85.nc 86.nc 8586.nc. A full description of how to estimate the actual
amount of memory the multi-file NCO operators consume is given in Section 2.9 [Memory
Requirements|, page 24.

2.9 Memory Requirements

Many people use NCO on gargantuan files which dwarf the memory available (free RAM
plus swap space) even on today’s powerful machines. These users want NCO to consume
the least memory possible so that their scripts do not have to tediously cut files into smaller
pieces that fit into memory. We commend these greedy users for pushing NCO to its limits!

This section describes the memory NCO requires during operation. The required memory
depends on the underlying algorithms, datatypes, and compression, if any. The description
below is the memory usage per thread. Users with shared memory machines may use
the threaded NCO operators (see Section 3.3 [OpenMP Threading], page 30). The peak
and sustained memory usage will scale accordingly, i.e., by the number of threads. In all
cases the memory use refers to the uncompressed size of the data. The netCDF4 library
automatically decompresses variables during reads. The filesize can easily belie the true size
of the uncompressed data. In other words, the usage below can be taken at face value for
netCDF3 datasets only. Chunking will also affect memory usage on netCDF4 operations.
Memory consumption patterns of all operators are similar, with the exception of ncap2.

2.9.1 Single and Multi-file Operators

The multi-file operators currently comprise the record operators, ncra and ncrcat, and
the ensemble operators, nces and ncecat. The record operators require much less memory
than the ensemble operators. This is because the record operators operate on one single
record (i.e., time-slice) at a time, whereas the ensemble operators retrieve the entire variable
into memory. Let MS be the peak sustained memory demand of an operator, F'T' be the
memory required to store the entire contents of all the variables to be processed in an
input file, F R be the memory required to store the entire contents of a single record of
each of the variables to be processed in an input file, VR be the memory required to store
a single record of the largest record variable to be processed in an input file, VT' be the
memory required to store the largest variable to be processed in an input file, VI be the
memory required to store the largest variable which is not processed, but is copied from
the initial file to the output file. All operators require M1 = VI during the initial copying

Chapter 2: Operator Strategies 25

of variables from the first input file to the output file. This is the initial (and transient)
memory demand. The sustained memory demand is that memory required by the operators
during the processing (i.e., averaging, concatenation) phase which lasts until all the input
files have been processed. The operators have the following memory requirements: ncrcat
requires M'S <= V R. ncecat requires M S <= VT'. ncrarequires MS = 2FR+V R. nces
requires M S = 2FT+VT. ncbo requires M S <= 3V T (both input variables and the output
variable). ncflint requires MS <= 3VT (both input variables and the output variable).
ncpdq requires M S <= 2VT (one input variable and the output variable). ncwa requires
MS <= 8VT (see below). Note that only variables that are processed, e.g., averaged,
concatenated, or differenced, contribute to M S. Variables that do not appear in the output
file (see Section 3.12 [Subsetting Files], page 48) are never read and contribute nothing to
the memory requirements.

Further note that some operators perform internal type-promotion on some variables
prior to arithmetic (see Section 3.40 [Type Conversion], page 133). For example, ncra,
nces, and ncwa all promote integer types to double-precision floating-point prior to arith-
metic, then perform the arithmetic, then demote back to the original integer type after
arithmetic. This preserves the on-disk storage type while obtaining the precision advan-
tages of double-precision floating-point arithmetic. Since version 4.3.6 (released in Septem-
ber, 2013), NCO also by default converts single-precision floating-point to double-precision
prior to arithmetic, which incurs the same RAM penalty. Hence, the sustained memory
required for integer variables and single-precision floats are two or four-times their on-disk,
uncompressed, unpacked sizes if they meet the rules for automatic internal promotion. Put
another way, disabling auto-promotion of single-precision variables (with ‘--f1t’) consid-
erably reduces the RAM footprint of arithmetic operators.

The ‘--open_ram’ switch (and switches that invoke it like ‘--ram_all’ and
‘--diskless_all’) incurs a RAM penalty. These switches cause each input file to be copied
to RAM upon opening. Hence any operator invoking these switches utilizes an additional
FT of RAM (i.e., M\S+ = FT). See Section 3.36 [RAM disks|, page 124 for further details.

ncwa consumes between two and eight times the memory of an NC_DOUBLE variable in
order to process it. Peak consumption occurs when storing simultaneously in memory one
input variable, one tally array, one input weight, one conformed/working weight, one weight
tally, one input mask, one conformed/working mask, and one output variable. NCO’s tally
arrays are of type C-type long, whose size is eight-bytes on all modern computers, the
same as NC_DOUBLE®. When invoked, the weighting and masking features contribute up to
three-eighths and two-eighths of these requirements apiece. If weights and masks are not
specified (i.e., no ‘-w’ or ‘-a’ options) then ncwa requirements drop to M.S <= 3VT (one
input variable, one tally array, and the output variable). The output variable is the same size
as the input variable when averaging only over a degenerate dimension. However, normally
the output variable is much smaller than the input, and is often a simple scalar, in which
case the memory requirements drop by 1VT since the output array requires essentially no
memory.

8 By contrast NC_INT and its deprecated synonym NC_LONG are only four-bytes. Perhaps this is one reason
why the NC_LONG token is deprecated.

26 NCO 5.0.1 User Guide

All of this is subject to the type promotion rules mentioned above. For example, ncwa
averaging a variable of type NC_FLOAT requires M S <= 16VT (rather than MS <= 8VT)
since all arrays are (at least temporarily) composed of eight-byte elements, twice the size of
the values on disk. Without mask or weights, the requirements for NC_FLOAT are M S <=
6VT (rather than MS <= 3VT as for NC_DOUBLE) due to temporary internal promotion
of both the input variable and the output variable to type NC_DOUBLE. The ‘--f1t’ option
that suppresses promotion reduces this to MS <= 4VT (the tally elements do not change
size), and to M S <= 3VT when the output array is a scalar.

The above memory requirements must be multiplied by the number of threads thr_nbr
(see Section 3.3 [OpenMP Threading], page 30). If this causes problems then reduce (with
‘-t thr_nbr’) the number of threads.

2.9.2 Memory for ncap?2

ncap? has unique memory requirements due its ability to process arbitrarily long scripts
of any complexity. All scripts acceptable to ncap2 are ultimately processed as a sequence
of binary or unary operations. ncap2 requires M S <= 2VT under most conditions. An
exception to this is when left hand casting (see Section 4.1.4 [Left hand casting], page 158)
is used to stretch the size of derived variables beyond the size of any input variables. Let
VC be the memory required to store the largest variable defined by left hand casting. In
this case, MS <=2V (.

ncap? scripts are complete dynamic and may be of arbitrary length. A script that
contains many thousands of operations, may uncover a slow memory leak even though each
single operation consumes little additional memory. Memory leaks are usually identifiable
by their memory usage signature. Leaks cause peak memory usage to increase monotonically
with time regardless of script complexity. Slow leaks are very difficult to find. Sometimes a
malloc() (or new[]) failure is the only noticeable clue to their existence. If you have good
reasons to believe that a memory allocation failure is ultimately due to an NCO memory
leak (rather than inadequate RAM on your system), then we would be very interested in
receiving a detailed bug report.

2.10 Performance

An overview of NCO capabilities as of about 2006 is in Zender, C. S. (2008), “Analysis of Self-
describing Gridded Geoscience Data with netCDF Operators (NCO)”, Environ. Modell.
Softw., doi:10.1016/j.envsoft.2008.03.004. This paper is also available at http://dust.
ess.uci.edu/ppr/ppr_Zen08.pdf.

NCO performance and scaling for arithmetic operations is described in Zender, C.
S., and H. J. Mangalam (2007), “Scaling Properties of Common Statistical Opera-
tors for Gridded Datasets”, Int. J. High Perform. Comput. Appl., 21(4), 485-498,
doi:10.1177/1094342007083802. This paper is also available at http://dust.ess.uci.
edu/ppr/ppr_ZeMO7 .pdf.

It is helpful to be aware of the aspects of NCO design that can limit its performance:

1. No data buffering is performed during nc_get_var and nc_put_var operations. Hy-
perslabs too large to hold in core memory will suffer substantial performance penalties
because of this.

http://dust.ess.uci.edu/ppr/ppr_Zen08.pdf
http://dust.ess.uci.edu/ppr/ppr_Zen08.pdf
http://dust.ess.uci.edu/ppr/ppr_ZeM07.pdf
http://dust.ess.uci.edu/ppr/ppr_ZeM07.pdf

Chapter 2: Operator Strategies 27

2. Since coordinate variables are assumed to be monotonic, the search for bracketing the
user-specified limits should employ a quicker algorithm, like bisection, than the two-
sided incremental search currently implemented.

3. C_format, FORTRAN_format, signedness, scale_format and add_offset attributes are
ignored by ncks when printing variables to screen.

4. In the late 1990s it was discovered that some random access operations on large files
on certain architectures (e.g., UNICOS) were much slower with NCO than with similar
operations performed using languages that bypass the netCDF interface (e.g., Yorick).
This may have been a penalty of unnecessary byte-swapping in the netCDF interface.
It is unclear whether such problems exist in present day (2007) netCDF/NCO environ-
ments, where unnecessary byte-swapping has been reduced or eliminated.

Chapter 3: Shared Features 29

3 Shared Features

Many features have been implemented in more than one operator and are described here
for brevity. The description of each feature is preceded by a box listing the operators for
which the feature is implemented. Command line switches for a given feature are consistent
across all operators wherever possible. If no “key switches” are listed for a feature, then
that particular feature is automatic and cannot be controlled by the user.

3.1 Internationalization

Availability: All operators

NCO support for internationalization of textual input and output (e.g., Warning mes-
sages) is nascent. We introduced the first foreign language string catalogues (French and
Spanish) in 2004, yet did not activate these in distributions because the catalogues were
nearly empty. We seek volunteers to populate our templates with translations for their
favorite languages.

3.2 Metadata Optimization

Availability: All operators
Short options: None
Long options: ‘--hdr_pad’, ‘--header_pad’

NCO supports padding headers to improve the speed of future metadata operations. Use
the ‘--hdr_pad’ and ‘--header_pad’ switches to request that hdr_pad bytes be inserted
into the metadata section of the output file. There is little downside to padding a header
with kilobyte of space, since subsequent manipulation of the file will annotate the history
attribute with all commands, let alone any explicit metadata additions with ncatted.

ncks --hdr_pad=1000 in.nc out.nc # Pad header with 1 kB space
ncks --hdr_pad=10000 in.nc out.nc # Pad header with 10 kB space

Future metadata expansions will not incur the netCDF3 performance penalty of copying
the entire output file unless the expansion exceeds the amount of header padding. This
can be beneficial when it is known that some metadata will be added at a future date.
The operators that benefit most from judicious use of header padding are ncatted and
ncrenane, since they only alter metadata.

This optimization exploits the netCDF library nc__enddef () function. This function
behaves differently with different storage formats. It will improve speed of future metadata
expansion with CLASSIC and 64bit netCDF files, though not necessarily with NETCDF4
files, i.e., those created by the netCDF interface to the HDF5 library (see Section 3.10 [File
Formats and Conversion|, page 42). netCDF3 formats use a simple sequential ordering that
requires copying the file if the size of new metadata exceeds the available padding. netCDF4

30 NCO 5.0.1 User Guide

files use internal file pointers that allow flexibility at inserting and removing data without
necessitating copying the whole file.

3.3 OpenMP Threading

Availability: ncclimo, ncks, ncremap
Short options: ‘-t’
Long options: ‘--thr_nbr’, ‘--threads’, ‘-—omp_num_threads’

NCO supports shared memory parallelism (SMP) when compiled with an OpenMP-
enabled compiler. Threads requests and allocations occur in two stages. First, users may
request a specific number of threads thr_nbr with the ‘-t switch (or its long option equiva-
lents, ‘-=thr_nbr’, ‘--threads’, and ‘--omp_num_threads’). If not user-specified, OpenMP
obtains thr_nbr from the OMP_NUM_THREADS environment variable, if present, or from the
0S, if not.

-

Caveat: Unfortunately, threading does not improve NCO throughput (i.e., wallclock
time) because nearly all NCO operations are I/O-bound. This means that NCO spends
negligible time doing anything compared to reading and writing. The only exception is
regridding with ncremap which uses ncks under-the-hood. As of 2017, threading works
only for regridding, thus this section is relevant only to ncclimo, ncks, and ncremap. We
have seen some and can imagine other use cases where ncwa, ncpdq, and ncap2 (with long
scripts) will complete faster due to threading. The main benefits of threading so far have
been to isolate the serial from parallel portions of code. This parallelism is now exploited
by OpenMP but then runs into the I/O bottleneck during output. The bottleneck will be
ameliorated for large files by the use of MPI-enabled calls in the netCDF4 library when
the underlying filesystem is parallel (e.g., PVFS or JFS). Implementation of the parallel
output calls in NCO is not a goal of our current funding and would require new volunteers

or funding.
N\ J

NCO may modify thr_nbr according to its own internal settings before it requests any
threads from the system. Certain operators contain hard-code limits to the number of
threads they request. We base these limits on our experience and common sense, and to
reduce potentially wasteful system usage by inexperienced users. For example, ncrcat is
extremely I/O-intensive so we restrict thr_nbr <= 2 for ncrcat. This is based on the notion
that the best performance that can be expected from an operator which does no arithmetic
is to have one thread reading and one thread writing simultaneously. In the future (perhaps
with netCDF4), we hope to demonstrate significant threading improvements with operators
like ncrcat by performing multiple simultaneous writes.

Compute-intensive operators (ncremap) benefit most from threading. The greatest in-
creases in throughput due to threading occur on large datasets where each thread performs
millions, at least, of floating-point operations. Otherwise, the system overhead of setting up
threads probably outweighs the speed enhancements due to SMP parallelism. However, we
have not yet demonstrated that the SMP parallelism scales beyond four threads for these

Chapter 3: Shared Features 31

operators. Hence we restrict thr_nbr <= 4 for all operators. We encourage users to play
with these limits (edit file nco_omp.c) and send us their feedback.

Once the initial thr_nbr has been modified for any operator-specific limits, NCO requests
the system to allocate a team of thr_nbr threads for the body of the code. The operating
system then decides how many threads to allocate based on this request. Users may keep
track of this information by running the operator with dbg_Ivl > 0.

By default, threaded operators attach one global attribute, nco_openmp_thread_number,
to any file they create or modify. This attribute contains the number of threads the op-
erator used to process the input files. This information helps to verify that the answers
with threaded and non-threaded operators are equal to within machine precision. This
information is also useful for benchmarking.

3.4 Command Line Options

Availability: All operators

NCO achieves flexibility by using command line options. These options are implemented
in all traditional UNIX commands as single letter switches, e.g., ‘ls -1’. For many years
NCO used only single letter option names. In late 2002, we implemented GNU/POSIX
extended or long option names for all options. This was done in a backward compatible
way such that the full functionality of NCO is still available through the familiar single
letter options. Many features of NCO introduced since 2002 now require the use of long
options, simply because we have nearly run out of single letter options. More importantly,
mnemonics for single letter options are often non-intuitive so that long options provide a
more natural way of expressing intent.

Extended options, also called long options, are implemented using the system-supplied
getopt.h header file, if possible. This provides the getopt_long function to NCO'.

The syntax of short options (single letter options) is ~key value (dash-key-space-value).
Here, key is the single letter option name, e.g., ‘-D 2’.

The syntax of long options (multi-letter options) is ~—long_name value (dash-dash-key-
space-value), e.g., ‘-=dbg_1v1 2’ or --long_name=value (dash-dash-key-equal-value), e.g.,
‘~-dbg_1v1=2". Thus the following are all valid for the ‘-D’ (short version) or ‘--dbg_1v1l’
(long version) command line option.

ncks -D 3 in.nc # Short option, preferred form
ncks -D3 in.nc # Short option, alternate form
ncks --dbg_lvl=3 in.nc # Long option, preferred form
ncks --dbg_lvl 3 in.nc # Long option, alternate form

L If a getopt_long function cannot be found on the system, NCO will use the getopt_long from the

my_getopt package by Benjamin Sittler bsittler@iname.com. This is BSD-licensed software available
from http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt.

mailto:bsittler@iname.com
http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt

32 NCO 5.0.1 User Guide

The third example is preferred for two reasons. First, ‘~—dbg_1v1l’ is more specific and
less ambiguous than ‘-D’. The long option format makes scripts more self documenting
and less error-prone. Often long options are named after the source code variable whose
value they carry. Second, the equals sign = joins the key (i.e., long_name) to the value
in an uninterruptible text block. Experience shows that users are less likely to mis-parse
commands when restricted to this form.

3.4.1 Truncating Long Options

GNU implements a superset of the POSIX standard. Their superset accepts any unambigu-
ous truncation of a valid option:

ncks -D 3 in.nc # Short option

ncks --dbg_1lvl=3 in.nc # Long option, full form

ncks --dbg=3 in.nc # Long option, OK unambiguous truncation
ncks --db=3 in.nc # Long option, OK unambiguous truncation
ncks --d=3 in.nc # Long option, ERROR ambiguous truncation

The first four examples are equivalent and will work as expected. The final example will
exit with an error since ncks cannot disambiguate whether ‘~-d’ is intended as a truncation
of ‘==dbg_1v1’, of ‘--dimension’, or of some other long option.

NCO provides many long options for common switches. For example, the debugging level
may be set in all operators with any of the switches ‘-D’, ‘~~debug-level’, or ‘~-dbg_lv1’.
This flexibility allows users to choose their favorite mnemonic. For some, it will be ‘~-debug’
(an unambiguous truncation of ‘--debug-level’, and other will prefer ‘--dbg’. Interactive
users usually prefer the minimal amount of typing, i.e., ‘-D’. We recommend that re-usable
scripts employ long options to facilitate self-documentation and maintainability.

This manual generally uses the short option syntax in examples. This is for historical
reasons and to conserve space in printed output. Users are expected to pick the unambiguous
truncation of each option name that most suits their taste.

3.4.2 Multi-arguments

As of NCO version 4.6.2 (November, 2016), NCO accepts multiple key-value pair options for a
single feature to be joined together into a single extended argument called a multi-argument,
sometimes abbreviated MTA. Only four NCO features accept multiple key-value pairs that
can be aggregated into multi-arguments. These features are: Global Attribute Addition
options indicated via ‘--gaa’ (see Section 3.42 [Global Attribute Addition|, page 142);
Image Manipulation indicated via ‘--trr’?, Precision-Preserving Compression options are
indicated via ‘--ppc’ (see Section 3.32.2 [Precision-Preserving Compression|, page 112);
and Regridding options are indicated via ‘--rgr’ (see Section 3.25 [Regridding], page 86).
Arguments to these four indicator options take the form of key-value pairs, e.g., ‘--rgr
key=val’. These four features have so many options that making each key its own command
line option would pollute the namespace of NCO’s global options. Yet supplying multiple
options to each indicator option one-at-a-time can result in command lines overpopulated
with indicator switches (e.g., ‘--rgr’):

2 NCO supports decoding ENVI images in support of the DOE Terraref project. These options are indicated
via the ncks ‘--trr’ switch, and are otherwise undocumented. Please contact us if more support and
documentation of handling of ENVI BIL, BSQ, and BIP images would be helpful

Chapter 3: Shared Features 33

ncks --rgr grd_ttl=’Title’ --rgr grid=grd.nc --rgr latlon=129,256 \
--rgr lat_typ=fv --rgr lon_typ=grn_ctr ...

Multi-arguments combine all the indicator options into one option that receives a single
argument that comprises all the original arguments glued together by a delimiter, which is,
by default, ‘#’. Thus the multi-argument version of the above example is

ncks --rgr grd_ttl=’Title’#grid=grd.nc#latlon=129,256#lat_typ=fv#lon_typ=grn_ctr

Note the aggregation of all key=val pairs into a single argument. NCO simply splits this
argument at each delimiter, and processes the sub-arguments as if they had been passed
with their own indicator option. Multi-arguments produce the same results, and may be
mixed with, traditional indicator options supplied one-by-one.

As mentioned previously, the multi-argument delimiter string is, by default, the hash-sign
‘#’. When any key=val pair contains the default delimiter, the user must specify a custom
delimiter string so that options are parsed correctly. The options to change the multi-
argument delimiter string are ‘--mta_dlm=delim_string or ‘--dlm_mta=delim_string’,
where delim_string can be any single or multi-character string that (1) is not contained
in any key or val string; and (2) will not confuse the shell. For example, to use multi-
arguments to pass a string that includes the hash symbol (the default delimiter is ‘#’), one
must also change the delimiter so something besides hash, e.g., a colon ‘:’:

¢

ncks --dlm=":" --gaa foo=bar:foo2=bar2:foo3,foo4="hash # is in value"
ncks --dlm=":" --gaa foo=bar:foo2=bar2:foo3,foo4="Thu Sep 15 13\:03\:18 PDT 2016"
ncks --dlm="csz" --gaa foo=barcszfoo2=bar2cszfoo3,foo4="Long text"

In the second example, the colons that are escaped with the backslash become literal
characters. Many characters have special shell meanings and so must be escaped by a single
or double backslash or enclosed in single quotes to prevent interpolation. These special
characters include ‘:’, ‘§’, ‘%, ‘¥’, ‘@, and ‘&’. If val is a long text string that could contain
the default delimiter, then delimit with a unique multi-character string such as ‘csz’ in the
third example.

As of NCO version 4.6.7 (May, 2017), multi-argument flags no longer need be specified
as key-value pairs. By definition a flag sets a boolean value to either True or False. Pre-
viously MTA flags had to employ key-value pair syntax, e.g., ‘~-rgr infer=Y’ or ‘--rgr
no_cll_msr=anything’ in order to parse correctly. Now the MTA parser accepts flags
in the more intuitive syntax where they are listed by name, i.e., the flag name alone
indicates the flag to set, e.g., ‘~—-rgr infer’ or ‘--rgr no_cll_msr’ are valid. A conse-
quence of this is that flags in multi-argument strings appear as straightforward flag names,
e.g., ‘--rgr infer#no_cll_msr#latlon=129,256". It is also valid to prefix flags in multi-
arument strings with single or double-dashes to make the flags more visible, e.g., ‘--rgr
latlon=129,256#--infer#-no_cll_msr’.

3.5 Sanitization of Input

Availability: All operators

34 NCO 5.0.1 User Guide

NCO is often installed in system directories (although not with Conda), and on some
production machines it may have escalated privileges. Since NCO manipulates files by
using system() calls (e.g., to move and copy them with mv and cp) it makes sense to
audit it for vulnerabilities and protect it from malicious users trying to exploit security
gaps. Securing NCO against malicious attacks is multi-faceted, and involves careful memory
management and auditing of user-input. In versions 4.7.3-4.7.6 (March-September, 2018),
NCO implements a whitelist of characters allowed in user-specified filenames. This whitelist
proved unpopular mainly because it proscribed certain character combinations that could
appear in automatically generated files, and was therefore turned-off in 4.7.7 and following
versions. The whitelist is described here for posterity and for possible improvement and
re-introduction: The purpose of the whitelist was to prevent malicious users from injecting
filename strings that could be used for attacks. The whitelist allowed only these characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890_-.0@ :%/

The backslash character \ was also whitelisted for Windows only. This whitelist allows
filenames to be URLs, include username prefixes, and standard non-alphabetic characters.
The implied blacklist included these characters

<TI0, ex7 "

This blacklist rules-out strings that may contain dangerous commands and injection
attacks. If you would like any of these characters whitelisted, please contact us and include
a compelling real-world use-case.

The DAP protocol supports accessing files with so-called “constraint expressions”. NCO
allows access to a wider set of whitelisted characters for files whose names indicate the DAP
protocol. This is defined as any filename beginning with the string ‘http://’, ‘https://’,
or ‘dap4://’. The whitelist for these files is expanded to include these characters:

#=:[1; [{}/<>

The whitelist method is straightforward, and does not interfere with NCO’s globbing
feature. The whitelist applies only to filenames because they are handled by shell commands
passed to the system() function. However, the whitelist method is applicable to other user-
input such as variable lists, hyperslab arguments, etc. Hence, the whitelist could be applied
to other user-input in the future.

3.6 Specifying Input Files

Availability (-n): nces, ncecat, ncra, ncrcat
Availability (-p): All operators

Short options: ‘-n’, ‘-p
Long options: ‘--nintap’, ‘--pth’, ‘--path’

It is important that users be able to specify multiple input files without typing every
filename in full, often a tedious task even by graduate student standards. There are four

Chapter 3: Shared Features 35

different ways of specifying input files to NCO: explicitly typing each, using UNIX shell wild-
cards, and using the NCO ‘-n’ and ‘-p’ switches (or their long option equivalents, ‘~-nintap’
or ‘--pth’ and ‘--path’, respectively). Techniques to augment these methods to specify ar-
bitrary numbers (e.g., thousands) and patterns of filenames are discussed separately (see
Section 2.7 [Large Numbers of Files|, page 21).

To illustrate these methods, consider the simple problem of using ncra to average five
input files, 85.nc, 86.nc, ... 89.nc, and store the results in 8589.nc. Here are the four
methods in order. They produce identical answers.

ncra 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc

ncra 8[56789] .nc 8589.nc

ncra 87.nc 8589.nc

ncra -p input-path 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc
ncra -n 5,2,1 85.nc 8589.nc

The first method (explicitly specifying all filenames) works by brute force. The sec-
ond method relies on the operating system shell to glob (expand) the regular expression
8[56789] .nc. The shell then passes the valid filenames (those which match the regular
expansion) to ncra. In this case ncra never knows that a regular expression was used,
because the shell intercepts and expands and matches the regular expression before ncra
is actually invoked. The third method is uses globbing with a different regular expression
that is less safe (it will also match unwanted files such as 81.nc and 8Z.nc if present). The
fourth method uses the ‘-p input-path’ argument to specify the directory where all the
input files reside. NCO prepends input-path (e.g., /data/username/model) to all input-files
(though not to output-file). Thus, using ‘-p’, the path to any number of input files need
only be specified once. Note input-path need not end with ‘/’; the /’ is automatically
generated if necessary.

The last method passes (with ‘-n’) syntax concisely describing the entire set of filenames?.
This option is only available with the multi-file operators: ncra, ncrcat, nces, and ncecat.
By definition, multi-file operators are able to process an arbitrary number of input-files.
This option is very useful for abbreviating lists of filenames representable as alphanu-
meric_prefix+numeric_suffix+. +filetype where alphanumeric_prefix is a string of arbitrary
length and composition, numeric_suffix is a fixed width field of digits, and filetype is a
standard filetype indicator. For example, in the file ccm3_h0001.nc, we have alphanu-
meric_prefix = ccm3_h, numeric_suffix = 0001, and filetype = nc.

NCO decodes lists of such filenames encoded using the ‘-n’ syntax. The simpler (three-
argument) ‘-n’ usage takes the form -n file_number,digit_number,numeric_increment
where file_number is the number of files, digit_number is the fixed number of numeric dig-
its comprising the numeric_suffix, and numeric_increment is the constant, integer-valued
difference between the numeric_suffix of any two consecutive files. The value of alphanu-
meric_prefix is taken from the input file, which serves as a template for decoding the file-
names. In the example above, the encoding -n 5,2,1 along with the input file name 85.nc

3 The ‘-n’ option is a backward-compatible superset of the NINTAP option from the NCAR CCM Processor.
The CCM Processor was custom-written Fortran code maintained for many years by Lawrence Buja at
NCAR, and phased-out in the late 1990s. NCO copied some ideas, like NINTAP-functionality, from CCM
Processor capabilities.

