1y
mmmm SCONS

Build your software, better.

SCons4.2.0

MAN page

The SCons Development Team

Version 4.2.02001 - 2021 The SCons FoundationReleased Mon, 09 Aug 2021 10:31:08 +0000

Name

scons — a software construction tool
Synopsis
scons [options..] [nane=val ..][targets..]

DESCRIPTION

scons orchestrates the construction of software (and other tangible products such as documentation files) by
determining which component pieces must be built or rebuilt and invoking the necessary commands to build them.
SCons offers many features to improve developer productivity such as parallel builds, caching of build artifacts,
automatic dependency scanning, and a database of information about previous builds so details do not have to be
recalculated each run.

scons requires Python 3.5 or later to run; there should be no other dependencies or requirements. Support for Python
3.5isdeprecated since SCons 4.2 and will be dropped in a future release. The CPython project hasretired 3.5: https://
www.python.or g/dev/peps/pep-0478.

You set up an SCons build system by writing a script that describes things to build (targets), and, if necessary, the
rules to build those files (actions). SCons comes with a collection of Builder methods which apply premade actions
for building many common software components such as executable programs, object files and libraries, so that for
many software projects, only the targets and input files (sources) need be specified in a call to a builder. scons thus
can operate at alevel of abstraction above that of pure files. For example if you specify alibrary target named "foo",
scons keepstrack of the actual operating system dependent filename (such asl i bf 00. so onaGNU/Linux system),
and how to refer to that library in later construction steps that want to use it, so you don't have to specify that precise
information yourself. scons can a so scan automatically for dependency information, such as header filesincluded by
source code files, so this does not have to be specified manually.

When invoked, scons looks for afile named SConst r uct inthe current directory and reads the build configuration
from that file (other names are allowed, see the section called “SConscript Files’ for more information). The
SConst r uct file may specify subsidiary configuration files by calling the SConscr i pt function. By convention,
thesesubsidiary filesarenamed SConscr i pt , although any name may be used. Asaresult of thisnaming convention,
the term SConscript filesis used to refer generically to the complete set of configuration files for a project (including
the SConst r uct file), regardless of the actual file names or number of such files.

Before reading the SConscript files, scons looks for a directory named si t e_scons in various system directories
and in the directory containing the SConst r uct file or, if specified, the directory from the - - si t e- di r option
instead, and prepends the onesiit finds to the Python module search path (sys. pat h), thusalowing modulesin such
directoriesto be imported in the normal Python way in SConscript files. For each found site directory, (1) if it contains
afilesite_ini t. py that fileisevaluated, and (2) if it containsadirectory si t e_t ool s the path to that directory
isprepended to the default toolpath. Seethe- - si t e- di r and- - no- si t e- di r optionsfor detailson default paths
and controlling the site directories.

SConscript files are written in the Python programming language, although it is normally not necessary to be a Python
programmer to use scons effectively. SConscript files are invoked in a context that makes the facilities described in
this manual page available in their local namespace without any special steps. Standard Python scripting capabilities
such asflow control, data manipulation, and imported Python libraries are available to use to handle complicated build
situations. Other Python files can be made a part of the build system, but they do not automatically have the SCons
context and need to import it if they need access (described later).

scons reads and executes all of the included SConscript files before it begins building any targets. To make this clear,
scons prints the following messages about what it is doing:

Iy
=== SCONS 3

https://www.python.org/dev/peps/pep-0478
https://www.python.org/dev/peps/pep-0478

$ scons foo. out

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets

cp foo.in foo. out

scons: done buil ding targets.

$

The status messages (lines beginning with the scons: tag) may be suppressed using the - Qoption.

scons does not automatically propagate the external environment used to execute sconsto the commands used to build
target files. Thisis so that builds will be guaranteed repeatabl e regardless of the environment variables set at the time
scons is invoked. This also means that if the compiler or other commands that you want to use to build your target

filesare not in standard system locations, scons will not find them unless you explicitly include the locations into the
execution environment by setting the path in the ENV construction variable in the internal construction environment:

i mport os

env = Environment (ENV={' PATH : os.environ[' PATH]})

Similarly, if the commands use specific external environment variables that scons does not recognize, they can be
propagated into the execution environment;

i mport os

env = Environnment (

ENV={

"PATH : os.environ[' PATH],

' ANDRO D HOVE' : o0s. environ[' ANDRO D HOVE'],

' ANDRO D_NDK_HOVE' : 0s. envi ron[' ANDRO D_NDK HOVE'],
}

)

Or you may explicitly propagate the invoking user's complete external environment:

i mport os
env = Environment (ENV=0s. envi r on. copy())

This comes at the expense of making your build dependent on the user's environment being set correctly, but it may be
more convenient for many configurations. It should not cause problemsif donein abuild setup which tightly controls
how the environment is set up before invoking scons, asin many continuous integration setups.

scons can scan known input file types automatically for dependency information (for example, #i ncl ude
preprocessor directives in C or C++ files) and will rebuild dependent files appropriately whenever any "included”
input file changes. scons supports the ability to define new scanners to support additional input file types.

scons is normally executed in a top-level directory containing an SConst r uct file. When scons is invoked, the
command line (including the contents of the SCONSFLAGS environment variable, if set) is processed. Command-line
options (see the section caled “OPTIONS") are consumed. Any variable argument assignments are collected, and
remaining arguments are taken as targets to build.

Vaues of variables to be passed to the SConscript files may be specified on the command line:

Iy
=== SCONS 4

scons debug=1

These variables are available through the ARGUMENTS dictionary, and can be used in the SConscript files to modify
the build in any way:

i f ARGUMENTS. get (' debug', 0):

env = Environnment (CCFLAGS='-g')
el se:

env = Environnent ()

The command-line variable arguments are also availablein the ARGLI ST list, indexed by their order on the command
line. This alows you to process them in order rather than by name, if necessary. Each ARGLI ST entry is a tuple
containing (ar gnarne, ar gval ue).

See the section called “ Command-Line Construction Variables’ for more information.

scons can maintain a cache of target (derived) files that can be shared between multiple builds. When derived-file
caching isenabled in an SConscript file, any target filesbuilt by sconswill be copied to the cache. If an up-to-datetarget
fileis found in the cache, it will be retrieved from the cache instead of being rebuilt locally. Caching behavior may
be disabled and controlled in other ways by the - - cache- f or ce, - - cache- di sabl e, - - cache-readonl y,
and - - cache- showcommand-line options. The - - r andomoption is useful to prevent multiple builds from trying
to update the cache simultaneously.

By default, scons searches for known programming tools on various systems and initializes itself based on what is
found. On Windows systems which identify as win32, scons searches in order for the Microsoft Visual C++ tools,
the MinGW tool chain, the Intel compiler tools, and the PharLap ETS compiler. On Windows system which identify
as cygwin (that is, if sconsis invoked from a cygwin shell), the order changes to prefer the GCC toolchain over the
MSVC tools. On OS/2 systems, scons searches in order for the OS/2 compiler, the GCC tool chain, and the Microsoft
Visual C++ tools, On SGI IRIX, IBM AlX, Hewlett Packard HP-UX, and Oracle Solaris systems, scons searches for
the native compiler tools (MIPSpro, Visua Age, aCC, and Forte tools respectively) and the GCC tool chain. On all
other platforms, including POSIX (Linux and UNIX) platforms, scons searches in order for the GCC tool chain, and
the Intel compiler tools. These default values may be overridden by appropriate setting of construction variables.

Target Selection

SCons acts on the selected targets, whether the requested operation is build, no-exec or clean. Targets are selected
asfollows:

1. Targets specified on the command line. These may be files, directories, or phony targets defined using the Al i as
function. Directory targets are scanned by scons for any targets that may be found with a destination in or under
that directory. The targets listed on the command line are made available in the COWAND_LI NE_TARCETS list.

2. If no targets are specified on the command line, scons will select those targets specified in the SConscript
files via calls to the Def aul t function. These are known as the default targets, and are made available in the
DEFAULT_TARGETS list.

3. If no targets are selected by the previous steps, scons selects the current directory for scanning, unless command-
line options which affect the target scan are detected (- C, - D, - u, - U). Since targets thus selected were not the
result of user instructions, thistarget list is not made available for direct inspection; use the - - debug=expl ai n
option if they need to be examined.

4. scons always adds to the selected targets any intermediate targets which are necessary to build the specified ones.
For example, if constructing ashared library or dil from C source files, sconswill also build the object fileswhich
will make up thelibrary.

Iy
=== SCONS 5

To ignore the default targets specified through calls to Def aul t and instead build all target files in or below the
current directory specify the current directory (.) as acommand-line target:

scons .

To build al target files, including any files outside of the current directory, supply a command-line target of the root
directory (on POSIX systems):

scons /

or the path name(s) of the volume(s) in which all the targets should be built (on Windows systems):

scons C\ D\

A subset of ahierarchical tree may be built by remaining at the top-level directory (wherethe SConst r uct filelives)
and specifying the subdirectory as the target to build:

scons src/subdir

or by changing directory and invoking scons with the - u option, which traverses up the directory hierarchy until it

findsthe SConst r uct file, and then buildstargets relatively to the current subdirectory (see aso therelated - Dand
- U options):

cd src/subdir
scons -u .
In all cases, more files may be built than are requested, as scons needs to make sure any dependent files are built.

Specifying "cleanup” targets in SConscript filesis usually not necessary. The - ¢ flag removes all selected targets:

scons -C .

to remove all target filesin or under the current directory, or:

scons -c build export

to removetarget filesunder bui | d and export.

Additional filesor directoriesto remove can be specified usingthe Cl ean functioninthe SConscript files. Conversely,
targets that would normally be removed by the - ¢ invocation can be retained by calling the NoCl ean function with
those targets.

scons supports building multiple targets in paralel via a -j option that takes, as its argument, the number of
simultaneous tasks that may be spawned:

scons -j 4

builds four targetsin parallel, for example.

Iy
=== SCONS 6

OPTIONS

In general, scons supports the same command-line options as GNU Make and many of those supported by cons.

-b
Ignored for compatibility with non-GNU versions of Make

-Cc,--clean,--renove
Set clean mode. Clean up by removing the selected targets, well as any files or directories associated with a
selected target through callstothe Gl ean function. Will not remove any targetswhich are marked for preservation
through callsto the NoCl ean function.

While clean mode removes targets rather than building them, work which is done directly in Python code in
SConscript files will still be carried out. If it is important to avoid some such work from taking place in clean
mode, it should be protected. An SConscript file can determine which mode is active by querying Get Opt i on,
asinthecal i f Get Option("clean"):

--cache-debug=file
Write debug information about derived-file caching to the specifiedfi | e. If fi | e isahyphen (-), the debug
information is printed to the standard output. The printed messages describe what signature-file names are being
looked for in, retrieved from, or written to the derived-file cache specified by CacheDi r .

--cache-di sabl e,--no-cache
Disable derived-file caching. scons will neither retrieve files from the cache nor copy files to the cache. This
option can be used to temporarily disable the cache without modifying the build scripts.

--cache-force,--cache-popul ate
When using CacheDi r, populate a derived-file cache by copying any already-existing, up-to-date derived files
to the cache, in addition to files built by thisinvocation. Thisis useful to populate anew cachewith all the current
derived files, or to add to the cache any derived files recently built with caching disabled via the - - cache-
di sabl e option.

--cache-readonly
Use the derived-file cache, if enabled, to retrieve files, but do not not update the cache with any files actually
built during thisinvocation.

- -cache-show
When using a derived-file cache show the command that would have been executed to build the file (or the
corresponding * COVBTR contentsif set) even if thefileisretrieved from cache. Without this option, scons shows
acacheretrieval messageif the fileis fetched from cache. Thisallows producing consistent output for build logs,
regardless of whether atarget file was rebuilt or retrieved from the cache.

--confi g=node
Control how the Conf i gur e call should use or generate the results of configuration tests. rode should be one
of the following choices:

auto
SConswill useits normal dependency mechanisms to decide if atest must be rebuilt or not. This savestime
by not running the same configuration tests every time you invoke scons, but will overlook changesin system
header files or external commands (such as compilers) if you don't specify those dependecies explicitly. This
isthe default behavior.

force
If thismode is specified, al configuration testswill be re-run regardless of whether the cached results are out
of date. This can be used to explicitly force the configuration tests to be updated in response to an otherwise
unconfigured change in a system header file or compiler.

Iy
=== SCONS 7

cache
If thismodeis specified, no configuration testswill bererun and al resultswill be taken from cache. sconswill
report an error if - - conf i g=cache isspecified and a necessary test does not have any resultsin the cache.

directory,--directory=directory

Run as if scons was started in di r ect or y instead of the current working directory. That is, change directory
before searching for the SConst r uct , Sconst r uct ,sconst ruct,SConst r uct . py, Sconst r uct . py
or sconstruct. py file or doing anything else. When multiple - C options are given, each subsequent non-
absolute - C di rect ory is interpreted relative to the preceding one. This option is similar to using - f
di rectory/ SConst ruct, but - f does not search for any of the predefined SConst r uct namesin the
specified directory. Seealso options- u, - Uand - Dto changethe SConst r uct search behavior when thisoption
is used.

Works exactly the same way as the - u option except for the way default targets are handled. When this option
is used and no targets are specified on the command line, all default targets are built, whether or not they are
below the current directory.

- -debug=type[, type...]

Debug the build process. t ype specifies the kind of debugging info to emit. Multiple types may be specified,
separated by commas. The following types are recognized:

action-timestamps
Prints additional time profiling information. For each command, shows the absolute start and end times. This
may be useful in debugging parallel builds. Impliesthe - - debug=t i ne option.

Available since scons 3.1.

count
Print how many objects are created of the various classes used internally by SCons before and after reading
the SConscript files and before and after building targets. Thisis not supported when SConsis executed with
the Python - O (optimized) option or when the SCons modules have been compiled with optimization (that
is, when executing from * . pyo files).

duplicate
Print aline for each unlink/relink (or copy) of avariant file from its source file. Includes debugging info for
unlinking stale variant files, as well as unlinking old targets before building them.

explain
Print an explanation of why sconsis deciding to (re-)build the targets it selects for building.

findlibs
Instruct the scanner that searches for libraries to print a message about each potential library name it is
searching for, and about the actual librariesit finds.

includes
Print the include tree after each top-level target is built. This is generally used to find out what files are
included by the sources of a given derived file:

$ scons --debug=i ncl udes foo.o0

memoizer
Prints a summary of hits and misses using the Memoizer, an internal subsystem that counts how often SCons
uses cached values in memory instead of recomputing them each time they're needed.

~

'—‘—' SCONS 8

memory
Prints how much memory SCons uses before and after reading the SConscript files and before and after
building targets.

objects
Prints alist of the various objects of the various classes used internally by SCons.

pdb
Re-run scons under the control of the pdb Python debugger.

prepare
Print aline each time any target (internal or external) is prepared for building. scons printsthisfor each target
it considers, even if that target is up to date (see also - - debug=expl ai n). This can help debug problems
with targets that aren't being built; it shows whether sconsis at least considering them or not.

presub
Print the raw command line used to build each target before the construction environment variables are
substituted. Also shows which targets are being built by this command. Output |ooks something like this:

$ scons --debug=presub
Bui | di ng myprog.o with action(s):
$SHCC $SHCFLAGS $SHCCFLAGS $CPPFLAGS $_CPPI NCFLAGS -c¢ -0 $TARGET $SOURCES

stacktrace
Prints an internal Python stack trace when encountering an otherwise unexplained error.

time
Prints various time profiling information:

» Thetime spent executing each individual build command

» Thetotal build time (time SCons ran from beginning to end)

» Thetotal time spent reading and executing SConscript files

» Thetotal time SConsitself spent running (that is, not counting reading and executing SConscript files)
e Thetotal time spent executing al build commands

» The elapsed wall-clock time spent executing those build commands

» Thetime spent processing each file passed to the SConscr i pt function

(When sconsis executed without the - j option, the elapsed wall-clock time will typically be slightly longer
than the total time spent executing all the build commands, due to the SCons processing that takes place in
between executing each command. When sconsis executed with the - j option, and your build configuration
allows good parallelization, the elapsed wall-clock time should be significantly smaller than the total time
spent executing al the build commands, since multiple build commands and intervening SCons processing
should take place in parallel.)

--di skcheck=t ype
Enable specific checks for whether or not thereis afile on disk where the SCons configuration expects a directory
(or viceversa) when searching for source and includefiles. t ype can be an available diskcheck type or the special
tokensal | ornone. A comma-separated string can be used to select multiple checks. The default settingisal | .

Current available checks are:

Iy
=== SCONS 9

match
to check that files and directories on disk match SCons' expected configuration.

Disabling some or all of these checks can provide a performance boost for large configurations, or when the
configuration will check for filesand/or directories across networked or shared file systems, at the slight increased
risk of an incorrect build or of not handling errors gracefully.

- -dupl i cat e=ORDER
There are three ways to duplicate files in a build tree: hard links, soft (symbolic) links and copies. The default
policy isto prefer hard links to soft links to copies. You can specify a different policy with this option. ORDER
must be one of hard-soft-copy (the default), soft-hard-copy, hard-copy, soft-copy or copy. SCons will attempt to
duplicate files using the mechanismsin the specified order.