36 NCO 5.0.1 User Guide

tells NCO to construct five (5) filenames identical to the template 85.nc except that the
final two (2) digits are a numeric suffix to be incremented by one (1) for each successive file.
Currently filetype may be either be empty, nc, h5, cdf, hdf, hd5, or heb. If present, these
filetype suffixes (and the preceding .) are ignored by NCO as it uses the ‘-n’ arguments to
locate, evaluate, and compute the numeric_suffix component of filenames.

Recently the ‘-n’ option has been extended to allow convenient specification of file-
names with “circular” characteristics. This means it is now possible for NCO to auto-
matically generate filenames which increment regularly until a specified maximum value,
and then wrap back to begin again at a specified minimum value. The corresponding
‘-n’ usage becomes more complex, taking one or two additional arguments for a total of
four or five, respectively: -n file_number,digit_number,numeric_increment[,numeric_
max[,numeric_min]] where numeric_max, if present, is the maximum integer-value of nu-
meric_suffix and numeric_min, if present, is the minimum integer-value of numeric_suffix.
Consider, for example, the problem of specifying non-consecutive input files where the
filename suffixes end with the month index. In climate modeling it is common to create
summertime and wintertime averages which contain the averages of the months June—July—
August, and December—January—February, respectively:

ncra -n 3,2,1 85_06.nc 85_0608.nc
ncra -n 3,2,1,12 85_12.nc 85_1202.nc
ncra -n 3,2,1,12,1 85_12.nc 85_1202.nc

The first example shows that three arguments to the ‘-n’ option suffice to specify con-

secutive months (06, 07, 08) which do not “wrap” back to a minimum value. The second
example shows how to use the optional fourth and fifth elements of the ‘-n’ option to specify
a wrap value. The fourth argument to ‘-n’, when present, specifies the maximum integer
value of numeric_suffix. In the example the maximum value is 12, and will be formatted as
12 in the filename string. The fifth argument to ‘-n’, when present, specifies the minimum
integer value of numeric_suffix. The default minimum filename suffix is 1, which is format-
ted as 01 in this case. Thus the second and third examples have the same effect, that is,
they automatically generate, in order, the filenames 85_12.nc, 85_01.nc, and 85_02.nc as
input to NCO.

As of NCO version 4.5.2 (September, 2015), NCO supports an optional sixth argument to
‘-n’, the month-indicator. The month-indicator affirms to NCO that the right-most digits
being manipulated in the generated filenames correspond to month numbers (with January
formatted as 01 and December as 12). Moreover, it assumes digits to the left of the month
are the year. The full (six-argument) ‘-n’ usage takes the form -n file_number,digit_
number,month_increment,max_month,min_month, ‘yyyymm’. The ‘yyyymm’ string is a
clunky way (can you think of a clearer way?) to tell NCO to enumerate files in year-
month mode. When present, ‘yyyymm’ string causes NCO to automatically generate series
of filenames whose right-most two digits increment from min_month by month_increment
up to max_month and then the leftmost digits (i.e., the year) increment by one, and the
whole process is repeated until the file_number filenames are generated.

ncrcat -n 3,6,1,12,1 198512.nc 198512_198502.nc
ncrcat -n 3,6,1,12,1,yyyymm 198512.nc 198512_198602.nc
ncrcat -n 3,6,1,12,12,yyyymm 198512.nc 198512_198712.nc

Chapter 3: Shared Features 37

The first command above concatenates three files (198512.nc, 198501 .nc, 198502.nc)
into the output file. The second command above concatenates three files (198512.nc,
198601.nc, 198602.nc). The ‘yyyymm’-indicator causes the left-most digits to increment
each time the right-most two digits reach their maximum and then wrap. The first command
does not have the indicator so it is always 1985. The third command concatenates three
files (198512.nc, 198612.nc, 198712 .nc).

3.7 Specifying Output Files

Availability: All operators

Short options: ‘—o
Long options: ‘--f1_out’, ‘~-output’

NCO commands produce no more than one output file, fi_out. Traditionally, users spec-
ify fl_out as the final argument to the operator, following all input file names. This is the
positional argument method of specifying input and ouput file names. The positional ar-
gument method works well in most applications. NCO also supports specifying fl_out using
the command line switch argument method, ‘-0 £f1_out’.

Specifying fl_out with a switch, rather than as a positional argument, allows fl_out to
precede input files in the argument list. This is particularly useful with multi-file operators
for three reasons. Multi-file operators may be invoked with hundreds (or more) filenames.
Visual or automatic location of fl_out in such a list is difficult when the only syntactic
distinction between input and output files is their position. Second, specification of a long
list of input files may be difficult (see Section 2.7 [Large Numbers of Files|, page 21). Making
the input file list the final argument to an operator facilitates using xargs for this purpose.
Some alternatives to xargs are heinous and undesirable. Finally, many users are more
comfortable specifying output files with ‘-0 £f1_out’ near the beginning of an argument list.
Compilers and linkers are usually invoked this way.

Users should specify fl_out using either (not both) method. If fl_out is specified twice
(once with the switch and once as the last positional argument), then the positional argu-
ment takes precedence.

3.8 Accessing Remote Files

Availability: All operators
Short options: ‘-p’, ‘-1’
Long options: ‘—-pth’, ‘--path’, ‘--1cl’, ‘--local’

All NCO operators can retrieve files from remote sites as well as from the local file system.
A remote site can be an anonymous FTP server, a machine on which the user has rcp, scp,
or sftp privileges, NCAR’s Mass Storage System (MSS), or an OPeNDAP server. Examples
of each are given below, following a brief description of the particular access protocol.

38 NCO 5.0.1 User Guide

To access a file via an anonymous FTP server, simply supply the remote file’s URL.
Anonymous FTP usually requires no further credentials, e.g., no .netrc file is necessary.
FTP is an intrinsically insecure protocol because it transfers passwords in plain text format.
Users should access sites using anonymous FTP, or better yet, secure FTP (SFTP, see
below) when possible. Some FTP servers require a login/password combination for a valid
user account. NCO allows transactions that require additional credentials so long as the
required information is stored in the .netrc file. Usually this information is the remote
machine name, login, and password, in plain text, separated by those very keywords, e.g.,

machine dust.ess.uci.edu login zender password bushlied

Eschew using valuable passwords for FTP transactions, since .netrc passwords are po-
tentially exposed to eavesdropping software?.

SFTP, i.e., secure FTP, uses SSH-based security protocols that solve the security issues
associated with plain FTP. NCO supports SFTP protocol access to files specified with a
homebrew syntax of the form

sftp://machine.domain.tld:/path/to/filename

Note the second colon following the top-level-domain, t1d. This syntax is a hybrid
between an FTP URL and standard remote file syntax.

To access a file using rcp or scp, specify the Internet address of the remote file. Of course
in this case you must have rcp or scp privileges which allow transparent (no password entry
required) access to the remote machine. This means that ~/.rhosts or “/ssh/authorized_
keys must be set accordingly on both local and remote machines.

To access a file on a High Performance Storage System (HPSS) (such as that at NCAR,
ECMWF, LANL, DKRZ, LLNL) specify the full HPSS pathname of the remote file and use
the ‘--hpss’ flag. Then NCO will attempt to detect whether the local machine has direct
(synchronous) HPSS access. If so, NCO attempts to use the Hierarchical Storage Interface
(HSI) command hsi get®.

The following examples show how one might analyze files stored on remote systems.

ncks -1 . ftp://dust.ess.uci.edu/pub/zender/nco/in.nc

ncks -1 . sftp://dust.ess.uci.edu:/home/ftp/pub/zender/nco/in.nc
ncks -1 . dust.ess.uci.edu:/home/zender/nco/data/in.nc

ncks -1 . /ZENDER/nco/in.nc # NCAR (broken old MSS path)

ncks -1 . --hpss /home/zender/nco/in.nc # NCAR HPSS

ncks -1 . http://thredds-test.ucar.edu/thredds/dodsC/testdods/in.nc

The first example works verbatim if your system is connected to the Internet and is not
behind a firewall. The second example works if you have sftp access to the machine

4 NCO does not implement command line options to specify FTP logins and passwords because copying
those data into the history global attribute in the output file (done by default) poses an unacceptable
security risk.

5 The hsi command must be in the user’s path in one of the following directories: /usr/local/bin,
/opt/hpss/bin, or /ncar/opt/hpss/hsi. Tell us if the HPSS installation at your site places the hsi
command in a different location, and we will add that location to the list of acceptable paths to search
for hsi.

Chapter 3: Shared Features 39

dust.ess.uci.edu. The third example works if you have rcp or scp access to the machine
dust.ess.uci.edu. The fourth and fifth examples work on NCAR computers with local
access to the HPSS hsi get command®. The sixth command works if your local version of
NCO is OPeNDAP-enabled (this is fully described in Section 3.8.1 [OPeNDAP], page 39), or
if the remote file is accessible via wget. The above commands can be rewritten using the
‘~p input-path’ option as follows:

ncks -p ftp://dust.ess.uci.edu/pub/zender/nco -1 . in.nc

ncks -p sftp://dust.ess.uci.edu:/home/ftp/pub/zender/nco -1 . in.nc
ncks -p dust.ess.uci.edu:/home/zender/nco -1 . in.nc

ncks -p /ZENDER/nco -1 . in.nc

ncks -p /home/zender/nco -1 . --hpss in.nc # HPSS
ncks -p http://thredds-test.ucar.edu/thredds/dodsC/testdods \
-1 . in.nc

Using ‘-p’ is recommended because it clearly separates the input-path from the filename
itself, sometimes called the stub. When input-path is not explicitly specified using ‘-p’,
NCO internally generates an input-path from the first input filename. The automatically
generated input-path is constructed by stripping the input filename of everything following
the final ‘/’ character (i.e., removing the stub). The ‘-1 output-path’ option tells NCO
where to store the remotely retrieved file. It has no effect on locally-retrieved files, or on
the output file. Often the path to a remotely retrieved file is quite different than the path
on the local machine where you would like to store the file. If ‘-1’ is not specified then
NCO internally generates an output-path by simply setting output-path equal to input-
path stripped of any machine names. If ‘-1’ is not specified and the remote file resides on
a detected HPSS system, then the leading character of input-path, ‘/’, is also stripped from
output-path. Specifying output-path as ‘=1 ./’ tells NCO to store the remotely retrieved
file and the output file in the current directory. Note that ‘-1 .’ is equivalent to ‘-1 ./’
though the latter is syntactically more clear.

3.8.1 OPeNDAP

The Distributed Oceanographic Data System (DODS) provides useful replacements for com-
mon data interface libraries like netCDF. The DODS versions of these libraries implement
network transparent access to data via a client-server data access protocol that uses the
HTTP protocol for communication. Although DODS-technology originated with oceanogra-
phy data, it applyies to virtually all scientific data. In recognition of this, the data access
protocol underlying DODS (which is what NCO cares about) has been renamed the Open-
source Project for a Network Data Access Protocol, OPeNDAP. We use the terms DODS
and OPeNDAP interchangeably, and often write OPeNDAP/DODS for now. In the future we
will deprecate DODS in favor of DAP or OPeNDAP, as appropriate’.

6 NCO supported the old NCAR Mass Storage System (MSS) until version 4.0.7 in April, 2011. NCO
supported MSS-retrievals via a variety of mechanisms including the msread, msrcp, and nrnet commands
invoked either automatically or with sentinels like ncks -p mss:/ZENDER/nco -1 . in.nc. Once the MSS
was decommissioned in March, 2011, support for these retrieval mechanisms was replaced by support for
HPSS.

DODS is being deprecated because it is ambiguous, referring both to a protocol and to a collection of

(oceanography) data. It is superceded by two terms. DAP is the discipline-neutral Data Access Protocol
at the heart of DODS. The National Virtual Ocean Data System (NVODS) refers to the collection of

40 NCO 5.0.1 User Guide

NCO may be DAP-enabled by linking NCO to the OPeNDAP libraries. This is described in
the OPeNDAP documentation and automagically implemented in NCO build mechanisms®.
The ./configure mechanism automatically enables NCO as OPeNDAP clients if it can find
the required OPeNDAP libraries. Since about 2010 the netCDF library can be configured
(with --enable-dap) to build DAP directly into the netCDF library, which NCO automat-
ically links to, so DAP need not be installed as a third-party library. It has been so many
years since NCO has needed to support linking to DAP installed outside of the netCDF
library that is is unclear whether this configuration®. still works. The $DODS_ROOT envi-
ronment variable may be used to override the default OPeNDAP library location at NCO
compile-time. Building NCO with bld/Makefile and the command make DODS=Y adds the
(non-intuitive) commands to link to the OPeNDAP libraries installed in the $DODS_ROOT
directory. The file doc/opendap.sh contains a generic script intended to help users install
OPeNDAP before building NCO. The documentation at the OPeNDAP Homepage is vo-
luminous. Check there and on the DODS mail lists. to learn more about the extensive
capabilities of OPeNDAP!Y.

Once NCO is DAP-enabled the operators are OPeNDAP clients. All OPeNDAP clients have
network transparent access to any files controlled by a OPeNDAP server. Simply specify the
input file path(s) in URL notation and all NCO operations may be performed on remote
files made accessible by a OPeNDAP server. This command tests the basic functionality of
OPeNDAP-enabled NCO clients:

% ncks -0 -o “/foo.nc -C -H -v one -1 /tmp \

-p http://thredds-test.ucar.edu/thredds/dodsC/testdods in.nc
% ncks -H -v one "/foo.nc
one =1

The one = 1 outputs confirm (first) that ncks correctly retrieved data via the OPeNDAP
protocol and (second) that ncks created a valid local copy of the subsetted remote file.
With minor changes to the above command, netCDF4 can be used as both the input and
output file format:

% ncks -4 -0 -o "/foo.nc -C -H -v one -1 /tmp \

-p http://thredds-test.ucar.edu/thredds/dodsC/testdods in_4.nc
% ncks -H -v one ~/foo.nc
one = 1

oceanography data and oceanographic extensions to DAP. In other words, NVODS is implemented with

OPeNDAP. OPeNDAP is also the open source project which maintains, develops, and promulgates the
DAP standard. OPeNDAP and DAP really are interchangeable. Got it yet?

Automagic support for DODS version 3.2.x was deprecated in December, 2003 after NCO version 2.8.4.
NCO support for OPeNDAP versions 3.4.x commenced in December, 2003, with NCO version 2.8.5. NCO
support for OPeNDAP versions 3.5.x commenced in June, 2005, with NCO version 3.0.1. NCO support for
OPeNDAP versions 3.6.x commenced in June, 2006, with NCO version 3.1.3. NCO support for OPeNDAP
versions 3.7.x commenced in January, 2007, with NCO version 3.1.9.

The minimal set of libraries required to build NCO as OPeNDAP clients, where OPeNDAP is supplied
as a separate library apart from libnetcdf.a, are, in link order, libnc-dap.a, libdap.a, and 1libxml2
and libcurl.a.

We are most familiar with the OPeNDAP ability to enable network-transparent data access. OPeNDAP
has many other features, including sophisticated hyperslabbing and server-side processing via constraint
expressions. If you know more about this, please consider writing a section on “OPeNDAP Capabilities
of Interest to NCO Users” for incorporation in the NCO User Guide.

10

http://www.opendap.org
http://www.unidata.ucar.edu/software/dods/home/mailLists/

Chapter 3: Shared Features 41

And, of course, OPeNDAP-enabled NCO clients continue to support orthogonal features
such as UDUnits (see Section 3.27 [UDUnits Support], page 98):

% ncks -u -C -H -v wvl -d wvl,’0.4 micron’,’0.7 micron’ \
-p http://thredds-test.ucar.edu/thredds/dodsC/testdods in_4.nc
% wvl[0]=5e-07 meter

The next command is a more advanced example which demonstrates the real power
of OPeNDAP-enabled NCO clients. The ncwa client requests an equatorial hyperslab from
remotely stored NCEP reanalyses data of the year 1969. The NOAA OPeNDAP server (hope-
fully!) serves these data. The local ncwa client then computes and stores (locally) the
regional mean surface pressure (in Pa).

ncwa -0 -C -a lat,lon,time -d lon,-10.,10. -d lat,-10.,10. \
http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface/

All with one command! The data in this particular input file also happen to be packed (see
Section 4.1.12 [Methods and functions|, page 173), although this complication is transparent
to the user since NCO automatically unpacks data before attempting arithmetic.

NCO obtains remote files from the OPeNDAP server (e.g., www.cdc.noaa.gov) rather
than the local machine. Input files are first copied to the local machine, then processed.
The OPeNDAP server performs data access, hyperslabbing, and transfer to the local machine.
This allows the I/O to appear to NCO as if the input files were local. The local machine
performs all arithmetic operations. Only the hyperslabbed output data are transferred over
the network (to the local machine) for the number-crunching to begin. The advantages of
this are obvious if you are examining small parts of large files stored at remote locations.

Natually there are many versions of OPeNDAP servers supplying data and bugs in the
server can appear to be bugs in NCO. However, with very few exceptions'! an NCO command
that works on a local file must work across an OPeNDAP connection or else there is a bug
in the server. This is because NCO does nothing special to handle files served by OPeNDAP,
the whole process is (supposed to be) completely transparent to the client NCO software.
Therefore it is often useful to try NCO commands on various OPeNDAP servers in order
to isolate whether a problem may be due to a bug in the OPeNDAP server on a particular
machine. For this purpose, one might try variations of the following commands that access
files on public OPeNDAP servers:

Strided access to HDF5 file

ncks -v Time -d Time,0,10,2 http://eosdap.hdfgroup.uiuc.edu:8080/opendap/data/NASAFILE
Strided access to netCDF3 file

ncks -0 -D 1 -d time,l1 -d lev,0 -d lat,0,100,10 -d 1lon,0,100,10 -v u_velocity http://n

These servers were operational at the time of writing, March 2014. Unfortunately, admin-
istrators often move or rename path directories. Recommendations for additional public
OPeNDAP servers on which to test NCO are welcome.

L For example, DAP servers do not like variables with periods (“.”) in their names even though this is
perfectly legal with netCDF. Such names may cause the DAP service to fail because DAP interprets the
period as structure delimiter in an HTTP query string.

42 NCO 5.0.1 User Guide

3.9 Retaining Retrieved Files

Availability: All operators
Short options: ‘-R’
Long options: * e

--rtn’, ‘--retain’

In order to conserve local file system space, files retrieved from remote locations are
automatically deleted from the local file system once they have been processed. Many NCO
operators were constructed to work with numerous large (e.g., 200 MB) files. Retrieval of
multiple files from remote locations is done serially. Each file is retrieved, processed, then
deleted before the cycle repeats. In cases where it is useful to keep the remotely-retrieved
files on the local file system after processing, the automatic removal feature may be disabled
by specifying ‘-R’ on the command line.

Invoking -R disables the default printing behavior of ncks. This allows ncks to retrieve
remote files without automatically trying to print them. See Section 4.8 [ncks netCDF
Kitchen Sink|, page 261, for more details.

Note that the remote retrieval features of NCO can always be used to retrieve any file,
including non-netCDF files, via SSH, anonymous FTP, or msrcp. Often this method is
quicker than using a browser, or running an FTP session from a shell window yourself. For
example, say you want to obtain a JPEG file from a weather server.

ncks -R -p ftp://weather.edu/pub/pix/jpeg -1 . storm.jpg

In this example, ncks automatically performs an anonymous FTP login to the remote
machine and retrieves the specified file. When ncks attempts to read the local copy of
storm. jpg as a netCDF file, it fails and exits, leaving storm. jpg in the current directory.

If your NCO is DAP-enabled (see Section 3.8.1 [OPeNDAP], page 39), then you may use
NCO to retrieve any files (including netCDF, HDF, etc.) served by an OPeNDAP server to
your local machine. For example,

ncks -R -1 . -p \
http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface
pres.sfc.1969.nc

It may occasionally be useful to use NCO to transfer files when your other preferred
methods are not available locally.

3.10 File Formats and Conversion

Availability: ncap2, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-3’, ‘=4’, ‘-5’ ‘=6’ ‘-7’
Long options: ‘--3’, ‘-=-4’, ‘-5’ ‘-6’ ‘--64bit_offset’, ‘--7’, ‘~-f1_fmt’, ‘-—netcdf4’

Chapter 3: Shared Features 43

All NCO operators support (read and write) all three (or four, depending on how one
counts) file formats supported by netCDF4. The default output file format for all operators
is the input file format. The operators listed under “Availability” above allow the user to
specify the output file format independent of the input file format. These operators allow
the user to convert between the various file formats. (The operators ncatted and ncrename
do not support these switches so they always write the output netCDF file in the same
format as the input netCDF file.)

3.10.1 File Formats

netCDF supports five types of files: CLASSIC, 64BIT_OFFSET, 64BIT_DATA, NETCDF4, and
NETCDF4_CLASSIC. The CLASSIC (aka CDF1) format is the traditional 32-bit offset written
by netCDF2 and netCDF3. As of 2005, nearly all netCDF datasets were in CLASSIC format.
The 64BIT_OFFSET (originally called plain old 64BIT) (aka CDF2) format was added in Fall,
2004. As of 2010, many netCDF datasets were in 64BIT_OFFSET format. As of 2013, an
increasing number of netCDF datasets were in NETCDF4_CLASSIC format. The 64BIT_DATA
(aka CDF5 or PNETCDF) format was added to netCDF in January, 2016.

The NETCDF4 format uses HDF5 as the file storage layer. The files are (usually) created,
accessed, and manipulated using the traditional netCDF3 API (with numerous extensions).
The NETCDF4_CLASSIC format refers to netCDF4 files created with the NC_CLASSIC_MODEL
mask. Such files use HDF5 as the back-end storage format (unlike netCDF3), though they
incorporate only netCDF3 features. Hence NETCDF4_CLASSIC files are entirely readable by
applications that use only the netCDF3 API (though the applications must be linked with
the netCDF4 library). NCO must be built with netCDF4 to write files in the new NETCDF4
and NETCDF4_CLASSIC formats, and to read files in these formats. Datasets in the default
CLASSIC or the newer 64BIT_OFFSET formats have maximum backwards-compatibility with
older applications. NCO has deep support for NETCDF4 formats. If backwards compatibility
is important, and your datasets are too large for netCDF3, use NETCDF4_CLASSIC instead
of CLASSIC format files. NCO support for the NETCDF4 format is complete and many high-
performance disk/RAM efficient workflows utilize this format.

As mentioned above, all operators write use the input file format for output files unless
told otherwise. Toggling the short option ‘-6’ or the long option ‘-6’ or ‘~-64bit_offset’
(or their key-value equivalent ‘--f1_fmt=64bit_offset’) produces the netCDF3 64-bit
offset format named 64BIT_OFFSET. NCO must be built with netCDF 3.6 or higher to
produce a 64BIT_OFFSET file. As of NCO version 4.6.9 (September, 2017), toggling the short
option ‘-5’ or the long options ‘--5’, ‘--64bit_data’, ‘--cdf5’, or ‘--pnetcdf’ (or their
key-value equivalent ‘--f1_fmt=64bit_data’) produces the netCDF3 64-bit data format
named 64BIT_DATA. This format is widely used by MPI-enabled modeling codes because
of its long association with PnetCDF. NCO must be built with netCDF 4.4 or higher to
produce a 64BIT_DATA file.

Using the ‘-4’ switch (or its long option equivalents ‘--4’ or ‘--netcdf4’), or setting its
key-value equivalent ‘--f1_fmt=netcdf4’ produces a NETCDF4 file (i.e., with all supported
HDF5 features). Using the ‘-7’ switch (or its long option equivalent ‘--7"'2, or setting its
key-value equivalent ‘--f1_fmt=netcdf4_classic’ produces a NETCDF4_CLASSIC file (i.e.,

12" The reason (and mnemonic) for ‘-7’ is that NETCDF4_CLASSIC files include great features of both netCDF3
(compatibility) and netCDF4 (compression, chunking) and, well, 3+ 4 = 7.

44 NCO 5.0.1 User Guide

with all supported HDF5 features like compression and chunking but without groups or new
atomic types). Operators given the ‘-3’ (or ‘==3’) switch without arguments will (attempt
to) produce netCDF3 CLASSIC output, even from netCDF4 input files.

Note that NETCDF4 and NETCDF4_CLASSIC are the same binary format. The latter simply
causes a writing application to fail if it attempts to write a NETCDF4 file that cannot be
completely read by the netCDF3 library. Conversely, NETCDF4_CLASSIC indicates to a
reading application that all of the file contents are readable with the netCDF3 library. NCO
has supported reading/writing basic NETCDF4 and NETCDF4_CLASSIC files since October,
2005.

3.10.2 Determining File Format

Input files often end with the generic .nc suffix that leaves (perhaps by intention) the
internal file format ambiguous. There are at least three ways to discover the internal format
of a netCDF-supported file. These methods determine whether it is a classic (32-bit offset)
or newer 64-bit offset netCDF3 format, or is a netCDF4 format. Each method returns
the information using slightly different terminology that becomes easier to understand with
practice.

First, examine the first line of global metadata output by ‘ncks -M’:

% ncks -M foo_3.nc
Summary of foo_3.nc: filetype
% ncks -M foo_6.nc
Summary of foo_6.nc: filetype
% ncks -M foo_5.nc
Summary of foo_5.nc: filetype
% ncks -M foo_7.nc
Summary of foo_7.nc: filetype
% ncks -M foo_4.nc
Summary of foo_4.nc: filetype

NC_FORMAT_CLASSIC, O groups ...

NC_FORMAT_64BIT_OFFSET, O groups ...

NC_FORMAT_CDF5, 0 groups ...

NC_FORMAT_NETCDF4_CLASSIC, O groups ...

NC_FORMAT_NETCDF4, O groups ...

This method requires a netCDF4-enabled NCO version 3.9.0+ (i.e., from 2007 or later).
As of NCO version 4.4.0 (January, 2014), ncks will also print the extended or underlying
format of the input file. The extended filetype will be one of the six underlying formats that
are accessible through the netCDF API. These formats are NC_FORMATX_NC3 (classic and 64-
bit versions of netCDF3 formats), NC_FORMATX_NC_HDF5 (classic and extended versions of
netCDF4, and “pure” HDF5 format), NC_FORMATX_NC_HDF4 (HDF4 format), NC_FORMATX_
PNETCDF (PnetCDF format), NC_FORMATX_DAP2 (accessed via DAP2 protocol), and NC_
FORMATX_DAP4 (accessed via DAP4 protocol). For example,

% ncks -D 2 -M hdf.hdf

Summary of hdf.hdf: filetype = NC_FORMAT_NETCDF4 (representation of \
extended/underlying filetype NC_FORMAT_HDF4), O groups ...

% ncks -D 2 -M http://thredds-test.ucar.edu/thredds/dodsC/testdods/in.nc

Summary of http://thredds-test.ucar.edu/thredds/dodsC/testdods/in.nc: \
filetype = NC_FORMAT_CLASSIC (representation of extended/underlying \
filetype NC_FORMATX_DAP2), O groups

% ncks -D 2 -M foo_4.nc

Chapter 3: Shared Features 45

Summary of foo_4.nc: filetype = NC_FORMAT_NETCDF4 (representation of \
extended/underlying filetype NC_FORMAT_HDF5), O groups

The extended filetype determines some of the capabilities that netCDF has to alter the
file.

Second, query the file with ‘ncdump -k’

% ncdump -k foo_3.nc
classic

% ncdump -k foo_6.nc
64-bit offset

% ncdump -k foo_5.nc
cdfb

% ncdump -k foo_7.nc
netCDF-4 classic model
% ncdump -k foo_4.nc
netCDF-4

This method requires a netCDF4-enabled netCDF 3.6.2+ (i.e., from 2007 or later).
The third option uses the POSIX-standard od (octal dump) command:

% od -An -c -N4 foo_3.nc
C D F 001

% od -An -c -N4 foo_6.nc
C D F 002

% od -An -c -N4 foo_5.nc
C D F 005

% od -An -c -N4 foo_7.nc
211 H D F

% od -An -c -N4 foo_4.nc
211 H D F

This option works without NCO and ncdump. Values of ‘CDF 001’ and ‘CD F 002’
indicate 32-bit (classic) and 64-bit netCDF3 formats, respectively, while values of ‘211 HD
F’ indicate either of the newer netCDF4 file formats.

3.10.3 File Conversion

Let us demonstrate converting a file from any netCDF-supported input format into any
netCDF output format (subject to limits of the output format). Here the input file in.nc
may be in any of these formats: netCDF3 (classic, 64bit_offset, 64bit_data), netCDF4
(classic and extended), HDF4, HDF5, HDF-EOS (version 2 or 5), and DAP. The switch
determines the output format written in the comment:3

ncks --fl_fmt=classic in.nc foo_3.nc # netCDF3 classic
ncks ——-fl_fmt=64bit_offset in.nc foo_6.nc # netCDF3 64bit-offset
ncks ——-fl_fmt=64bit_data in.nc foo_5.nc # netCDF3 64bit-data

13 The switches ‘-5, ‘-5, and ‘pnetcdf’ are reserved for PnetCDF files, i.e., NC_FORMAT_CDF5. Such files
are similar to netCDF3 classic files, yet also support 64-bit offsets and the additional netCDF4 atomic

types.

46 NCO 5.0.1 User Guide

ncks ——-fl_fmt=cdf5 in.nc foo_5.nc # netCDF3 64bit-data
ncks —-—-fl_fmt=netcdf4_classic in.nc foo_7.nc # netCDF4 classic
ncks --fl_fmt=netcdf4 in.nc foo_4.nc # netCDF4

ncks -3 in.nc foo_3.nc # netCDF3 classic

ncks --3 in.nc foo_3.nc # netCDF3 classic

ncks -6 in.nc foo_6.nc # netCDF3 64bit-offset

ncks --64 in.nc foo_6.nc # netCDF3 64bit-offset

ncks -5 in.nc foo_5.nc # netCDF3 64bit-data

ncks --5 in.nc foo_5.nc # netCDF3 64bit-data

ncks -4 in.nc foo_4.nc # netCDF4

ncks --4 in.nc foo_4.nc # netCDF4

ncks -7 in.nc foo_7.nc # netCDF4 classic

ncks --7 in.nc foo_7.nc # netCDF4 classic

Of course since most operators support these switches, the “conversions” can be done
at the output stage of arithmetic or metadata processing rather than requiring a separate
step. Producing (netCDF3) CLASSIC or 64BIT_OFFSET or 64BIT_DATA files from NETCDF4_
CLASSIC files always works.

3.10.4 Autoconversion

Because of the dearth of support for netCDF4 amongst tools and user communities (includ-
ing the CF conventions), it is often useful to convert netCDF4 to netCDF3 for certain appli-
cations. Until NCO version 4.4.0 (January, 2014), producing netCDF3 files from netCDF4
files only worked if the input files contained no net CDF4-specific features (e.g., atomic types,
multiple record dimensions, or groups). As of NCO version 4.4.0, ncks supports autoconver-
sion of many netCDF4 features to their closest netCDF3-compatible representations. Since
converting netCDF4 to netCDF3 results in loss of features, “automatic down-conversion”
may be a more precise description of what we term autoconversion.

NCO employs three algorithms to downconvert netCDF4 to netCDF3:

1. Autoconversion of atomic types: Autoconversion automatically promotes NC_UBYTE to
NC_SHORT, and NC_USHORT to NC_INT. It automatically demotes the three types NC_
UINT, NC_UINT64, and NC_INT64 to NC_INT. And it converts NC_STRING to NC_CHAR.
All numeric conversions work for attributes and variables of any rank. Two numeric
types (NC_UBYTE and NC_USHORT) are promoted to types with greater range (and greater
storage). This extra range is often not used so promotion perhaps conveys the wrong
impression. However, promotion never truncates values or loses data (this perhaps
justifies the extra storage). Three numeric types (NC_UINT, NC_UINT64 and NC_INT64)
are demoted. Since the input range is larger than the output range, demotion can result
in numeric truncation and thus loss of data. In such cases, it would possible to convert
the data to floating-point values instead. If this feature interests you, please be the
squeaky wheel and let us know.

String conversions (to NC_CHAR) work for all attributes, but not for variables. This is
because attributes are at most one-dimensional and may be of any size whereas variables
require gridded dimensions that usually do not fit the ragged sizes of text strings. Hence
scalar NC_STRING attributes are correctly converted to and stored as NC_CHAR attributes

Chapter 3: Shared Features 47

in the netCDF3 output file, but NC_STRING variables are not correctly converted. If
this limitation annoys or enrages you, please let us know by being the squeaky wheel.

2. Convert multiple record dimensions to fixed-size dimensions. Many netCDF4 and HDF5
datasets have multiple unlimited dimensions. Since a netCDF3 file may have at most
one unlimited dimension, all but possibly one unlimited dimension from the input
file must be converted to fixed-length dimensions prior to storing netCDF4 input as
netCDF3 output. By invoking —-fix_rec_dmn all the user ensures the output file will
adhere to netCDF3 conventions and the user need not know the names of the specific
record dimensions to fix. See Section 4.8 [ncks netCDF Kitchen Sink], page 261 for a
description of the ‘--fix_rec_dmn’ option.

3. Flattening (removal) of groups. Many netCDF4 and HDF5 datasets have group hierar-
chies. Since a netCDF3 file may not have any groups, groups in the input file must be
removed. This is also called “flattening” the hierarchical file. See Section 3.14 [Group
Path Editing|, page 53 for a description of the GPE option ‘-G :’ to flatten files.

Putting the three algorithms together, one sees that the recipe to convert netCDF4 to
netCDF4 becomes increasingly complex as the netCDF4 features in the input file become
more elaborate:

Convert file with netCDF4 atomic types

ncks -3 in.nc4 out.nc3

Convert file with multiple record dimensions + netCDF4 atomic types

ncks -3 --fix_rec_dmn=all in.nc4 out.nc3

Convert file with groups, multiple record dimensions + netCDF4 atomic types
ncks -3 -G : —--fix_rec_dmn=all in.nc4 out.nc3

Future versions of NCO may automatically invoke the record dimension fixation and
group flattening when converting to netCDF3 (rather than requiring it be specified manu-
ally). If this feature would interest you, please let us know.

3.11 Large File Support

Availability: All operators
Short options: none
Long options: none

NCO has Large File Support (LFS), meaning that NCO can write files larger than 2 GB on
some 32-bit operating systems with netCDF libraries earlier than version 3.6. If desired, LFS
support must be configured when both netCDF and NCO are installed. netCDF versions 3.6
and higher support 64-bit file addresses as part of the netCDF standard. We recommend
that users ignore LFS support which is difficult to configure and is implemented in NCO only
to support netCDF versions prior to 3.6. This obviates the need for configuring explicit LFS
support in applications (such as NCO) that now support 64-bit files directly through the
netCDF interface. See Section 3.10 [File Formats and Conversion], page 42 for instructions
on accessing the different file formats, including 64-bit files, supported by the modern
netCDF interface.

48 NCO 5.0.1 User Guide

If you are still interested in explicit LFS support for netCDF versions prior to 3.6, know
that LFS support depends on a complex, interlocking set of operating system!* and netCDF
support issues. The netCDF LFS FAQ describes the various file size limitations imposed
by different versions of the netCDF standard. NCO and netCDF automatically attempt to
configure LFS at build time.

3.12 Subsetting Files

-
Options -g grp

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa

Short options: ‘~g’

Long options: ‘--grp’ and ‘--group’

Options -v var and -x

Availability: (ncap2), ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-v’, ‘-x’

Long options: ‘~-variable’, ‘--exclude’ or ‘--xcl’

Options —-unn

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa

Short options:

Long options: ‘~——unn’ and ‘~-union’

Options --grp_xtr_var_xcl

Availability: ncks

Short options:

Long options: ‘--gxvx’ and ‘--grp_xtr_var_xcl’

¢

N

Subsetting variables refers to explicitly specifying variables and groups to be included
or excluded from operator actions. Subsetting is controlled by the ‘-v var[,...]’ and ‘-x’
options for directly specifying variables. Specifying groups, whether in addition to or instead
of variables, is quite similar and is controlled by the ‘~g grpl[,...]" and ‘-x’ options. A list
of variables or groups to extract is specified following the ‘-v’ and ‘-g’ options, e.g., ‘-v
time,lat,lon’ or ‘-g grpl,grp2’. Both options may be specified simultaneously and NCO
will extract the intersection of the lists, i.e., only variables of the specified names found in
groups of the specified names. The ‘--unn’ option causes NCO to extract the union, rather
than the intersection, of the specified groups and variables. Not using the ‘~v’ or ‘~g’ option
is equivalent to specifying all variables or groupp, respectively.

The ‘-x’ option causes the list of variables specified with ‘-v’ to be excluded rather than
extracted. Thus ‘-x’ saves typing when you only want to extract fewer than half of the
variables in a file.

ncks -x -v vl1,v2 in.nc out.nc # Extract all variables except vl, v2
ncks -C -x -v lat,lon in.nc out.nc # Extract all except lat, lon

The first example above shows the typical use of ‘-x’ to subset all variables except a few
into the output. Note that v1 and v2 will be retained in the output if they are coordinate-like

M Tinux and AIX do support LFS.

http://my.unidata.ucar.edu/content/software/netcdf/faq-lfs.html

Chapter 3: Shared Features 49

variables (see Section 3.13 [Subsetting Coordinate Variables], page 52) associated with any
extracted variable. If one wishes to exclude coordinate-like variables despite their being
referenced by extracted variables, one must use the ‘-C’ (or synonym ‘--xcl_ass_var’)
option as shown in the second example.

¢

Variables or groups explicitly specified for extraction with ‘-v var[,...]" or ‘-g
grpl,...]” must be present in the input file or an error will result. Variables explic-
itly specified for exclusion with ‘-x -v varl[,...] need not be present in the input file. To
accord with the sophistication of the underlying hierarchy, group subsetting is controlled by
a few powerful yet subtle syntactical distinctions. When learning this syntax it is helpful
to keep in mind the similarity between group hierarchies and directory structures.

As of NCO 4.4.4 (June, 2014), ncks (alone) supports an option to include specified
groups yet exclude specified variables. The ‘--grp_xtr_var_xcl’ switch (with long option
equivalent ‘--gxvx’) extracts all contents of groups given as arguments to ‘-g grpl[,...]’,
except for variables given as arguments to ‘-v var[,...]’. Use this when one or a few
variables in hierarchical files are not to be extracted, and all other variables are. This is
useful when coercing netCDF4 files into netCDF3 files such as with converting, flattening,
or dismembering files (see Section 3.14.1 [Flattening Groups|, page 54).

ncks --grp_xtr_var_xcl -g gl -v vl # Extract all of group gl except vl

Two properties of subsetting, recursion and anchoring, are best illustrated by reminding
the user of their UNIX equivalents. The UNIX command mv src dst moves src and all its
subdirectories (and all their subdirectories etc.) to dst. In other words mv is, by default,
recursive. In contrast, the UNIX command cp src dst moves src, and only src, to dst, If
src is a directory, not a file, then that command fails. One must explicitly request to copy
directories recursively, i.e., with cp -r src dst. In NCO recursive extraction (and copying)
of groups is the default (like with mv, not with cp). Recursion is turned off by appending a
trailing slash to the path.

These UNIX commands also illustrate a property we call anchoring. The command mv
src dst moves (recursively) the source directory src to the destination directory dst. If
src begins with the slash character then the specified path is relative to the root directory,
otherwise the path is relative to the current working directory. In other words, an initial
slash character anchors the subsequent path to the root directory. In NCO an initial slash
anchors the path at the root group. Paths that begin and end with slash characters (e.g.,
//,/gl/, and /g1/g2/) are both anchored and non-recursive.

Consider the following commands, all of which may be assumed to end with ‘in.nc
out.nc’:

ncks -g gl # Extract, recursively, all groups with a gl component
ncks -g gl/ # Extract, non-recursively, all groups terminating in gl
ncks -g /gl # Extract, recursively, root group gl

ncks -g /gl/ # Extract, non-recursively root group gl

ncks -g // # Extract, non-recursively the root group

The first command is probably the most useful and common. It would extract these
groups, if present, and all their direct ancestors and children: /g1, /g2/g1, and /g3/gl/g2.
In other words, the simplest form of ‘~g grp’ grabs all groups that (and their direct ancestors

50 NCO 5.0.1 User Guide

and children, recursively) that have grp as a complete component of their path. A simple
string match is insufficient, grp must be a complete component (i.e., group name) in the
path. The option ‘-g g1’ would not extract these groups because gl is not a complete
component of the path: /g12, /fgl, and /glgl. The second command above shows how
a terminating slash character / cancels the recursive copying of groups. An argument to
‘~g’ which terminates with a slash character extracts the group and its direct ancestors,
but none of its children. The third command above shows how an initial slash character /
anchors the argument to the root group. The third command would not extract the group
/g2/g1 because the gl group is not at the root level, but it would extract, any group /gl
at the root level and all its children, recursively. The fourth command is the non-recursive
version of the third command. The fifth command is a special case of the fourth command.

As mentioned above, both ‘-v’ and ‘-g’ options may be specified simultaneously and
NCO will, by default, extract the intersection of the lists, i.e., the specified variables found
in the specified groups'®. The ‘-—unn’ option causes NCO to extract the union, rather than
the intersection, of the specified groups and variables. Consider the following commands
(which may be assumed to end with ‘in.nc out.nc’):

Intersection-mode subsetting (default)

ncks -g gl -v vl # Yes: /gi/v1l, /g2/gl/vl. No: /vi, /g2/vl

ncks -g /gl -v vl # Yes: /gi/vl, /gi/g2/v1i. No: /v1, /g2/vl, /g2/gl/v1
ncks -g gl/ -v vl # Yes: /gil/vl, /g2/gl/vl. No: /v1, /g2/vl, /gl/g2/v1
ncks -v gl/vl # Yes: /gil/v1l, /g2/gl/v1i. No: /v1, /g2/vl, /gl/g2/v1
ncks -g /gl/ -v vl # Yes: /gi/vl1. No: /g2/gl/v1, /vi, /g2/vl

ncks -v /gi/v1 # Yes: /gl/v1l. No: /g2/gl/v1, /v1, /g2/vl

Union-mode subsetting (invoke with --unn or --union)

ncks -g gl -v vl --unn # All variables in gl or progeny, or named vl
ncks -g /gl -v vl --unn # All variables in /gl or progeny, or named vl
ncks -g gl/ -v vl --unn # All variables in gl or named vl

ncks -g /gl/ -v vl --unn # All variables in /gl or named vl

The first command (‘-g g1 -v v1’) extracts the variable v1 from any group named gl
or descendent gi. The second command extracts vl from any root group named gl and
any descendent groups as well. The third and fourth commands are equivalent ways of
extracting v1 only from the root group named g1 (not its descendents). The fifth and sixth
commands are equivalent ways of extracting the variable v1 only from the root group named
gl. Subsetting in union-mode (with ‘--unn’) causes all variables to be extracted which meet
either one or both of the specifications of the variable and group specifications. Union-mode
subsetting is simply the logical “OR” of intersection-mode subsetting. As discussed below,
the group and variable specifications may be comma separated lists of regular expressions
for added control over subsetting.

Remember, if averaging or concatenating large files stresses your systems memory or
disk resources, then the easiest solution is often to subset (with ‘-g’ and/or ‘-v’) to retain
only the most important variables (see Section 2.9 [Memory Requirements|, page 24).

15 Intersection-mode can also be explicitly invoked with the ‘--nsx’ or ‘--intersection’ switches. These
switches are supplied for clarity and consistency and do absolutely nothing since intersection-mode is
the default.

Chapter 3: Shared Features 51

ncks in.nc out.nc # Extract all groups and variables
ncks -v scl # Extract variable scl from all groups
ncks -g gl # Extract group gl and descendents

ncks -x -g gl # Extract all groups except gl and descendents
ncks -g g2,g3 -v scl # Extract scl from groups g2 and g3

Overwriting and appending work as expected:

Replace scl in group g2 in out.nc with scl from group g2 from in.nc
ncks -A -g g2 -v scl in.nc out.nc

Due to its special capabilities, ncap2 interprets the ‘-v’ switch differently (see Section 4.1
[ncap2 netCDF Arithmetic Processor|, page 152). For ncap2, the ‘-v’ switch takes no
arguments and indicates that only user-defined variables should be output. ncap2 neither
accepts nor understands the -x and -g switches.

Regular expressions the syntax that NCO use pattern-match object names in netCDF file
against user requests. The user can select all variables beginning with the string ‘DST’ from
an input file by supplying the regular expression ‘"DST’ to the ‘-v’ switch, i.e., ‘~v >"DST’’.
The meta-characters used to express pattern matching operations are ‘~$+7.x[1{}|’. If
the regular expression pattern matches any part of a variable name then that variable is
selected. This capability is also called wildcarding, and is very useful for sub-setting large
data files.

Extended regular expressions are defined by the POSIX grep -E (aka egrep) command.
As of NCO 2.8.1 (August, 2003), variable name arguments to the ‘-v’ switch may contain
extended regular expressions. As of NCO 3.9.6 (January, 2009), variable names arguments
to ncatted may contain extended regular expressions. As of NCO 4.2.4 (November, 2012),
group name arguments to the ‘-g’ switch may contain extended regular expressions.

Because of its wide availability, NCO uses the POSIX regular expression library regex.
Regular expressions of arbitary complexity may be used. Since netCDF variable names are
relatively simple constructs, only a few varieties of variable wildcards are likely to be useful.
For convenience, we define the most useful pattern matching operators here:

C~

Matches the beginning of a string
‘$’ Matches the end of a string

[

Matches any single character

The most useful repetition and combination operators are

‘P The preceding regular expression is optional and matched at most once
k7 The preceding regular expression will be matched zero or more times
+ The preceding regular expression will be matched one or more times

The preceding regular expression will be joined to the following regular ex-
pression. The resulting regular expression matches any string matching either
subexpression.

52 NCO 5.0.1 User Guide

To illustrate the use of these operators in extracting variables and groups, consider file
in_grp.nc with groups g0—g9, and subgroups s0-s9, in each of those groups, and file in.nc
with variables Q, Q01-Q99, Q100, QAA-QZZ, Q_H20, X_H20, Q_C02, X_C02.

All variables (default)

Variables that contain Q

Variables that start with Q

Q, Q0--Q9, QO01--Q99, QAA--QZZ, etc.
Q01--Q99, QAA--QZZ, etc.

QO1--Q99, Q100

QO1--Q99

ncks -v ’.+’ in.nc

ncks -v ’Q.7’ in.nc

ncks -v ’7Q.7’ in.nc

ncks -v "Q+.7.° in.nc

ncks -v ’°°Q..’ in.nc

ncks -v >~Q[0-9][0-9]’ in.nc
ncks -v *"Q[[:digit:]1]1{2}’ in.nc
ncks -v ’H20%$’ in.nc Q_H20, X_H20

ncks -v ’>H20$/C02$’ in.nc Q_H20, X_H20, Q_C02, X_C02
ncks -v >~Q[0-9][0-9]$’ in.nc # Q01--Q99

ncks -v >~Q[0-6][0-9]]7[0-3]’ in.nc # QO01--Q73, Q100

ncks -v ’(Q[0-6]1[0-9]|7[0-3])$’ in.nc # QO01--Q73

ncks -v ’~[a-z]_[a-z]{3}$’ in.nc # Q_H20, X_H20, Q_C02, X_C02

H OH H HHE H H HH

ncks -g ’g.’ in_grp.nc # 10 Groups g0-g9
ncks -g ’s.’ in_grp.nc # 100 sub-groups g0/s0, g0/s1l, ... g9/s9
ncks -g ’g.’ -v ’v.’ in_grp.nc # All variables ’v.’ in groups ’g.’

Beware—two of the most frequently used repetition pattern matching operators, ‘*” and
‘“?’, are also valid pattern matching operators for filename expansion (globbing) at the shell-
level. Confusingly, their meanings in extended regular expressions and in shell-level filename
expansion are significantly different. In an extended regular expression, ‘*’ matches zero
or more occurences of the preceding regular expression. Thus ‘Q*’ selects all variables,
and ‘Q+.*’ selects all variables containing ‘Q’ (the ‘+’ ensures the preceding item matches
at least once). To match zero or one occurence of the preceding regular expression, use
‘?”. Documentation for the UNIX egrep command details the extended regular expressions
which NCO supports.

One must be careful to protect any special characters in the regular expression specifica-
tion from being interpreted (globbed) by the shell. This is accomplish by enclosing special
characters within single or double quotes

ncra -v Q77 in.nc out.nc # Error: Shell attempts to glob wildcards
ncra -v ’"Q+..’° in.nc out.nc # Correct: NCO interprets wildcards
ncra -v ’"Q+..’° in*.nc out.nc # Correct: NCO interprets, Shell globs

The final example shows that commands may use a combination of variable wildcarding
and shell filename expansion (globbing). For globbing, ‘*’ and ‘?’ have nothing to do with
the preceding regular expression! In shell-level filename expansion, ‘*’ matches any string,
including the null string and ‘?’ matches any single character. Documentation for bash and
csh describe the rules of filename expansion (globbing).

3.13 Subsetting Coordinate Variables

Chapter 3: Shared Features 53

Availability: ncap2, ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-C’, ‘=¢’

Long options: ‘--no_coords’, ‘--no_crd’, ‘--xcl_ass_var’, ‘--crd’, ‘--coords’,
‘--xtr_ass_var’

By default, coordinates variables associated with any variable appearing in the input-
file will be placed in the output-file, even if they are not explicitly specified, e.g., with
the ‘-v’ switch. Thus variables with a latitude coordinate lat always carry the values
of lat with them into the output-file. This automatic inclusion feature can be disabled
with ‘~=C’, which causes NCO to exclude (or, more precisely, not to automatically include)
coordinates and associated variables from the extraction list. However, using ‘~C’ does not
preclude the user from including some coordinates in the output files simply by explicitly
selecting the coordinates and associated variables with the -v option. The ‘-c’ option, on
the other hand, is a shorthand way of automatically specifying that all coordinate and
associated variables in input-files should appear in output-file. The user can thereby select
all coordinate variables without even knowing their names.

The meaning of “coordinates” in these two options has expanded since about 2009 from
simple one dimensional coordinates (per the NUG) definition) to any and all associated
variables. This includes multi-dimensional coordinates as well as a menagerie of associated
variables defined by the CF metadata conventions: As of NCO version 4.4.5 (July, 2014)
both ‘~c” and ‘~C” honor the CF ancillary_variables convention described in Section 3.45
[CF Conventions|, page 145. As of NCO version 4.0.8 (April, 2011) both ‘-c’ and ‘~C” honor
the CF bounds convention described in Section 3.45 [CF Conventions|, page 145. As of NCO
version 4.6.4 (January, 2017) both ‘-c’ and ‘-C’ honor the CF cell_measures convention
described in Section 3.45 [CF Conventions|, page 145. As of NCO version 4.4.9 (May, 2015)
both ‘-¢’ and ‘-C’ honor the CF climatology convention described in Section 3.45 [CF
Conventions|, page 145. As of NCO version 3.9.6 (January, 2009) both ‘-c” and ‘-C’ honor
the CF coordinates convention described in Section 3.45 [CF Conventions]|, page 145. As of
NCO version 4.6.4 (January, 2017) both ‘¢’ and ‘~C’ honor the CF formula_terms conven-
tion described in Section 3.45 [CF Conventions|, page 145. As of NCO version 4.6.0 (May,
2016) both ‘-c” and ‘-C’” honor the CF grid_mapping convention described in Section 3.45
[CF Conventions|, page 145.

The expanded categories of variables controlled by ‘-=c’ and ‘-C’ justified adding a more
descriptive switch. As of NCO version 4.8.0 (May, 2019) the switch ‘--xcl_ass_var’, which
stands for “exclude associated variables”, is synonymous with ‘-C’ and ‘--xtr_ass_var’,
which stands for “extract associated variables”, is synonymous with ‘-c’.

3.14 Group Path Editing

Options -G gpe_dsc

Availability: ncbo, ncecat, nces, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-G’

Long options: ‘--gpe’

54 NCO 5.0.1 User Guide

Group Path Editing, or GPE, allows the user to restructure (i.e., add, remove, and
rename groups) in the output file relative to the input file based on the instructions they
provide. As of NCO 4.2.3 (November, 2012), all operators that accept netCDF4 files with
groups accept the ‘-G’ switch, or its long-option equivalent ‘--gpe’. To master GPE one
must understand the meaning of the required gpe_dsc structure/argument that specifies the
transformation of input-to-output group paths.

Each gpe_dsc contains up to three elements (two are optional) in the following order:
gpe_dsc = grp_pth:Ivl_nbr or grp_pthQIlvIl_nbr

grp_pth Group Path. This (optional) component specifies the output group path that
should be appended after any editing (i.e., deletion or truncation) of the input
path is performed.

Ivl_nbr The number of levels to delete (from the head) or truncate (from the tail) of
the input path.

If both components of the argument are present, then a single character, either the colon
or at-sign (: or @), must separate them. If only grp_pth is specifed, the separator character
may be omitted, e.g., ‘-G g1’. If only Ivl_nbr is specifed, the separator character is still
required to indicate it is a Ivl_nbr arugment and not a grp_pth, e.g., ‘-G : -1’ or ‘-G @1’.

If the at-sign separator character @ is used instead of the colon separator character :,
then the following Ivl_nbr arugment must be positive and it will be assumed to refer to
Truncation-Mode. Hence, ‘-G :-1’ is the same as ‘-G @1’. This is simply a way of making
the Ivl_nbr argument positive-definite.

3.14.1 Deletion, Truncation, and Flattening of Groups

GPE has three editing modes: Delete, Truncate, and Flatten. Select one of GPE’s three
editing modes by supplying a Ivl_nbr that is positive, negative, or zero for Delete-, Truncate-
and Flatten-mode, respectively.

In Delete-mode, Ivl_nbr is a positive integer which specifies the maximum number of
group path components (i.e., groups) that GPE will try to delete from the head of grp_pth.
For example Ivl_.nbr = 3 changes the input path /g1/g2/g3/g4/g5 to the output path
/g4/g5. Input paths with Ivl_nbr or fewer components (groups) are completely erased and
the output path commences from the root level.

In other words, GPE is tolerant of specifying too many group components to delete. It
deletes as many as possible, without complaint, and then begins to flatten the file (which
fails if namespace conflicts arise).