--enabl e-virtual env
Import virtualenv-related variables to SCons.

--experiment al =f eature
Enable experimental features and/or tools. f eat ur e can be an available feature name or the special tokensal |
or none. A comma-separated string can be used to select multiple features. The default setting isnone.

Current available features are: ni nj a.

Caution

No Support offered for any features or tools enabled by thisflag.
Available since scons 4.2.

-f file,--file=file,--makefile=file,--sconstruct=file
Usefi | e astheinitial SConscript file. Multiple - f options may be specified, in which case scons will read all
of the specified files.

-h,--help
Print alocal help message for this project, if oneis defined in the SConscript files (see the Hel p function), plus
aline that refers to the standard SCons help message. If no local help message is defined, prints the standard
SCons help message (as for the - H option) plus help for any local options defined through AddOpt i on. Exits

after displaying the appropriate message.

Note that use of this option requires SCons to process the SConscript files, so syntax errors may cause the help
message hot to be displayed.

- - hash- chunksi ze=KI LOBYTES
Set the block size used when computing content signatures to KI LOBYTES. This value determines the size of
the chunks which are read in at once when computing signature hashes. Files below that size are fully stored in
memory before performing the signature computation while bigger filesare read in block-by-block. A huge block-
size leads to high memory consumption while avery small block-size slows down the build considerably.

The default value is to use a chunk size of 64 kilobytes, which should be appropriate for most uses.
Available since scons 4.2.

- - hash- f or mat =ALGORI THMV
Set the hashing algorithm used by SCons to ALGORI THM This value determines the hashing algorithm used in
generating content signatures or CacheDi r keys.

The supported list of values are: md5, shal, and sha256. However, the Python interpreter used to run SCons must
have the corresponding support available in the hashl i b module to use the specified algorithm.

Iy
=== SCONS 10

-H,

Specifying this value changes the name of the SConsign database. For example, - - hash- f or mat =sha256
will create a SConsign database with name. sconsi gn_sha256. dblite.

If thisoption is not specified, ahash format of md5 isused, and the SConsign databaseis. sconsi gn. dblite.
Available since scons 4.2.

- - hel p-options
Print the standard help message about SCons command-line options and exit.

-i,--ignore-errors

Ignore all errors from commands executed to rebuild files.

directory,--include-dir=directory
Specifiesadi r ect or y to search for imported Python modules. If several - | options are used, the directories
are searched in the order specified.

i gnor e-vi rtual env

Suppress importing virtualenv-related variables to SCons.

nplicit-cache

Cache implicit dependencies. This causes scons to use the implicit (scanned) dependencies from the last time it
was run instead of scanning the files for implicit dependencies. This can significantly speed up SCons, but with
the following limitations:

scons will not detect changes to implicit dependency search paths (e.g. CPPPATH, LI BPATH) that would
ordinarily cause different versions of same-named files to be used.

scons will miss changes in the implicit dependencies in cases where a new implicit dependency is added earlier
in the implicit dependency search path (e.g. CPPPATH, L1 BPATH) than a current implicit dependency with the
same name.

i mplicit-deps-changed

Forces SCons to ignore the cached implicit dependencies. This causes the implicit dependencies to be rescanned
and recached. Thisimplies--i npli cit-cache.

nplicit-deps-unchanged
Force SCons to ignore changes in the implicit dependencies. This causes cached implicit dependencies to always
be used. Thisimplies- -i npli ci t - cache.

nst al | - sandbox=sandbox_pat h

When using the | nst al | builders, prepend sandbox_pat h to the installation paths such that al installed
files will be placed under that directory. This option is unavailable if one of I nstal |, I nstall As or
I nst al | Ver si onedLi b isnot used in the SConscript files.

nteractive

Starts SCons in interactive mode. The SConscript files are read once and ascons>>> prompt is printed. Targets
may now be rebuilt by typing commands at interactive prompt without having to re-read the SConscript files and
re-initialize the dependency graph from scratch.

SCons interactive mode supports the following commands:

bui I d [OPTI ONS] [TARGETS] .
Builds the specified TARGETS (and their dependencies) with the specified SCons command-line OPTI ONS.
b and scons are synonyms for build.

The following SCons command-line options affect the build command:

~

'—‘—' SCONS 11

- - cache- debug=FI LE

- -cache-di sabl e, --no-cache
--cache-force, --cache-popul ate
--cache-readonly

- - cache- show

- - debug=TYPE

-i, --ignore-errors

-j N, --jobs=N

-k, --keep-going

-n, --no-exec, --just-print, --dry-run, --recon
-Q
-s, --silent, --quiet

--taskmast ertrace=Fl LE
--tree=0PTl ONS

Any other SCons command-line options that are specified do not cause errors but have no effect on the build
command (mainly because they affect how the SConscript files are read, which only happens once at the
beginning of interactive mode).

cl ean [OPTI ONS] [TARCETS]
Cleans the specified TARGETS (and their dependencies) with the specified OPTI ONS. c isasynonym. This
command isitself asynonymfor bui | d --cl ean

exit
Exits SCons interactive mode. You can also exit by terminating input (Ctrl+D UNIX or Linux systems,
(Ctrl+Z on Windows systems).

hel p [COMVAND]
Provides a help message about the commands available in SCons interactive mode. If COMMAND is
specified, h and ? are synonyms.

shel | [COWANDLI NE]
Executes the specified COMVANDLI NE in a subshell. If no COMMANDLI NE is specified, executes the
interactive command interpreter specified in the SHELL environment variable (on UNIX and Linux systems)
or the COVSPEC environment variable (on Windows systems). sh and ! are synonyms.

Ver sion
Prints SCons version information.

An empty line repeats the last typed command. Command-line editing can be used if the readline module is
available.

$ scons --interactive

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons>>> build -n prog

scons>>> exit

N, - - j obs=N
Specifies the maximum number of comcurrent jobs (commands) to run. If thereis more than one - j option, the
last oneis effective.

-k, - -keep-goi ng

Continue as much as possible after an error. The target that failed and those that depend on it will not be remade,
but other targets specified on the command line will still be processed.

~

'—‘-‘ SCONS 12

-m
Ignored for compatibility with non-GNU versions of Make.

- - max- dri f t =SECONDS
Set the maximum expected drift in the modification time of files to SECONDS. This value determines how long
afile must be unmodified before its cached content signature will be used instead of calculating a new content
signature (MD5 checksum) of the file's contents. The default value is 2 days, which means a file must have a
modification time of at least two days ago in order to have its cached content signature used. A negative value
means to never cache the content signature and to ignore the cached value if there already is one. A value of 0
means to always use the cached signature, no matter how old the fileis.

- - md5- chunksi ze=KI LOBYTES
A deprecated synonym for - - hash- chunksi ze.

Deprecated since scons 4.2.

-n,--no-exec,--just-print,--dry-run,--recon
Set no execute mode. Print the commands that would be executed to build any out-of-date target files, but do not
execute the commands.

The output is a best effort, as SCons cannot always precisely determine what would be built. For example, if a
fileis generated by abuilder action that islater used in the build, that file is not available to scan for dependencies
on an unbuilt tree, or may contain out of date information in abuilt tree.

Work which isdonedirectly in Python codein SConscript files, as opposed to work done by builder actions during
the build phase, will still be carried out. If it isimportant to avoid some such work from taking place in no execute
mode, it should be protected. An SConscript file can determine which mode is active by querying Get Opt i on,
asinthecall i f Get Opti on("no_exec"):

--no-site-dir
Prevents the automatic addition of the standard si t e_scons dirs to sys. pat h. Also prevents loading
the site_scons/site_init.py modules if they exist, and prevents adding their site_scons/
si te_t ool s dirsto thetoolpath.

- - package-type=t ype
The type or types of package to create when using the Package builder. In the case of multiple types, t ype
should be a comma-separated string; SCons will try to build for all of those packages. Note this option is only
available if the packagi ng tool has been enabled.

--profile=file
Run SCons under the Python profiler and save the results in the specified f i | e. The results may be analyzed
using the Python pstats module.

-q,--question
Do not run any commands, or print anything. Just return an exit status that is zero if the specified targets are
already up to date, non-zero otherwise.

-Q
Quiets SCons status messages about reading SConscript files, building targets and entering directories. Commands
that are executed to rebuild target files are till printed.

--random
Build dependencies in arandom order. This is useful when building multiple trees simultaneously with caching
enabled, to prevent multiple builds from simultaneously trying to build or retrieve the same target files.

-s,--silent,--quiet
Silent. Do not print commands that are executed to rebuild target files. Also suppresses SCons status messages.

Iy
=== SCONS 13

-S,--no- keep-goi ng, - -stop
Ignored for compatibility with GNU Make

--site-dir=dir
Usesthe named di r asthe site directory rather than the default si t e _scons directories. Thisdirectory will be
prependedtosys. pat h,themoduledi r/ si te_init. py will beloadedif it exists,anddi r/ site_tool s
will be added to the default tool path.

The default set of si t e_scons directories used when - - si t e- di r is not specified depends on the system
platform, as follows. Directories are examined in the order given, from most generic to most specific, so the last-
executed si t e_i ni t. py fileisthe most specific one (which gives it the chance to override everything else),
and the directories are prepended to the paths, again so thelast directory examined comesfirst in theresulting path.

Windows:

Y%ALLUSERSPROFI LE/ Appl i cati on Dat a/ scons/site_scons

%JSERPROFI LE% Local Settings/ Application Datal/scons/site_scons
Y%APPDATA% scons/ site_scons

%1OVEY . scons/ site_scons

./site_scons

Mac OS X:

[Li brary/ Application Support/SCons/site_scons
/opt/| ocal /share/scons/site_scons (for MacPorts)

/ sw/ shar e/ scons/site_scons (for Fink)

$HOVE/ Li brary/ Appl i cati on Support/ SCons/site_scons
$HOVE/ . scons/ site_scons

./site_scons

Solaris:

[opt/sfw scons/site_scons
[usr/share/ scons/site_scons
$HOMVE/ . scons/ site_scons
./site_scons

Linux, HPUX, and other Posix-like systems:

[usr/share/ scons/site_scons
$HOMVE/ . scons/ site_scons
./site_scons

--stack-si ze=KI LOBYTES
Set the size stack used to run threads to KI LOBYTES. This value determines the stack size of the threads used
to run jobs. These threads execute the actions of the builders for the nodes that are out-of-date. This option has
no effect unless the number of concurrent build jobs is larger than one (asset by -j Nor - - j obs=N on the
command line or Set Opt i on in ascript).

Using astack sizethat istoo small may cause stack overflow errors. This usually shows up as segmentation faults
that cause sconsto abort before building anything. Using a stack sizethat istoo large will cause sconsto use more
memory than required and may slow down the entire build process. The default value is to use a stack size of

Iy
=== SCONS 14

-t,

256 kilobytes, which should be appropriate for most uses. Y ou should not need to increase this value unless you
encounter stack overflow errors.

--touch
Ignored for compatibility with GNU Make. (Touching a file to make it appear up-to-date is unnecessary when
using scons.)

--taskmastertrace=file

Prints trace information to the specified f i | e about how the internal Taskmaster object evaluates and controls
the order in which Nodes are built. A file name of - may be used to specify the standard output.

--tree=type[,type...]

Printsatree of the dependencies after each top-level target isbuilt. Thisprints out someor all of thetree, invarious
formats, depending on thet ype specified:

all
Print the entire dependency tree after each top-level target is built. This prints out the complete dependency
tree, including implicit dependencies and ignored dependencies.

derived
Restricts the tree output to only derived (target) files, not source files.

linedraw
Draw the tree output using Unicode line-drawing charactersinstead of plain ASCI| text. Thisoption actsasa
modifier tothe selectedt ype(s). If specified alone, without any t ype, it behavesasif all had been specified.
Available since scons 4.0.

status
Prints status information for each displayed node.

prune

Prunes the tree to avoid repeating dependency information for nodes that have already been displayed. Any
node that has aready been displayed will have its name printed in [squar e brackets], as an indication that
the dependencies for that node can be found by searching for the relevant output higher up in the tree.

Multiplet ype choices may be specified, separated by commas:

Prints only derived files, with status information:
scons --tree=derived, st atus

Prints all dependencies of target, with status information
and pruni ng dependenci es of already-visited Nodes:
scons --tree=all, prune, status target

-u,--up,--search-up

Walks up the directory structure until an SConst r uct, Sconst ruct, sconst ruct, SConstruct . py,
Sconstruct. py orsconst ruct . py fileisfound, and usesthat as the top of the directory tree. If no targets
are specified on the command line, only targets at or below the current directory will be built.

Works exactly the same way asthe - u option except for the way default targets are handled. When this option is
used and no targets are specified on the command line, all default targets that are defined in the SConscript(s) in
the current directory are built, regardless of what directory the resultant targets end up in.

-V,--Vversion

Print the scons version, copyright information, list of authors, and any other relevant information. Then exit.

~

'—‘—' SCONS 15

-w,--print-directory
Print a message containing the working directory before and after other processing.

--no-print-directory
Turn off -w, even if it was turned on implicitly.

- -war n=t ype, - - war n=no-type
Enable or disable (with the no- prefix) warnings. t ype specifies the type of warnings to be enabled or disabled:

all
All warnings.

cache-version
Warnings about the derived-file cache directory specified by CacheDi r not using the latest configuration
information. These warnings are enabled by default.

cache-write-error
Warnings about errors trying to write a copy of a built file to a specified derived-file cache specified by
CacheDi r . These warnings are disabled by defaullt.

corrupt-sconsign
Warnings about unfamiliar signature datain . sconsi gn files. These warnings are enabled by default.

dependency
Warnings about dependencies. These warnings are disabled by default.

depr ecated
Warnings about use of currently deprecated features. These warnings are enabled by default. Not all
deprecation warnings can be disabled with the - - war n=no- depr ecat ed option as some deprecated
featureswhich are late in the deprecation cycle may have been designated as mandatory warnings, and these
will still display. Warnings for certain deprecated features may also be enabled or disabled individually; see
below.

duplicate-environment
Warnings about attempts to specify a build of atarget with two different construction environments that use
the same action. These warnings are enabled by default.

fortran-cxx-mix
Warnings about linking Fortran and C++ object files in a single executable, which can yield unpredictable
behavior with some compilers.

future-depr ecated
Warnings about featuresthat will be deprecated in the future. Such warnings are disabled by default. Enabling
future deprecation warnings is recommended for projects that redistribute SCons configurations for other
usersto build, so that the project can be warned as soon as possible about to-be-deprecated features that may
require changes to the configuration.

link
Warnings about link steps.

misleading-keywor ds
Warnings about the use of two commonly misspelled keywordst ar get s andsour ces toBui | der calls.
The correct spelling is the singular form, even though t ar get and sour ce can themselves refer to lists
of names or nodes.

missing-sconscript
Warnings about missing SConscript files. These warnings are enabled by default.

Iy
=== SCONS 16

no-obj ect-count
Warnings about the - - debug=0bj ect feature not working when scons is run with the Python - Ooption
or from optimized Python (.pyo) modules.

no-parallel-support
Warnings about the version of Python not being able to support parallel builds when the - j option is used.
These warnings are enabled by default.

python-version
Warnings about running SCons with a deprecated version of Python. These warnings are enabled by default.

reserved-variable
Warnings about attempts to set the reserved construction variable names $CHANGED SOURCES,
$CHANGED_TARGETS, $TARGET, $TARGETS, $SOURCE, $SOURCES, $UNCHANGED SOURCES or
$UNCHANGED _TARGETS. These warnings are disabled by default.

stack-size
Warningsabout requeststo set the stack sizethat could not be honored. Thesewarningsare enabled by default.

target_not_build
Warnings about a build rule not building the expected targets. These warnings are disabled by default.

-Y repository,--repository=repository,--srcdir=repository
Search the specified r eposi t ory for any input and target files not found in the local directory hierarchy.
Multiple - Y options may be specified, in which case the repositories are searched in the order specified.

SCONSCRIPT FILE REFERENCE

SConscript Files

The build configuration is described by one or more files, known as SConscript files. There must be at least one file
for avalid build (sconswill quit if it does not find one). scons by default looks for thisfile by the name SConst r uct
in the directory from which you run scons, though if necessary, also looks for aternative file names Sconst r uct ,
sconstruct, SConst ruct . py, Sconstruct. py and sconst ruct . py inthat order. A different file name
(which can include a pathname part) may be specified viathe - f option. Except for the SConstruct file, these files
are not searched for automatically; you add additional configuration files to the build by calling the SConscr i pt
function. This alows parts of the build to be conditionally included or excluded at run-time depending on how scons
isinvoked.

Each SConscript filein abuild configuration isinvoked independently in a separate context. This provides necessary
isolation so that different parts of the build don't accidentally step on each other. Y ou have to be explicit about sharing
information, by using the Expor t function or theexport s argument to the SConscr i pt function, aswell asthe
Ret ur n function in a called SConscript file, and comsume shared information by using the | npor t function.