In Truncate-mode, Ivl_nbr is a negative integer which specifies the maximum number of
group path components (i.e., groups) that GPE will try to truncate from the tail of grp_pth.
For example Ivi_nbr = —3 changes the input path /g1/g2/g3/g4/gb to the output path
/g1/g2. Input paths with Ivl_nbr or fewer components (groups) are completely erased and
the output path commences from the root level.

In Flatten-mode, indicated by the separator character alone or with Ivl_nbr = 0, GPE
removes the entire group path from the input file and constructs the output path beginning
at the root level. For example -G :0 and -G : are identical and change the input path

Chapter 3: Shared Features 55

/gl/g2/g3/g4/g5 to the output path / whereas -G g1:0 and -G gl: are identical and
result in the output path /g1 for all variables.

Subsequent to the alteration of the input path by the specified editing mode, if any, GPE
prepends (in Delete Mode) or Appends (in Truncate-mode) any specifed grp_pth to the out-
put path. For example -G g2 changes the input paths / and /g1 to /g2 and /g1/g2, respec-
tively. Likewise, -G g2/g3 changes the input paths / and /gl to /g2/g3 and /g1/g2/g3,
respectively. When grp_pth and Ivl_nbr are both specified, the editing actions are taken in
sequence so that, e.g., -G g1/g2:2 changes the input paths / and /h1/h2/h3/h4 to /gl/g2
and /gl/g2/h3/h4, respectively. Likewise, -G g1/g2:-2 changes the input paths / and
/h1/h2/h3/h4 to /g1/g2 and /h1/h2/gl/g2, respectively.

Combining GPE with subsetting (see Section 3.12 [Subsetting Files|, page 48) yields
powerful control over the extracted (or excluded) variables and groups and their placement
in the output file as shown by the following commands. All commands below may be
assumed to end with ‘in.nc out.nc’.

Prepending paths without editing:

ncks # /g?/v? -> /g?/v7?
ncks -v vl # /g?/vl -> /g7/vl
ncks -g gl # /gl/v? -> /gl/v?
ncks -G ol # /g?/v? => /ol/g?/v?
ncks -G ol -g gl # /gl/v? -> /Jol/gl/v7
ncks -g gl -v vl # /gl/vl -> /gl/v1
ncks -G ol -v vl # /g?/vl -> /ol/g?/vl
ncks -G ol -g gl -v vl # /gl/vl -> /ol/gl/v1
ncks -G gl -g / -v vl # /vl -> /gl/v1

ncks -G gl/g2 -v vl # /g?/vl -> /gl/g2/g?/v1
Delete-mode: Delete from and Prepend to path head
Syntax: -G [ppn]:1lvl_nbr = # of levels to delete

ncks -G :1 -g gl -v vl # /gi/v1 -> /vi
ncks -G :1 -g gl/gl -v v1 # /gi/gl/vl -> /gi/v1
ncks -G :2 -g gl/gl -v vl # /gl/gl/vl -> /v1
ncks -G :2 -g gl -v vl # /gl/vl -> /vi
ncks -G g2:1 -g gl -v vl # /gl/v1 -> /g2/v1
ncks -G g2:2 -g gi/gl -v vl # /gl/gl/vl -> /g2/v1
ncks -G g2:1 -g / -v vl # /vi -> /g2/v1
ncks -G g2:1 -v vl # /v1 -> /g2/v1

ncks -G g2:1 -g gl/gl -v vl # /gi/gl/vl -> /g2/gl/v1
Flatten-mode: Remove all input path components
Syntax: -G [apn]: colon without numerical argument

ncks -G : -v vl # /g?/v1 -> /vl
ncks -G : -g gl -v vl # /gl/v1 -> /vl
ncks -G : -g gl/gl -v v1 # /gi/gl/vl -> /vi
ncks -G g2: -v vl # /g?/v1 -> /g2/v1
ncks -G g2: # /g?/v7 -> /g2/v7?

ncks -G g2: -g gl/gl -v vl # /gi/gl/vl -> /g2/v1
Truncate-mode: Truncate from and Append to path tail

56 NCO 5.0.1 User Guide

Syntax: -G [apn]:-1lvl_nbr = # of levels to truncate
NB: -G [apn]:-1lvl_nbr is equivalent to -G [apn]@lvl_nbr

ncks -G :-1 -g gl -v vl # /gl/v1 -> /vi

ncks -G :-1 -g gl/g2 -v v1 # /gi/g2/v1l -> /gl/v1
ncks -G :-2 -g gi/g2 -v vl # /gl/g2/vl -> /v1

ncks -G :-2 -g gl -v vl # /gi/v1 -> /v1

ncks -G g2:-1 -v vl # /g?/vl -> /g2/v1
ncks -G g2:-1 -g gl -v vl # /gl/v1 -> /g2/v1
ncks -G gl:-1 -g g1/g2 -v vl # /gi/g2/vl -> /gl/gl/v1

3.14.2 Moving Groups

Until fall 2013 (netCDF version 4.3.1-prel), netCDF contained no library function for re-
naming groups, and therefore ncrename cannot rename groups. However, NCO built on
earlier versions of netCDF than 4.3.1 can use a GPE-based workaround mechanism to “re-
name” groups. The GPE mechanism actually moves (i.e., copies to a new location) groups,
a more arduous procedure than simply renaming them. GPE applies to all selected groups,
so, in the general case, one must move only the desired group to a new file, and then merge
that new file with the original to obtain a file where the desired group has been “renamed”
and all else is unchanged. Here is how to “rename” group /g4 to group /f4 with GPE
instead of ncrename

ncks -0 -G f4:1 -g g4 “/nco/data/in_grp.nc ~/tmp.nc # Move /g4 to /f4
ncks -0 -x -g g4 "/nco/data/in_grp.nc “/out.nc # Excise /g4
ncks -A “/tmp.nc “/out.nc # Add /f4 to new file

If the original group g4 is not excised from out.nc (step two above), then the final
output file would contain both g4 and a copy named £f4. Thus GPE can be used to both
“rename” and copy groups. The recommended way to rename groups when when netCDF
version 4.3.1 is availale is to use ncrename (see Section 4.13 [ncrename netCDF Renamer],
page 339).

One may wish to flatten hierarchical group files for many reasons. These include 1. To
obtain flat netCDF3 files for use with tools that do not work with netCDF4 files, 2. To
split-apart hierarchies to re-assemble into different hierarchies, and 3. To provide a subset
of a hierarchical file with the simplest possible storage structure.

ncks -0 -G : -g cesm -3 "/nco/data/cmip5.nc ~“/cesm.nc # Extract /cesm to /

The -3 switch!® specifies the output dataset should be in netCDF3 format, the -G :
option flattens all extracted groups, and the —-g cesm option extracts only the cesm group
and leaves all other groups (e.g., ecmwf, giss).

3.14.3 Dismembering Files

Let us show how to completely disaggregate (or, more memorably) dismember a hierarchical
dataset. For now we take this to mean: store each group as a standalone flat dataset in
netCDF3 format. This can be accomplished by looping the previous example over all groups.

16 Note that the -3 switch should appear after the -G and -g switches. This is due to an artifact of the
GPE implementation which we wish to remove in the future.

Chapter 3: Shared Features 57

This script ncdismember dismembers the input file fl_in specified in the first argument and
places the resulting files in the directory drc_out specified by the second argument:

cat > “/ncdismember << ’EQF’
#!/bin/sh

Purpose: Dismember netCDF4/HDF5 hierarchical files. CF-check them.
Place each input file group in separate netCDF3 output file

Described in NCO User Guide at http://nco.sf.net/nco.html#dismember
Requirements: NCO 4.3.x+, UNIX shell utilities awk, grep, sed

Optional: Decker CFchecker https://bitbucket.org/mde_/cfchecker

Usage:

ncdismember <fl_in> <drc_out> [cf_chk] [cf_vrs] [opt]

where fl_in is input file/URL to dismember, drc_out is output directory
CF-compliance check is performed when optional third argument is not ’0’
Default checker is Decker’s cfchecker installed locally

Specify cf_chk=nerc for smallified uploads to NERC checker

Optional fourth argument cf_vrs is CF version to check

Optional fifth argument opt passes straight-through to ncks

Arguments must not use shell expansion/globbing

NB: ncdismember does not clean-up output directory, so user must

chmod a+x ~/sh/ncdismember

Examples:

ncdismember ~/nco/data/mdl_1.nc /data/zender/tmp

ncdismember http://dust.ess.uci.edu/nco/mdl_1.nc /tmp

ncdismember http://thredds-test.ucar.edu/thredds/dodsC/testdods/foo.nc /tmp
ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp nerc

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf 1.3

ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf 1.5 --fix_rec_dmn=all

H OHF HF H H OHF HF H HHHFHHHHEHHHH

Command-line argument defaults

f1_in="${HOME}/nco/data/mdl_1.nc" # [sng] Input file to dismember/check
drc_out="${DATA}/nco/tmp" # [sng] Output directory

cf_chk="0" # [flg] Perform CF-compliance check? Which checker?
cf_vrs=’1.5" # [sng] Compliance-check this CF version (e.g., ’1.5’)
opt=’"" # [flg] Additional ncks options (e.g., ’--fix_rec_dmn=all’)

Use single quotes to pass multiple arguments to opt=${5}

Otherwise arguments would be seen as ${5}, ${6}, ${7} ...

Command-line argument option parsing

if [-n "${1}" J]; then fl_in=${1}; fi
if [-n "${2}"]; then drc_out=${2}; fi
if [-n "${3}" 1; then cf_chk=${3}; fi
if [-n "${4}"]; then cf_vrs=${4}; fi
if [-n "${5}" 1; then opt=${5}; fi

58

NCO 5.0.1 User Guide

Prepare output directory
echo "NCO dismembering file ${fl_in}"

f1_stb=$(basename ${fl_in})

drc_out=${drc_out}/${f1_stb}

mkdir -p ${drc_out}

cd ${drc_out}

chk_dck=’n’

chk_nrc=’n’

if [${cf_chk} = ’nerc’]; then
chk_nrc=’y’

fi # chk_nrc

if [${cf_chk} != 0’] && [${cf_chk} != ’nerc’]; then
chk_dck="y’
hash cfchecker 2>/dev/null || { echo >&2 "Local cfchecker command not found, will

fi # 'cf_chk
Obtain group list

grp—

IFS=

for

done
if [

fi
if [

1st=‘ncks -m ${fl1_in} | grep ’// group’ | awk ’{$1=$2=$3="";sub(/~ */,"",$0);prin
$°\n’ # Change Internal-Field-Separator from <Space><Tab><Newline> to <Newline>
grp_in in ${grp_1lst} ; do
Replace slashes by dots for output group filenames
grp_out=‘echo ${grp_in} | sed ’s/\///’ | sed ’s/\//./g’ ¢
if ["${grp_out}" = ’’]; then grp_out=’root’ ; fi
Tell older NCO/netCDF if HDF4 with --hdf4 switch (signified by .hdf/.HDF suffix)
hdf4=‘echo ${fl_in} | awk ’{if (match(tolower($1),".hdf$")) hdf4="--hdf4"; print hd
Flatten to netCDF3, anchor, no history, no temporary file, padding, HDF4 flag, o
cmd="ncks -0 -3 -G : -g ${grp_in}/ -h --no_tmp_fl --hdr_pad=40 ${hdf4} ${opt} ${fl
Use eval in case ${opt} contains multiple arguments separated by whitespace
eval ${cmd}
if [${chk_dck} = ’y’]; then

Decker checker needs Conventions <= 1.6

no_bck_sls=‘echo ${drc_out}/${grp_out} | sed ’s/\\\ / /g’°¢

ncatted -h -a Conventions,global,o,c,CF-${cf_vrs} ${no_bck_sls}.nc
else # !chk_dck

echo ${drc_out}/${grp_out}.nc
fi # !chk_dck

${chk_dck} = ’y’]; then
echo ’Decker CFchecker reports CF-compliance of each group in flat netCDF3 format’
cfchecker -c ${cf_vrs} *.nc

${chk_nrc} = ’y’]; then
Smallification and NERC upload from qdcf script by Phil Rasch (PJR)
echo ’Using remote CFchecker http://puma.nerc.ac.uk/cgi-bin/cf-checker.pl’
cf_lcn=’http://puma.nerc.ac.uk/cgi-bin/cf-checker.pl’
for f1 in ${drc_out}/*.nc ; do
f1_sml=${f1}

Chapter 3: Shared Features 59

cf_out=${f1%.nc}.html
dmns=‘ncdump -h ${fl_in} | sed -n -e ’/dimensions/,/variables/p’ | grep = | se
hyp_sml=""’
for dmn in ${dmns}; do
dmn_lc=‘echo ${dmn} | tr "[:upper:]" "[:lower:]"¢
if [${dmn_1c} = ’lat’] || [${dmn_lc} = ’latitude’] || [${dmn_lc} = 1
hyp_sml=‘echo ${hyp_sml}" -d ${dmn},0"¢
fi # !dmn_Ilc
done
Create small version of input file by sampling only first element of lat, lo
ncks -0 ${hyp_sml} ${f1} ${fl_sml}
Send small file to NERC checker
curl --form cfversion=1.6 --form upload=0${fl_sml} --form press="Check’,20file"
Strip most HTML to improve readability
cat ${cf_out} | sed -e "s/<[">]*>//g" -e "/DOCTYPE/,/\I\1/d" -e "s/CF-Conventi
echo "Full NERC compliance-check log for ${fl} in ${cf_out}"
done
fi # !mnerc
EQF
chmod 755 “/ncdismember # Make command executable
/bin/mv -f “/ncdismember ~/sh # Store in location on $PATH, e.g., /usr/local/bin

zender@roulee:~$ ncdismember ~/nco/data/mdl_1.nc ${DATA}/nco/tmp
NCO dismembering file /home/zender/nco/data/mdl_1.nc
/data/zender/nco/tmp/mdl_1.nc/cesm.cesm_01.nc
/data/zender/nco/tmp/mdl_1.nc/cesm.cesm_02.nc
/data/zender/nco/tmp/mdl_1.nc/cesm.nc
/data/zender/nco/tmp/mdl_1.nc/ecmwf.ecmwf_01.nc
/data/zender/nco/tmp/mdl_1.nc/ecmwf.ecmwf_02.nc
/data/zender/nco/tmp/mdl_1.nc/ecmwf.nc
/data/zender/nco/tmp/mdl_1.nc/root.nc

A (potentially more portable) binary executable could be written to dismember all groups
with a single invocation, yet dismembering without loss of information is possible now with
this simple script on all platforms with UNIXy utilities. Note that all dimensions inherited
by groups in the input file are correctly placed by ncdismember into the flat files. Moreover,
each output file preserves the group metadata of all ancestor groups, including the global
metadata from the input file. As written, the script could fail on groups that contain
advanced netCDF4 features because the user requests (with the ‘-3’ switch) that output be
netCDF3 classic format. However, ncks detects many format incompatibilities in advance
and works around them. For example, ncks autoconverts netCDF4-only atomic-types (such
as NC_STRING and NC_UBYTE) to corresponding netCDF3 atomic types (NC_CHAR and NC_
SHORT) when the output format is netCDF3.

60

NCO 5.0.1 User Guide

3.14.4 Checking CF-compliance

One application of dismembering is to check the CF-compliance of each group in a file. When
invoked with the optional third argumnt ‘cf’, ncdismember passes each file it generates to
freely available compliance checkers, such as cfchecker!”.

zender@roulee:~$ ncdismember ~/nco/data/mdl_1.nc /data/zender/nco/tmp cf
NCO dismembering file /home/zender/nco/data/mdl_1.nc

CFchecker reports CF-compliance of each group in flat netCDF3 format
WARNING: Using the default (non-CF) Udunits database

cesm.cesm_01.nc:

INFO: INIT: running CFchecker version 1.5.15

INFO: INIT: checking compliance with convention CF-1.5

INFO: INIT: using standard name table version: 25, last modified: 2013-07-05T05:40
INFO: INIT: using area type table version: 2, date: 10 July 2013

INFO: 2.4: no axis information found in dimension variables, not checking dimensi
WARNING: 3: variable "tasl" contains neither long_name nor standard_name attribute
WARNING: 3: variable "tas2" contains neither long_name nor standard_name attribute
INFO: 3.1: variable "tasl" does not contain units attribute

INFO: 3.1: variable "tas2" does not contain units attribute

cesm.cesm_02.nc:

By default the CF version checked is determined automatically by cfchecker. The user
can override this default by supplying a supported CF version, e.g., ‘1.3’, as an optional
fourth argument to ncdismember. Current valid CF options are ‘1.0°, ‘1.1, ‘1.2’ ‘1.3’,
‘1.4’, and ‘1.5.

Our development and testing of ncdismember is funded by our involvement in NASA’s
Dataset Interoperability Working Group (DIWG), though our interest extends beyond
NASA datasets. Taken together, NCO’s features (autoconversion to netCDF3 atomic types,
fixing multiple record dimensions, autosensing HDF4 input, scoping rules for CF conven-
tions) make ncdismember reliable and friendly for both dismembering hierarchical files and
for CF-compliance checks. Most HDF4 and HDF5 datasets can be checked for CF-compliance
with a one-line command. Example compliance checks of common NASA datasets are at
http://dust.ess.uci.edu/diwg. Our long-term goal is to enrich the hierarchical data
model with the expressivity and syntactic power of CF conventions.

NASA asked the DIWG to prepare a one-page summary of the procedure necessary to
check HDF files for CF-compliance:

cat > “/ncdismember.txt << ’EQOF’

Preparing an RPM-based 0S to Test HDF & netCDF Files for CF-Compliance

By Charlie Zender, UCI & NASA Dataset Interoperability Working Group (DIWG)

Installation Summary:

1T CFchecker is developed by Michael Decker and Martin Schultz at Forschungszentrum Jiilich and dis-
tributed at https://bitbucket.org/mde_/cfchecker.

https://wiki.earthdata.nasa.gov/display/ESDSWG/Dataset+Interoperability+Working+Group
http://dust.ess.uci.edu/diwg
https://bitbucket.org/mde_/cfchecker

Chapter 3: Shared Features 61

. HDF4 [with internal netCDF support _disabled_]
. HDF5

. netCDF [with external HDF4 support _enabled_]
. NCO

. numpy

. netcdf4-python
. python-1xml

. CFunits-python
. CFChecker

10. ncdismember

O 00 ~NO O WN

All 10 packages can use default installs _except_ HDF4 and netCDF.

Following instructions for Fedora Core 20 (FC20), an RPM-based Linux 0S
Feedback and changes for other Linux-based 0S’s welcome to zender at uci.edu
${H4ADIR}, ${H5DIR}, ${NETCDFDIR}, ${NCODIR}, may all be different

For simplicity CZ sets them all to /usr/local

1. HDF4. Build in non-default manner. Turn-off its own netCDF support.

Per http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

HDF4 support not necessary though it makes ncdismember more comprehensive

wget -c http://www.hdfgroup.org/ftp/HDF/HDF_Current/src/hdf-4.2.9.tar.gz

tar xvzf hdf-4.2.9.tar.gz

cd hdf-4.2.9

./configure --enable-shared --disable-netcdf --disable-fortran --prefix=${H4DIR}
make && make check && make install

2. HDF5. Build normally. RPM may work too. Please let me know if so.

HDF5 is a necessary pre-requisite for netCDF4

wget -c ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4/hdf5-1.8.11.tar.gz
tar xvzf hdfb5-1.8.11.tar.gz

cd hdf5-1.8.11

./configure --enable-shared --prefix=${H5DIR}

make && make check && make install

3. netCDF version 4.3.1 or later. Build in non-default manner with HDF4.
Per http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

Earlier versions of netCDF may fail checking some HDF4 files

wget -c ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.3.2.tar.gz

tar xvzf netcdf-4.3.2.tar.gz

cd netcdf-4.3.2

CPPFLAGS="-I${H5DIR}/include -I${H4DIR}/include" \
LDFLAGS="-L${H5DIR}/1ib -L${H4DIR}/1ib" \

./configure --enable-hdf4 --enable-hdf4-file-tests

make && make check && make install

4. NCO version 4.4.0 or later. Some RPMs available. Or install by hand.
Later versions of NCO have much better support for ncdismember

NCO 5.0.1 User Guide

wget http://nco.sourceforge.net/src/nco-4.4.4.tar.gz .
tar xvzf nco-4.4.4.tar.gz

cd nco-4.4.4

./configure --prefix=${NCODIR}

make && make install

5. numpy
sudo yum install numpy -y

6. netcdf4-python
sudo yum install netcdf4-python -y

7. python-lxml
sudo yum install python-lxml -y

8. CFunits-python. No RPM available. Must install by hand.

http://code.google.com/p/cfunits-python/

wget http://cfunits-python.googlecode.com/files/cfunits-0.9.6.tar.gz .
tar xvzf cfunits-0.9.6.tar.gz

cd cfunits-0.9.6

sudo python setup.py install

9. CFChecker. No RPM available. Must install by hand.

https://bitbucket.org/mde_/cfchecker

wget https://bitbucket.org/mde_/cfchecker/downloads/CFchecker-1.5.15.tar.bz2 .
tar xvjf CFchecker-1.5.15.tar.bz2

cd CFchecker

sudo python setup.py install

10. ncdismember. Copy script from http://nco.sf.net/nco.html#ncdismember
Store dismembered files somewhere, e.g., ${DATA}/nco/tmp/hdf
mkdir -p ${DATA}/nco/tmp/hdf
Many datasets work with a simpler command...
ncdismember ~/nco/data/in.nc ${DATA}/nco/tmp/hdf cf 1.5
ncdismember ~/nco/data/mdl_1.nc ${DATA}/nco/tmp/hdf cf 1.5
ncdismember ${DATA}/hdf/AMSR_E_L2_Rain_V10_200905312326_A.hdf \
${DATA}/nco/tmp/hdf cf 1.5
ncdismember ${DATA}/hdf/BUV-Nimbus04_L3zm_v01-00-2012m0203t144121.h5 \
${DATA}/nco/tmp/hdf cf 1.5
ncdismember ${DATA}/hdf/HIRDLS-Aura_L3ZAD_v06-00-00-c02_2005d022-2008d077.he5 ${DATA}/
Some datasets, typically .h5, require the --fix_rec_dmn=all argument
ncdismember_${DATA}/hdf/GATMO_npp_d20100906_t1935191_e1935505_b00012_c2011070715593206
ncdismember ${DATA}/hdf/mabel_12_20130927t201800_008_1.h5 \
${DATA}/nco/tmp/hdf cf 1.5 --fix_rec_dmn=all
EOF

A PDF version of these instructions is available here.

http://dust.ess.uci.edu/diwg/ncdismember.pdf

Chapter 3: Shared Features 63

3.15 C and Fortran Index conventions

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-F’
Long options: ‘--fortran’

The ‘-F’ switch changes NCO to read and write with the Fortran index convention. By
default, NCO uses C-style (0-based) indices for all I/O. In C, indices count from 0 (rather
than 1), and dimensions are ordered from slowest (inner-most) to fastest (outer-most) vary-
ing. In Fortran, indices count from 1 (rather than 0), and dimensions are ordered from
fastest (inner-most) to slowest (outer-most) varying. Hence C and Fortran data storage
conventions represent mathematical transposes of eachother. Note that record variables
contain the record dimension as the most slowly varying dimension. See Section 4.9 [ncpdq
netCDF Permute Dimensions Quickly|, page 287 for techniques to re-order (including trans-
pose) dimensions and to reverse data storage order.

Consider a file 85.nc containing 12 months of data in the record dimension time. The
following hyperslab operations produce identical results, a June-July-August average of the
data:

ncra -d time,5,7 85.nc 85_JJA.nc
ncra -F -d time,6,8 85.nc 85_JJA.nc

Printing variable three_dmn_var in file in.nc first with the C indexing convention, then
with Fortran indexing convention results in the following output formats:

% ncks --trd -v three_dmn_var in.nc
lat[0]=-90 1lev[0]=1000 lon[0]=-180 three_dmn_var[0]=0

% ncks --trd -F -v three_dmn_var in.nc
lon(1)=0 lev(1)=100 lat(1)=-90 three_dmn_var(1)=0

3.16 Hyperslabs

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim, [min] [, [max] [, [stride]]]’

Long options: ‘--dimension dim, [min] [, [max] [, [stridell]’,

‘-—dmn dim, [min] [, [max] [, [stride]l]’

A hyperslab is a subset of a variable’s data. The coordinates of a hyperslab are specified
with the -d dim, [min] [, [max] [, [stride]l]] short option (or with the same arguments to
the ‘--dimension’ or ‘--dmn’ long options). At least one hyperslab argument (min, max,
or stride) must be present. The bounds of the hyperslab to be extracted are specified by
the associated min and max values. A half-open range is specified by omitting either the

64 NCO 5.0.1 User Guide

min or max parameter. The separating comma must be present to indicate the omission of
one of these arguments. The unspecified limit is interpreted as the maximum or minimum
value in the unspecified direction. A cross-section at a specific coordinate is extracted by
specifying only the min limit and omitting a trailing comma. Dimensions not mentioned
are passed with no reduction in range. The dimensionality of variables is not reduced (in
the case of a cross-section, the size of the constant dimension will be one).

First and second longitudes
ncks -F -d lon,1,2 in.nc out.nc
Second and third longitudes
ncks -d lon,1,2 in.nc out.nc

As of version 4.2.1 (August, 2012), NCO allows one to extract the last N elements of a
hyperslab. Negative integers as min or max elements of a hyperslab specification indicate
offsets from the end (Python also uses this convention). Consistent with this convention,
the value ‘-1’ (negative one) indicates the last element of a dimension, and negative zero is
algebraically equivalent to zero and so indicates the first element of a dimension. Previously,
for example, ‘-d time,-2,-1" caused a domain error. Now it means select the penultimate
and last timesteps, independent of the size of the time dimension. Select only the first and
last timesteps, respectively, with ‘-d time,0’ and ‘-d time,-1’. Negative integers work for
min and max indices, though not for stride.

Second through penultimate longitudes
ncks -d lon,1,-2 in.nc out.nc

Second through last longitude

ncks -d lon,1,-1 in.nc out.nc

Second-to-last to last longitude

ncks -d lon,-3,-1 in.nc out.nc

Second-to-last to last longitude

ncks -d lon,-3, in.nc out.nc

The ‘-F’ argument, if any, applies the Fortran index convention only to indices specified as
positive integers:

First through penultimate longitudes

ncks -F -d lon,1,-2 in.nc out.nc (-F affects only start index)
First through last longitude

ncks -F -d lon,1,-1 in.nc out.nc

Second-to-last to penultimate longitude (-F has no effect)
ncks -F -d lon,-3,-1 in.nc out.nc

Second-to-last to last longitude (-F has no effect)

ncks -F -d lon,-3, in.nc out.nc

Coordinate values should be specified using real notation with a decimal point required in
the value, whereas dimension indices are specified using integer notation without a decimal
point. This convention serves only to differentiate coordinate values from dimension indices.
It is independent of the type of any netCDF coordinate variables. In other words, even if
coordinates are defined as integers, specify them with decimal points to have the command
interpret them as values, rather than indices. For a given dimension, the specified limits

Chapter 3: Shared Features 65

must both be coordinate values (with decimal points) or dimension indices (no decimal
points).