The following sections describe the various SCons facilities that can be used in SConscript files. Quick links:

Construction Environments

Tools

Builder Methods

Methods and Functions to do Things
SConscript Variables

Construction Variables

Configure Contexts

Command-Line Construction Variables
Node Objects

Iy
=== SCONS 17

Construction Environments

A Construction Environment is the basic means by which SConscript files communicate build information to scons.
A new construction environment is created using the Envi r onment function:

env = Environment ()

Construction environment attributes called Construction Variables may be set either by specifying them as keyword
arguments when the object is created or by assigning them avalue after the object is created. These two are nominally
equivalent:

env = Environnment (FOO=' f 00")
env[' FOO] = 'foo

Notethat certain settingswhich affect tool detection arereferenced only during initialization, and so need to be supplied
as part of thecall to Envi r onnment . For example, setting SMSVC_VERSI ON selects the version of Microsoft Visual
C++ you wish to use, but setting it after the construction environment is constructed has no effect.

Asaconvenience, construction variablesmay also be set or modified by thepar se_f | ags keyword argument during
object creation, which has the effect of the env. Mer geFl ags method being applied to the argument value after all
other processing is completed. This is useful either if the exact content of the flags is unknown (for example, read
from a control file) or if the flags need to be distributed to a number of construction variables. env. Par seFl ags
describes how these arguments are distributed to construction variables.

env = Environment (parse_flags='-1include -DEBUG -1 m)
This example adds 'include’ to the CPPPATH construction variable, 'EBUG' to CPPDEFI NES, and 'm' to L1 BS.

An existing construction environment can be duplicated by calling the env. Cl one method. Without arguments, it
will be a copy with the same settings. Otherwise, env. Cl one takes the same arguments as Envi r onnment , and
uses the arguments to create a modified copy.

SCons provides a specia construction environment called the Default Environment. The default environment is
used only for global functions, that is, construction activities called without the context of a regular construction
environment. See Def aul t Envi r onment for more information.

By default, a new construction environment isinitialized with a set of builder methods and construction variables that
are appropriate for the current platform. The optional pl at f or mkeyword argument may be used to specify that the
construction environment should be initialized for a different platform:

env = Environnment (pl atfornm=' cygw n')
env = Environment (pl atform=' 0s2")
env = Environnent (pl atfornm=' posi x')

env = Environnent (pl atform' wi n32")

Specifying a platform initializes the appropriate construction variables in the environment to use and generate file
names with prefixes and suffixes appropriate for that platform.

Note that the win32 platform adds the Syst enDri ve and Syst enRoot variables from the user's external
environment to the construction environment's ENV dictionary. This is so that any executed commands that use
sockets to connect with other systems (such as fetching source files from external CV S repository specifications like
. pserver: anonynous@vs. sour cef orge. net: / cvsr oot/ scons) will work on Windows systems.

Iy
=== SCONS 18

The pl at f or margument may be a function or callable object, in which case the Envi r onnent method will call
it to update the new construction environment;

def ny_platforn{env):
env[' VAR] = 'xyzzy'

env = Environnent (pl atfornmeny_pl atform

The optional t ool s and t ool pat h keyword arguments affect the way tools available to the environment are
initialized. See the section called “Tools’ for details.

Theoptional var i abl es keyword argument allows passing aV ariables object which will beused in theinitialization
of the construction environment See the section called “ Command-Line Construction Variables’ for details.

Tools

SCons has alarge number of predefined tools (more properly, tool specifications) which are used to help initialize the
construction environment. An sconstool isonly responsible for setup. For example, if the SConscript file declaresthe
need to construct an object file from a C-language source file by calling the Obj ect builder, then atool representing
an available C compiler needs to have run first, to set up the builder and all the construction variables it needs in the
associated construction environment; the tool itself is not called in the process of the build. Normally this happens
invisibly: sconshasper-platformlistsof default tools, and it runsthrough thosetools, calling theoneswhich are actually
applicable, skipping those where necessary programs are not installed on the build system, or other preconditions are
not met.

A specific set of tools with which to initialize an environment when creating it may be specified using the optional
keyword argument t ool s, which takes alist of tool names. This is useful to override the defaults, to specify non-
default built-in tools, and to supply added tools:

env = Environment (tool s=[' msvc', 'lex'])
Tools can aso be directly called by using the Tool method (see below).

Thet ool s argument overrides the default tool list, it does not add to it, so be sure to include al the tools you need.
For example if you are building a c/c++ program you must specify atool for at least a compiler and alinker, asin
tool s=['clang', 'link'].Thetool name' defaul t' can beused to retain the default list.

If not ool s argument isspecified, orif t ool s includes' def aul t ', then sconswill auto-detect usabletools, using
the execution environment value of PATH (that is, env[' ENV'] [' PATH] - the externa evironment PATH from
0s. envi ron is not used) for looking up any backing programs, and the platform name in effect to determine the
default tools for that platform. Changing the PATH variable after the construction environment is constructed will not
cause the tools to be re-detected.

Additional tools can be added to a project either by placing theminasi t e_t ool s subdirectory of a site directory,
or in a custom location specified to scons by giving thet ool pat h keyword argument. t ool pat h also takesalist
asitsvaue

env = Environnent (tool s=['default', 'foo'], tool path=['tools'])

Thislooksfor atool specification modulef o0o. py indirectory t ool s and in the standard locations, as well as using
the ordinary default tools for the platform.

Directoriesspecifiedviat ool pat h are prepended to the existing tool path. Thedefault tool pathisany si t e_t ool s
directories, sotoolsin aspecifiedt ool pat h take priority, followed by toolsinasi t e_t ool s directory, followed

Iy
=== SCONS 19

by built-in tools. For example, adding a tool specification module gcc. py to the toolpath directory would override
the built-in gcc tool. The tool path is stored in the environment and will be used by subsequent calls to the Tool
method, aswell asby env. Cl one.

base = Environnent (t ool pat h=[' custom path'])
derived = base. C one(tool s=[' customtool'])
deri ved. Cust onBui | der ()

A tool specification module must include two functions:

gener at e(env, **kwar gs)
Modifies the environment referenced by env to set up variables so that the facilities represented by the tool can
be executed. It may use any keyword arguments that the user suppliesin kwar gs to vary itsinitialization.

exi st s(env)
Return Tr ue if the tool can be called in the context of env. Usually this means looking up one or more known
programs using the PATHfrom the supplied env, but thetool can makethe"exists' decisionin any way it chooses.

Note

At the moment, user-added tools do not automatically have their exi st's function called. As a result, it
is recommended that the gener at e function be defensively coded - that is, do not rely on any necessary
existence checks aready having been performed. This is expected to be a temporary limitation, and the
exi st s function should still be provided.

The elements of thet ool s list may also be functions or callable objects, in which case the Envi r onment method
will call those objects to update the new construction environment (see Tool for more details):

def ny_tool (env):
env[' XYZZY'] = 'xyzzy'

env = Environnment (tool s=[ny_tool])

Theindividua elementsof thet ool s list may also themselvesbelistsor tuplesof theform (t ool name, kw_di ct).
SCons searches for the t ool nane specification file as described above, and passes kw_di ct , which must be a
dictionary, as keyword argumentsto the tool'sgener at e function. The gener at e function can use the arguments
to modify the tool's behavior by setting up the environment in different ways or otherwise changing itsinitialization.

in tool s/ ny_tool.py:

def generate(env, **kwargs):
Sets MY_TOOL to the value of keyword 'argl' '1' if not supplied
env[' MYy_TOOL'] = kwargs.get('argl', '1")

def exists(env):
return True

in SConstruct:
env = Environment (tool s=['default', ('ny_tool', {'argl': "abc'})],
t ool path=["'tool s'])

Thetool specification (my_t ool inthe example) can use the PLATFORMvariabl e from the construction environment
it is passed to customize the tool for different platforms.

Iy
=== SCONS 20

Tools can be "nested" - that is, they can be located within a subdirectory in the toolpath. A nested tool name uses a
dot to represent a directory separator

namespaced bui | der
env = Environment (ENV=0s. envi ron. copy(), tool s=['SubDir1. SubDir2. SoneTool '])
env. SomeTool (targets, sources)

Search Pat hs

SCons\ Tool \ SubDi r 1\ SubDi r 2\ SoneTool . py

SCons\ Tool \ SubDi r 1\ SubDi r 2\ SomeTool \ _init__. py

.\site_scons\site_ tool s\SubDir1\ SubDi r 2\ SoneTool . py

.\site_scons\site_tool s\SubDir1\ SubDir2\ SomeTool\ __init__.py

SCons supports the following tool specifications out of the box:

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixct++
Sets construction variables for the IMB xIc / Visual Age C++ compiler.

Sets: $CXX, SCXXVERSI ON, $SHCXX, $SHOBJI SUFFI X.

aixcc
Sets construction variables for the IBM xIc / Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visua Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visua Age linker.

Sets: $L1 NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

applelink
Sets construction variables for the Apple linker (similar to the GNU linker).
Sets: $APPLELI NK_COWPATI BI LI TY_VERSI ON, $APPLELI NK_CURRENT_VERSI ON,
$APPLELI NK_NO COVPATI BI LI TY_VERSI ON, $APPLELI NK_NO CURRENT_VERSI ON,
SFRAVEVWORKPATHPREFI X, $LDMODULECOM $LDMODULEFLAGS, $LDMODUL EPREFI X,
$LDMODUL ESUFFI X, $LI NKCOM $SHLI NKCOM $SHLI NKFLAGS,
$_APPLELI NK_COVPATI BI LI TY_VERSI ON, $_APPLELI NK_CURRENT VERSI ON,

$_FRAMEWORKPATH, $_ FRAVEWORKS.
Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Iy
=== SCONS 21

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANLI BFLAGS.

as
Sets construction variables for the as assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$1 NCPREFI X, $1 NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$FRAVEVORKPATH, $FRAVEWORKS, $1 NCPREFI X, $1 NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS,
$SHCFLAGS, $SHOBJ SUFFI X.

Uses: $CCCOVMSTR, $PLATFORM $SHCCCOVSTR.

clang
Set construction variables for the Clang C compiler.

Sets: $CC, $CCVERSI ON, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBISUFFI X,
$STATI C_AND_SHARED OBJECTS ARE_THE_SAME.

compilation_db
Setsup Conpi | at i onDat abase builder which generates a clang tooling compatible compilation database.

Sets: $COVPI LATI ONDB_COVSTR, $COVPI LATI ONDB_PATH_FI LTER,
$COVPI LATI ONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X,
$FORTRANMODDI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $O0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Iy
=== SCONS 22

Uses: $CXXCOMBTR, $SHCXXCOMSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $I MPLI BPREFI X, $I MPLI BSUFFI X, $LDMODULEVERSI ONFLAGS, $LI NKFLAGS,
$RPATHPREFI X, $RPATHSUFFI X, $SHLI BPREFI X, $SHLI BSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $_LDMODULEVERSI ONFLAGS, $_SHLI BVERSI ONFLAGS.

default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the t ool s parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

Thelist of tools selected by default is not static, but is dependent both on the platform and on the softwareinstalled
on the platform. Some toolswill not initialize if an underlying command is not found, and some tools are sel ected
from alist of choices on afirst-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, | ex, yacc, rpcgen, swi g, jar, javac, javah, rm c, dvi pdf, dvi ps, gs, tex, | atex,
pdf | at ex, pdftex,tar,zip,textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc,intel c,icc, cc;aC
++ compiler from g++, i nt el ¢, i cc, cXX; an assembler from gas, nasm masny alinker from gnul i nk,
i 1'i nk; aFortran compiler fromgfortran,g77,ifort,ifl,f95,f90,f77; and astatic archiver ar . It
also selects all found from the list m4 rpm.

OnWindows systems, the default toolslist selects (first-found): aC compiler fromnsvc, m ngw,gcc,i ntel c,
icl,icc,cc,bcc32;aC++compilerfromnsvc,i ntel c,i cc,g++,¢cXX, bcc32; anassembler frommasm
nasm gas, 386asny alinker from nsl i nk, gnul i nk, i link,|inkl oc,ilink32; aFortran compiler
fromgfortran,g77,ifl,cvf,f95,f90,fortran; andastatic archiver fromnsl i b,ar,tli b;ltaso
selectsal found from thelist msvs, mi dl .

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; alinker from appl el i nk, gnul i nk; aFortran compiler fromgf ortran, f 95,
f90,g77; and astatic archiver ar . It dso selects all found from the list md, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/ Tool /
_init__.py).

dmd
Sets construction variables for D language compiler DMD.

Setss $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERS| ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

docbook
Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Iy
=== SCONS 23

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet ut i | s/ xm depend. xsl by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! Thistool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catalog.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this
env = Environnent (t ool s=["' dochook'])

On its startup, the docbook tool triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system's environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

e thePython| xm bindingtol i bxm 2, or

» astandalone XSLT processor, currently detected are xdltproc, saxon, saxon-xslt and xalan.
Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environnent (t ool s=["' dochook'])
env. DocbookHt ml (' manual . htm ', ' manual . xm ')
env. DocbookPdf (' manual . pdf', ' manual . xm ')

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' nmanual ')
env. DocbookPdf (' manual ')

and get the same result. Target and source lists are also supported:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt M ([manual . htm ', "' reference. htm '], ['manual .xm ', 'reference.xm'])

or even

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m ([' manual ', ' reference'])

I mportant

Whenever you leave out the list of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are vaid for the Builders DocbookH m, DocbookPdf, DocbookEpub,
DocbookSl i desPdf and DocbookXI ncl ude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the r ef name entriesin your XML source.

TheBuildersDocbookHt ml Chunked, DocbookHt m hel pandDocbookSl i desHt ml arespecia, inthat:

1. they create a large set of files, where the exact names and their number depend on the content of the source
file, and

Iy
=== SCONS 24

dvi

2. themaintarget isalwaysnamedi ndex. ht n , i.e. the output name for the XSL transformation is not picked
up by the styleshests.

As aresult, there is ssimply no use in specifying a target HTML name. So the basic syntax for these buildersis
always:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:
env. DocbookHt M (' other.html ', 'manual .xm ', xsl="htm .xsl")

Sincethismay get tediousif you always use the samelocal naming for your customized XSL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are

DOCBOOK_DEFAULT_XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM_HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF
DOCBOOK_DEFAULT_XSL_SLI DESHTM.

and you can set them when constructing your environment:

env = Environment (
t ool s=[' docbook'],
DOCBOOK_DEFAULT_XSL_HTML=' ht mi . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=' pdf . xsl ',

)

env. DocbookHt m (' manual ') # now uses html . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT_XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_SLI DESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLI NT, $DOCBOOK_XMLLI NTCOM
$DOCBOOK_XMLLI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSL TPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_XSL TPROCPARANS.

Uses: $DOCBOOK_FOPCOVMSTR, $DOCBOOK_XML_LI NTCOVSTR, $DOCBOOK_XSLTPROCCOVSTR.

Attaches the DVI builder to the construction environment.

dvipdf

Sets construction variables for the dvipdf utility.
Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.
Uses: $DVI PDFCOVSTR.

dvips

Sets construction variables for the dvips utility.

~

'—‘-‘ SCONS 25

Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.
Uses: $PSCOVBTR.

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO3FLAGS, $FO3PPCOM $SHF03, $SHF03COM $SHFO3FLAGS, $SHFO3PPCOM
$_F03I NCFLAGS.

Uses: $FO3COMSTR, $FO3PPCOVSTR, $SHFO3COVETR, $SHFO3PPCOVSTR.

fo8
Set construction variables for generic POSIX Fortran 08 compilers.

Sets; $F08, $FO8COM $FO8FLAGS, $F08PPCOM $SHF08, $SHF08COM $SHFO8FLAGS, $SHFO8PPCOM
$_FO08I NCFLAGS.

Uses: $FO8COVSTR, $FO8PPCOVSTR, $SHFO8COVSTR, $SHFO8PPCOVETR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Uses. $F77COMSTR, $F77PPCOVSTR, $FORTRANCOMSTR, $FORTRANPPCOMBTR, $SHF77COMSTR,
$SHF77PPCOMBTR, $SHFORTRANCOMSTR, $SHFORTRANPPCOMSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FIOFLAGS, $F90PPCOM $SHF90, $SHF90COM $SHFIOFLAGS, $SHF90PPCOM
$_F90I NCFLAGS.

Uses: $F90COMBTR, $F90PPCOVSTR, $SHF90COVBTR, $SHFOOPPCOMSTR.

f95
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM $FI5FLAGS, $F95PPCOM $SHF95, $SHFI5COM $SHFI5FLAGS, $SHF95PPCOM
$_F951 NCFLAGS.

Uses: $F95COMSTR, $F95PPCOVSTR, $SHF95COVETR, $SHF95PPCOVETR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM
$SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $FORTRANCOVSTR, $FORTRANPPCOVSTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOMVBSTR.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

Iy
=== SCONS 26

g77
Set construction variables for the g77 Fortran compiler. Callsthef 77 Tool module to set variables.

gas
Sets construction variables for the gas assembler. Callsthe as tool.

Sets: $AS.

gce
Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSI ON, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM $DDEBUG ~ $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

gettext
Thisisactually atoolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

e Xxgettext -toextract internationalized messages from source code to POT file(s),
* nBQi nit - may beoptionally used to initialize POfiles,

* nsgner ge - to update POfiles, that already contain translated messages,

» nmegf m - to compiletextual POfileto binary installable MOfile.