If values of a coordinate-variable are used to specify a range or cross-section, then the
coordinate variable must be monotonic (values either increasing or decreasing). In this case,
command-line values need not exactly match coordinate values for the specified dimension.
Ranges are determined by seeking the first coordinate value to occur in the closed range
[min,max] and including all subsequent values until one falls outside the range. The coor-
dinate value for a cross-section is the coordinate-variable value closest to the specified value
and must lie within the range or coordinate-variable values. The stride argument, if any,
must be a dimension index, not a coordinate value. See Section 3.17 [Stride], page 65, for
more information on the stride option.

All longitude values between 1 and 2 degrees

ncks -d lon,1.0,2.0 in.nc out.nc

All longitude values between 1 and 2 degrees

ncks -F -d 1lon,1.0,2.0 in.nc out.nc

Every other longitude value between O and 90 degrees
ncks -F -d 1on,0.0,90.0,2 in.nc out.nc

As shown, we recommend using a full floating-point suffix of .0 instead of simply . in
order to make obvious the selection of hyperslab elements based on coordinate value rather
than index.

User-specified coordinate limits are promoted to double-precision values while searching
for the indices which bracket the range. Thus, hyperslabs on coordinates of type NC_CHAR
are computed numerically rather than lexically, so the results are unpredictable.

The relative magnitude of min and max indicate to the operator whether to expect a
wrapped coordinate (see Section 3.22 [Wrapped Coordinates|, page 74), such as longitude.
If min > max, the NCO expects the coordinate to be wrapped, and a warning message will
be printed. When this occurs, NCO selects all values outside the domain [max < min], i.e.,
all the values exclusive of the values which would have been selected if min and max were
swapped. If this seems confusing, test your command on just the coordinate variables with
ncks, and then examine the output to ensure NCO selected the hyperslab you expected
(coordinate wrapping is currently only supported by ncks).

Because of the way wrapped coordinates are interpreted, it is very important to make
sure you always specify hyperslabs in the monotonically increasing sense, i.e., min < max
(even if the underlying coordinate variable is monotonically decreasing). The only exception
to this is when you are indeed specifying a wrapped coordinate. The distinction is crucial
to understand because the points selected by, e.g., -d longitude,50.,340., are exactly the
complement of the points selected by -d longitude,340.,50..

Not specifying any hyperslab option is equivalent to specifying full ranges of all dimen-
sions. This option may be specified more than once in a single command (each hyperslabbed
dimension requires its own -d option).

3.17 Stride

66 NCO 5.0.1 User Guide

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim, [min] [, [max] [, [stridell]l’

Long options: ‘~-dimension dim, [min] [, [max] [, [stridell]’,

‘——dmn dim, [min] [, [max] [, [stridel]]’

All data operators support specifying a stride for any and all dimensions at the same
time. The stride is the spacing between consecutive points in a hyperslab. A stride of 1
picks all the elements of the hyperslab, and a stride of 2 skips every other element, etc.. ncks
multislabs support strides, and are more powerful than the regular hyperslabs supported
by the other operators (see Section 3.21 [Multislabs], page 71). Using the stride option for
the record dimension with ncra and ncrcat makes it possible, for instance, to average or
concatenate regular intervals across multi-file input data sets.

The stride is specified as the optional fourth argument to the ‘-d’ hyperslab specification:
-d dim, [min] [, [max] [, [stridel]]. Specify stride as an integer (i.e., no decimal point)
following the third comma in the ‘-d’ argument. There is no default value for stride. Thus
using ‘-d time,,,2’ is valid but ‘-d time,,,2.0’ and ‘-d time,,,’ are not. When stride
is specified but min is not, there is an ambiguity as to whether the extracted hyperslab
should begin with (using C-style, O-based indexes) element 0 or element ‘stride-1’. NCO
must resolve this ambiguity and it chooses element 0 as the first element of the hyperslab
when min is not specified. Thus ‘-d time,,,stride’ is syntactically equivalent to ‘-d
time,0,,stride’. This means, for example, that specifying the operation ‘-d time, ,,2’
on the array ‘1,2,3,4,5" selects the hyperslab ‘1,3,5’. To obtain the hyperslab ‘2,4’
instead, simply explicitly specify the starting index as 1, i.e., ‘-d time,1,,2".

For example, consider a file 8501_8912.nc which contains 60 consecutive months of data.
Say you wish to obtain just the March data from this file. Using 0-based subscripts (see
Section 3.15 [C and Fortran Index Conventions|, page 63) these data are stored in records
2, 14, ... 50 so the desired stride is 12. Without the stride option, the procedure is very
awkward. One could use ncks five times and then use ncrcat to concatenate the resulting
files together:

for idx in 02 14 26 38 50; do # Bourne Shell
ncks -d time,${idx} 8501_8912.nc foo.${idx}
done
foreach idx (02 14 26 38 50) # C Shell
ncks -d time,${idx} 8501_8912.nc foo.${idx}
end
ncrcat foo.?7? 8589_03.nc
rm foo.77

With the stride option, ncks performs this hyperslab extraction in one operation:
ncks -d time,2,,12 8501_8912.nc 8589_03.nc
See Section 4.8 [ncks netCDF Kitchen Sink], page 261, for more information on ncks.

Applying the stride option to the record dimension in ncra and ncrcat makes it possible,
for instance, to average or concatenate regular intervals across multi-file input data sets.

ncra -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8589_03.nc

Chapter 3: Shared Features 67

ncrcat -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8503_8903.nc

3.18 Record Appending

Availability: ncra, ncrcat
Short options: None
Long options: ‘--rec_apn’, ‘--record_append’

As of version 4.2.6 (March, 2013), NCO allows both Multi-File, Multi-Record operators
(ncra and ncrcat) to append their output directly to the end of an existing file. This feature
may be used to augment a target file, rather than construct it from scratch. This helps,
for example, when a timeseries is concatenated from input data that becomes available in
stages rather than all at once. In such cases this switch significantly speeds writing.

Consider the use case where one wishes to preserve the contents of £1_1.nc, and add to
them new records contained in £1_2.nc. Previously the output had to be placed in a third
file, £1_3.nc (which could also safely be named £1_2.nc), via

ncrcat -0 fl_1.nc fl1_2.nc f1_3.nc

Under the hood this operation copies all information in f1_1.nc and £1_2.nc not once
but twice. The first copy is performed through the netCDF interface, as all data from
f1_1.nc and £f1_2.nc are extracted and placed in the output file. The second copy occurs
(usually much) more quickly as the (by default) temporary output file is copied (sometimes
a quick re-link suffices) to the final output file (see Section 2.3 [Temporary Output Files|,
page 17). All this copying is expensive for large files.

The ‘--record_append’ switch appends all records in £1_2.nc to the end (after the last
record) of £1_1.nc:

ncrcat --rec_apn fl_2.nc fl_1.nc

The ordering of the filename arguments may seem non-intuitive. If the record variable
represents time in these files, then the values in £1_1.nc precede those in £1_2.nc, so why
do the files appear in the reverse order on the command line? f£1_1.nc is the last file named
because it is the pre-existing output file to which we will append all the other input files listed
(in this case only f1_2.nc). The contents of £1_1.nc are completely preserved, and only
values in £1_2.nc (and any other input files) are copied. This switch avoids the necessity of
copying all of £1_1.nc through the netCDF interface to a new output file. The ‘~-rec_apn’
switch automatically puts NCO into append mode (see Section 2.4 [Appending Variables],
page 19), so specifying ‘-A’ is redundant, and simultaneously specifying overwrite mode
with ‘-0’ causes an error. By default, NCO works in an intermediate temporary file. Power
users may combine ‘--rec_apn’ with the ‘-—no_tmp_£1’ switch (see Section 2.3 [Temporary
Output Files|, page 17):

ncrcat --rec_apn -—no_tmp_fl f1_2.nc fl1_1.nc

68 NCO 5.0.1 User Guide

This avoids creating an intermediate file, and copies only the minimal amount of data
(i.e., all of £1_2.nc). Hence, it is fast. We recommend users try to understand the safety
trade-offs involved.

One side-effect of ‘--rec_apn’ to be aware of is how attributes are handled. When ap-
pending files, NCO typically overwrites attributes for existing variables in the destination file
with the corresponding attributes from the same variable in the source file. The exception
to this rule is when ‘~-rec_apn’ is invoked. As of version 4.7.9 (January, 2019), NCO leaves
unchanged the attributes for existing variables in the destination file. This is primarily to
ensure that calendar attributes (e.g., units, calendar) of the record coordinate, if any,
are maintained, so that the data appended to them can be re-based to the existing units.
Otherwise rebasing would fail or require rewriting the entire file which is counter to the
purpose of ‘--rec_apn’.

3.19 Subcycle

Availability: ncra, ncrcat
Short options: ‘-d dim, [min] [, [max] [, [stride] [, [subcycle]]l]]’
Long options: ‘--mro’ ‘--dimension dim, [min] [, [max] [, [stride] [, [subcyclell]]’

‘—==dmn dim, [min] [, [max] [, [stride] [, [subcyclel]ll]’

As of version 4.2.1 (August, 2012), NCO allows both Multi-File, Multi-Record operators,
ncra and ncrcat, to extract and operate on multiple groups of records. These groups may
be connected to physical sub-cycles of a periodic nature, e.g., months of a year, or hours
of a day. Or they may be thought of as groups of a specifed duration. We call this the
subcycle feature, sometimes abbreviated SSC'8.

The subcycle feature allows processing of groups of records separated by regular intervals
of records. It is perhaps best illustrated by an extended example that describes how to solve
the same problem both with and without the SSC feature.

Creating seasonal cycles is a common task in climate data processing. Suppose a 150-
year climate simulation produces 150 output files, each comprising 12 records, each record
a monthly mean: 1850.nc, 1851.nc, ... 1999.nc. Our goal is to create a single file that
contains the climatological summertime (June, July, and August, aka JJA) mean. Tradi-
tionally, we would first compute the climatological monthly mean for each month of summer.
Each of these is a 150-year mean, i.e.,

Step 1: Create climatological monthly files clmO6.nc..clm08.nc
for mth in {6..8}; do

mm=‘printf "%02d" $mth°

ncra -0 -F -d time,${mm},,12 -n 150,4,1 1850.nc clm${mm}.nc
done
Step 2: Average climatological monthly files into summertime mean
ncra -0 clm06 clm07.nc clmO8.nc clm_JJA.nc

18 When originally released in 2012 this was called the duration feature, and was abbreviated DRN.

Chapter 3: Shared Features 69

So far, nothing is unusual and this task can be performed by any NCO version. The SSC
feature makes obsolete the need for the shell loop used in Step 1 above.

The new SSC option aggregates more than one input record at a time before performing
arithmetic operations, and, with an additional switch, allows archival of those results in
multiple-record output (MRO) files. This reduces the task of producing the climatological
summertime mean to one step:

Step 1: Compute climatological summertime mean
ncra -0 -F -d time,6,,12,3 -n 150,4,1 1850.nc clm_JJA.nc

The SSC option instructs ncra (or ncrcat) to process files in groups of three records. To
better understand the meaning of each argument to the ‘-d’ hyperslab option, read it this
way: “for the time dimension start with the sixth record, continue without end, repeat the
process every twelfth record, and define a sub-cycle as three consecutive records”.

A separate option, ‘--mro’, instructs ncra to output its results from each sub-group,

and to produce a Multi-Record Output (MRO) file rather than a Single-Record Output
(SRO) file. Unless Multi-Record-Output is indicated (either with ‘--mro’ or implicitly, as
with interleave-mode), ncra collects together all sub-groups, operates on their ensemble,
and produces a single output record. Adding ‘--mro’ to the above example causes ncra to
archive all (150) annual summertime means to one file:

Step 1: Archive all 150 summertime means in one file

ncra --mro -0 -F -d time,6,,12,3 -n 150,4,1 1850.nc 1850_2009_JJA.nc
...or all (150) annual means...

ncra —--mro -0 -d time,,,12,12 -n 150,4,1 1850.nc 1850_2009.nc

These operations generate and require no intermediate files. This contrasts to previous
NCO methods, which require generating, averaging, then catenating 150 files. The ‘--mro’
option only works on ncra and has no effect on (or rather is redundant for) ncrcat, since
ncrcat always outputs all selected records.

3.20 Interleave

(" N
Availability: ncra, ncrcat

Short options: ‘-d dim, [min] [, [max] [, [stridel] [, [subcyclel [, [interleave]]l]]’
Long options: ‘—-mro’ ‘~-dimension
dim, [min] [, [max] [, [stridel [, [subcycle] [, [interleavel]lll]’

‘~—dmn dim, [min] [, [max] [, [stride] [, [subcycle] [, [interleave]]l]l]’

- J

As of version 4.9.4 (September, 2020), NCO allows both Multi-File, Multi-Record oper-
ators, ncra and ncrcat, to extract, interleave, and operate on multiple groups of records.
Interleaving (or de-interleaving, depending on one’s perspective) means altering the order
of records in a group to be processed. Specifically, the interleaving feature (sometimes ab-
breviated ILV) causes the operator to treat as sequential records those that are separated
by multiples of the specified interleave parameter within a group or sub-cycle of records.

70 NCO 5.0.1 User Guide

The interleave feature sequences records with respect to their position relative to the
beginning of each sub-cycle. Records a multiple of interleave from sub-cycle beginning are
first extracted (ncrcat) or reduced (ncra), then records offset from these by one, two, et
cetera up to interleave — 1. In this manner interleaving extracts an inner (intra-sub-cycle)
loop that preserves high-frequency signals relative to the longer stride between sub-cycles.
Thus interleaving allows deconvolution of periodic phenomena within a time-series.

Processing simple arithmetic sequences is a helpful way to understand what interleaving
does. Here are some examples to reify the abstract. Let inl.nc contain the record-array
[1..10], in2.nc contain [11..20], and in12.nc contain [1..20].

ncra -d time,,,,10,5 inl.nc “/foo.nc # 3.5, 4.5, 5.5, 6.5, 7.5
ncrcat -d time,0,4,,6,2 inl.nc “/foo.nc # 1, 3, 5, 2, 4, 6 (+WARNING)
ncrcat -d time,2,,10,4,2 inl2.nc ~/foo.nc # 3, 5, 4, 6, 13, 15, 14, 16
ncra -d time,2,,10,4,2 inl2.nc ~/foo.nc # 4, 5, 14, 15

ncra -d time,,,,10,2 inl.nc in2.nc “/foo.nc # 5, 6, 15, 16

ncra -d time,,,,10,2 in12.nc “/foo.nc # 5, 6, 15, 16

Interleaving is perhaps best illustrated by an extended example that describes how to
solve the same problem both with and without the ILV feature. Consider as an example an
interannual timeseries archived at a high-enough temporal frequency to resolve the diurnal
cycle with tpd timesteps-per-day. Many climate models and re-analyses are archived at
hourly, tri-hourly, or six-hourly resolution yielding tpd = 24,8, or 6, respectively. Our goal
is to extract a monthly mean diurnal cycle from this timeseries.

Suppose a 150-year climate simulation produces 150 output files, each comprising 365
days of hourly data, or 8760 records, each record an hourly mean: 1850.nc, 1851.nc, ...
1999.nc. Our goal is to create a single file that contains the climatological monthly mean
diurnal cycle for, say, March, which contains 31 days or 744 hourly records that commence
on the 60th day of the 356-day year, with record index 1416. Traditionally, we might first
compute the climatological monthly mean for hour of the day, then combine those into a
full diurnal cycle:

Step 1: Create climatological hourly files hr0O.nc..hr23.nc
for hr in {0..23}; do
hh=‘printf "%02d" $hr°
let srt=${hr}+1416
Alternatively, use UDUnits by setting srt=1850-03-01T00:00:01
ncra -0 -d time,${srt},,8760 -n 150,4,1 1850.nc hr${hh}.nc
done
Step 2: Concatenate climatological hourly files into diurmnal cycle
ncrcata -0 hr??.nc clm_drn.nc

So far, nothing is unusual and this task can be performed by any NCO version. The ILV
feature obsoletes the need for the shell loop used in Step 1 above.

The new ILV option aggregates more than one input record at a time before performing
arithmetic operations, and, with an additional switch, allows archival of those results in
multiple-record output (MRO) files. This reduces the task of producing the climatological
summertime mean to one step:

Chapter 3: Shared Features 71

Step 1: Archive all 150 March-mean diurnal cycles in one file
ncra -0 -d time,1850-03-01T00:00:01,,8760,744,24 -n 150,4,1 1850.nc clm_drn.nc

The ILV option instructs ncra (or ncrcat) to process files in groups of 31 days (744 hourly
records) interleaved with a 24-record cycle. The end result will have 150 sets of 24-timesteps
representing the diurnal cycle of March in every year. A given timestep is the mean of the
same hour of the day for every day in March of that year.

3.21 Multislabs

a R
Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat

Short options: ‘-d dim, [min] [, [max] [, [stridell]l’

Long options: ‘~-dimension dim, [min] [, [max] [, [stridell]’,
‘——dmn dim, [min] [, [max] [, [stridell]’

‘--msa_usr_rdr’, ‘--msa_user_order’

-)

A multislab is a union of one or more hyperslabs. One defines multislabs by chaining
together hyperslab commands, i.e., -d options (see Section 3.16 [Hyperslabs|, page 63).
Support for specifying a multi-hyperslab or multislab for any variable was first added to ncks
in late 2002. The other operators received these capabilities in April 2008. Multi-slabbing
is often referred to by the acronym MSA, which stands for “Multi-Slabbing Algorithm”. As
explained below, the user may additionally request that the multislabs be returned in the
user-specified order, rather than the on-disk storage order. Although MSA user-ordering
has been available in all operators since 2008, most users were unaware of it since the
documentation (below, and in the man pages) was not written until July 2013.

Multislabs overcome many restraints that limit simple hyperslabs. A single -d op-
tion can only specify a contiguous and/or a regularly spaced multi-dimensional data ar-
ray. Multislabs are constructed from multiple -d options and may therefore have non-
regularly spaced arrays. For example, suppose it is desired to operate on all longitudes
from 10.0 to 20.0 and from 80.0 to 90.0 degrees. The combined range of longitudes is
not selectable in a single hyperslab specfication of the form ‘-d dimension,min,max’ or
‘-d dimension,min,max,stride’ because its elements are irregularly spaced in coordinate
space (and presumably in index space too). The multislab specification for obtaining these
values is simply the union of the hyperslabs specifications that comprise the multislab, i.e.,

ncks -d lon,10.,20. -d 1on,80.,90. in.nc out.nc
ncks -4 lon,10.,15. -4 1lon,15.,20. -d 1on,80.,90. in.nc out.nc

Any number of hyperslabs specifications may be chained together to specify the multislab.
MSA creates an output dimension equal in size to the sum of the sizes of the multislabs.
This can be used to extend and or pad coordinate grids.

Users may specify redundant ranges of indices in a multislab, e.g.,
ncks -d lon,0,4 -d 1lon,2,9,2 in.nc out.nc

This command retrieves the first five longitudes, and then every other longitude value
up to the tenth. Elements 0, 2, and 4 are specified by both hyperslab arguments (hence

72 NCO 5.0.1 User Guide

this is redundant) but will count only once if an arithmetic operation is being performed.
This example uses index-based (not coordinate-based) multislabs because the stride option
only supports index-based hyper-slabbing. See Section 3.17 [Stride], page 65, for more
information on the stride option.

Multislabs are more efficient than the alternative of sequentially performing hyperslab
operations and concatenating the results. This is because NCO employs a novel multislab
algorithm to minimize the number of I/O operations when retrieving irregularly spaced
data from disk. The NCO multislab algorithm retrieves each element from disk once and
only once. Thus users may take some shortcuts in specifying multislabs and the algorithm
will obtain the intended values. Specifying redundant ranges is not encouraged, but may
be useful on occasion and will not result in unintended consequences.

Suppose the (@) variable contains three dimensional arrays of distinct chemical con-
stituents in no particular order. We are interested in the NOy species in a certain geographic
range. Say that NO, NO2, and N205 are elements 0, 1, and 5 of the species dimension of
Q. The multislab specification might look something like

ncks -d species,0,1 -d species,5 -d lon,0,4 -d lon,2,9,2 in.nc out.nc

Multislabs are powerful because they may be specified for every dimension at the same
time. Thus multislabs obsolete the need to execute multiple ncks commands to gather the
desired range of data.

The MSA user-order switch ‘--msa_usr_rdr’ (or ‘--msa_user_order’, both of which
shorten to ‘--msa’) requests that the multislabs be output in the user-specified order from
the command-line, rather than in the input-file on-disk storage order. This allows the
user to perform complex data re-ordering in one operation that would otherwise require
cumbersome steps of hyperslabbing, concatenating, and permuting. Consider the example
of converting datasets stored with the longitude coordinate Lon ranging from [—180,180) to
datasets that follow the [0,360) convention.

% ncks -H -v Lon in.nc
Lon[0]=-180

Lon[1]=-90

Lon[2]=0

Lon[3]=90

What is needed is a simple way to rotate longitudes. Although simple in theory, this task
requires both mathematics to change the numerical value of the longitude coordinate, data
hyperslabbing to split the input on-disk arrays at Greenwich, and data re-ordering within
to stitch the western hemisphere onto the eastern hemisphere at the date-line. The ‘--msa’
user-order switch overrides the default that data are output in the same order in which
they are stored on-disk in the input file, and instead stores them in the same order as the
multi-slabs are given to the command line. This default is intuitive and is not important
in most uses. However, the MSA user-order switch allows users to meet their output order
needs by specifying multi-slabs in a certain order. Compare the results of default ordering
to user-ordering for longitude:

% ncks -0 -H -v Lon -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc
Lon[0]=-180

Chapter 3: Shared Features 73

Lon[1]=-90

Lon[2]=0

Lon[3]=90

% ncks -0 -H --msa -v Lon -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc
Lon[0]=0

Lon[1]=90

Lon[2]=-180

Lon[3]=-90

The two multi-slabs are the same but they can be presented to screen, or to an output file,
in either order. The second example shows how to place the western hemisphere after the
eastern hemisphere, although they are stored in the opposite order in the input file.

With this background, one sees that the following commands suffice to rotate the input
file by 180 degrees longitude:

% ncks -0 -v LatLon --msa -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc out.nc
% ncap2 -0 -s ’where(Lon < 0) Lon=Lon+360’ out.nc out.nc
% ncks --trd -C -H -v LatLon ~/nco/data/in.nc

Lat[0]=-45 Lon[0]=-180 LatLon[0]=0

Lat[0]=-45 Lon[1]=-90 LatLon[1]=1

Lat[0]=-45 Lon[2]=0 LatLon[2]=2

Lat [0]=-45 Lon[3]=90 LatLon[3]=3

Lat[1]=45 Lon[0]=-180 LatLon[4]=4

Lat[1]=45 Lon[1]=-90 LatLon[5]=5

Lat[1]=45 Lon[2]=0 LatLon[6]=6

Lat[1]=45 Lon[3]=90 LatLon[7]=7

% ncks --trd -C -H -v LatLon ~/out.nc

Lat [0]=-45 Lon[0]=0 LatLon[0]=2

Lat[0]=-45 Lon[1]=90 LatLon[1]=3

Lat[0]=-45 Lon[2]=180 LatLon[2]=0

Lat [0]=-45 Lon[3]=270 LatLon[3]=1

Lat[1]=45 Lon[0]=0 LatLon[4]=6

Lat[1]=45 Lon[1]=90 LatLon[5]=7

Lat[1]=45 Lon[2]=180 LatLon[6]=4

Lat[1]=45 Lon[3]=270 LatLon[7]=5

The analogous commands to rotate all fields in a global dataset by 180 degrees in the other
direction, i.e., from [0,360) to [—180,180), are:

ncks -0 --msa -d 1lon,181.,360. -d 1lon,0.,180.0 in.nc out.nc
ncap2 -0 -s ’where(lon > 180) lon=lon-360’ out.nc out.nc

There are other workable, valid methods to rotate data, yet none are simpler nor more
efficient than utilizing MSA user-ordering. Some final comments on applying this algorithm:
Be careful to specify hemispheres that do not overlap, e.g., by inadvertently specifying
coordinate ranges that both include Greenwich or the date-line. Some users will find using
index-based rather than coordinate-based hyperslabs makes this clearer.

74 NCO 5.0.1 User Guide

3.22 Wrapped Coordinates

Availability: ncks

Short options: ‘-d dim, [min] [, [max] [, [stride]]l]’

Long options: ‘--dimension dim, [min] [, [max] [, [stridel]]’,
‘——dmn dim, [min] [, [max] [, [stridel]]’

A wrapped coordinate is a coordinate whose values increase or decrease monotonically
(nothing unusual so far), but which represents a dimension that ends where it begins (i.e.,
wraps around on itself). Longitude (i.e., degrees on a circle) is a familiar example of a
wrapped coordinate. Longitude increases to the East of Greenwich, England, where it is
defined to be zero. Halfway around the globe, the longitude is 180 degrees East (or West).
Continuing eastward, longitude increases to 360 degrees East at Greenwich. The longitude
values of most geophysical data are either in the range [0,360), or [—180,180). In either case,
the Westernmost and Easternmost longitudes are numerically separated by 360 degrees,
but represent contiguous regions on the globe. For example, the Saharan desert stretches
from roughly 340 to 50 degrees East. Extracting the hyperslab of data representing the
Sahara from a global dataset presents special problems when the global dataset is stored
consecutively in longitude from 0 to 360 degrees. This is because the data for the Sahara
will not be contiguous in the input-file but is expected by the user to be contiguous in the
output-file. In this case, ncks must invoke special software routines to assemble the desired
output hyperslab from multiple reads of the input-file.

Assume the domain of the monotonically increasing longitude coordinate lon is 0 <
lon < 360. ncks will extract a hyperslab which crosses the Greenwich meridian simply by
specifying the westernmost longitude as min and the easternmost longitude as max. The
following commands extract a hyperslab containing the Saharan desert:

ncks -d lon,340.,50. in.nc out.nc
ncks -d lon,340.,50. -d 1lat,10.,35. in.nc out.nc

The first example selects data in the same longitude range as the Sahara. The second
example further constrains the data to having the same latitude as the Sahara. The coor-
dinate lon in the output-file, out.nc, will no longer be monotonic! The values of lon will
be, e.g., ‘340, 350, 0, 10, 20, 30, 40, 50’. This can have serious implications should you
run out.nc through another operation which expects the lon coordinate to be monotoni-
cally increasing. Fortunately, the chances of this happening are slim, since lon has already
been hyperslabbed, there should be no reason to hyperslab lon again. Should you need to
hyperslab lon again, be sure to give dimensional indices as the hyperslab arguments, rather
than coordinate values (see Section 3.16 [Hyperslabs|, page 63).

3.23 Auxiliary Coordinates

Chapter 3: Shared Features 75

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat
Short options: ‘-X lon_min,lon_max,lat_min,lat_max’
Long options: ‘--—auxiliary lon_min,lon_max,lat_min,lat_max’

Utilize auxiliary coordinates specified in values of the coordinate variable’s standard_
name attributes, if any, when interpreting hyperslab and multi-slab options. Also
‘~—auxiliary’. This switch supports hyperslabbing cell-based grids (aka unstructured
grids) over coordinate ranges. When these grids are stored as 1D-arrays of cell data, this
feature is helpful at hyperslabbing and/or performing arithmetic on selected geographic
regions. This feature cannot be used to select regions of 2D grids (instead use the ncap?2
where statement for such grids Section 4.1.14 [Where statement|, page 177). This fea-
ture works on datasets that associate coordinate variables to grid-mappings using the CF-
convention (see Section 3.45 [CF Conventions|, page 145) coordinates and standard_
name attributes described here. Currently, NCO understands auxiliary coordinate variables
pointed to by the standard_name attributes for latitude and Ilongitude. Cells that con-
tain a value within the user-specified West-East-South-North (aka WESN) bounding box
[lon_min,lon_max,lat_min,lat_max] are included in the output hyperslab.