When you enable get t ext, it internaly loads all abovementioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. Y ou may be however interested in top-level Tr ansl at e builder.

Touseget t ext toolsadd' gett ext' tool to your environment:

env = Environment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU F95/F2003 GNU compiler.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERS| ONFLAGS, $RPATHPREFI X, $RPATHSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKFLAGS, $_ L DMODUL ESONAME, $_SHL I BSONANE.

Iy
=== SCONS 27

gs
This Tool sets the required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finaly, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM $GSFLAGS.
Uses: $GSCOVBTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, SCXXVERSI ON, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.
icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets. $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXXCOM
$CXXFI LESUFFI X, $| NCPREFI X, $| NCSUFFI X.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.
icl

Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.
ifl

Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIO0FLAGS, $SHF95,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.
Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LI BDI RPREFI X, $LI BDI RSUFFI X, $L1 BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Iy
=== SCONS 28

Sets: $1 NSTALL, $I NSTALLSTR.

intelc

jar

Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc
or nsvc (on Linux and Windows, respectively) tool to set underlying variables.

Sets: $AR, $CC, $CXX, $I NTEL_C_COWPI LER_VERSI ON, $LI NK.

Sets construction variables for the jar utility.
Sets: $JAR, $JARCOM $JARFLAGS, $JARSUFFI X.

Uses: $JARCOMSTR.

javac

Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM $JAVACFLAGS, $IAVACLASSPATH,
$IAVACLASSSUFFI X, $JAVAI NCLUDES, $J AVASOURCEPATH, $JAVASUFFI X.

Uses: $JAVACCOMSTR.

javah

Sets construction variables for the javah tool.
Sets: $JAVACLASSSUFFI X, $JAVAH, $J AVAHCOM $JAVAHFLAGS.

Uses: $J AVACLASSPATH, $J AVAHCOVBTR.

latex

Idc

link

Sets construction variables for the latex utility.
Sets: $LATEX, SLATEXCOM $LATEXFLAGS.

Uses: SLATEXCOMSTR.

Sets construction variables for the D language compiler LDC2.

Sets. $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERS| ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

Sets construction variables for the lex lexical analyser.
Sets: $LEX, SLEXCOM $LEXFLAGS, $LEXUNI STD.

Uses: SLEXCOMBTR.

Sets construction variables for generic POSIX linkers. Thisis a"smart" linker tool which selects a compiler to
complete the linking based on the types of source files.

~

'—‘—' SCONS 29

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULENOVERSI ONSYMLI NKS,
$LDMODULEPREFI X, $LDMODULESUFFI X, $LDMODULEVERSI ON, $LDMODULEVERSI ONFLAGS,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LINK,
$LI NKCOM $LI NKFLAGS, $SHLI BSUFFI X, $SHLINK, $SHLI NKCOM $SHLI NKFLAGS,
$__ LDMODULEVERSI ONFLAGS, $__ SHLI BVERSI ONFLAGS.

Uses: $LDMODULECOVSTR, $LI NKCOVSTR, $SHLI NKCOVSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $L1 NKCOVBTR, $SHLI NKCOMSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $\V4, SMACOM $MAFLAGS.
Uses: SMACOVSTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVSTR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $M DL, $M DLCOM $M DLFLAGS.

Uses: $M DLCOVSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets. $AS, $CC, $CXX, $LDMODULECOM $LI BPREFI X, $LI BSUFFI X, $OBJSUFFI X, $RC,
$RCCOM $RCFLAGS, $RCI NCFLAGS, $RClI NCPREFI X, $RCl NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $SHOBJ SUFFI X, $W NDONSDEFPREFI X, $W NDONSDEFSUFFI X.

Uses: $RCCOVSTR, $SHLI NKCOVSTR.
msgfmt
This scons tool is a part of scons get t ext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from atextual trandation description (PO).
Sets: $MOSUFFI X, SMSGFMT, $MBGFMTCOM $MSGFMTCOVBTR, $MSGFMTFLAGS, $POSUFFI X.
Uses: $LI NGUAS_FI LE.
msginit
This scons tool is a part of scons get t ext toolset. It provides scons interface to msginit(1) program, which
creates new POfile, initializing the meta information with values from user's environment (or options).

Iy
=== SCONS 30

Setss SMSANIT, $MSA NI TCOM $MSGE NI TCOVSTR, $MSG NI TFLAGS, $POAUTO NIT,
$POCREATE_ALI AS, $POSUFFI X, $POTSUFFI X, $_MSG NI TLOCALE.

Uses: $LI NGUAS_FI LE, $POAUTA NI T, $POTDOVAI N.

msgmer ge
Thissconstool isapart of sconsget t ext toolset. It provides sconsinterface to msgmer ge(1) command, which
merges two Uniform style .. po files together.

Sets. $MSGVERGE, $MSGVERGECOM $MBGVERGECOMBTR, $MSGVERGEFLAGS, $POSUFFI X,
$POTSUFFI X, $POUPDATE_ALI AS.

Uses: $LI1 NGUAS_FI LE, $POAUTO NI T, $POTDONVAI N.

mslib
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: SARCOVBTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM
$SHLI NKFLAGS, $W NDOWSDEFPREFI X, $W NDOWSDEFSUFFI X, $W NDOWNSEXPPREFI X,
$W NDONSEXPSUFFI X, $W NDOANSPROGVANI FESTPREFI X, $W NDOASPROGVANI FESTSUFFI X,
$W NDONESHLI BMANI FESTPREFI X, $W NDOWSSHLI BMANI FESTSUFFI X, $W NDOAS_| NSERT_DEF.

Uses: $LDMODULECOMSTR, $LI NKCOVSTR, $REGSVRCOVSTR, $SHLI NKCOVSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: 94 NCLUDEY, %1 B% %4_1 BPATHY%and YPATHY

Uses: $MSSDK_DI R, $MSSDK_VERSI ON, $MSVS_VERSI ON.

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS, $CFI LESUFFI X,
$CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $OBJPREFI X, $0BJ SUFFI X, $PCHCOM $PCHPDBFLAGS, $RC, $RCCOM
$RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS,
$SHOBJIPREFI X, $SHOBJ SUFFI X.

Uses: $CCCOVBTR, $CXXCOMSTR, $PCH, $PCHSTOP, $PDB, $SHCCCOVETR, $SHCXXCOVSTR.

msvs
Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUI LDCOM $MSVSCLEANCOM $MSVSENCCODI NG, $MSVSPRQIECTCOM
$MSVSREBUI LDCOM $MSVSSCONS, $MSVSSCONSCOM $MSVSSCONSCRI PT, $MSVSSCONSFLAGS,
$MBVSSOLUTI ONCOM

Iy
=== SCONS 31

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets. $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOVBTR, $CXXCOMSTR, $SHCCCOVETR, $SHCXXCOMSTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
$SLINK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVBTR, $ASPPCOVSTR.
ninja
Setsup Ni nj a builder which generates aninjabuild file, and then optionally runs ninja.

Note

Thisis an experimental feature.
This functionality is subject to change and/or removal without deprecation cycle.

Sets: $| MPLI CI T_COVMAND DEPENDENCI ES, $NI NJA ALI AS_NAME, $NI NJA COVPDB_EXPAND,
$NINJA DI R, $NINJA DI SABLE_AUTO RUN, $NI NJA ENV_VAR CACHE, $NI NJA_FI LE_NAME,
$NI NJA_GENERATED SOURCE_SUFFI XES, $NI NJA_MBVC DEPS PREFI X, $NI NJA_POCL,
$NI NJA_REGENERATE_DEPS, $NI NJA_SYNTAX, $_NI NJA_REGENERATE_DEPS_FUNC,
$__NINJA NO.

Uses: $AR, $ARCOM $ARFLAGS, $CC, $CCCOM $CCFLAGS, $CXX, $CXXCOM $ESCAPE, $LI NK,
$LI NKCOM $PLATFORM $PRI NT_CMD_LI NE_FUNC, $PROGSUFFI X, $RANLI B, $RANLI BCOM
$SHCCCOM $SHCXXCOM $SHLI NK, $SHLI NKCOM

packaging
Sets construction variables for the Package Builder. If thistool isenabled, the - - package-t ype command-
line option is also enabled.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREF| X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.
Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

Iy
=== SCONS 32

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM
$PDFTEXFLAGS.

Uses: $PDFLATEXCOVSTR, $PDFTEXCOVSTR.

python
L oads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

qt
Sets construction variables for building Qt applications.

Sets: $QTDI R, $QT_AUTOSCAN, $QT_BI NPATH, $QT_CPPPATH, $QT_LI B, $QT_LI BPATH, $QT_MOC,
$QT_MOCCXXPREFI X, $QT_MOCCXXSUFFI X, $QT_MOCFROVCXXCOM $QT_MOCFROMCXXFLAGS,
$QT_MOCFROVHCOM $QT_MOCFROVHFLAGS, $QT_MOCHPREFI X, $QT_MOCHSUFFI X,
$QT_UIC, $QT_UI CCOM $QT_Ul CDECLFLAGS, $QT_Ul CDECLPREFI X, $QT Ul CDECLSUFFI X,
$QT_Ul G MPLFLAGS, $QT_Ul CI MPLPREFI X, $QT_UI CI MPLSUFFI X, $QT_UI SUFFI X.

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.
Uses: $RM CCOVSTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLI ENTFLAGS, $RPCCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVI CEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOVBTR, $SARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.
Uses: SARCOVSTR, $SHLI NKCOVSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJI SUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBI SUFFI X.

sgilink
Sets construction variables for the SGI linker.

Sets: $LI NK, SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Iy
=== SCONS 33

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: $ARCOMSTR.

sunc++

Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJ PREF| X, $SHOBJ SUFFI X.

suncc

Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJ PREFI X, $SHOBJ SUFFI X.

sunf77

Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, SFORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90

Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHFIOFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf9s

Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink

Sets construction variables for the Sun linker.

Sets: $RPATHPREF| X, $RPATHSUFFI X, $SHLI NKFLAGS.

swig

tar

tex

Sets construction variables for the SWIG interface generator.

Sets: $SW G, $SW GCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW GDI RECTORSUFFI X,
$SW GFLAGS, $SW G NCPREFI X, $SW A NCSUFFI X, $SW GPATH, $SW GVERSI O\,
$_SW G NCFLAGS.

Uses: $SW GCOVBTR.

Sets construction variables for the tar archiver.
Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.
Uses: $TARCOVSTR.

Sets construction variables for the TeX formatter and typesetter.

Sets: $BI BTEX, $Bl BTEXCOM $BI BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $Bl BTEXCOVSTR, $LATEXCOVBTR, $MAKEI NDEXCOVSTR, $TEXCOVSTR.

textfile

Set construction variables for the Text f i | e and Subst fi | e builders.

Iy
=== SCONS

Sets: $LI NESEPARATOR, $SUBSTFI LEPREFI X, $SUBSTFI LESUFFI X, $TEXTFI LEPREFI X,
$TEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

tlib
Sets construction variables for the Borlan tib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $LI BSUFFI X.
Uses: $ARCOVSTR.

Xgettext
This scons tool is a part of scons get t ext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdat e builder to make PO
Templatefiles.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XGETTEXTCOM $XCGETTEXTCOMSTR,
SXCETTEXTFLAGS, $XGETTEXTFROM $XGETTEXTFROVPREFI X, $XGETTEXTFROMSUFFI X,
SXCETTEXTPATH, $XGETTEXTPATHPREFI X, $XGETTEXTPATHSUFFI X, $_XGETTEXTDOVAI N,
$_XCETTEXTFROMFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc
Sets construction variables for the yacc parse generator.

Sets: $YACC, SYACCCOM $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X,
$YACCVCGI LESUFFI X.

Uses: $YACCCOVBTR.

zip
Sets construction variables for the zip archiver.

Sets: $ZI P, $ZI PCOM $ZI PCOVPRESSI ON, $ZI PFLAGS, $ZI PSUFFI X.

Uses: $Z1 PCOVBTR.

Builder Methods

Y outell sconswhat to build by calling Builders, functions which take particular action(s) to produce a particular result
type (conventionally described by the builder name such as Pr ogr am) when given source files of a particular type.
Calling a builder defines one or more targets to the build system; whether the targets are actually built on a given
invocation is determined by command-line options, target selection rules, and whether SCons determines the target(s)
are out of date.

SCons defines a number of builders, and you can also write your own. Builders are attached to a construction
environment as methods, and the available builder methods are listed as key-value pairs in the BUl LDERS attribute
of the construction environment. The available builders can be displayed like this for debugging purposes:

env = Environnent ()
print("Builders:", list(env['BU LDERS']))

Builder methods take two required arguments: t ar get and sour ce. Either can be passed asascalar or asalist. The
t ar get and sour ce arguments can be specified either as positional arguments, in which caset ar get comesfirgt,
or as keyword arguments, using t ar get = and sour ce=. Although both arguments are nominally required, if there

Iy
=== SCONS 35

isasingle source and the target can be inferred the t ar get argument can be omitted (see below). Builder methods
also take a variety of keyword arguments, described below.

The builder may add other targets beyond those requested if indicated by an Emitter (see the section called “Builder
Objects’ and, for example, $PROGEM TTER for more information).

Because long lists of file names can lead to a lot of quoting, scons supplies a Spl i t global function and a same-
named environment method that splitsasingle string into alist, using strings of white-space characters asthe delimiter.
(similar to the Python string spl i t method, but succeeds even if theinput isn't astring.)

The following are equivalent examples of caling the Pr ogr ambuilder method:

env. Program('bar', ['bar.c', 'foo.c'])

env. Program(' bar', Split('bar.c foo.c'))

env. Progran(' bar', env.Split('bar.c foo.c'))

env. Program(source=["'bar.c', 'foo.c'], target='bar')

env. Program(target =" bar', source=Split('bar.c foo.c'))
env. Program(target ="' bar', source=env. Split('bar.c foo.c'))
env. Program(' bar', source='bar.c foo.c'.split())

Python followsthe POSI X pathname convention for path strings: if a string beginswith the operating system pathname
separator (on Windows both the slash and backslash separator work, and any leading drive specifier isignored for the
determination) it is considered an absolute path, otherwiseit is arelative path. If the path string contains no separator
characters, it is searched for as afile in the current directory. If it contains separator characters, the search follows
down from the starting point, which is the top of the directory tree for an absolute path and the current directory for
arelative path.

scons recognizes athird way to specify path strings: if the string begins with the # character it istop-relative - it works
like arelative path but the search follows down from the directory containing the top-level SConst r uct rather than
from the current directory. The # is allowed to be followed by a pathname separator, which isignored if found in that
position. Top-relative paths only work in places where scons will interpret the path (see some examples below). To
be used in other contexts the string will need to be converted to arelative or absolute path first.

t arget and sour ce can be absolute, relative, or top-relative. Relative pathnames are searched considering the
directory of the SConscript file currently being processed as the "current directory”.

Examples:

The conments describing the targets that will be built
assune these calls are in a SConscript file in the
a subdirectory named "subdir".

Builds the program "subdir/foo" from "subdir/foo.c":
env. Program(' foo', 'foo.c')

Builds the program"/tnp/bar"” from "subdir/bar.c":
env. Program(' /tnp/bar', 'bar.c')

An initial '# or '#/' are equivalent; the foll ow ng

calls build the prograns "foo" and "bar" (in the

top-level SConstruct directory) from "subdir/foo.c" and
"subdir/bar.c", respectively:

env. Progranm(' #foo', 'foo.c')

env. Program(' #/ bar', 'bar.c')

Iy
=== SCONS 36

Builds the program "ot her/foo" (relative to the top-I|evel
SConstruct directory) from "subdir/foo.c":
env. Progran(' #ot her/foo', 'foo.c')

This will not work, only SCons interfaces understand '#',
os.path.exists is pure Python:
if os.path.exists('#inc/foo.h'):

env. Append(CPPPATH=' #i nc')

When the target shares the same base name as the source and only the suffix varies, and if the builder method has a
suffix defined for the target file type, then the target argument may be omitted completely, and scons will deduce the
target file name from the source file name. The following examples all build the executable program bar (on POSIX
systems) or bar.exe (on Windows systems) from the bar . ¢ sourcefile:

env. Progran(target="bar', source='bar.c')
env. Program(' bar', source='bar.c')

env. Program(source="bar.c"')

env. Progran(' bar.c')

Asaconvenience, asr cdi r keyword argument may be specified when calling a Builder. When specified, all source
file strings that are not absolute paths or top-relative paths will be interpreted relative to the specified srcdi r. The
following example will build thebui | d/ pr og (or bui | d/ pr og. exe on Windows) program from thefilessr ¢/
fl.candsrc/f2.c:

env. Program(' build/prog', ['fl.c', 'f2.c'], srcdir="src')

Keyword arguments that are not specifically recognized are treated as construction variable overrides, which replace
or add those variables on alimited basis. These overrideswill only bein effect when building the target of the builder
call, and will not affect other parts of the build. For example, if you want to specify some libraries needed by just
one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])

or generate a shared library with a non-standard suffix:

env. Shar edLi br ar y(
target="word",
sour ce=' word. cpp',
SHLI BSUFFI X=' . ocx' ,
LI BSUFFI XES=["' . ocx'],

)

Note that both the $SHLI BSUFFI X and $LI BSUFFI XES variables must be set if you want scons to search
automatically for dependencies on the non-standard library names; see the descriptions below of these variables for
more information.