The sides of the WESN) bounding box must be specified in degrees (not radians). The
specified coordinates must be within the valid data range. This includes boxes that wrap
the origin of the longitude coordinate. For example, if the longitude coordinate is stored
in [0,360], then a bounding box that straddles the Greenwich meridian in Africa would be
specified as, e.g., [350, 10, —20, 20], not as [350, 370, —20, 20].

A cell-based or unstructured grid collapses the horizontal spatial information (latitude
and longitude) and stores it along a one-dimensional coordinate that has a one-to-one map-
ping to both latitude and longitude coordinates. Rectangular (in longitude and latitude)
horizontal hyperslabs cannot be selected using the typical procedure (see Section 3.16 [Hy-
perslabs|, page 63) of separately specifying ‘-d’ arguments for longitude and latitude. In-
stead, when the ‘-X’ is used, NCO learns the names of the latitude and longitude coordinates
by searching the standard_name attribute of all variables until it finds the two variables
whose standard_name’s are “latitude” and “longitude”, respectively. This standard_name
attribute for latitude and longitude coordinates follows the CF-convention (see Section 3.45
[CF Conventions|, page 145).

Putting it all together, consider a variable gds_3dvar output from simulations on a cell-
based geodesic grid. Although the variable contains three dimensions of data (time, latitude,
and longitude), it is stored in the netCDF file with only two dimensions, time and gds_crd.

% ncks -m -C -v gds_3dvar ~/nco/data/in.nc

gds_3dvar: type NC_FLOAT, 2 dimensions, 4 attributes, chunked? no, \
compressed? no, packed? no, ID = 41

gds_3dvar RAM size is 10%8*sizeof (NC_FLOAT) = 80%4 = 320 bytes

gds_3dvar dimension O: time, size = 10 NC_DOUBLE, dim. ID = 20 \
(CRD) (REC)

gds_3dvar dimension 1: gds_crd, size = 8 NC_FLOAT, dim. ID

gds_3dvar attribute O: long_name, size = 17 NC_CHAR, value
Geodesic variable

17 (CRD)
\

http://cfconventions.org/cf-conventions/cf-conventions.html#coordinate-system

76 NCO 5.0.1 User Guide

gds_3dvar attribute 1: units, size = 5 NC_CHAR, value = meter
gds_3dvar attribute 2: coordinates, size = 15 NC_CHAR, value = \
lat_gds lon_gds
gds_3dvar attribute 3: purpose, size = 64 NC_CHAR, value = \

Test auxiliary coordinates like those that define geodesic grids

The coordinates attribute lists the names of the latitude and longitude coordinates,
lat_gds and lon_gds, respectively. The coordinates attribute is recommended though
optional. With it, the user can immediately identify which variables contain the latitude
and longitude coordinates. Without a coordinates attribute it would be unclear at first
glance whether a variable resides on a cell-based grid. In this example, time is a normal
record dimension and gds_crd is the cell-based dimension.

The cell-based grid file must contain two variables whose standard_name attributes are
“latitude”, and “longitude”

% ncks -m -C -v lat_gds,lon_gds ~/nco/data/in.nc
lat_gds: type NC_DOUBLE, 1 dimensions, 4 attributes, \

chunked? no, compressed? no, packed? no, ID = 37
lat_gds RAM size is 8*sizeof (NC_DOUBLE) = 8%8 = 64 bytes
lat_gds dimension 0: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)
lat_gds attribute O: long_name, size = 8 NC_CHAR, value = Latitude
lat_gds attribute 1: standard_name, size = 8 NC_CHAR, value = latitude
lat_gds attribute 2: units, size = 6 NC_CHAR, value = degree
lat_gds attribute 3: purpose, size = 62 NC_CHAR, value = \

1-D latitude coordinate referred to by geodesic grid variables

lon_gds: type NC_DOUBLE, 1 dimensions, 4 attributes, \

chunked? no, compressed? no, packed? no, ID = 38

lon_gds RAM size is 8*sizeof (NC_DOUBLE) = 8%8 = 64 bytes

lon_gds dimension 0: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)
lon_gds attribute long_name, size = 9 NC_CHAR, value = Longitude
lon_gds attribute standard_name, size = 9 NC_CHAR, value = longitude
lon_gds attribute 2: units, size = 6 NC_CHAR, value = degree
lon_gds attribute 3: purpose, size = 63 NC_CHAR, value = \

1-D longitude coordinate referred to by geodesic grid variables

N = O

In this example lat_gds and lon_gds represent the latitude or longitude, respectively,
of cell-based variables. These coordinates (must) have the same single dimension (gds_crd,
in this case) as the cell-based variables. And the coordinates must be one-dimensional—
multidimensional coordinates will not work.

This infrastructure allows NCO to identify, interpret, and process (i.e., hyperslab) the
variables on cell-based grids as easily as it works with regular grids. To time-average all
the values between zero and 180 degrees longitude and between plus and minus 30 degress
latitude, we use

ncra -0 -X 0.,180.,-30.,30. -v gds_3dvar in.nc out.nc

Chapter 3: Shared Features 77

NCO accepts multiple ‘=X’ arguments for cell-based grid multi-slabs, just as it accepts
multiple ‘-d’ arguments for multi-slabs of regular coordinates.

ncra -0 -X 0.,180.,-30.,30. -X 270.,315.,45.,90. in.nc out.nc

The arguments to ‘-X’ are always interpreted as floating-point numbers, i.e., as coordi-
nate values rather than dimension indices so that these two commands produce identical
results

ncra -X 0.,180.,-30.,30. in.nc out.nc
ncra -X 0,180,-30,30 in.nc out.nc

By contrast, arguments to ‘-d’ require decimal places to be recognized as coordinates
not indices (see Section 3.16 [Hyperslabs], page 63). We recommend always using decimal
points with ‘-X’ arguments to avoid confusion.

3.24 Grid Generation

Availability: ncks
Short options: None
Long options: ‘--rgr key=val’ (multiple invocations allowed)

As of NCO version 4.5.2 (August, 2015), ncks generates accurate and complete SCRIP-
format gridfiles for select grid types, including uniform, capped and Gaussian rectangular,
latitude/longitude grids, global or regional. The grids are stored in an external grid-file.

All options pertinent to the grid geometry and metadata are passed to NCO via key-value
pairs prefixed by the ‘~-rgr’ option, or its synonym, ‘--regridding’. The option ‘--rgr’
(and its long option equivalents such as ‘--regridding’) indicates the argument syntax
will be key=val. As such, ‘--rgr’ and its synonyms are indicator options that accept
arguments supplied one-by-one like ‘--rgr keyl=vall --rgr key2=val2’, or aggregated
together in multi-argument format like ‘--rgr keyl=vall#key2=val2’ (see Section 3.4.2
[Multi-arguments|, page 32).

The text strings that describe the grid and name the file are important aids to convey the
grid geometry to other users. These arguments, and their corresponding keys, are the grid
title (grd-ttl), and grid filename (grid), respectively. The numbers of latitudes (lat_nbr)
and longitudes (lon_nbr) are independent, and together determine the grid storage size.
These four options should be considered mandatory, although NCO provides defaults for
any arguments omitted.

The remaining arguments depend on the whether the grid is global or regional. For global
grids, one should specify only two more arguments, the latitude (lat_typ) and longitude
(Ion_typ) grid-types. These types are chosen as described below from a small selection of
options that together define the most common rectangular global grids. For regional grids,
one must specify the bounding box, i.e., the edges of the rectangular grid on the North
(lat_nrt), South (lat_sth), East (lat_est), and West (lat_nrt) sides. Specifying a bounding
box for global grids is redundant and will cause an error to ensure the user intends a global
grid. NCO assumes that regional grids are uniform, though it will attempt to produce

78

NCO 5.0.1 User Guide

regional grids of other types if the user specifies other latitude (lat_typ) and longitude
(lon_typ) grid-types, e.g., Gaussian or Cap. Edges of a regional bounding box may be
specified individually, or in the single-argument forms.

The full description of grid-generation arguments, and their corresponding keys, is:

Grid Title: grd_ttl

It is surprisingly difficult to discern the geometric configuration of a grid from
the coordinates of a SCRIP-format gridfile. A human-readable grid description
should be placed in grd_ttl. Examples include “CAM-FV scalar grid 129x256”
and “T42 Gaussian grid”.

Grid File: scrip_grid

The grid-generation API was bolted-on to NCO and contains some tempo-
rary kludges. For example, the output grid filename is distinct from the out-
put filename of the host ncks command. Specify the output gridfile name
scrip_grid with keywords grid or scrip, e.g., ‘--rgr grid=scrip_grid’ or
‘-—rgr scrip=t42_SCRIP.20150901.nc’. It is conventional to include a dates-
tamp in the gridfile name. This helps users identify up-to-date and out-of-date
grids. Any valid netCDF file may be named as the source (e.g., in.nc). It
will not be altered. The destination file (e.g., foo.nc) will be overwritten. Its
contents are immaterial.

Grid Types: lat_typ, lon_typ

The keys that hold the longitude and latitude gridtypes (which are, by the
way, independent of eachother) are lon_typ and lat_typ. The lat_typ options
for global grids are ‘uni’ for Uniform, ‘cap’ (or ‘fv’) for Cap'®, and ‘gss’ for
Gaussian.

These values are all case-independent, so ‘Gss’ and ‘gss’ both work. As of
version 4.7.7 (September, 2018), NCO generates perfectly symmetric interface
latitudes for Gaussian grids. Previously the interface latitude generation mech-
anism could accumulate small rounding errors (“1.0e-14). Now symmetry prop-
erties are used to ensure perfect symmetry. All other Gaussian grids we have
seen compute interfaces as the arithmetic mean of the adjacent Gaussian lati-
tudes, which is patently wrong. To our knowledge NCO is the only map soft-
ware that generates accurate interface latitudes for a Gaussian grid. We use
a Newton-Raphson iteration technique to identify the interface latitudes that
enclose the area indicated by the Gaussian weight.

As its name suggests, the latitudes in a Uniform-latitude grid are uniformly
spaced?. The Uniform-latitude grid may have any number of latitudes. NCO

19 The term FV confusing because it is correct to call any Finite Volume grid (including arbitrary polygons)

20

an FV grid. However, an FV grid has also been used for many years to described the particular type
of rectangular grid with caps at the poles used to discretize global model grids for use with the Lin-
Rood dynamical core. To reduce confusion, we use “Cap grid” to refer to the latter and reserv FV as a
straightforward acronym for Finite Volume.

A Uniform grid in latitude could be called “equi-angular” in latitude, but NCO reserves the term Equi-
angular or “eqa” for grids that have the same uniform spacing in both latitude and longitude, e.g., 1°x1°
or 2°x2°. NCO reserves the term Regular to refer to grids that are monotonic and rectangular grids.
Confusingly, the angular spacing in a Regular grid need not be uniform, it could be irregular, such as in a

Chapter 3: Shared Features 79

can only generate longitude grids (below) that are uniformly spaced, so the
Uniform-latitude grids we describe are also uniform in the 2D sense. Uni-
form grids are intuitive, easy to visualize, and simple to program. Hence their
popularity in data exchange, visualization, and archives. Moreover, regional
grids (unless they include the poles), are free of polar singularities, and thus
are well-suited to storage on Uniform grids. Theoretically, a Uniform-latitude
grid could have non-uniform longitudes, but NCO currently does not implement
non-uniform longitude grids.

Their mathematical properties (convergence and excessive resolution at the
poles, which can appear as singularities) make Uniform grids fraught for use
in global models. One purpose Uniform grids serve in modeling is as “offset”
or “staggered” grids, meaning grids whose centers are the interfaces of another
grid. The Finite-Volume (FV) method is often used to represent and solve
the equations of motion in climate-related fields. Many FV solutions (includ-
ing the popular Lin-Rood method as used in the CESM CAM-FV atmospheric
model) evaluate scalar (i.e., non-vector) fields (e.g., temperature, water vapor)
at gridcell centers of what is therefore called the scalar grid. FV methods (like
Lin-Rood) that employ an Arakawa C-grid or D-grid formulation define veloc-
ities on the edges of the scalar grid. This CAM-FV velocity grid is therefore
“staggered” or “offset” from the CAM-FV scalar grid by one-half gridcell. The
CAM-FV scalar latitude grid has gridpoints (the “caps”) centered on each pole
to avoid singularities. The offset of a Cap-grid is a Uniform-grid, so the Uni-
form grid is often called an FV-"offset” or “staggered” grid. Hence an NCO
Uniform grid is equivalent to an NCL “Fixed Offset” grid. For example, a
128x256 Uniform grid is the offset or staggered version of a 129x256 Cap grid
(aka FV-grid).

Referring the saucer-like cap-points at the poles, NCO uses the term “Cap grid”
to describe the latitude portion of the FV-scalar grid as used by the CAM-FV
Lin-Rood dynamics formulation. NCO accepts the shorthand FV, and the more
descriptive “Yarmulke”, as synonyms for Cap. A Cap-latitude grid differs from
a Uniform-latitude grid in many ways:

Most importantly, Cap grids are 2D-representations of numerical grids with
cap-midpoints instead of zonal-teeth convergence at the poles. The rectangular
2D-representation of each cap contains gridcells shaped like sharp teeth that
converge at the poles similar to the Uniform grid, but the Cap gridcells are
meant to be aggregated into a single cell centered at the pole in a dynamical
transport algorithm. In other words, the polar teeth are a convenient way
to encode a non-rectangular grid in memory into a rectangular array on disk.
Hence Cap grids have the unusual property that the poles are labeled as being
both the centers and the outer interfaces of all polar gridcells. Second, Cap
grids are uniform in angle except at the poles, where the latitudes span half the
meridional range of the rest of the gridcells. Even though in the host dynamical
model the Cap grid polar points are melded into caps uniform (in angle) with
the rest of the grid, the disk representation on disk is not uniform. Nevertheless,

Gaussian grid. The term Regular is not too useful in grid-generation, because so many other parameters
(spacing, centering) are necessary to disambiguate it.

80

NCO 5.0.1 User Guide

some call the Cap grid a uniform-angle grid because the information contained
at the poles is aggregated in memory to span twice the range of a single polar
gridcell (which has half the normal width). NCL uses the term “Fixed grid” for
a Cap grid. The “Fixed” terminology seems broken.

Finally, Gaussian grids are the Cartesian representation of global spectral trans-
form models. Gaussian grids typically have an even number of latitudes and so
do not have points at the poles. All three latitude grid-type supported by NCO
(Uniform, Cap, and Gaussian) are Regular grids in that they are monotonic.

The lon_typ options for global grids are ‘grn_ctr’ and ‘180_ctr’ for the first
gridcell centered at Greenwich or 180 degrees, respecitvely. And ‘grn_wst’ and
‘180_wst’ for Greenwich or 180 degress lying on the western edge of the first
gridcell. Many global models use the ‘grn_ctr’ longitude grid as their “scalar
grid” (where, e.g., temperature, humidity, and other scalars are defined). The
“staggered” or “offset” grid (where often the dynamics variables are defined)
then must have the ‘grn_wst’ longitude convention. That way the centers of
the scalar grid are the vertices of the offset grid, and visa versa.

Grid Resolution: lat_nbr, lon_nbr

The number of gridcells in the horizontal spatial dimensions are lat_nbr and
lon_nbr, respectively. There are no restrictions on lon_nbr for any gridtype.
Latitude grids do place some restrictions on lat_nbr (see above). As of NCO
version 4.5.3, released in October, 2015, the ‘~-rgr latlon=lat_nbr,lon_nbr’
switch may be used to simultaneously specify both latitude and longitude, e.g.,
‘-—rgr latlon=180,360’.

Latitude Direction: lat_drc

Grid Edges:

The lat_drc option is specifies whether latitudes monotonically increase or de-
crease in rectangular grids. The two possible values are ‘s2n’ for grids that
begin with the most southerly latitude and end with the most northerly, and
‘n2s’ for grids that begin with the most northerly latitude and end with the
most southerly. By default NCO creates grids whose latitudes run south-to-
north. Hence this option is only necessary to create a grid whose latitudes run

north-to-south.

lon_wst, lon_est, lat_sth, lat_nrt

The outer edges of a regional rectangular grid are specified by the North
(lat_nrt), South (lat_sth), East (lat_est), and West (lat_nrt) sides. Latitudes
and longigudes must be specified in degrees (not radians). Latitude edges must
be between -90 and 90. Longitude edges may be positive or negative and sep-
arated by no more than 360 degrees. The edges may be specified individually
with four arguments, consecutively separated by the multi-argument delimiter
(‘#’ by default), or together in a short list to the pre-ordered options ‘wesn’ or
‘snwe’. These three specifications are equivalent:

ncks ...
ncks ...
ncks ...

--rgr lat_sth=30.0 --rgr lat_nrt=70.0 --rgr lon_wst=-120.0 --rgr lo
--rgr lat_sth=30.0#lat_nrt=70.0#lon_wst=-120.0#lon_est=-90.0 ...
--rgr snwe=30.0,70.0,-120.0,-90.0 ...

The first example above supplies the bounding box with four key=val pairs. The second
example above supplies the bounding box with a single option in multi-argument format

Chapter 3: Shared Features 81

(see Section 3.4.2 [Multi-arguments|, page 32). The third example uses a convenience switch
introduced to reduce typing.

Generating common grids:

Through version 4.7.5 (August, 2018), ncks performed grid-generation

180x360 (1x1 degree) Equi-Angular grid, first longitude centered at Greenwich

ncks --rgr ttl=’Equi-Angular grid 180x360’#latlon=180,360#lat_typ=uni#lon_typ=grn_ctr
--rgr scrip=${DATA}/grids/180x360_SCRIP.20150901.nc \
“zender/nco/data/in.nc “/foo.nc

As of version 4.7.6 (August, 2018), ncremap supports more concise commands
ncremap -G ttl=’Equi-Angular grid 180x360’#latlon=180,360#lat_typ=uni#lon_typ=grn_ctr
-g ${DATA}/grids/180x360_SCRIP.20180901.nc

180x360 (1x1 degree) Equi-Angular grid, first longitude west edge at Greenwich
ncremap -G ttl=’Equi-Angular grid 180x360’#latlon=180,360#lat_typ=uni#lon_typ=grn_wst
-g ${DATA}/grids/180x360wst_SCRIP.20180301.nc

129x256 CAM-FV grid, first longitude centered at Greenwich
ncremap -G ttl=’CAM-FV scalar grid 129x256’#latlon=129,256#lat_typ=fv#lon_typ=grn_ctr
-g ${DATA}/grids/129x256_SCRIP.20150901.nc

192x288 CAM-FV grid, first longitude centered at Greenwich
ncremap -G ttl=’CAM-FV scalar grid 192x288’#latlon=192,288#lat_typ=fv#lon_typ=grn_ctr
-g ${DATA}/grids/192x288_SCRIP.20160301.nc

361x576 NASA MERRA2 FV grid, first longitude centered at DateLine
ncremap -G ttl=’NASA MERRA2 Cap grid 361x576’#latlon=361,576#lat_typ=cap#lon_typ=180_c
-g ${DATA}/grids/merra2_361x576.20201001.nc

1441x2880 CAM-FV grid, first longitude centered at Greenwich
ncremap -G ttl=’CAM-FV scalar grid 1441x2880’#latlon=1441,2880#lat_typ=fv#lon_typ=grn_
-g ${DATA}/grids/1441x2880_SCRIP.20170901.nc

1440x2880 MOSART grid, first longitude west edge at Dateline

ncremap -7 -L 1 \
-G ttl=’MOSART 1440x2880°’#latlon=1440,2880#lat_typ=uni#lon_typ=180_wst \
-g ${DATA}/grids/r0125_1440x2880.20210401.nc

91x180 CAM-FV grid, first longitude centered at Greenwich (2 degree grid)
ncremap -G ttl=’CAM-FV scalar grid 91x180°’#latlon=91,180#lat_typ=fv#lon_typ=grn_ctr \
-g ${DATA}/grids/91x180_SCRIP.20170401.nc

25x48 CAM-FV grid, first longitude centered at Greenwich (7.5 degree grid)
ncremap -G ttl=’CAM-FV scalar grid 25x48’#latlon=25,48#lat_typ=fv#lon_typ=grn_ctr \
-g ${DATA}/grids/25x48_SCRIP.20170401.nc

82

NCO 5.0.1 User Guide

128x256 Equi-Angular grid, Greenwich west edge of first longitude

CAM-FV offset grid for 129x256 CAM-FV scalar grid above

ncremap -G ttl=’Equi-Angular grid 128x256°’#latlon=128,256#lat_typ=uni#lon_typ=grn_wst
-g ${DATA}/grids/128x256_SCRIP.20150901.nc

T42 Gaussian grid, first longitude centered at Greenwich
ncremap -G ttl=’T42 Gaussian grid’#latlon=64,128#lat_typ=gss#lon_typ=grn_ctr \
-g ${DATA}/grids/t42_SCRIP.20180901.nc

T62 Gaussian grid, first longitude centered at Greenwich, NCEP2 T62 Gaussian grid
ncremap -G ttl=’NCEP2 T62 Gaussian grid’#latlon=94,192#lat_typ=gss#lon_typ=grn_ctr#lat
-g ${DATA}/grids/ncep2_t62_SCRIP.20191001.nc

F256 Full Gaussian grid, first longitude centered at Greenwich

ncremap -7 -L 1 \
-G ttl1="ECMWF IFS F256 Full Gaussian grid 512x1024’#latlon=512,1024#lat_typ=gs
-g ${DATA}/grids/£256_scrip.20201001.nc

513x1024 FV grid, first longitude centered at Greenwich

ncremap -7 -L 1 \
-G ttl=’FV scalar grid 513x1024’#latlon=513,1024#lat_typ=fv#lon_typ=grn_ctr \
-g ${DATA}/grids/513x1024_SCRIP.20201001.nc

1025x2048 FV grid, first longitude centered at Greenwich

ncremap -7 -L 1 \
-G ttl=’FV scalar grid 1025x2048’#latlon=1025,2048#lat_typ=fv#lon_typ=grn_ctr
-g ${DATA}/grids/1025x2048_SCRIP.20201001.nc

F640 Full Gaussian grid, first longitude centered at Greenwich

ncremap -7 -L 1 \
-G ttl="ECMWF IFS F640 Full Gaussian grid 1280x2560°’#latlon=1280,2560#lat_typ=gss
-g ${DATA}/grids/£640_scrip.20190601.nc

NASA Climate Modeling Grid (CMG) 3600x7200 (0.05x0.05 degree) Equi-Angular grid
Date-line west edge of first longitude, east edge of last longitude
Write to compressed netCDF4-classic file to reduce filesize “140x from 2.2 GB to 16
ncremap -7 -L 1 \
-G ttl=’Equi-Angular grid 3600x7200 (NASA CMG)’#latlon=3600,7200#lat_typ=uni#lon_
-g ${DATA}/grids/3600x7200_SCRIP.20160301.nc

DOE E3SM/ACME High Resolution Topography (1 x 1 km grid) for Elevation Classes
Write to compressed netCDF4-classic file to reduce filesize from "85 GB to 607 MB
ncremap -7 -L 1 \
-G ttl=’Global latxlon = 18000x36000 "1 x 1 km’#latlon=18000,36000#lat_typ=uni#lo
-g ${DATA}/grids/grd_18000x36000_SCRIP.nc

1x1 degree Equi-Angular Regional grid over Greenland, centered longitudes

Chapter 3: Shared Features 83

ncremap -G ttl=’Equi-Angular Greenland 1x1 degree grid’#latlon=30,90#snwe=55.0,85.0,-9
-g ${HOME}/greenland_1x1.nc

721x1440 ECMWF ERA5 resolution
ncremap -7 --dfl_1lvl=1 -G ttl=’Cap/FV ECMWF ERA5 grid 0.25x0.25 degree, dimensions 721
-g ${DATA}/grids/era5.nc

105x401 Greenland ERAS
ncremap -G ttl=’Equi-Angular Greenland 0.25x0.25 degree ERA5 north-to-south grid’#latl
-g ${DATA}/grids/greenland_0.25x0.25_erab.nc

Greenland r025 with SNWE = 59,84,-73,-11 (in round numbers) with RACMO ice mask
ncremap -G ttl=’Equi-Angular Greenland 0.25x0.25 degree r025 south-to-north grid’#latl
-g ${DATA}/grids/greenland_r025_100x250.nc

NASA Climate Modeling Grid (CMG) 3600x7200 (0.05x0.05 degree, 3°x3’) Equi-Angular gr
With land mask derived mainly from GLOBE 30" topography and anywhere Gardner 30" lan
Date-line west edge of first longitude, east edge of last longitude

Write to compressed netCDF4-classic file to reduce filesize "140x from 2.2 GB to 16

ncremap -7 -L 1 \

-G ttl=’Equi-Angular grid 3-minute=0.05 degree resolution = 3600x7200, NASA CMG b

-g ${DATA}/grids/r005_3600x7200_globe_gardner_landmask.20210501.nc

Often researchers face the problem not of generating a known, idealized grid but of
understanding an unknown, possibly irregular or curvilinear grid underlying a dataset pro-
duced elsewhere. NCO will infer the grid of a datafile by examining its coordinates (and
boundaries, if available), reformat that information as necessary to diagnose gridcell areas,
and output the results in SCRIP format. As of NCO version 4.5.3, released in October,
2015, the ‘--rgr infer’ flag activates the machinery to infer the grid rather than construct
the grid from other user-specified switches. To infer the grid properties, NCO interrogates
input-file for horizontal coordinate information, such as the presence of dimension names
rooted in latitude/longitude-naming traditions and conventions. Once NCO identifies the
likely horizontal dimensions it looks for horizontal coordinates and bounds. If bounds are
not found, NCO assumes the underlying grid comprises quadrilateral cells whose edges are
midway between cell centers, for both rectilinear and curvilinear grids.

Infer AIRS swath grid from input, write it to grd_scrip.nc
ncks --rgr infer --rgr scrip=${DATA}/sld/rgr/grd_scrip.nc \

${DATA}/sld/raw/AIRS.2014.10.01.202.L2.TSurfStd.Regrid010.1DLatLon.nc ~/foo.nc

When inferring grids, the grid file (grd_scrip.nc) is written in SCRIP format, the
input file (AIRS. . .nc) is read, and the output file (foo.nc) is overwritten (its contents are
immaterial).