The optional parse_fl ags keyword argument is recognized by builders. This works similarly to the
env. Mer geFl ags method, where the argument value is broken into individual settings and merged into the
appropriate construction variables.

Iy
=== SCONS 37

env. Program(' hell o', '"hello.c', parse flags='-1include -DEBUG -1 n)
This example adds 'include' to CPPPATH, 'EBUG' to CPPDEFI NES, and 'm'to LI BS.

Although the builder methods defined by scons are, in fact, methods of a construction environment object, many may
also be called without an explicit environment:

Program(' hell o', '"hello.c')
Shar edLi brary('word', 'word.cpp')

If called this way, methods will internally use the default environment that consists of the tools and values that scons
has determined are appropriate for the local system.

Builder methods that can be called without an explicit environment (indicated in the listing of builders without a
leading env.) may be called from custom Python modules that you import into an SConscript file by adding the
following to the Python module:

from SCons. Scri pt inport *

Builder methods return a NodeLi st , a list-like object whose elements are Nodes, SCons internal representation
of build targets or sources. See the section called “File and Directory Nodes’ for more information. The returned
NodeLi st object can be passed to other builder methods as source(s) or passed to any SCons function or method
where a filename would normally be accepted.

For example, to add a specific preprocessor define when compiling one specific object file but not the others:

bar _obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
env. Program("prog", ['foo.c', bar _obj list, "main.c'])

Using a Node as in this example makes for a more portable build by avoiding having to specify a platform-specific
object suffix when calling the Pr ogr ambuilder method.

TheNodelLi st objectisalsoconvenient to passtotheDef aul t function, for the samereason of avoiding aplatform-
specific name:

tgt = env.Progran("prog", ["foo.c", "bar.c", "main.c"])
Defaul t (tgt)

Builder calls will automatically "flatten” lists passed as source and target, so they are free to contain elements which
arethemselveslists, suchasbar _obj _| i st returnedby theSt at i cCbj ect call above. If you need to manipulate
alist of listsreturned by builders directly in Python code, you can either build a new list by hand:

foo oj ect (' foo.c')
bar oj ect (' bar.c')
objects = ['begin.o'] + foo + ["middle.o'] + bar + ['end.o']
for obj in objects:
print(str(obj))

Or you can use the FI at t en function supplied by scons to create a list containing just the Nodes, which may be
more convenient:

Iy
=== SCONS 38

foo = Object('foo.c')
bar = oject (' bar.c')
objects = Flatten([' begin.o', foo, 'mddle.o', bar, '"end.o'])
for obj in objects:
print(str(obj))

SCons builder calls return alist-like object, not an actual Python list, so it is not appropriate to use the Python add
operator (+ or +=) to append builder resultsto a Python list. Because the list and the object are different types, Python
will not update the original list in place, but will instead create anew NodeLi st object containing the concatenation
of the list elements and the builder results. This will cause problems for any other Python variables in your SCons
configuration that till hold on to areference to the original list. Instead, use the Python list ext end method to make
sure thelist is updated in-place. Example:

object files =[]

Do NOT use += here:

object files += bject('bar.c')

#

1t will not update the object files list in place.
#

Instead, use the |ist extend nethod:

object _files.extend(Object(' bar.c'))

The path name for a Node's file may be used by passing the Node to Python's builtin st r function:

bar _obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
print("The path to bar_obj is:", str(bar_obj list[0]))

Note that because the Builder call returns a NodeLi st, you have to access the first element in the list,
(bar _obj i st[0] intheexample) to get at the Node that actually represents the object file.

Builder calls support achdi r keyword argument that specifies that the Builder's action(s) should be executed after
changing directory. If thechdi r argument isastring or adirectory Node, sconswill changeto the specified directory.
If thechdi r isnot astring or Node and is non-zero, then scons will change to the target file's directory.

scons will change to the "sub" subdirectory
before executing the "cp" command.

env. Command(' sub/dir/foo.out', 'sub/dir/foo.in",
"cp dir/foo.in dir/foo.out",
chdir="sub")

Because chdir is not a string, scons will change to the
target's directory ("sub/dir") before executing the
"cp" command.
env. Command(' sub/dir/foo.out', 'sub/dir/foo.in",
"cp foo.in foo.out",
chdi r=1)

Note that SCons will not automatically modify its expansion of construction variables like $STARGET and $SOURCE
when using the chdi r keyword argument--that is, the expanded file names will still be relative to the top-level
directory where SConst r uct was found, and consequently incorrect relative to the chdir directory. If you use
the chdi r keyword argument, you will typically need to supply a different command line using expansions like
${ TARGET. fi | e} and ${ SOURCE. fi | e} to usejust the filename portion of the targets and source.

Iy
=== SCONS 39

When trying to handle errorsthat may occur in abuilder method, consider that the corresponding Actionisexecuted at a
different timethan the SConscript file statement calling the builder. It isnot useful towrap abuilder call inat r y block,
since success in the builder call is not the same as the builder itself succeeding. If necessary, aBuilder's Action should
be coded to exit with a useful exception message indicating the problem in the SConscript files - programmatically
recovering from build errorsis rarely useful.

scons predefines the following builder methods. Depending on the setup of a particular construction environment
and on the type and software installation status of the underlying system, not al builders may be available to that
construction environment.

CFile()

env.CFi |l e()
Builds a C source file given alex (. |) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env.CFile(target = 'foo.c', source = 'foo.l")
builds bar.c

env. CFi | e(t ar get

bar', source = 'bar.y')

Conmand()

env.Conmand()
The Comand "Builder" is actually a function that looks like a Builder, but takes a required third argument,
which is the action to take to construct the target from the source, used for "one-off" builds where a full builder
is not needed. Thus it does not follow the builder calling rules described at the start of this section. See instead
the Conmrand function description for the calling syntax and details.

Conpi | at i onDat abase()

env.Conpi | ati onDat abase()
Conpi | ati onDat abase is a specia builder which adds a target to create a JSON formatted
compilation database compatible with cl ang tooling (see the LLVM specification [https://clang.llvm.org/docy
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COVPI LATI ONDB_PATH_FI LTER. Thetarget is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to atarget name of conpi | e_comrands. j son.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If caled with both, the t ar get = value is used and sour ce= isignored. If called with multiple

sources, the sourcelist will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the conpi | ati on_db tool prior to specifying any part of your build or some source/
output fileswill not show up in the compilation database.

Available since scons 4.0.

Iy
=== SCONS 40

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

CXXFi | e()

env.CXXFi | e()
Builds a C++ source file given a lex (.11) or yacc (.yy) input file. The suffix specified by the
$CXXFI LESUFFI X construction variable (. cc by default) isautomatically added to the target if it isnot already
present. Example;

buil ds foo.cc

env. CXXFil e(target = 'foo.cc', source = 'foo.ll")
builds bar.cc
env. CXXFi |l e(target = '"bar', source = 'bar.yy')

DocbookEpub()
env.DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environnent (t ool s=["' dochook'])
env. DocbookEpub(' manual . epub', ' manual . xm ")

or simply

env = Environment (t ool s=[' docbhook'])
env. DocbookEpub(' nmanual ')

DochookHt m ()
env.DocbookHt mi ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environnent (t ool s=[' dochook'])
env. DocbookHt ml (' manual . html ', ' manual . xm ')

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' nanual ')

DocbookHt m Chunked()

env.DocbookHt m Chunked()
A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base. di r
parameter. The chunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt M Chunked(' manual ')

wheremanual . xnl istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' mymanual . html ', ' nmanual', xsl='htnl chunk. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment (t ool s=[' docbook'])
env. DocbookHt m Chunked(' manual ', xsl ='"htm chunk. xsl', base dir="output/")

Iy
=== SCONS 41

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p()
env.DochookHt m hel p()
A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

wheremanual . xnl istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' mymanual . ht i ', ' nmanual ', xsl="htnm hel p. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ', xsl="html hel p. xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbookMan()
A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookMan(' manual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

DochookPdf ()
env.DocbookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environment (t ool s=[' docbook'])
env. DocbookPdf (* manual . pdf ', ' manual . xm ')

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookPdf (' manual ')

DocbookSl i desH ni ()
env.DocbookSl i desHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML slides outpuit.

env = Environment (tool s=[' dochook'])
env. DocbookSl i desHt m (' nanual ')

If youusethetit| efoil.htnl parameter inyour own stylesheetsyou haveto give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' docbhook'])
env. DocbookSl i desHt m (' mymanual . ht ', ' manual ', xsl="slideshtm .xsl")

Iy
=== SCONS 42

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])

env. DocbookSl i desHt M (* manual ', xsl='"slideshtm .xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf ()
env.DochookSl i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF slides outpuit.

env = Environnent (t ool s=["' dochook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ')

or simply

env = Environment (t ool s=[' dochook'])
env. DocbookSl i desPdf (' manual ')

DocbookXI ncl ude()
env.DocbookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environnent (t ool s=[' dochook'])
env. DocbookXI ncl ude(' manual _xi ncl uded. xm ', ' manual . xm ")

DochookXsl t ()
env.DocbookXsl t ()
A pseudo-Builder, applying agiven XSL transformation to the input file.

env = Environnent (t ool s=[' dochook'])
env. DocbookXsl t (' manual _transformed. xm ', 'manual .xm ', xsl="transformxslt")

Note, that this builder requiresthe xsl parameter to be set.

DVI ()

env.DVI ()
Buildsa. dvi filefroma.tex,.|txor. | atexinputfile. If thesourcefilesuffixis. t ex, sconswill examine
the contents of the file; if the string \ docunent cl ass or \ docunent st yl e is found, the file is assumed
to bealaTeX fileand the target is built by invoking the SLATEXCOMcommand line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start $MAKEI NDEX to
generate an index if a. i nd fileisfound and will examine the contents . | og file and re-run the SLATEXCOM
command if the log file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex

env. DVl (target = '"aaa.dvi', source = 'aaa.tex')

buil ds bbb. dvi

env. DVI (target = 'bbb', source = 'bbb.Itx")

builds from ccc. | at ex

env. DVl (target = 'ccc.dvi', source = 'ccc.latex')

Iy
=== SCONS 43

Gs()

env.Gs()
A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos2
and gswin32c are tried.

env = Environment (tool s=['gs'])
env. Gs(

‘cover.jpg',

' scons-scons. pdf',

GSFLAGS=" - dNOPAUSE - dBATCH - sDEVI CE=j peg - dFi r st Page=1 -dLast Page=1 -q',
)

Install ()

env.nstall ()
Installs one or more source files or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
asastring or as anode returned by a builder.

env.Install (target="/usr/local/bin', source=['foo', '"bar'])

Note that if target paths chosen for the Install builder (and the related I nstall As and
I nst al | Ver si onedLi b builders) are outside the project tree, such as in the example above, they may not be
selected for "building" by default, sincein the absence of other instructions scons buildstargetsthat are underneath
the top directory (the directory that containsthe SConst r uct file, usualy the current directory). Use command
line targets or the Def aul t function in this case.

Ifthe- - i nst al | - sandbox command lineoptionisgiven, thetarget directory will be prefixed by the directory
path specified. Thisisuseful to test installs without installing to a"live" location in the system.

SeedsoFi ndl nst al | edFi | es. For morethoughtsoninstallation, seethe User Guide (particul arly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

I nstall As()

env.l nstal |l As()
Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of filesor directories.

env.Install As(target="/usr/| ocal /bin/foo',
sour ce='f oo_debug')

env.Install As(target=['../lib/libfoo.a, "../lib/libbar.a'],
source=['libFOO a', 'libBAR a'])

Seethenoteunder | nst al | .

I nst al | Ver si onedLi b()

env.l nst al | Ver si onedLi b()
Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on
symlinks of the source library.

env. I nst al | Ver si onedLi b(target="'/usr/|ocal /bin/foo'
source="1libxyz.1.5.2.s0")

Seethenoteunder | nst al | .

Iy
=== SCONS 44

Jar

0

env.Jar ()

Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be
searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass filesby calling the
Java Builder.

If the $JARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefileis assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar',
source = ['barl.java', 'bar2.java'])
Java()
env.Java()

Jav
env

Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
trees which will be scanned for . j ava files.

SConswill parse each source. j ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed undernesth the
specified target directory.

SConswill also search each Javafilefor the Java package name, which it assumes can be found on aline beginning
with the string package in the first column; the resulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, the file Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate a corresponding sub/ di r/ Foo. cl ass classfile.

Examples:

'cl asses', source
'cl asses', source
'cl asses', source

env. Java(t ar get
env. Java(t ar get
env. Java(t ar get

‘src')
['srcl', 'src2'])
['"Filel.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compilesin simple ASCII mode
by default, the compiler will generate warnings about unmappabl e characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment ()
env['ENV']['LANG] = 'en_GB. UTF-8'

aH()

JavaH()

Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source

~

'—‘—' SCONS 45

can be the names of . cl ass files, the names of . j ava filesto be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $J AVACLASSDI Risset, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:
builds java_native.h

cl asses = env.Java(target="classdir", source="src")
env. JavaH(t arget ="j ava _native. h", source=cl asses)

buil ds incl ude/ package_foo. h and i ncl ude/ package_bar. h
env. JavaH(t arget ="i ncl ude", source=["package/foo.cl ass", "package/bar.class"])

buil ds export/foo.h and export/bar.h

env. JavaH(
target ="export",
sour ce=["cl asses/ f oo. cl ass", "classes/bar.class"],

JAVACLASSDI R="cl| asses",
)

Li brary()
env.Li brary()
A synonym for the St at i cLi br ar y builder method.

Loadabl eModul e()

env.Loadabl eModul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

M ()

env.M4()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc()

env.Moc()
Builds an output file from amoc input file. Moc input files are either header files or cxx files. Thisbuilder isonly
available after using the tool 'gt'. See the $QTDI R variable for more information. Example:

env. Moc(' foo. h') # generates noc_foo. cc
env. Moc(' foo.cpp') # generates foo. noc

MOFi | es()
env.MOFi | es()
This builder belongsto nsgf nt tool. The builder compiles POfilesto MOfiles.

Example 1. Create pl . no and en. no by compiling pl . po and en. po:

...

Iy
=== SCONS 46

env. MOFi les(['pl', "en'])

Example 2. Compile files for languages defined in L1 NGUAS file:

...
env. MOFi | es(LI NGUAS_FI LE = 1)

Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUAS file:

...
env. MOFiles(['pl', "en'], LINGUAS FILE = 1)

Example 4. Compile files for languages defined in LI NGUAS file (another version):

...
env['LINGUAS FILE'] =1
env. MOFi | es()

MSVSPr oj ect ()
env.M5SVSPr oj ect ()
Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

Thisbuilds aVisual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the Environment constructor). For Visua
Studio 6, it will generatea. dsp file. For Visual Studio 7, 8, and 9, it will generatea. vcpr oj file. For Visual
Studio 10 and later, it will generatea. vexpr oj file.

By default, this also generates a solution file for the specified project, a. dswfilefor Visual Studio6ora. sl n
file for Visual Studio 7 and later. This behavior may be disabled by specifying aut o_bui | d_sol uti on=0
when you call MSVSPr oj ect , in which case you presumably want to build the solution file(s) by calling the
MBVSSol ut i on Builder (see below).

The MBVSPr oj ect builder takes several lists of filenames to be placed into the project file. These are currently
limitedtosrcs,incs,| ocal i ncs, resour ces, and ni sc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are al optional, although at least one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

target
The name of the target . dsp or . vcproj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPRQJECTSUFFI X construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These aretypically thingslike "Debug" or "Release”, but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a | (vertical pipe)
character: Debug| Xbox. The default target platform is Win32. Multiple calls to MSVSPr 0j ect with

Iy
=== SCONS 47

different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cmdargs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

cppdefines
Preprocessor definitions for the different variants. The number of cppdef i nes entries must match the
number of vari ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
CPPDEFI NES entry for al variants.

cppflags
Compiler flags for the different variants. If a/std:c++ flag is found then /Zc:__ cplusplus is appended to the
flagsif not already found, this ensures that intellisense uses the /std:c++ switch. The number of cppf | ags
entries must match the number of var i ant entries, or be empty (not specified). If you give only one, it will
automatically be propagated to all variants. If you don't give this parameter, SConswill combine the invoking
environment's CCFLAGS, CXXFLAGS, CPPFLAGS entries for al variants.

cpppaths
Compiler include paths for the different variants. The number of cpppat hs entries must match the number
of vari ant entries, or be empty (not specified). If you give only one, it will automatically be propagated
to al variants. If you don't give this parameter, SCons will use the invoking environment's CPPPATH entry
for al variants.

buildtar get
An optiona string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entries must match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Visual Studio project file. If thisis not specified, the default is the same as
the specified bui | dt ar get value.