As of NCO version 4.6.6, released in April, 2017, inferred 2D rectangular grids may also
be written in UGRID-format (defined here). Request a UGRID mesh with the option ‘--rgr
ugrid=f1_ugrid’. Currently both UGRID and SCRIP grids must be requested in order to
produce the UGRID output, e.g.,

http://ugrid-conventions.github.io/ugrid-conventions

84 NCO 5.0.1 User Guide

ncks --rgr infer --rgr ugrid=${HOME}/grd_ugrid.nc \
--rgr scrip=${HOME}/grd_scrip.nc ~/skl_180x360.nc ~/foo.nc

The SCRIP gridfile and UGRID meshfile metadata produced for the equiangular
1-by-1 degree global grid are:

zender@aerosol:~$ ncks -m ~/grd_scrip.nc
netcdf grd_scrip {
dimensions:
grid_corners = 4 ;
grid_rank = 2 ;

grid_size = 64800 ;
variables:
double grid_area(grid_size) ;
grid_area:units = "steradian" ;

double grid_center_lat(grid_size) ;
grid_center_lat:units = "degrees" ;

double grid_center_lon(grid_size) ;
grid_center_lon:units = "degrees" ;

double grid_corner_lat(grid_size,grid_cormners) ;
grid_corner_lat:units = "degrees" ;

double grid_corner_lon(grid_size,grid_corners) ;
grid_corner_lon:units = "degrees" ;

int grid_dims(grid_rank) ;

int grid_imask(grid_size) ;

} // group /

zender@aerosol:~$ ncks -m ~/grd_ugrid.nc
netcdf grd_ugrid {
dimensions:
maxNodesPerFace = 4 ;
nEdges = 129240 ;

nFaces = 64800 ;
nNodes = 64442 ;
two = 2 ;
variables:
int mesh ;
mesh:cf_role = "mesh_topology" ;
mesh:standard_name = "mesh_topology" ;

mesh:long_name = "Topology data" ;

Chapter 3: Shared Features 85

mesh:topology_dimension = 2 ;

mesh:node_coordinates = "mesh_node_x mesh_node_y"
mesh:face_node_connectivity = "mesh_face_nodes"
mesh:face_coordinates = "mesh_face_x mesh_face_y"
mesh:face_dimension = "nFaces"
mesh:edge_node_connectivity = "mesh_edge_nodes"
mesh:edge_coordinates = '"mesh_edge_x mesh_edge_y"
mesh:edge_dimension = "nEdges" ;

int mesh_edge_nodes(nEdges,two) ;
mesh_edge_nodes:cf_role = "edge_node_connectivity" ;
mesh_edge_nodes:long_name = "Maps every edge to the two nodes that it connects"
mesh_edge_nodes:start_index = 0 ;

double mesh_edge_x(nEdges) ;
mesh_edge_x:standard_name = "longitude" ;
mesh_edge_x:long_name = "Characteristic longitude of 2D mesh face" ;
mesh_edge_x:units = "degrees_east" ;

double mesh_edge_y(nEdges) ;
mesh_edge_y:standard_name = "latitude" ;
mesh_edge_y:long_name = "Characteristic latitude of 2D mesh face" ;
mesh_edge_y:units = "degrees_north" ;

int mesh_face_nodes(nFaces,maxNodesPerFace) ;
mesh_face_nodes:cf_role = "face_node_connectivity" ;
mesh_face_nodes:long_name = "Maps every face to its corner nodes" ;
mesh_face_nodes:start_index = 0 ;
mesh_face_nodes:_FillValue = -2147483648 ;

double mesh_face_x(nFaces) ;
mesh_face_x:standard_name = "longitude"
mesh_face_x:long _name = "Characteristic longitude of 2D mesh edge" ;
mesh_face_x:units = "degrees_east" ;

double mesh_face_y(nFaces) ;
mesh_face_y:standard_name = "latitude"
mesh_face_y:long _name = "Characteristic latitude of 2D mesh edge" ;
mesh_face_y:units = "degrees_north" ;

double mesh_node_x(nNodes) ;
mesh_node_x:standard_name = "longitude"
mesh_node_x:long_name = "Longitude of mesh nodes" ;
mesh_node_x:units = "degrees_east" ;

double mesh_node_y(nNodes) ;
mesh_node_y:standard_name = "latitude"

86 NCO 5.0.1 User Guide

mesh_node_y:long_name = "Latitude of mesh nodes" ;
mesh_node_y:units = "degrees_north" ;
} // group /

Another task that arises in regridding is characterizing new grids. In such cases it can
be helpful to have a “skeleton” version of a dataset on the grid, so that grid center and
interfaces locations can be assessed, continental outlines can be examined, or the skeleton
can be manually populated with data rather than relying on a model. SCRIP files can be
difficult to visualize and manipulate, so NCO will provide, if requested, a so-called skeleton
file on the user-specified grid. As of NCO version 4.5.3, released in October, 2015, the
‘——rgr skl=f1_skl1’ switch outputs the skeleton file to fi_skl. The skeleton file may then
be examined in a dataset viewer, populated with data, and generally serve as a template
for what to expect from datasets of the same geometry.

Generate T42 Gaussian grid file t42_SCRIP.nc and skeleton file t42_skl.nc

ncks --rgr sk1=${DATA}/grids/t42_skl.nc --rgr scrip=${DATA}/grids/t42_SCRIP.nc \
—--rgr latlon=64,128#lat_typ=gss#lon_typ=Grn_ctr \
“zender/nco/data/in.nc “/foo.nc

When generating skeleton files, both the grid file (t42_SCRIP.nc) and the skeleton file
(t42_skl.nc) are written, the input file (in.nc) is ignored, and the output file (foo.nc) is
overwritten (its contents are immaterial).

3.25 Regridding

Availability: ncclimo, ncks, ncremap

Short options: None

Long options: ‘--map map-file’ or ‘~-rgr_map map-file’

‘~-rgr key=val’ (multiple invocations allowed)

‘——rnr=rnr_thr’ or ‘——rgr_rnr=rnr_thr’ or ‘——renormalize=rnr_thr’ or
‘--renormalization_threshold=rnr_thr’

=)

NCO includes extensive regridding features in ncclimo (as of version 4.6.0 in May, 2016),
ncremap (as of version 4.5.4 in November, 2015) and ncks (since version 4.5.0 in June,
2015). Regridding can involve many choices, options, inputs, and outputs. The appropriate
operator for this workflow is the ncremap script which automatically handles many details of
regridding and passes the required commands to ncks and external programs. Occasionally
users need access to lower-level remapping functionality present in ncks and not exposed
to direct manipulation through ncremap or ncclimo. This section describes the lower-level
functionality and switches as implemented in ncks. Knowing what these features are will
help ncremap and ncclimo users understand the full potential of these operators.

ncks supports horizontal regridding of datasets where the grids and weights are all
stored in an external map-file. Use the ‘--map’ or ‘--rgr_map’ options to specify the
map-file, and NCO will regrid the input-file to a new (or possibly the same, aka, an
identity mapping) horizontal grid in the output-file, using the input and output grids
and mapping weights specified in the ESMF- or SCRIP-format map-file. Currently NCO

Chapter 3: Shared Features 87

understands the mapfile formats pioneered by SCRIP (http://oceans1l.lanl . gov/
svn/SCRIP/trunk/SCRIP) and later extended by ESMF (http://www.earthsystemcog.
org/projects/regridweightgen), and adopted (along with Exodus) by TempestRemap
(https://github.com/ClimateGlobalChange/tempestremap.git). Those references doc-
ument quirks in their respectively weight-generation algorithms as to map formats, grid
specification, and weight generation. NCO itself produces map-files in the format recom-
mended by CMIP6 and described here. This format differs from ESMF map-file format
chiefly in that its metadata are slightly more evolved, self-descriptive, and standardized.

Originally NCO supported only weight-application, which is what most people mean by
“regridding”. As of version 4.9.0, released in December, 2019, NCO also supports weight-
generation. Thus NCO can now apply weights generated by ESMF, NCO, SCRIP, and
TempestRemap. NCO reads-in pre-stored weights from the map-file and applies them to
(almost) every variable, thereby creating a regridded output-file. Specify regridding with a
standard ncks command and options along with the additional specification of a map-file:

Regrid entire file, same output format as input:
ncks —--map=map.nc in.nc out.nc

Entire file, netCDF4 output:

ncks -4 --map=map.nc in.nc out.nc

Deflated netCDF4 output

ncks -4 -L 1 --map=map.nc in.nc out.nc

Selected variables

ncks -v FS.?7,T ——map=map.nc in.nc out.nc

Threading

ncks -t 8 --map=map.nc in.nc out.nc

Deflated netCDF4 output, threading, selected variables:
ncks -4 -L 1 -t 8 -v FS.?,T --map=map.nc in.nc out.nc

OpenMP threading works well with regridding large datasets. Threading improves
throughput of regridding 1-10 GB files by factors of 2-5. Options specific to regridding
are described below.

NCO supports 1D=1D, 1D=2D, 2D=1D, and 2D=-2D regridding for any unstructured
1D-grid and any rectangular 2D-grid. This has been tested by converting among and
between Gaussian, equiangular, FV, unstructured cubed-sphere grids, and regionally refined
grids. Support for irregular 2D- and regional grids (e.g., swath-like data) is planned.

Renormalization

Conservative regridding is, for first-order accurate algorithms, a straightforward procedure
of identifying gridcell overlap and apportioning values correctly from source to destination.
The presence of missing values forces a decision on how to handle destination gridcells where
some but not all source cells are valid. NCO allows the user to choose between two distinct
weight-application algorithms: “conservative” and “renormalized”. The “conservative” al-
gorithm uses all valid data from the input grid on the output grid once and only once.
Destination cells receive the weighted valid values of the source cells. This is conservative
because the global integrals of the source and destination fields are equal. Another name
for the “conservative” weight-application method is therefore “integral-preserving”. The
“renormalized” algorithm divides the destination value by the sum of the valid weights.

http://oceans11.lanl.gov/svn/SCRIP/trunk/SCRIP
http://oceans11.lanl.gov/svn/SCRIP/trunk/SCRIP
http://www.earthsystemcog.org/projects/regridweightgen
http://www.earthsystemcog.org/projects/regridweightgen
https://github.com/ClimateGlobalChange/tempestremap.git
https://docs.google.com/document/d/1BfVVsKAk9MAsOYstwFSWI2ZBt5mrO_Nmcu7rLGDuL08

88 NCO 5.0.1 User Guide

This produces values equal to the mean of the valid input values, but extended to the entire
destination gridcell. Thus renormalization is equivalent to extrapolating valid data to miss-
ing regions. Another name for the “renormalized” weight-application method is therefore
“mean-preserving”. Input and output integrals are unequal and renormalized regridding is
not conservative. Both algorithms produce identical answers when no missing data maps
to the destination gridcell.

The renormalized algorithm is useful because it solves some problems, like producing
physically unrealistic temperature values, at the expense of incurring others, like non-
conservation. Many land and ocean modelers eschew unrealistic gridpoint values, and con-
servative weight-application often produces “weird” values along coastlines or missing data
gaps where state variables are regridded to/from small fractions of a gridcell. Renormaliza-
tion ensures the output values are physically consistent, although the integral of their value
times area is not preserved.

By default, NCO implements the “conservative” algorithm because it has useful proper-
ties, is simpler to understand, and requires no additional parameters. To employ the “renor-
malized” algorithm instead, use the ‘--rnr’, ‘--rgr_rnr’, ‘--rnr_thr’, or ‘--renormalize’
options to supply rnr_thr, the threshold weight for valid destination values. Valid values
must cover at least the fraction rnr_thr of the destination gridcell to meet the threshold for
a non-missing destination value. When rnr_thr is exceeded, the mean valid value is renor-
malized by the valid area and placed in the destination gridcell. If the valid area covers
less than rnr_thr, then the destination gridcell is assigned the missing value. Valid values
of ror_thr range from zero to one. Keep in mind though, that this threshold is potentially
a divisor, and values of zero or very near to zero can lead to floating-point underflow and
divide-by-zero errors. For convenience NCO permits users to specify a rnr_thr = 0.0 thresh-
old weight. This indicates that any valid data should be represented and renormalized on
the output grid. Also, renormalization can be explicitly prevented or turned-off by setting
ror_thr to either of the values ‘off’ or ‘none’:

ncks --map=map.nc in.nc out.nc # Conservative (integral-preserving)

ncks --rnr=off --map=map.nc in.nc out.nc # Conservative (integral-preserving)

ncks --rnr=0.1 --map=map.nc in.nc out.nc # Renormalized (mean-preserving with threshol
ncks --rnr=0.0 --map=map.nc in.nc out.nc # Renormalized (mean-preserving)

The first example uses the default conservative algorithm. The second example specifies
that valid values must cover at least 10% of the destination gridcell to meet the threshold
for a non-missing destination value. With valid destination areas of, say 25% or 50%,
the renormalized algorithm would produce destination values greater than the conservative
algorithm by factors of four or two, respectively.

In practice, it may make sense to use the default “conservative” algorithm when per-
forming conservative regridding, and the “renormalized” algorithm when performing other
regridding such as bilinear interpolation or nearest-neighbor. Another consideration is
whether the fields being regridded are fluxes or state variables. For example, temperature
(unlike heat) and concentrations (amount per unit volume) are not physically conserved
quantities under areal-regridding so it often makes sense to interpolate them in a non-
conservative fashion, to preserve their fine-scale structure. Few researchers can digest the
unphysical values of temperature that the “conservative” option will produce in regions rife

Chapter 3: Shared Features 89

with missing values. A counter-example is fluxes, which should be physically conserved
under areal-regridding. One should consider both the type of field and its conservation
properties when choosing a regridding strategy.

The regridded value of a variable x at a destination location d can be generally repre-
sented as

s=N
ZS:I HsOs,dTs
s=N
Zs:l /’[/So'svd

where x, is the d’th element of the regridded variable, z, is the s’th element of the raw
(native grid) variable, ps = 1 if z, is valid and ps = 0 if x, is the missing value, and o, 4
is the overlap weight of s’th source gridcell with the d’th destination gridcell, and N is
the total number of source gridcells that overlap (partially or fully) with the destination
gridcell.

Tgqg =

The number of overlap gridcells N is a property of the source and destination grids and
the regridding algorithm. The weight-generation software determines N by “intersecting”
the grids, taking into account higher-order (e.g., local gradient) contributions if the algo-
rithm so-demands, and then generates the overlap weights o, 4 accordingly. Both source and
destination grids may indicate valid gridcells with a mask flag that is binary-valued, zero or
one, such that my, =1 (i.e., unmasked) for source gridcells allowed to contribute to the des-
tination grid, and m, = 0 (i.e., masked) for gridcells that are forbidden from contributing
to the destination grid. There are subtle distinctions between the mask flag m,, and the
missing value flag p,. The mask flag m, does not appear in the formula above because the
weight-generator produces no weights for masked source gridcells. Doing otherwise would
waste storage space in the map-file, because such weights are, by definition, zero. Further-
more the masks m, and m, are time-invariant properties of the grids, whereas missing value
fields ps (and thus ug) are potentially time-varying characteristics of the fields. Although
1ts should in theory be treated the same as m, when computing mapping weights o, 4, in
practice this is not done. Different fields may have different patterns of missing values, and
managing per-field map-files would be difficult, so traditionally all fields are remapped with
the same map-file. That said, it can make sense to treat flux fields and state-variable fields
with distinct algorithms, so that a different map-file might be employed for each class of
fields.

The weight-generation software normalizes o, 4 such that Zjiv 05,0 = 1 when unmasked

(ms = 1) source gridcells completely overlap the destination gridcell. In this case we also
have Z:zf[ms = N. Furthermore, if all contributing gridpoints are valid values (i.e., not
missing values) then u, = 1 so that Zzsz s = N. For complete overlap with no masked
values and no missing values, then p, = m, = > 0,4 = 1 and the generic averaging

. . . =N
expression above reduces to a simple weighted mean x4 = >} 05 4.

s=N
23:1)ussso-s,dxs

s=N
25:1 ,Ufssso-s,d

Tqg =

NCO automatically annotates the output with relevant metadata such as coordinate
bounds, axes, and vertices (a la CF). These annotations include

90 NCO 5.0.1 User Guide

Horizontal Dimension Names: lat_dmn, lon_dmn

The name of the horizontal spatial dimensions assumed to represent latitude
and longitude in 2D rectangular input files are lat_dmn_nm and lon_dmn_nm,
which default to lat and lon, respectively. Variables that contain a
lat_dmn_nm-dimension and a lon_dmn_nm-dimension on a 2D-rectangular in-
put grid will be regridded, and variables regridded to a 2D-rectangular out-
put grid will all contain the lat_dmn_nm- and lon_dmn_nm-dimensions. To
treat different dimensions as latitude and longitude, use the options ‘--rgr
lat_dmn_nm=lat_dmn_nm’ and ‘--rgr lon_dmn_nm=lon_dmn_nm’. These op-
tions applied only to inferring and generating grids until NCO version 4.7.9
(February, 2019). Since then, these options also determine the dimension names
in regridded output files.

Horizontal Coordinate Names: lat, lon

The name of the horizontal spatial coordinates that represent latitude and lon-
gitude in input files are lat_nm and lon_nm, and default to lat and lon, re-
spectively. Variables that contain a lat_dmn_nm-dimension and a lon_dmn_nm-
dimension on a 2D input grid will be regridded, and output regridded variables
will all contain the lat_nm- and lon_nm-variables. Unless the lat_dmn_nm- and
lon_dmn_nm-dimensions are explicitly configured otherwise, they will share the
same name as the lat_nm- and lon_nm-variables. Thus variables regridded
to a 2D-rectangular output grid usually have lat_nm- and lon_nm as coordi-
nate variables. Variables regridded to a 1D-unstructured output grid will have
lat_nm and lon_nm as auxiliary coordinate variables. Variables regridded to a
2D-curvilinear output grid will have lat_nm and lon_-nm as multi-dimensional
auxiliary coordinate variables. To treat different variables as latitude and lon-
gitude, use the options ‘--rgr lat_nm=lat_nm’ and ‘--rgr lon_nm=lon_nm’'.
Before NCO version 4.7.9 (February, 2019), lat_nm and lon_nm specified both
the variable names and, where applicable (i.e., on 2D-grids), the dimensions
of the horizontal coordinates in output files. Now the horizontal variable and
dimension names in output files may be separately specified.

Unstructured Dimension Name: col

The name of the horizontal spatial dimension assumed to delineate an unstruc-
tured grid is col_nm, which defaults to ncol (number of columns), the name
CAM employs. Other common names for the columns in an unstructured grid
include 1ndgrid (used by CLM), and nCells (used by MPAS-O). Variables that
contain the col_nm-dimension on an unstructured input grid will be regridded,
and regridded variables written to an unstructured output grid will all contain
the col_nm-dimension. To treat a different dimension as unstructured, use the
option ‘--rgr col_nm=col_nm’. Note: Often there is no coordinate variable for
the col_nm-dimension, i.e., there is no variable named col_nm, although such a
coordinate could contain useful information about the unstructured grid.

Structured Grid Standard Names and Units
Longitude and latitude coordinates (both regular and auxiliary, i.e., for unstruc-
tured grids) receive CF standard_name values of latitude and longitude, CF
axes attributes with values X and Y, and units attributes with values degrees_
east and degrees_north, respectively.

Chapter 3: Shared Features 91

Unstructured Grid Auxiliary Coordinates
Unstructured grid auxiliary coordinates for longitude and latitude receive CF
coordinates attributes with values lon and lat, respectively.

Structured Grid Bounds Variables: bnd, lat_bnd, lon_bnd

Structured grids with 1D-coordinates use the dimension bnd_nm (which de-
faults to nbnd) with the spatial bounds variables in lat_bnd_nm and lon_bnd_nm
which default to lon_bnds and lat_bnds, respectively. By default spatial
bounds for such structured grids parallel the oft-used temporal bounds dimen-
sion (nbnd=2) and variable (time_bnds). Bounds are attached to the hor-
izontal spatial dimensions via their bounds attributes. Change the spatial
bounds dimension with the option ‘--rgr bnd_nm=bnd_nm’. Rename the spatial
bounds variables with the options ‘--rgr lat_bnd_nm=lat_bnd_nm’ and ‘--rgr
lon_bnd_nm=lon_bnd_nm’.

Unstructured Grid Bounds Variables: bnd, lat_bnd, lon_bnd

Unstructured grids with 1D-coordinates use the dimension bnd_nm (which de-
faults to nv, number of vertices) for the spatial bounds variables lat_bnd_nm and
lon_bnd_nm which default to lat_vertices and lon_vertices, respectively. It
may be impossible to re-use the temporal bounds dimension (often nbnd) for un-
structure grids, because the gridcells are not rectangles, and thus require speci-
fication of all vertices for each gridpoint, rather than only two parallel interfaces
per dimension. These bounds are attached to the horizontal spatial dimensions
via their bounds attributes. Change the spatial bounds dimension with the op-
tion ‘--rgr bnd_nm=bnd_nm’. Rename the spatial bounds variables with the op-
tions ‘--rgr lat_bnd_nm=lat_bnd_nm’ and ‘--rgr lon_bnd_nm=Ilon_bnd_nm’'.
The temporal bounds dimension in unstructured grid output remains as in the
input-file, usually nbnd.

Vertical Dimension Names: lev_dmn, ilev_dmn

The name of the dimension(s) associated with the vertical coordinate(s) in
multi-level input files are lev.dmn_nm and ilev_.dmn_nm, which default to
lev and ilev, respectively. Variables that contain a lev_dmn_nm-dimension
or an ilev_.dmn_nm-dimension will be vertically interpolated to the speci-
fied (with ‘vrt_fl=vrt_f1’) vertical output grid, and will all contain the
lev_dmn_nm- and, for hybrid-sigma/pressure interface variables, ilev_dmn_nm-
dimensions. To treat different dimensions as the midlayer and interface
level dimensions, use the options ‘--rgr lev_dmn_nm=lev_dmn_nm’ and ‘--rgr
ilev_dmn_nm=ilev_dmn_nm’ options. Pure-pressure grids should use the ‘--rgr
lev_dmn_nm=lev_dmn_nm’ option (to reduce option proliferation, there is no
plev_dmn_nm option). These options were introduced in NCO version 4.9.0
(December, 2019). These options also determine the vertical dimension names
in vertically interpolated output files.

Vertical Coordinate Names: lev, ilev, plev
The name of the vertical coordinate variables that represent midpoint lev-
els and interface levels in hybrid-sigma/pressuure input files are lev_.nm and
ilev_nm, and default to lev and ilev, respectively. While the vertical coor-
dinate in pure-pressure vertical grid files (i.e., the template-file to which data

92

NCO 5.0.1 User Guide

will be interpolated) must be named plev, the vertical coordinate in pure-
pressure data files (i.e., the files to be interpolated) may be changed with
the ‘--rgr plev_nm=plev_nm’ option. The name of the vertical coordinate
variable that represents pressure levels in pure-pressure grid input data files
is plev_nm, and it defaults to plev. To reduce proliferation of command-
line options and internal code complexity, the variable and dimension op-
tions for pure-pressure vertical coordinate output names re-use the “lev” op-
tions, i.e., ‘--rgr lev_nm_out=lev_nm_out’ option. Variables that contain a
lev_dmn_nm-dimension or a ilev_dmn_nm-dimension on hybrid-sigma/pressure
input grid, or a plev_dmn_nm-dimension on a pure pressure grid, will be re-
gridded, and output in vertically interpolated files on a hybrid-sigma/pressure
grid will all contain the lev_nm- and ilev_nm-variables, and output on a pure-
pressure grid will contain the lIev_nm coordinate. Unless the lev_dmn_nm and
ilev_dmn_nm dimensions are explicitly configured otherwise, they will share the
same name as the lev_.nm/plev_nm and ilev_nm-variables, respectively. Thus
variables regridded to a hybrid-sigma/pressure output grid usually have lev_nm-
and ilev_nm as coordinate variables. Variables regridded to a pure-pressure out-
put grid will only have a single vertical coordinate variable, lev_nm, which will
be an associated coordinate variable if lev_dmn_nm differs from lev_nm. To
treat different variables as level and interface-level coordinates, use the options
‘——rgr lev_nm=lev_nm’ and ‘--rgr ilev_nm=ilev_nm’. Before NCO version
4.9.0 (December, 2019), lev_nm and ilev_nm specified both the variable names
and, where applicable (i.e., on 2D-grids), the dimensions of the vertical coordi-
nates in output files. Now the vertical variable and dimension names in output
files may be separately specified.

Gridcell Area: area

The variable area_nm (which defaults to area) is, by default, (re-)created in the
output_file to hold the gridcell area in steradians. To store the area in a different
variable, use the option ‘--rgr area=area_nm’. The area_nm variable receives
a standard_name attribute of cell_area, a units attribute of steradian (the
SI unit of solid angle), and a cel1l_methods attribute with value lat, lon: sum,
which indicates that area_nm is extensive, meaning that its value depends on the
gridcell boundaries. Since area_nm is a property of the grid, it is read directly
from the map-file rather than regridded itself. To omit the area variable from
the output file, set the no_area_out flag. The —-no_cl1l_msr switch to ncremap
and ncclimo does this automatically.

Gridcell Fraction: frc

The variable frc_nm (which defaults to frac_b) is automatically copied to the
output_file to hold the valid fraction of each gridcell when certain conditions are
met. First, the regridding method must be conservative. Second, at least one
value of frc_nm must be non-unity. These conditions ensure that whenever frac-
tional gridcells affect the regridding, they are also placed in the output file. To
store the fraction in a different variable, use the option ‘--rgr frc_nm=frc_nm’.
The frc_nm variable receives a cell_methods attribute with value lat, lon:
sum, which indicates that frc_nm is extensive, meaning that its value depends

Chapter 3: Shared Features 93

on the gridcell boundaries. Since frc_nm is a property of the grid, it is read
directly from the map-file rather than regridded itself.

Gridcell Mask: mask

The variable msk_nm (which defaults to mask) can, if present, be copied from
the map-file to hold the gridcell mask on the destination grid in output-file. To
store the mask in a different variable, use the option ‘--rgr msk_nm=msk_nm’.
Since msk_nm is a property of the grid, it is read directly from the map-file
rather than regridded itself. To include the mask variable in the output file,
set the msk_out flag. To omit the mask variable from the output file, set the
no_msk_out flag. In grid inferral and map-generation modes, this option tells
the regridder to generate an integer mask map from the variable msk_nm. The
mask will be one (i.e., points at that location will contribute to regridding
weights) where msk_nm has valid values. The mask will be zero (i.e., points
at that location will not contribute to regridding weights) where msk_nm has
a missing value. This feature is useful when creating weights between masked
grids, e.g., ocean-only points or land-only points.

Latitude weights: lat_wgt

Rectangular 2D-grids use the variable lat_wgt_nm, which defaults to gw (orig-
inally for “Gaussian weight”), to store the 1D-weight appropriate for area-
weighting the latitude grid. To store the latitude weight in a different variable,
use the option ‘--rgr lat_wgt=lat_wgt_nm’. The lat_wgt_nm variable will not
appear in 1D-grid output. Weighting statistics by latitude (i.e., by lat-wgt_nm
will produce the same answers (up-to round-off error) as weighting by area (i.e.,
by area_nm) in grids that have both variables. The former requires less memory
because lat_wgt_nm is 1D), whereas the latter is more general because area_nm
works on any grid.

Provenance Attributes
The map-file and input-file names are stored in the output-file global attributes
mapping_file and source_file, respectively.