Note that because SCons always executesits build commands from the directory in which the SConst r uct file
islocated, if you generate aproject filein adifferent directory than the SConst r uct directory, userswill not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++ / FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = [' bar.cpp']

barincs = ['bar.h']

barl ocal i ncs = [' St dAf x. h']
barresources = ['bar.rc','resource. h']
barm sc = [' bar_readne. txt']

dl I = env. SharedLi brary(target="bar.dl ",

sour ce=bar srcs)
buildtarget = [s for s in dll if str(s).endswith('dlI[")]
env. M5VSPr oj ect (target ="' Bar' + env[' MSVSPRQIECTSUFFI X],

Iy
=== SCONS 48

srcs=barsrcs,

i ncs=bari ncs,

| ocal i ncs=bar | ocal i ncs,
r esour ces=barr esour ces,
m sc=barm sc

bui | dt ar get =bui | dt ar get ,
vari ant = Rel ease')

Starting with version 2.4 of SConsit is also possible to specify the optional argument DebugSet t i ngs, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the . vcproj . user or the . vcxproj. user
file, depending on the version installed. As it is done for cmdargs (see above), you can specify a
DebugSet t i ngs dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with
the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:
Assum ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')

msvcver = vars.args.get('vc', '9')

Check command args to force one M crosoft Visual Studio version

if msvcver == '9' or nsvcver == "11':
env = Environment (MSVC_VERSI ON=nsvcver +' . 0', MSVC BATCH=Fal se)
el se:

env = Environment ()

AddOption('--userfile', action="store_true', dest="userfile', default=False,
hel p="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the |ist
of allowed options, for instance if you want to create a user file to | aunch
a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):
#
V9DebugSet ti ngs = {
" Command' : ' c:\\ nyapp\\using\\thisdll.exe',
"WorkingDirectory': "c:\\nyapp\\using\\",
' CommandAr gunents': ' -p password',

"Attach':'false',

' Debugger Type' : ' 3",

'Rermote':'1',

' Renot eMachi ne' : None,

' Renot eConmand' : None,

"HttpUl': None,

' PDBPat h' : None,

' SQ.Debuggi ng' : None,

H o OHH HH R

"
by 4

SCONS 49

O H H R OH R HOH R H R

defin
file

H HOHHH HH

V10Debu
'Lo
'Lo
'Lo

SO H H HH O HH HH HHHHEHH R HHHHH

Envi ronnent ' : ,

Envi ronnent Merge' : " true',
Debugger Fl avor' : None,

VPl RunConmand' : None,

MPI RunAr gunment s' : None,

MPI RunWor ki ngDi rectory' : None,
Appl i cati onCommand' : None,
Appl i cati onArgunments': None,
Shi nCommand’ : None,

MPI Accept Mbde' : None,

MPlI Accept Filter': None,

2. Because there are a lot of different options depending on the M crosoft
Vi sual Studio version, if you use nore than one version you have to

e a dictionary per version, for instance if you want to create a user
to |l aunch a specific application for testing your dll with M crosoft

Vi sual Studio 2012 (v11):

gSettings = {

cal Debugger Command' : ' c:\\myapp\\usi ng\\thisdll.exe',
cal Debugger Wor ki ngDirectory' : 'c:\\nmyapp\\using\\",
cal Debugger CommandAr gunents': '-p password',
Local Debugger Envi ronnent' : None,

Debugger Fl avor' : ' W ndowsLocal Debugger ',
Local Debugger Att ach' : None,

Local Debugger Debugger Type' : None,

Local Debugger Mer geEnvi ronment ' : None,

Local Debugger SQLDebuggi ng' : None,

Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,

Renot eDebugger Wor ki ngDi rectory' : None,

Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,

Renot eDebugger Att ach' : None,

Renot eDebugger SQLDebuggi ng' : None,

Depl oynment Di rectory' : None,

Addi tional Fil es': None,

Renot eDebugger Depl oyDebugCppRunti me' : None,
WebBr owser Debugger Ht t pUr | ' : None,

WebBr owser Debugger Debugger Type' : None,
WebSer vi ceDebugger Ht t pUrl ' : None,

WebSer vi ceDebugger Debugger Type' : None,
WebSer vi ceDebugger SQ_Debuggi ng' : None,

#
3. Select the dictionary you want depending on the version of visual Studio
Files you want to generate.
#
if not env.GetOption('userfile'):
dbgSetti ngs = None
‘s
=== SCONS 50

elif env.get(' MSVC VERSION , None) == '9.0':
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:
dbgSetti ngs = None

#

4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp’, 'stdafx.cpp']
barincs = ['targetver.h']

barl ocal i ncs = [' St dAf x. h']

barresources = ['bar.rc','resource. h']

barm sc = [' ReadMe. t xt ']

dl I = env. SharedLi brary(target="bar.dl ",
sour ce=bar srcs)

env. M5VSPr oj ect (target ="' Bar' + env[' MSVSPRQIECTSUFFI X],
srcs=barsrcs,
i ncs=bari ncs,
| ocal i ncs=barl ocal i ncs,
resour ces=barresour ces,
m sc=barm sc
bui l dtarget=[dlII[0]] * 2,
vari ant =(' Debug| Wn32', ' Rel ease| Wn32'),
cndar gs='vc=%' % nsvcver,
DebugSetti ngs=(dbgSettings, {}))

MBVSSol uti on()
env.MSVSSol ut i on()
Builds a Microsoft Visual Studio solution file.

ThisbuildsaVisua Studio solution file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the construction environment). For Visual
Studio 6, it will generatea. dswfile. For Visual Studio 7 (.NET), it will generatea. sl n file.

The following values must be specified:

target
The name of the target .dsw or .sInfile. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSOLUTI ONSUFFI X will be defined to the correct value (see example below).

variant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release”, but really can be anything you want. For
MSVS 7 they may also specify target platform, like this "Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

Iy
=== SCONS 51

Example Usage:

env. MSVSSol ut i on(
target="Bar" + env["MSVSSOLUTI ONSUFFI X"],
proj ects=["bar" + env["MSVSPRQIECTSUFFI X"']],
vari ant =" Rel ease",

Ni nj a()

env.Ni nj a()
Ni nj a isaspecial builder which adds atarget to create aninjabuild file. The builder does not require any source
files to be specified.

Note

Thisis an experimental feature. To enable it you must use one of the following methods

On the conmand |ine
--experi nment al =ni nj a

Or in your SConstruct
Set Option(' experinental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you must install pypi's ninja package [https.//pypi.org/project/ninja/]. This can be done
viapip install ninja

If called with no arguments, the builder will default to atarget name of ni nj a. bui | d.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple
sources, the sourcelist will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

hj ect ()
env.bj ect ()
A synonym for the St at i cCbj ect builder method.

Package()

env.Package()
Builds software distribution packages. A package is a container format which includes filesto install along with
metadata. Packaging is optional, and must be enabled by specifying the packagi ng tool. For example:

Iy
=== SCONS 52

https://pypi.org/project/ninja/
https://pypi.org/project/ninja/

env = Environment (tool s=['default', 'packaging'])

SCons can build packages in a number of well known packaging formats. The target package type may be
selected with the the $PACKAGET YPE construction variable or the - - package- t ype command line option.
The package type may be alist, in which case SCons will attempt to build packages for each type in the list.

Example:

env. Package(PACKAGETYPE=["' src_zip',

The currently supported packagers are:

'src_targz'],

...other args...)

nsi Microsoft Installer package

rpm RPM Package Manger package

i pkg Itsy Package Management package
tarbz2 bzip2-compressed tar file

targz gzip-compressed tar file

tarxz xz-compressed tar file

zip zip file

src_tarbz2

bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the sour ce keyword argument. If omitted,
the Fi ndl nstal | edFi | es function is called behind the scenes to select all files that have an | nst al |,
Install As orlnstall Versi onedLi b Builder attached. If thet ar get keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of thefilesto be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may a so be attached to files (or more accurately,
Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the $PACKAGERQOOT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environment (tool s=["default", "packaging"])
env.Install ("/bin/", "ny_progrant)
env. Package(

NAME="f 00",

VERSI ON="1. 2. 3",
PACKAGEVERSI ON=0,
PACKAGETYPE="r pni',

LI CENSE="gpl ",
SUMVARY="bal al al al al ",

Iy
=== SCONS 53

DESCRI PTI ON="t hi s should be really really | ong",
X_RPM GROUP="Appl i cati on/fu",
SOURCE URL="https://foo.org/foo-1.2.3.tar.gz",

)

Inthisexample, thetarget/ bi n/ ny_pr ogr amcreated by thel nst al | call would not be built by default since
it is not under the project top directory. However, since no sour ce is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGERQOT, no writeis
actually done to the system's/ bi n directory, and the target will be selected since after rebasing to underneath
$PACKAGERQOOT it is now under the top directory of the project.

PCH)

env.PCH()
Builds a Microsoft Visual C++ precompiled header. Calling this builder returns alist of two targets: the PCH as
the first element, and the object file as the second element. Normally the object file is ignored. This builder is
only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder is generally used in
conjunction with the $PCH construction variable to force object files to use the precompiled header:

env[' PCH] = env. PCH("' St dAf x. cpp')[0]

PDF()

env.PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, .| t x, or. | at ex input file). The suffix
specified by the SPDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
is not already present. Example:

builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
bui |l ds bbb. pdf from bbb. dvi
env. PDF(target = 'bbb', source = 'bbb.dvi')

PO ni t ()

env.PA ni t ()

This builder belongs to nsgi ni t tool. The builder initializes missing PO file(s) if $POAUTO NI T is set. If
$POAUTA NI T isnot set (default), PA ni t printsinstruction for user (that is supposed to be atranslator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQUpdat e chooses intelligently between msgmerge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests.

Target nodes defined through PAOl ni t arenot built by default (they'rel gnor edfrom' . ' node) but are added to
special Al i as (' po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-cr eate.

Example 1. Initializeen. po and pl . po from messages. pot :

#o.o..
env.POnit(['en", 'pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o. pot :

...

Iy
=== SCONS 54

env.POnit(['en", "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initidlizeen. po and pl . po fromf 00. pot but using $POTDOMAI N construction variable:

...
env.POnit(['en'", "pl'], POTDOMAIN='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The fileswill be initialized from template
nmessages. pot:

...
env. PO nit (LINGUAS FILE = 1) # needs 'LINGUAS file

Example5. Initializeen. po and pl . pl POfilesplusfilesfor languages defined in LI NGUAS file. Thefileswill
beinitialized from template messages. pot :

...
env.POnit(['en", "pl'"], LINGUAS FILE = 1)

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

...

env[' POAUTONT] =1
env['LINGUAS FILE'] =1
env[' POTDOMAIN'] = 'foo'
env. PO nit ()

which has same efect as:

...
env. PO nit (POAUTONIT = 1, LINGUAS FILE = 1, POTDOMAIN = 'fo0')

Post Scri pt ()

env.Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. tex, . | t x, or . | at ex input file). The suffix
specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Example:

builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
bui |l ds bbb. ps from bbb. dvi
env. Post Script(target = 'bbb', source = 'bbb.dvi")

POTUpdat e()

env.POTUpdat e()
The builder belongsto xget t ext tool. The builder updates target POT file if exists or creates oneif it doesn't.
The node is not built by default (i.e. itis| gnor edfrom' . "), but only on demand (i.e. when given POT fileis
required or when special aias isinvoked). This builder adds its targe node (messages. pot , say) to a specia
alias (pot - updat e by default, see $POTUPDATE_ALI AS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Iy
=== SCONS 55

Note

You may see xgettext(1l) being invoked by the xgett ext tool even if there is no real change in
internationalized messages (so the POT fileis not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConst r uct script there:

SConstruct in 'po/' subdir

env = Environnment(tools = ['default', 'xgettext'])
env. POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate([' bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

user @ost: $ scons # Does not create foo.pot nor bar. pot
user @ost:$ scons foo. pot # Updates or creates foo. pot

user @ost:$ scons pot-update # Updates or creates foo.pot and bar. pot
user @ost:$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. The POTUpdat e builder may be used with no target specified, in which case default target
nessages. pot will beused. The default target may also be overridden by setting $POTDOMAI N construction
variable or providing it as an override to POTUpdat e builder:

SConstruct script

env = Environnent(tools = ['default', 'xgettext'])

env[' POTDOMAIN'] = "foo"

env. POTUpdat e(source = ["a.cpp", "b.cpp"]) # Creates foo.pot

env. POTUpdat e(POTDOVAI N = "bar", source = ["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sources may be specified within separate file, for example POTFI LES. i n:

POTFILES.in in 'po/' subdirectory
..la.cpp

..Ib.cpp

end of file

The name of thefile (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM

SConstruct file in 'po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES.in")

Example 4. Y ou may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
filesa. cpp,b. cpp,po/ SConst r uct ,po/ POTFI LES. i n. Thenyour POT-related files could | ook asbel ow:

POTFILES.in in 'po/' subdirectory
a.cpp

Iy
=== SCONS 56

b. cpp
end of file

SConstruct file in 'po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH='.. /")

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dirl',
"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to thefirst file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../', '../[../"'])

and 0/ 1/ po/ POTFI LES. i n:

POTFILES.in in '0/1/po/' subdirectory

a.cpp
end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:

/* 0/ a.cpp */
gettext("Hello from../../a.cpp")

and the second is0/ 1/ a. cpp:

[* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain 0/ 1/ po/ messages. pot withthemessage" Hel 1l o from../a. cpp".When
you reverse order in $XGETTEXTFOM i.e. when you write SConscript as

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../../', '../"'])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnsgi d "Hel |l o
from../a.cpp".

PQUpdat e()

env.PQUpdat e()
The builder belongs to nsgner ge tool. The builder updates POfiles with msgmer ge(1), or initializes missing
POfiles as described in documentation of nsgi ni t tool and PO ni t builder (see also $POAUTA NI T). Note,
that POUpdat e does not add itstargetsto po- cr eat e aliasas PO ni t does.

Target nodes defined through POUpdat e are not built by default (they're | gnor ed from' . ' node). Instead,
they are added automatically to specia Al i as (' po- updat e' by default). The alias name may be changed

Iy
=== SCONS 57

through the SPOUPDATE_AL| AS construction variable. Y ou can easily update POfilesin your project by scons
po-update.

Example 1. Updateen. po and pl . po fromnessages. pot template (see also $POTDOVAI N), assuming that
the later one exists or thereisruleto build it (see POTUpdat e):

...
env. POUpdate(['en','pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:

...
env. PQUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Updateen. po and pl . po fromf 0o. pot (another version):

...
env. PQUpdate(['en', 'pl'], POTDOVAIN='foo') # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

...
env. POUpdat e(LI NGQUAS_FI LE = 1) # needs 'LINGUAS file

Example 5. Same as above, but update from f 00. pot template:

...
env. POUpdat e(LI NGQUAS FILE = 1, source = ['fo0'])

Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated
fromnessages. pot template:

produce 'en.po', 'pl.po" + files defined in 'LINGUAS :
env. PQUpdate(['en', '"pl"], LINGUAS FILE = 1)

Example 7. Use $POAUTO NI T to automatically initialize POfileif it doesn't exist:

o
env. POUpdat e(LI NGUAS FILE = 1, POAUTOINIT = 1)

Example 8. Update PO files for languages defined in LI NGUAS file. The files are updated from f 0o. pot
template. All necessary settings are pre-configured via environment.

...

env[' POAUTONI T] =1
env['LINGUAS FILE'] =1
env[' POTDOVAIN] = 'foo'
env. POUpdat e()

Iy
=== SCONS 58

Pr ogr am()
env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Chj ect

builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $PROGPREFI X construction variable (nothing
by default), and suffix, specified by the $PROGSUFFI X construction variable (by default, . exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env. Program(target='foo', source=['foo0.0', 'bar.c', '"baz.f'])

ProgramAl | At Once()
env.ProgramAl | At Once()

Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the
testing frameworks do this). For this it is imperative that all sources are compiled and linked in asingle call to
the D compiler. This builder serves that purpose.

env. ProgramAl | At Once(' executable', ["mod_a.d, nod _b.d', 'nod _c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in asingle compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()
env.RES()

RM
env

Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

C0
RM)

Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of . cl ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target = 'classdir', source = "src')
env. RM C(target = "outdirl', source = classes)
env. RM C(target = 'outdir2',
source = [' package/foo.class', 'package/bar.class'])

env. RM C(target = '"outdir3',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDI R = ' cl asses')

~

'—‘-‘ SCONS 59

RPCGend i ent ()

env.RPCGend i ent ()
Generatesan RPC client stub (_cl nt . c) filefrom a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env. RPCGenC i ent (' src/rpcif.x")

RPCGenHeader ()

env.RPCGenHeader ()
Generates an RPC header (. h) file from aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

RPCGenSer vi ce()

env.RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env. RPCGenCl i ent (' src/rpcif.x")

RPCGenXDR()

env.RPCGenXDR()
Generatesan RPC XDR routine (_xdr . c) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env. RPCGenClient ('src/rpcif.x")

Shar edLi brary()

env.Shar edLi brary()
Builds ashared library (. so on aPOSIX system, . dI | on Windows) given one or more object filesor C, C++,
D or Fortran source files. If any source files are given, then they will be automatically compiled to object files.
Thetarget library file prefix, specified by the $SHLI BPREFI X construction variable (by default, | i b on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLI BSUFFI X construction variable (by
default, . dl I on Windows systems, . so on POSIX systems), are automatically added to the target if not already
present. Example:

env. Shar edLi brary(target="bar', source=['bar.c', 'foo.0'])

On Windows systems, the Shar edLi br ary builder method will always build an import library (. I'i b) in
addition to the shared library (. dl |), adding a. | i b library with the same basename if there is not already a
. I'i b fileexplicitly listed in the targets.

On Cygwin systems, the Shar edLi br ary builder method will always build an import library (. dl | . a) in
addition to the shared library (. dl |), adding a. dl | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

Iy
=== SCONS 60

Any object fileslisted inthesour ce must have been built for ashared library (that is, using the Shar edChj ect
builder method). sconswill raise an error if thereis any mismatch.

On some platforms, thereis a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

Whenthe $SHLI BVERSI ON construction variableisdefined, aversioned shared library is created. Thismodifies
$SHLI NKFLAGS as required, adds the version number to the library name, and creates any symbolic links that
are needed.

env. Shar edLi brary(target='bar', source=['bar.c', 'foo.0'], SHLIBVERSI ON='1.5.2")

On a POSIX system, versions with a single token create exactly one symlink: | i bbar . so. 6 would have
symlink | i bbar . so only. On aPOSIX system, versions with two or more tokens create exactly two symlinks:
I i bbar. so. 2. 3. 1 would have symlinks| i bbar . so and | i bbar . so. 2; on aDarwin (OSX) system the
library would bel i bbar . 2. 3. 1. dyl i b and thelink would be | i bbar . dyl i b.

On Windows systems, specifying r egi st er =1 will cause the . dl | to be registered after it is built. The
command that is run is determined by the $REGSVR construction variable (regsvr 32 by default), and the flags
passed are determined by $REGSVRFLAGS. By default, $REGSVRFLAGS includes the / s option, to prevent
dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS, be sure to
includethe/ s option. For example,

env. Shar edLi brary(target ="' bar', source=['bar.cxx', 'foo.obj'], register=1)
will register bar . dl | asaCOM object when it is donelinking it.

Shar edCbj ect ()

env.Shar edObj ect ()
Builds an aobject file intended for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the St at i cCbj ect builder method. On some platforms building a shared object
requires additional compiler option (e.g. - f PI Cfor gcc) in addition to those needed to build a normal (static)
object, but on some platformsthere is no difference between a shared object and anormal (static) one. When there
is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different
suffix for shared objects. On platforms where there is no difference, SCons will alow both normal (static) and
shared objectsto belinked into ashared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix, specified by the $SHOBJPREFI X construction variable (by default, the same as
$OBIPREFI X), and suffix, specified by the $SHOBJ SUFFI X construction variable, are automatically added to
the target if not already present. Examples:

env. Shar edQbj ect (t arget =' ddd', source='ddd.c')
env. Shar edObj ect (t arget =' eee. 0', source='eee. cpp')
env. SharedObj ect (target="fff.obj', source="fff.for")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the manpage section " Scanner Objects’ for more information.

StaticLi brary()

env.StaticLi brary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $L1 BPREFI X construction variable (by default, | i b on POSIX systems, nothing on Windows systems),

Iy
=== SCONS 61

and suffix, specified by the $LI1 BSUFFI X construction variable (by default, . | i b on Windows systems, . a on
POSIX systems), are automatically added to the target if not already present. Example:

env. StaticLi brary(target="bar', source=['bar.c', 'foo.0'])

Any object fileslisted in the sour ce must have been built for astatic library (that is, usingthe St at i cChj ect
builder method). sconswill raise an error if there is any mismatch.

StaticObject()

env.Stati chj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

.asm assenbl y | anguage file
. ASM assenbly | anguage file

.C Cfile

.C W ndows: C file
PCSI X: C++ file

. CC C++ file

.cpp C++ file

. CXX C++ file

. CXX C++ file

. C++ C++ file

. C++ C++ file

.d Dfile

f Fortran file

F W ndows: Fortran file

PCSI X: Fortran file + C pre-processor
for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
FPP Fortran file + C pre-processor
m Ohject Cfile
nm oj ect C++ file

.S assenbl y | anguage file
.S W ndows: assenbly |anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X: assenbly | anguage file + C pre-processor
. Spp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

Thetarget object file prefix, specified by the $OBJ PREFI X construction variable (nothing by default), and suffix,
specified by the $0OBJ SUFFI X construction variable (. obj on Windows systems, . 0 on POSIX systems), are
automatically added to the target if not already present. Examples:

env. Stati cObj ect (target="aaa', source='aaa.c')
env. St ati cObj ect (target="bbb. o', source='bbb. c++')
env. St ati cObj ect (target="ccc.obj', source='ccc.f")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the manpage section " Scanner Objects’ for more information.

Iy
=== SCONS 62

Sub
env

stfile()

Substfile()

The Subst fi | e builder creates a single text file from a template consisting of afile or set of files (or nodes),
replacing text using the $SUBST_DI CT construction variable (if set). If aset, they are concatenated into the target
fileusing thevaueof the$LI NESEPARATOR construction variable asaseparator between contents; the separator
is not emitted after the contents of the last file. Nested lists of sourcefiles are flattened. Seeaso Text fi |l e.

If asingle sourcefile nameis specified and hasa. i n suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(an empty string by default in both cases) are automatically added to the target if they are not aready present.

If aconstruction variable named $SUBST_DI CT is present, it may be either a Python dictionary or a sequence of
(key, val ue) tuples. If itisadictionary it is converted into alist of tupleswith unspecified order, soif onekey is
aprefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment (tool s=['default'])

env['prefix'] = "'/usr/bin'
script_dict = {' @refix@: '/bin', '@xec_prefix@: '$prefix'}
env. Substfile('script.in', SUBST Dl CT=script_dict)

conf_dict = {' WERSION% : '1.2.3", '9%BASE%: 'M/Prog'}
env. Substfile(' config.h.in", conf_dict, SUBST Dl CT=conf _di ct)

UNPREDI CTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env. Substfile(' foo.in', SUBST DI CT=bad_f 00)

PREDI CTABLE - keys are applied | ongest first
good_foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT=good_f 00)

UNPREDI CTABLE - one substitution could be futher expanded
bad bar = {' @ar@: ' @oap@, ' @oap@: 'lye'}
env. Substfile(' bar.in', SUBST DI CT=bad_bar)

PREDI CTABLE - substitutions are expanded in order
good_bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile(' bar.in', SUBST DI CT=good_bar)

the SUBST DI CT may be in conmon (and not an override)
substutions = {}
subst = Environment(tool s=['textfile'], SUBST DI CT=substitutions)
substitutions[' @oo@] = 'foo
subst['SUBST DICT' |[' @ar@] = 'bar'
subst . Substfil e(

' pgni. c',

~

'—‘-‘ SCONS 63

[Val ue(* #i nclude "@oo@h"'), Value('#include "@ar@h"'), "common.in", "pgnl.in"],

)
subst . Substfil e(
' pgn2.c',
[Val ue(* #include "@oo@h"'), Value('#include "@ar@h""), "common.in", "pgnR.in"],
)
Tar ()
env.Tar ()

Buildsatar archive of the specified files and/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

Create the stuff.tar file.

env. Tar (' stuff', ['"subdirl', 'subdir2'])

Also add "another"” to the stuff.tar file.
env. Tar (' stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-c -2',
TARSUFFI X = ' .tgz")

env. Tar (' foo')

Textfile()

env.Textfile()
The Text fi | e builder generates a single text file from a template consisting of alist of strings, replacing text
using the $SUBST_DI CT construction variable (if set) - see Subst f i | e for adescription of replacement. The
strings will be separated in the target file using the value of the $L1 NESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings: they can be Nodes or Python objects that convert cleanly to Val ue nodes

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(by default an empty string and . t xt , respectively) are automatically added to the target if they are not already
present. Examples:

builds/wites foo.txt
env. Textfile(target="foo.txt', source=[' CGoethe', 42, 'Schiller'])

builds/wites bar.txt
env. Textfile(target="bar', source=['lalala', 'tanteratei'], LINESEPARATOR='|*")

nested lists are flattened automatically
env. Textfile(target="blob', source=['lalala', ['CGoethe', 42, 'Schiller'], 'tanteratei']

files may be used as input by waping themin File()

Iy
=== SCONS 64

env. Textfil e(
target='concat', # concatenate files with a marker between
source=[File('concatl'), File('concat2')],

)

Results:

f 0o. t xt

Coet he
42
Schil | er

bar . t xt

I al al a| *t ant er at ei

bl ob. t xt

| al al a
Coet he

42

Schil | er

t ant er at ei

Transl at e()

env

.Transl at e()

This pseudo-builder belongs to get t ext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO trandations (if necessary). If $POAUTO NI T
is set, missing PO files will be automatically created (i.e. without tranglator person intervention). The variables
$LI NGUAS _FI LE and $POTDOMAI N are taken into acount too. All other construction variables used by
POTUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl ate

SConscript in 'po/' directory

env = Environment(tools = ["default", "gettext"])
env[' POAUTONT'] =1
env. Translate(['en',"'pl"], ['../a.cpp',"'../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFI LES. i n
and L1 NGUAS files

LI NGUAS
en pl
#end

POTFI LES. i n

~

'—‘-‘ SCONS 65

a. cpp

b. cpp
end

SConscri pt

env = Environment(tools = ["default", "gettext"])

env[' POAUTONT] =1

env[' XGETTEXTPATH] =['../"]

env. Transl at e(LI NGQUAS_FI LE = 1, XGETTEXTFROM = ' POTFI LES. i n")

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfiles to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and POfiles are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the filelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandlators, and they may work with the project in their usual
way.

Example 3. Let's prepare a devel opment tree as below

proj ect/
+ SConst r uct
+ bui | d/
+ src/
+ po/
+ SConscri pt
+ SConscript.i 18n
+ POTFI LES. in
+ LI NGUAS

with bui | d being variant directory. Write the top-level SConst r uct script asfollows

SConst ruct

env = Environment(tools = ["default", "gettext"])
VariantDir("build , 'src', duplicate = 0)

env[' POAUTONT] =1

SConscri pt (' src/ po/ SConscript.i18n', exports = 'env')
SConscri pt (' bui | d/ po/ SConscript', exports = "env')

thesr c/ po/ SConscri pt.i 18nas

src/ po/ SConscript.i 18n
| mport (' env')

env. Transl at e(LI NGQUAS_FI LE=1, XGETTEXTFROVE' POTFI LES. in', XGETTEXTPATH=['..

and thesr ¢/ po/ SConscr i pt

src/ po/ SConscri pt
| mport (' env')
env. MOFi | es(LI NGUAS FI LE = 1)

Iy
=== SCONS 66

Such setup produces POT and POfiles under source treein sr ¢/ po/ and binary MOfiles under variant treein
bui | d/ po/ . Thisway the POT and POfiles are separated from other output files, which must not be committed
back to source repositories (e.g. MOfiles).

Note

In above example, the PO files are not updated, nor created automatically when you issue scons '.'
command. The files must be updated (created) by hand via scons po-update and then MOfiles can be
compiled by running scons'.".

TypelLi brary()

env.Typeli brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dl). Inaddition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the . i dI file. For example,

env. Typeli brary(source="foo.idl")
Will createf 0o. t 1 b,foo. h,foo_i.c,foo_p.candfoo_dat a. c files.

Ui c()

env.Ui c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodesin
the above order. This builder is only available after using the tool 'gt'. Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names
of built files; if you don't want prefixes, you may set themto ™). See the $QTDI R variable for more information.
Example:

env.U c('foo.ui') # ->['foo.h', '"uic foo.cc', 'nmoc_foo.cc']
env. U c(target = Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
source = 'foo.ui') # -> ["include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']
Zi p()
env.Zi p()

Buildsazip archive of the specified filesand/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardliess of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Create the stuff.zip file.

env. Zi p('stuff', ['"subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Zi p(' stuff', '"another')

All targets of builder methods automatically depend on their sources. An explicit dependency can be specified using
theenv. Depends method of a construction environment (see below).

In addition, scons automatically scans source files for various programming languages, so the dependencies do not
need to be specified explicitly. By default, SCons can C source files, C++ source files, Fortran source files with . F
(POSIX systemsonly), . f pp, or . FPP file extensions, and assembly language fileswith . S (POSIX systems only),
. Spp, or . SPP files extensions for C preprocessor dependencies. SCons also has default support for scanning D

Iy
=== SCONS 67

sourcefiles, Y ou can also write your own Scanners to add support for additional sourcefile types. These can be added
to the default Scanner object used by the Cbj ect , St at i cCbj ect and Shar edChj ect Builders by adding them
tothe Sour ceFi | eScanner object. See the section called “ Scanner Objects’ for more information about defining
your own Scanner objects and using the Sour ceFi | eScanner object.

Methods and Functions To Do Things

In addition to Builder methods, scons provides a number of other construction environment methods and global
functions to manipulate the build configuration.

Usually, a construction environment method and global function with the same name both exist for convenience. In
the following list, the global function is documented in this style:

Function(argunents, [optional argunents])

and the construction environment method looks like:

env. Function(argunments, [optional argunents])
If the function can be called both ways, then both forms are listed.

The global function and same-named construction environment method provide almost identical functionality, with a
couple of exceptions. First, many of the construction environment methods affect only that construction environment,
whiletheglobal function hasaglobal effect. Second, where appropriate, calling thefunctionality through aconstruction
environment will substitute construction variablesinto any supplied string arguments, whilethe global function doesn't
have the context of a construction environment to pick variables from, so it cannot perform the substitution. For
example:

Def aul t (* $FOO)

env = Environnent (FOO=' f 00')
env. Def aul t (* $FOO)

In the above example, the call to the global Def aul t function will add a target named $FOO to the list of default
targets, while the cal to the env. Def aul t construction environment method will expand the value and add a
target named foo to the list of default targets. For more on construction variable expansion, see the next section on
construction variables.

Global functions may be called from custom Python modules that you import into an SConscript file by adding the
following import to the Python module:

from SCons. Scri pt inport *
Construction environment methods and global functions provided by scons include:

Action(action, [output, [var, ...]] [key=value, ...])

env.Action(action, [output, [var, ...]] [key=value, ...])
A factory function to create an Action abject for the specified act i on. Seethe manpage section "Action Objects"
for a complete explanation of the arguments and behavior.

Note that the env. Act i on form of the invocation will expand construction variables in any argument strings,
including theact i on argument, at thetime it is called using the construction variables in the env construction

Iy
=== SCONS 68

environment through which env. Acti on was called. The Act i on global function form delays all variable
expansion until the Action object is actually used.

AddMet hod(obj ect, function, [nane])

env.AddMet hod(f uncti on, [nane])
Addsf unct i on toanobject asamethod. f unct i on will be called with an instance object asthefirst argument
as for other methods. If name is given, it is used as the name of the new method, else the name of f unct i on
is used.

When the global function AddMet hod is called, the object to add the method to must be passed as the first
argument; typically this will be Envi r onment , in order to create a method which applies to all construction
environments subsequently constructed. When called using the env. AddMet hod form, the method is added to
the specified construction environment only. Added methods propagate through env. C one calls.

Examples:

Function to add nust accept an instance argunent.
The Pyt hon convention is to call this 'self'.
def ny_nethod(sel f, arg):

print("ny_nethod() got", arg)

Use the global function to add a nethod to the Environnent class:
AddMet hod(Envi r onnent, my_net hod)

env = Environnent ()

env. ny_net hod('arg')

Use the optional nane argunent to set the nane of the nethod:
env. AddMet hod(ny_net hod, ' ot her nethod nane')
env. ot her _nmet hod_nane(' anot her arg')

AddOpt i on(ar gunment s)
Adds a local (project-specific) command-line option. ar gunent s are the same as those supported by the
add_opt i on method inthe standard Pythonlibrary moduleopt par se, with afew additional capabilities noted
below. See the documentation for opt par se for athorough discussion of its option-processing capabities.

In addition to the arguments and values supported by theopt par se add_opt i on method, AddOpt i on alows
setting the nar gs keyword value to a string consisting of a question mark (' ?') to indicate that the option
argument for that option string isoptional. If the option string is present on the command line but has no matching
option argument, the value of the const keyword argument is produced as the value of the option. If the option
string is omitted from the command line, the value of the def aul t keyword argument is produced, as usual; if
thereisno def aul t keyword argument in the AddOpt i on call, None is produced.

opt par se recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_opti on iscalled to definea- - devi cenane option, it will recognize - - devi ce, - - dev
and so forth aslong asthereis no other option which could a so match to the same abbreviation. Options added via
AddOpt i on do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOpt i on call itself.

Once a new command-line option has been added with AddOpt i on, the option value may be accessed
using Get Opti on or env. Get Opti on. Set Opti on is not currently supported for options added with
AddOpt i on.

Help text for an option isacombination of the string suppliedinthehel p keyword argument to AddOpt i on and
information collected from the other keyword arguments. Such help is displayed if the - h command line option

Iy
=== SCONS 69

isused (but not with - H). Help for all local options is displayed under the separate heading L ocal Options. The
options are unsorted - they will appear in the help text in the order in which the AddOpt i on calls occur.