Staggered Grid Coordinates and Weights
Owing to its heritage as an early CCM analysis tool, NCO tries to create output
interoperable with other CESM analysis tools. Like many models, CAM com-
putes and archives thermodynamic state variables on gridcell centers, and com-
putes dynamics variables (zonal and meridional winds U and V, respectively)
on gridcell edges (interfaces). The dual-grid, sometimes called the “staggered
grid”, formed by connecting edge centers is thus the natural location for storing
output dynamics variables. Most dynamical cores of CAM archives horizontal
winds at gridcell centers under the names U, and V. For CAM-FV, these are
interpolated from the computed interface winds archived as US, and VS (which
are on the staggered grid coordinate system). Some analysis packages, such as
the AMWG diagnostics, require access to these dual-grid coordinates with the
names slat and slon (for “staggered” latitude and longitude). Until NCO ver-
sion 4.9.8 (released March, 2021), the NCO regridder output these coordinates,
along with the latitude weights (called w_stag), by default when the input was
on a cap (aka FV) grid so that the result could be processed by AMWG diag-

94 NCO 5.0.1 User Guide

nostics. Setting the no_stagger flag turns-off archiving the staggered grid (i.e.,
slat, slon, and w_stag). Do this with the -—no_stg_grd flag in ncremap.
ncclimo always sets this —-no_stagger flag. As of NCO version 4.9.8 (released
March, 2021), the default ncremap and ncclimo behavior is to omit the stag-
gered grid. The new flag —-stg_grd turns-on outputting the staggered grid,
and thus recovers the previous default behavior.

One may supply muliple ‘--rgr key=value’ options to simultaneously customize multi-
ple grid-field names. The following examples may all be assumed to end with the standard
options ‘--map=map.nc in.nc out.nc’.

ncks —--rgr lat_nm=latitude --rgr lon_nm=longitude
ncks —--rgr col_nm=column --rgr lat_wgt=lat_wgt

ncks --rgr bnd_nm=bounds --rgr lat_bnd_nm=lat_bounds --rgr lon_bnd_nm=lon_bounds
ncks --rgr bnd_nm=vertices --rgr lat_bnd_nm=lat_vrt --rgr lon_bnd_nm=lon_vrt

The first command causes the regridder to associate the latitude and longitude dimen-
sions with the dimension names latitude and longitude (instead of the defaults, 1at and
lon). The second command causes the regridder to associate the independent columns in an
unstructured grid with the dimension name column (instead of the default, ncol) and the
variable containing latitude weights to be named lat_wgt (instead of the default, gw). The
third command associates the latitude and longitude bounds with the dimension bounds
(instead of the default, nbnd) and the variables lat_bounds and lon_bounds (instead of the
defaults, lat_bnds and lon_bnds, respectively). The fourth command associates the lati-
tude and longitude bounds with the dimension vertices (instead of the default, nv) and the
variables lat_vrt and lon_vrt (instead of the defaults, lat_vertices and lon_vertices,
respectively).

When used with an identity remapping files, regridding can signficantly enhance the
metadata and therefore the dataset usability. Consider these selected metadata (those
unchanged are not shown for brevity) associated with the variable FSNT from typical un-
structured grid (CAM-SE cubed-sphere) output before and after an identity regridding:

Raw model output before regridding
netcdf ne30_FSNT {

dimensions:
nbnd = 2 ;
ncol = 48602 ;
time = UNLIMITED ; // (1 currently)

variables:
float FSNT(time,ncol) ;
FSNT:long_name = "Net solar flux at top of model" ;

double time(time) ;
time:long_name = "time" ;

time:bounds = "time_bnds" ;

double time_bnds(time,nbnd) ;

Chapter 3: Shared Features 95

time_bnds:long_name = "time interval endpoints" ;

} // group /

Same model output after identity regridding
netcdf dogfood {
dimensions:
nbnd = 2 ;
ncol 48602 ;
nv = 5 ;
time 1;

variables:
float FSNT(time,ncol) ;
FSNT:long_name = "Net solar flux at top of model" ;
FSNT:coordinates = "lat lon" ;

double lat(ncol) ;
lat:long_name = "latitude" ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;
lat:bounds = "lat_vertices" ;
lat:coordinates = "lat lon" ;

double lat_vertices(ncol,nv) ;
lat_vertices:long_name = '"gridcell latitude vertices" ;

double lon(ncol) ;
lon:long_name = "longitude" ;
lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;
lon:axis = "X" ;
lon:bounds = "lon_vertices" ;
lon:coordinates = "lat lon" ;

double lon_vertices(ncol,nv) ;
lon_vertices:long_name = "gridcell longitude vertices" ;

double time(time) ;
time:long_name = "time" ;
time:bounds = "time_bnds" ;

double time_bnds(time,nbnd) ;
time_bnds:long_name = "time interval endpoints" ;

} // group /

96 NCO 5.0.1 User Guide

The raw model output lacks the CF coordinates and bounds attributes that the re-
gridder adds. The metadata turns lat and lon into auxiliary coordinate variables (see
Section 3.23 [Auxiliary Coordinates], page 74) which can then be hyperslabbed (with ‘-X’)
using latitude/longitude coordinates bounding the region of interest:

% ncks -u -H -X 314.6,315.3,-35.6,-35.1 -v FSNT dogfood.nc
time [0]=31 ncol[0] FSNT[0]=344.575 W/m2

ncol[0] lat[0]=-35.2643896828 degrees_north

ncol[0] nv[0] lat_vertices[0]=-35.5977213708
ncol[0] nv[1] lat_vertices[1]=-35.5977213708
ncol[0] nv[2] lat_vertices[2]=-35.0972113817
ncol[0] nv[3] lat_vertices[3]=-35.0972113817
ncol[0] nv[4] lat_vertices[4]=-35.0972113817

ncol[0] lon[0]=315 degrees_east

ncol[0] nv[0] lon_vertices[0]=315
ncol[0] nv[1] lon_vertices[1]=315
ncol[0] nv[2] lon_vertices[2]=315.352825437
ncol[0] nv[3] lon_vertices([3]=314.647174563
ncol[0] nv[4] lon_vertices([4]=314.647174563

time [0]=31 days since 1979-01-01 00:00:00

time[0]=31 nbnd[0] time_bnds[0]=0
time[0]=31 nbnd[1] time_bnds[1]=31

Thus auxiliary coordinate variables help to structure unstructured grids. The expanded
metadata annotations from an identity regridding may obviate the need to place unstruc-
tured data on a rectangular grid. For example, statistics for regions that can be expressed
as unions of rectangular regions can now be performed on the native (unstructured) grid.

Here are some quick examples of regridding from common models. All examples require
‘in.nc out.nc’ at the end.

Identity re-map E3SM/ACME CAM-SE Cubed-Sphere output (to improve metadata)

ncks --map=${DATA}/maps/map_ne30np4_to_ne30np4_aave.20150603.nc

Convert E3SM/ACME CAM-SE Cubed Sphere output to rectangular lat/lon
ncks --map=${DATA}/maps/map_ne30np4_to_£fv129x256_aave.150418.nc

Convert CAM3 T42 output to Cubed-Sphere grid

ncks —-—map=${DATA}/maps/map_ne30np4_to_t42_aave.20150601.nc

3.26 Climatology and Bounds Support

Availability: nces, ncra, ncrcat
Short options: None
Long options: ‘--cb=yr_srt,yr_end,mth_srt,mth_end, tpd’

Chapter 3: Shared Features 97

‘-—clm_bnd=yr_srt,yr_end,mth_srt,mth_end, tpd’
‘-—clm_nfo=yr_srt,yr_end,mth_srt,mth_end, tpd’
‘--climatology_information=yr_srt,yr_end,mth_srt,mth_end, tpd

(NB: This section describes support for generating CF-compliant bounds variables and
attributes, i.e., metadata. For instructions on constructing climatologies themselves, see the
ncclimo documentation). As of NCO version 4.9.4 (September, 2020) ncra introduces the
‘-—clm_bnd’ option, a powerful method to fully implement the CF bounds, climatology,
and cell_methods attributes defined by Section 3.45 [CF Conventions|, page 145. The
new method updates the previous ‘--cb’ and ‘--c2b’ methods introduced in version 4.6.0
which only worked for monthly mean data. The newer —--cb method also works for cli-
matological diurnally resolved input, and for datasets that contain more than more than
one record. This option takes as argument a comma-separated list of five relevant input
parameters: ‘--cb=yr_srt,yr_end,mth_srt,mth_end, tpd’, where yr_srt is the climatol-
ogy start-year, yr_end is the climatology end-year, mth_srt is the climatology start-month
(in [1..12] format), mth_end is the climatology end-month (in [1..12] format), and tpd
is the number of timestpes per day (with the special exception that tpd = 0 indicates
monthly data, not diurnally-resolved data). For example, a seasonal summer climatology
created from monthly mean input data spanning June, 2000 to August, 2020 should call
ncra with ‘--clm_bnd=2000,2020,6,8,0’, whereas a diurnally resolved climatology of the
same period with 6-hourly input data resolution would use ‘--clm_bnd=2000,2020,6,8,4 .
The ncclimo command internally uses —-clm_bnd extensively.

Average monthly means into a climatological month

ncra --cb=2014,2016,1,1,0 2014_01.nc 2015_01.nc 2016_01.nc clm_JAN.nc

Average seasonally contiguous climatological monthly means into NH winter

ncra --cb=2013,2016,12,2,0 -w 31,31,28 DEC.nc JAN.nc FEB.nc DJF.nc

Average seasonally discontiguous climatological means into NH winter

ncra --cb=2014,2016,1,12,0 -w 31,28,31 JAN.nc FEB.nc DEC.nc JFD.nc

Reduce four climatological seasons to make an annual climatology

ncra --cb=2014,2016,1,12,0 -w 92,92,91,90 MAM.nc JJA.nc SON.nc DJF.nc ANN.nc

Reduce twelve monthly climatologies to make into an annual climatology

ncra --cb=2014,2016,1,12,0 -wv 31,28,31,30,31,30,31,31,30,31,30,31 clm_??7.nc ANN.nc

In the fourth and fifth examples, NCO uses the number of input files (3 and 4, respec-
tively) to discriminate between seasonal and annual climatologies since the other arguments
to ‘=-cb’ are identical.

When using this option, NCO expects each output file to contain max(1, tpd) records.
nces and ncra both accept the ‘--cb’ option. While ncra almost always reduces the input
dataset over the record dimension, nces never does. This makes it easy to use nces to
combine and create climatologies of diurnally resolved input files.

Average diurnally resolved monthly means into a climatology

nces --cb=2014,2016,1,1,8 2014_01.nc 2015_01.nc 2016_01.nc clm_JAN.nc

Average seasonally contiguous diurnally resolved means into a season
nces --cb=2013,2016,12,2,8 -w 31,31,28 DEC.nc JAN.nc FEB.nc DJF.nc

Average seasonally discontiguous diurnally resolved means into a season

98 NCO 5.0.1 User Guide

nces --cb=2014,2016,1,12,8 -w 31,28,31 JAN.nc FEB.nc DEC.nc JFD.nc

Reduce four diurnally resolved seasons to make an annual climatology

nces --cb=2014,2016,1,12,8 -w 92,92,91,90 MAM.nc JJA.nc SON.nc DJF.nc ANN.nc

Reduce twelve diurnally resolved months to make into an annual climatology

nces --cb=2014,2016,1,12,8 -v 31,28,31,30,31,30,31,31,30,31,30,31 clm_??.nc ANN.nc

Every input in the above set of examples must have eight records, and that number will
appear in the output as well.

3.27 UDUnits Support

Availability: ncbo, nces, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim, [min] [, [max] [, [stridell]l’

Long options: ‘~-dimension dim, [min] [, [max] [, [stridell]’,

‘——dmn dim, [min] [, [max] [, [stridell]l’

There is more than one way to hyperskin a cat. The UDUnits package provides a library
which, if present, NCO uses to translate user-specified physical dimensions into the physical
dimensions of data stored in netCDF files. Unidata provides UDUnits under the same terms
as netCDF, so sites should install both. Compiling NCO with UDUnits support is currently
optional but may become required in a future version of NCO.

Two examples suffice to demonstrate the power and convenience of UDUnits support.
First, consider extraction of a variable containing non-record coordinates with physical
dimensions stored in MKS units. In the following example, the user extracts all wavelengths
in the visible portion of the spectrum in terms of the units very frequently used in visible
spectroscopy, microns:

% ncks --trd -C -H -v wvl -d wvl,"0.4 micron","0.7 micron" in.nc
wvl[0]=5e-07 meter

The hyperslab returns the correct values because the wvl variable is stored on disk with
a length dimension that UDUnits recognizes in the units attribute. The automagical
algorithm that implements this functionality is worth describing since understanding it
helps one avoid some potential pitfalls. First, the user includes the physical units of the
hyperslab dimensions she supplies, separated by a simple space from the numerical values of
the hyperslab limits. She encloses each coordinate specifications in quotes so that the shell
does not break the value-space-unit string into separate arguments before passing them to
NCO. Double quotes ("foo") or single quotes (’foo’) are equally valid for this purpose.
Second, NCO recognizes that units translation is requested because each hyperslab argument
contains text characters and non-initial spaces. Third, NCO determines whether the wvl is
dimensioned with a coordinate variable that has a units attribute. In this case, wvl itself is
a coordinate variable. The value of its units attribute is meter. Thus wvl passes this test
so UDUnits conversion is attempted. If the coordinate associated with the variable does not
contain a units attribute, then NCO aborts. Fourth, NCO passes the specified and desired
dimension strings (microns are specified by the user, meters are required by NCO) to the
UDUnits library. Fifth, the UDUnits library that these dimension are commensurate and

http://www.unidata.ucar.edu/software/udunits

Chapter 3: Shared Features 99

it returns the appropriate linear scaling factors to convert from microns to meters to NCO.
If the units are incommensurate (i.e., not expressible in the same fundamental MKS units),
or are not listed in the UDUnits database, then NCO aborts since it cannot determine
the user’s intent. Finally, NCO uses the scaling information to convert the user-specified
hyperslab limits into the same physical dimensions as those of the corresponding cooridinate
variable on disk. At this point, NCO can perform a coordinate hyperslab using the same
algorithm as if the user had specified the hyperslab without requesting units conversion.

The translation and dimensional interpretation of time coordinates shows a more power-
ful, and probably more common, UDUnits application. In this example, the user prints all
data between 4 PM and 7 PM on December 8, 1999, from a variable whose time dimension
is hours since the year 1900:

% ncks -u -H -C -v time_udunits -d time_udunits,"1999-12-08 \
16:00:0.0","1999-12-08 19:00:0.0" in.nc
time_udunits[1]1=876018 hours since 1900-01-01 00:00:0.0

Here, the user invokes the stride (see Section 3.17 [Stride], page 65) capability to obtain every
other timeslice. This is possible because the UDUnits feature is additive, not exclusive—it
works in conjunction with all other hyperslabbing (see Section 3.16 [Hyperslabs|, page 63)
options and in all operators which support hyperslabbing. The following example shows
how one might average data in a time period spread across multiple input files

ncra -d time,"1939-09-09 12:00:0.0","1945-05-08 00:00:0.0" \
inl.nc in2.nc in3.nc out.nc

Note that there is no excess whitespace before or after the individual elements of the ‘-4’
argument. This is important since, as far as the shell knows, ‘-d’ takes only one command-
line argument. Parsing this argument into its component dim, [min] [, [max] [, [stridel]]
elements (see Section 3.16 [Hyperslabs], page 63) is the job of NCO. When unquoted
whitespace is present between these elements, the shell passes NCO arugment fragments
which will not parse as intended.

NCO implemented support for the UDUnits2 library with version 3.9.2 (August, 2007).
The UDUnits2 package supports non-ASCII characters and logarithmic units. We are in-
terested in user-feedback on these features.

One aspect that deserves mention is that UDUnits, and thus NCO, supports run-time
definition of the location of the relevant UDUnits databases. UDUnits2 (specifically, the
function ut_read_xml()) uses the environment variable UDUNITS2_XML_PATH, if any, to find
its all-important XML database, named udunits2.xml by default. If UDUNITS2_XML_PATH is
undefined, then UDUnits2 looks in the fall-back default initial location that was hardcoded
when the UDUnits2 library was built. This location varies depending upon your operating
system and UDUnits2 ncompilation settings. If UDUnits2 is correctly linked yet cannot
find the XML database in either of these locations, then NCO will report that the UDUnits2
library has failed to initialize. To fix this, export the full location (path+name) of the
UDUnits2 XML database file udunits2.xml to the shell:

export UDUNITS2_XML_PATH=’/opt/local/share/udunits/udunits2.xml’

http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2.html

100 NCO 5.0.1 User Guide

One can then invoke (without recompilation) NCO again, and UDUnit2 should work.
This run-time flexibility can enable the full functionality of pre-built binaries on machines
with libraries in different locations.

The UDUnits package documentation describes the supported formats of time dimen-
sions. Among the metadata conventions that adhere to these formats are the Climate and
Forecast (CF) Conventions and the Cooperative Ocean/Atmosphere Research Data Ser-
vice (COARDS) Conventions. The following ‘-d arguments’ extract the same data using
commonly encountered time dimension formats:

-d time,’1918-11-11 00:00:0.0’,°1939-09-09 00:00:0.0°
-d time,’1918-11-11 00:00:0.0’,°1939-09-09 00:00:0.0°
-d time,’1918-11-11T00:00:0.0Z°,°1939-09-09T00:00:0.0Z°
-d time,’1918-11-11’,°1939-09-09’

-d time,’1918-11-11’,71939-9-9°

All of these formats include at least one dash - in a non-leading character position (a dash
in a leading character position is a negative sign). NCO assumes that a space, colon, or
non-leading dash in a limit string indicates that a UDUnits units conversion is requested.
Some date formats like YYYYMMDD that are valid in UDUnits are ambiguous to NCO
because it cannot distinguish a purely numerical date (i.e., no dashes or text characters in
it) from a coordinate or index value:

-d time,1918-11-11 # Interpreted as the date November 11, 1918
-d time,19181111 # Interpreted as time-dimension index 19181111
-d time,19181111. # Interpreted as time-coordinate value 19181111.0

Hence, use the YYYY-MM-DD format rather than YYYYMMDD for dates.

As of version 4.0.0 (January, 2010), NCO supports some calendar attributes specified by the
CF conventions.

Supported types:
"365_-day" /"noleap", "360_day", "gregorian", "standard"

Unsupported types:
"366_day" /"all_leap","proleptic_gregorian","julian","none"

Unsupported types default to mixed Gregorian/Julian as defined by UDUnits.
An Example: Consider the following netCDF variable

variables:
double lon_cal(lon_cal) ;
lon_cal:long_name = "lon_cal" ;

lon_cal:units = "days since 1964-2-28 0:0:0" ;
lon_cal:calendar = "365_day" ;
data:
lon_cal = 1,2,3,4,5,6,7,8,9,10;

‘ncks -v lon_cal -d lon_cal,’1964-3-1 0:00:0.0°,°1964-3-4 00:00:0.0’’ results
in lon_cal=1,2,3,4.

http://www.unidata.ucar.edu/software/udunits
http://cf-pcmdi.llnl.gov
http://cf-pcmdi.llnl.gov
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

Chapter 3: Shared Features 101

netCDF variables should always be stored with MKS (i.e., God’s) units, so that appli-
cation programs may assume MKS dimensions apply to all input variables. The UDUnits
feature is intended to alleviate NCO users’ pain when handling MKS units. It connects
users who think in human-friendly units (e.g., miles, millibars, days) to extract data which
are always stored in God’s units, MKS (e.g., meters, Pascals, seconds). The feature is not
intended to encourage writers to store data in esoteric units (e.g., furlongs, pounds per
square inch, fortnights).

3.28 Rebasing Time Coordinate

Availability: ncra, ncrcat Short options: None

Time rebasing is invoked when numerous files share a common record coordinate, and
the record coordinate basetime (not the time increment, e.g., days or hours) changes among
input files. The rebasing is performed automatically if and only if UDUnits is installed.
Rebasing occurs when the record coordinate is a time-based variable, and times are recorded
in units of a time-since-basetime, and the basetime changes from file to file. Since the output
file can have only one unit (i.e., one basetime) for the record coordinate, NCO, in such cases,
chooses the units of the first input file to be the units of the output file. It is necessary to
“rebase” all the input record variables to this output time unit in order for the output file
to have the correct values.

For example suppose the time coordinate is in hours and each day in January is stored
in its own daily file. Each daily file records the temperature variable tpt(time) with an
(unadjusted) time coordinate value between 0-23 hours, and uses the units attribute to
advance the base time:

fileOl.nc time:units="hours since 1990-1-1"
file02.nc time:units="hours since 1990-1-2"

file31l.nc time:units="hours since 1990-1-31"

// Mean noontime temperature in January
ncra -v tpt -d time,"1990-1-1 12:00:00","1990-1-31 23:59:59",24 \
file??.nc noon.nc

// Concatenate day2 noon through day3 noon records
ncrcat -v tpt -d time,"1990-1-2 12:00:00","1990-1-3 11:59:59" \
fileOl.nc file02.nc £ile03.nc noon.nc

// Results: time is "re-based" to the time units in "fileO1l.nc"
time=36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, \
51, 52, 53, 54, 55, 56, 57, 58, 59 ;

// If we repeat the above command but with only two input files...
ncrcat -v tpt -d time,"1990-1-2 12:00:00","1990-1-3 11:59:59" \

102 NCO 5.0.1 User Guide

fileO02.nc £ile03 noon.nc

// ...then output time coordinate is based on time units in "file02.nc"
time = 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, \
26, 27, 28, 29, 30, 31, 32, 33, 34, 35 ;

As of NCO version 4.2.1 (August, 2012), NCO automatically rebases not only the record
coordinate (time, here) but also any cell boundaries associated with the record coordinate
(e.g., time_bnds) (see Section 3.45 [CF Conventions|, page 145).

As of NCO version 4.4.9 (May, 2015), NCO also rebases any climatology boundaries
associated with the record coordinate (e.g., climatology_bounds) (see Section 3.45 [CF
Conventions], page 145).

As of NCO version 4.6.3 (December, 2016), NCO also rebases the time coordinate when
the units differ between files. For example the first file may have units="days since
2014-03-01" and the second file units="hours since 2014-03-10 00:00".

3.29 Multiple Record Dimensions

Availability: ncecat, ncpdq Short options: None
Long options: ‘--mrd’

The netCDF3 file format allows only one record dimension, and that dimension must
be the first dimension (i.e., the least rapidly varying dimension) of any variable in which it
appears. This imposes certain rules on how operators must perform operations that alter
the ordering of dimensions or the number of record variables. The netCDF4 file format
has no such restrictions. Files and variables may have any number of record dimensions
in any order. This additional flexibility of netCDF4 can only be realized by selectively
abandoning the constraints that would make operations behave completely consistently
between netCDF3 and netCDF4 files.

NCO chooses, by default, to impose netCDF3-based constraints on netCDF4 files. This
reduces the number of unanticipated consequences and keeps the operators functioning in
a familiar way. Put another way, NCO limits production of additional record dimensions so
processing netCDF4 files leads to the same results as processing netCDF3 files. Users can
override this default with the ‘--mrd’ (or ‘--multiple_record_dimension’) switch, which
enables netCDF4 variables to accumulate additional record dimensions.

How can additional record dimensions be produced? Most commonly ncecat (in record-
aggregate mode) defines a new leading record dimension. In netCDF4 files this becomes
an additional record dimension unless the original record dimension is changed to a fixed
dimension (as must be done in netCDF3 files). Also when ncpdq reorders dimensions it
can preserve the “record” property of record variables. ncpdq tries to define as a record
dimension whichever dimension ends up first in a record variable, and, in netCDF4 files,
this becomes an additional record dimension unless the original record dimension is changed
to a fixed dimension (as must be done in netCDF3 files). It it easier if ncpdq and ncecat

Chapter 3: Shared Features 103

do not increase the number of record dimensions in a variable so that is the default. Use
‘——mrd’ to override this.

3.30 Missing values

Availability: ncap2, ncbo, ncclimo, nces, ncflint, ncpdq, ncra, ncremap, ncwa
Short options: None

The phrase missing data refers to data points that are missing, invalid, or for any reason

not intended to be arithmetically processed in the same fashion as valid data. All NCO
arithmetic operators attempt to handle missing data in an intelligent fashion. There are
four steps in the NCO treatment of missing data:

1. Identifying variables that may contain missing data.

NCO follows the convention that missing data should be stored with the _FillValue
specified in the variable’s _FillValue attributes. The only way NCO recognizes that
a variable may contain missing data is if the variable has a _FillValue attribute. In
this case, any elements of the variable which are numerically equal to the _FillValue
are treated as missing data.

NCO adopted the behavior that the default attribute name, if any, assumed to specify
the value of data to ignore is _FillValue with version 3.9.2 (August, 2007). Prior to
that, the missing_value attribute, if any, was assumed to specify the value of data
to ignore. Supporting both of these attributes simultaneously is not practical. Hence
the behavior NCO once applied to missing_value it now applies to any _FillValue. NCO
now treats any missing_value as normal data?®!.

It has been and remains most advisable to create both _FillValue and missing_
value attributes with identical values in datasets. Many legacy datasets contain only
missing_value attributes. NCO can help migrating datasets between these conven-
tions. One may use ncrename (see Section 4.13 [ncrename netCDF Renamer|, page 339)
to rename all missing_value attributes to _FillValue:

ncrename -a .missing_value,_FillValue inout.nc

Alternatively, one may use ncatted (see Section 4.2 [ncatted netCDF Attribute Editor],
page 216) to add a _FillValue attribute to all variables

ncatted -0 -a _FillValue,,o0,f,1.0e36 inout.nc
Converting the _FillValue to the type of the variable, if neccessary.

Consider a variable var of type var_type with a _FillValue attribute of type att_type
containing the value _FillValue. As a guideline, the type of the _FillValue attribute
should be the same as the type of the variable it is attached to. If var_type equals
att_type then NCO straightforwardly compares each value of var to _FillValue to de-
termine which elements of var are to be treated as missing data. If not, then NCO

21

The old functionality, i.e., where the ignored values are indicated by missing_value not _FillValue,
may still be selected at NCO build time by compiling NCO with the token definition CPPFLAGS=’-
UNCO_USE_FILL_VALUE”.

104

NCO 5.0.1 User Guide

converts _FillValue from att_type to var_type by using the implicit conversion rules
of C, or, if att_type is NC_CHAR??, by typecasting the results of the C function strtod(_
FillValue). You may use the NCO operator ncatted to change the _FillValue at-
tribute and all data whose data is _FillValue to a new value (see Section 4.2 [ncatted
netCDF Attribute Editor|, page 216).

Identifying missing data during arithmetic operations.

When an NCO arithmetic operator processes a variable var with a _FillValue at-
tribute, it compares each value of var to _FillValue before performing an operation.
Note the _FillValue comparison imposes a performance penalty on the operator. Arith-
metic processing of variables which contain the _FillValue attribute always incurs this
penalty, even when none of the data are missing. Conversely, arithmetic processing of
variables which do not contain the _FillValue attribute never incurs this penalty. In
other words, do not attach a _FillValue attribute to a variable which does not contain
missing data. This exhortation can usually be obeyed for model generated data, but it
may be harder to know in advance whether all observational data will be valid or not.

Treatment of any data identified as missing in arithmetic operators.

NCO averagers (ncra, nces, ncwa) do not count any element with the value _FillValue
towards the average. ncbo and ncflint define a _FillValue result when either of the
input values is a _FillValue. Sometimes the _FillValue may change from file to file in a
multi-file operator, e.g., ncra. NCO is written to account for this (it always compares
a variable to the _FillValue assigned to that variable