Example:

AddOpt i on(
"--prefix',
dest ="' prefix',
nar gs=1,
type='string',
action='store',
metavar='DI R ,
hel p=' i nstal |l ation prefix',

)
env = Environnent (PREFI X=Get Opti on(' prefix'))

For that example, the following help text would be produced:

Local Options:
--prefix=DI R installation prefix

Help text for local options may be unavailableif the Hel p function has been called, seethe Hel p documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOpt i on which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nar gs keyword is used to specify
more than one following option argument (that is, with avalue of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOpt i on this
way. Future versions of SCons will likely forbid such usage.

AddPost Action(target, action)

env.AddPost Acti on(t arget, action)
Arranges for the specified act i on to be performed after the specified t ar get has been built. The specified
action(s) may bean Action object, or anything that can be converted into an Action object See the manpage section
"Action Objects" for a complete explanation.

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin thelist.

AddPr eActi on(t arget, action)

env.AddPr eActi on(t arget, action)
Arrangesfor the specified act i on to be performed before the specifiedt ar get isbuilt. The specified action(s)
may be an Action object, or anything that can be converted into an Action object See the manpage section "Action
Objects’ for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Notethat if any of thetargetsare built in multiple steps, the action will beinvoked just beforethe"final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source . ¢ fileviaan intermediate object file:

Iy
=== SCONS 70

foo = Progran('foo.c')
AddPr eActi on(foo, 'pre_action')

The specified pr e_act i on would be executed before scons calls the link command that actually generates the
executable program binary f 00, not before compiling thef 0o. ¢ fileinto an object file.

Alias(alias, [targets, [action]])
env.Alias(alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional act i on (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. ThisNode object, or the aliasname,
may be used as a dependency of any other target, including another dias. Al i as can be called multiple timesfor
the same aliasto add additional targetsto the alias, or additional actionsto thelist for thisalias. Aliases are global
even if set through the construction environment method.

Examples:

Alias('install")

Alias('install', '"/usr/bin")

Alias(['install', "install-lib"], "/usr/local/lib")
env.Alias('install', ['/usr/local/bin', '"/fusr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', 'file2'], "update_ database $SOURCES")

Al | owSubst Excepti ons([exception, ...])
Specifiesthe exceptionsthat will be allowed when expanding construction variables. By default, any construction
variable expansions that generate a NanmeEr r or or | ndexErr or exception will expandtoa'' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.
If Al l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
allowed exceptions.
Example:
Requires that all construction variable nanes exist.
(You may wish to do this if you want to enforce strictly
that all construction variables nust be defined before use.)
Al | owSubst Except i ons()
Also allow a string containing a zero-division expansi on
like "${1/ 0}' to evalute to "'
Al | owSubst Except i ons(| ndexError, NanmeError, ZeroDi visionError)

Al waysBui | d(target, ...)

env.Al waysBui I d(target, ...)
Marks each givent ar get so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

&

'—‘-‘ SCONS 71

env.Append(key=val, [...])

Intelligently append values to construction variables in the construction environment named by env. The
construction variables and values to add to them are passed as key=val pairs (Python keyword arguments).
env. Append is designed to allow adding values without normally having to know the data type of an existing
construction variable. Regular Python syntax can also be used to manipul ate the construction variable, but for that
you must know the type of the construction variable: for example, different Python syntax is needed to combine
a list of values with a single string value, or vice versa. Some pre-defined construction variables do have type
expectations based on how SCons will use them, for example $CPPDEFI NES is normally a string or a list of
strings, but can be a string, alist of strings, alist of tuples, or adictionary, while $L1 BEM TTER would expect
acalable or list of calables, and $BUl LDERS would expect a mapping type. Consult the documentation for the
various construction variables for more details.

Thefollowing descriptions apply to both the append and prepend functions, the only difference being theinsertion
point of the added values.

If env. does not have a construction variable indicated by key, val isadded to the environment under that key
asis.

val can be amost any type, and SCons will combine it with an existing value into an appropriate type, but
there are afew special cases to be aware of. When two strings are combined, the result is normally a new string,
with the caller responsible for supplying any needed separation. The exception to thisis the construction variable
$CPPDEFI NES, in which each item will be postprocessed by adding a prefix and/or suffix, so the contents are
treated asalist of strings, that is, adding a string will result in a separate string entry, not a combined string. For
$CPPDEFI NES aswell asfor $LI BS, and the various* PATH variables, SConswill supply the compiler-specific
syntax (e.g. adding a- Dor / D prefix for $CPPDEFI NES), so this syntax should be omitted when adding values
to these variables. Example (gcc syntax shown in the expansion of CPPDEFI NES):

env = Environment (CXXFLAGS="-std=c11", CPPDEFI NES="RELEASE")

print (" CXXFLAGS={}, CPPDEFI NES={}".format (env[' CXXFLAGS], env[' CPPDEFI NES']))
notice including a | eading space i n CXXFLAGS val ue

env. Append(CXXFLAGS=" -O', CPPDEFI NES="EXTRA")

print (" CXXFLAGS={}, CPPDEFI NES={}".format (env[' CXXFLAGS], env[' CPPDEFI NES']))
print (" CPPDEFINES wi || expand to {}".format(env. subst ("$ CPPDEFFLAGS")))

$ scons -Q

CXXFLAGS=- st d=c11, CPPDEFI NES=RELEASE
CXXFLAGS=-std=cl11l - O CPPDEFI NES=[' RELEASE , ' EXTRA']
CPPDEFI NES wi I | expand to - DRELEASE - DEXTRA

scons: ' is up to date.

Because $CPPDEFI NES is intended to describe C/C++ pre-processor macro definitions, it accepts additional
syntax. Preprocessor macros can bevalued, or un-valued, asin- DBAR=1 or - DFOO. The macro can be be supplied
as acomplete string including the value, or as atuple (or list) of macro, value, or as adictionary. Example (again
gcc syntax in the expanded defines):

env = Envi r onnment (CPPDEFI NES="FQOO")

print (" CPPDEFI NES={}". f or mat (env[' CPPDEFI NES']))
env. Append(CPPDEFI NES=" BAR=1")

print (" CPPDEFI NES={}". f or mat (env[' CPPDEFI NES']))
env. Append(CPPDEFI NES=(" OTHER", 2))

print (" CPPDEFI NES={}". f or mat (env[' CPPDEFI NES']))
env. Append(CPPDEFI NES={ " EXTRA": "arg"})

Iy
=== SCONS 72

pri nt (" CPPDEFI NES={}". f or nat (env[' CPPDEFI NES']))
print (" CPPDEFINES wi || expand to {}".format(env. subst ("$_CPPDEFFLAGS")))

$ scons -Q

CPPDEFI NES=FOO

CPPDEFI NES=[' FOO , ' BAR=1']

CPPDEFI NES=[' FOO , 'BAR=1', (' OTHER , 2)]

CPPDEFI NES=[' FOO , 'BAR=1', ('OTHER , 2), {'EXTRA : 'arg'}]
CPPDEFI NES wi || expand to - DFQO - DBAR=1 - DOTHER=2 - DEXTRA=ar g
scons: ~.' is up to date.

Adding astring val to adictonary construction variable will enter val asthe key in the dict, and None asits
value. Using a tuple type to supply akey + value only works for the special case of $CPPDEFI NES described
above.

Although most combinations of types work without needing to know the details, some combinations do not make
sense and a Python exception will be raised.

Whenusing env. Append to modify construction variableswhich are path specifications (normally, those names
which end in PATH), it is recommended to add the values as a list of strings, even if thereis only a single string
to add. The same goes for adding library namesto $LI1 BS.

env. Append(CPPPATH=["#/i ncl ude"])
Seealso env. AppendUni que, env. Prepend and env. Pr ependUni que.

env.AppendENVPat h(nane, newpat h, [envnane, sep, delete_existing=Fal se])
Append new path elements to the given path in the specified external environment ($ENV by default). This will
only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path order),
and to help assurethis, will normalize all paths (using 0s. pat h. nor npat h and os. pat h. nor ntase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If del et e_exi sti ngisFal se, then adding a path that already exists will not move it to the end; it will stay
whereitisinthelist.

Example:

print('before:', env['ENV'][' | NCLUDE])

i ncl ude _path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:', env['ENV'][' I NCLUDE])

Yields:

bef ore: /foo:/biz
after: /biz:/fool/bar:/foo

env.AppendUni que(key=val, [...], del ete_existing=Fal se)
Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env. Append (see for details), except that values already present in the construction variable will not be
added again. If del et e_exi sti ng isTr ue, the existing matching value is first removed, and the requested
value is added, having the effect of moving such values to the end.

Iy
=== SCONS 73

Example:

env. AppendUni que(CCFLAGS=' -g', FOO=['fo0.yyy'])
Seeasoenv. Append, env. Prepend and env. Pr ependUni que.

Bui | der (action, [argunments])

env.Bui | der (action, [arguments])
Creates a Builder object for the specified act i on. See the manpage section "Builder Objects' for a complete
explanation of the arguments and behavior.

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetimeit is called using the construction variables in the env construction
environment through which env. Bui | der wascaled. The Bui | der form delays all variable expansion until
after the Builder object is actualy called.

CacheDir (cache_dir, custom cl ass=None)

env.CacheDir (cache_dir, custom cl ass=None)
Direct sconsto maintain aderived-file cacheincache_di r . Thederived filesin the cache will be shared among
all the builds specifying thesamecache_di r . Specifyingacache_di r of None disablesderived file caching.

When specifying a custom cl ass which should be a class type which is a subclass of
SCons. CacheDi r. CacheDir, SCons will internaly invoke this class to use for performing
caching operations. This argument is optional and if left to default None, will use the default
SCons. CacheDi r. CacheDi r class.

Calling the environment method env. CacheDi r limits the effect to targets built through the specified
construction environment. Calling the global function CacheDi r sets a global default that will be used by
all targets built through construction environments that do not set up environment-specific caching by calling
env. CachebDir.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if a file with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved “file' from cache instead of the normal build message. If the derived file is not present in
the cache, sconswill build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

The Retrieved “file' from cache messages are useful for human consumption, but less so when
comparing log files between scons runs which will show differences that are noisy and not actualy significant.
To disable, use the - - cache- show option. With this option, scons will print the action that would have been
used to build the file without considering cache retrieval.

Derived-file caching may be disabled for any invocation of scons by giving the - - cache- di sabl e command
line option. Cache updating may be disabled, leaving cache fetching enabled, by giving the - - cache-
readonl y.

If the - - cache- f or ce option is used, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by thisinvocation. Thisisuseful to populate acachethefirsttimeacache_di r
isused for abuild, or to bring a cache up to date after abuild with cache updating disabled (- - cache- di sabl e
or - - cache- r eadonl y) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool are impossible to predict or prohibitively large.

Iy
=== SCONS 74

Clean(targets, files_or_dirs)

env.Cl ean(targets, files_or_dirs)
This specifiesalist of files or directories which should be removed whenever the targets are specified with the -
¢ command line option. The specified targets may be alist or an individual target. Multiple callsto Cl ean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Cl ean method, or as alist.
Cl ean will also accept the return value of any of the construction environment Builder methods. Examples:

The related Nod ean function overrides calling O ean for the same target, and any targets passed to both
functions will not be removed by the - ¢ option.

Examples:

Clean('foo', ['bar', 'baz'])

Clean('dist', env.Program('hello', "hello.c"))
Clean(['foo', 'bar'], 'sonething else to clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Cl ean(docdir, os.path.join(docdir, projectnane))

env.Cl one([key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:

env2
env3

= env. d one()
= env. O one(CCFLAGS='-g')

Additionally, alist of tools and atoolpath may be specified, asinthe Envi r onnent constructor:

def MyTool (env):
env[' FOO] = 'bar"’

env4d = env. C one(tool s=[' nsvc', MyTool])

Thepar se_f | ags keyword argument is also recognized to allow merging command-line style argumentsinto
the appropriate construction variables (see env. Mer geFl ags).

create an environnment for conpiling progranms that use wxW dgets
wx_env = env. C one(parse_flags='!wx-config --cflags --cxxflags')

Conmand(t ar get, source, action, [key=val, ...])

env.Conmand(t ar get, source, action, [key=val, ...])
Executes a specificact i on (or list of actions) to build at ar get fileor filesfromasour ce fileor files. This
is more convenient than defining a separate Builder object for a single special-case build.

The Conmmand function accepts source_scanner, target scanner, source_factory, and
target fact ory keyword arguments. These arguments can be used to specify a Scanner object that will be

Iy
=== SCONS 75

used to apply a custom scanner for asource or target. For example, theglobal Di r Scanner object can be used if
any of the sourceswill be directories that must be scanned on-disk for changesto filesthat aren't already specified
in other Builder of function calls. The* _f act or y arguments take a factory function that Command will useto
turn any sources or targets specified as strings into SCons Nodes. See the manpage section "Builder Objects" for
more information about how these arguments work in a Builder.

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified asastring, or a callable Python object; see the manpage section
"Action Objects’ for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@ to suppress printing the command in question, or by a hyphen (-) to ignore the exit
status of the external command.

Examples:

env. Comand(
target='foo0.out',
source='foo0.in",
acti on="$FO0O BU LD < $SOURCES > $TARCGET"

env. Comand(
target =' bar. out',
source="bar.in",
action=["rm -f $TARGET", "$BAR BU LD < $SOURCES > $TARCGET"],
ENV={' PATH : '/usr/local /bin/"},

i mport os
def rename(env, target, source):
os.renane(’'.tnmp', str(target[0]))

env. Comand(
target =' baz. out',
source='baz.in",
action=["$BAZ BU LD < $SOURCES > .tnp", renane],

)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entriesthey are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Di r or env. Di r functions.

Examples:

env. Cormand(' ddd. list', Dir('ddd'), 'Is -1 $SOURCE > $TARGET')

env[' DISTDIR] = 'destination/directory’
env. Conmand(env. Dir (' $DI STDIR)), None, make_distdir)

Also notethat SConswill usually automatically create any directory necessary to hold atarget file, so you normally
don't need to create directories by hand.

Iy
=== SCONS 76

Confi gure(env, [customtests, conf_dir, log_file, config_h])
env.Configure([customtests, conf_dir, log_file, config_h])
Creates a Configure object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts' for a complete explanation of the arguments and behavior.

Deci der (f uncti on)

env.Deci der (f uncti on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified f unct i on. f unct i on can be the name of a function or one of the following strings that specify
the predefined decision function that will be applied:

"ti mest anp- newer"
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's timestamp is newer than
the target file's timestamp. Thisisthe behavior of the classic Make utility, and nake can be used a synonym
forti mest anp- newer.

"ti mestanp- mat ch"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will also berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

"content"
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, as determined be performing an checksum on the dependency's contents
and comparing it to the checksum recorded the last time the target was built. MD5 can be used as a synonym
for cont ent , but it is deprecated.

"content-timestanmp"

Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
cont ent behavior of always checksumming file contents, with an optimization of not checking the contents
of files whose timestamps haven't changed. The drawback isthat SCons will not detect if afile's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runs the build again, all within a single second. MD5- t i mest anp can be used as a synonym for
content-ti nmest anp, but it is deprecated.

Examples:

Use exact tinmestanp matches by default.
Deci der (' ti mestanp-mat ch')

Use hash content signatures for any targets built
with the attached construction environment.
env. Deci der (' content')

In addition to the above already-available functions, the f unct i on argument may be a Python function you
supply. Such afunction must accept the following four arguments:

dependency
The Node (file) which should causethet ar get to berebuilt if it has "changed" sincethelast tmet ar get
was built.

Iy
=== SCONS 77

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
asr epo_node=None). A caller will normally only set thisif the target only existsin a Repository.

Thef unct i on should return avalue which evaluates Tr ue if the dependency has "changed" since the last
time the t ar get was built (indicating that the target should be rebuilt), and a value which evaluates Fal se
otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteriaare appopriate. Ignoring some or al of the function arguments is perfectly normal.

Example:

def ny_deci der (dependency, target, prev_ni, repo_node=None):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

Default(target[, ...])

env.Defaul t(target[, ...])
Specify default targets to the SCons target selection mechanism. Any call to Def aul t will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection”).

t ar get may be one or more strings, alist of strings, aNodeLi st asreturned by a Builder, or None. A string
t ar get may be the name of afile or directory, or atarget previously defined by acal to Al i as (defining the
aias later will still create the dias, but it will not be recognized as a default). Callsto Def aul t are additive. A
t ar get of None will clear any existing default target list; subsequent calls to Def aul t will add to the (now
empty) default target list like normal.

Both forms of thiscall affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Def aul t isavailablein the DEFAULT_TARGETS list (see below).

Examples:

Default('foo', 'bar', 'baz')

env. Default(['a'", "b', 'c'])

hello = env.Program(' hello', "hello.c")
env. Def aul t (hel | 0)

Def aul t Envi r onment ([** kwar gs])
I nstantiates and returns the default construction environment object. The default environment isused internally by
SConsin order to execute many of the global functionsinthislist (that is, those not called as methods of a specific
construction environment). It is not mandatory to call Def aul t Envi r onnent : the default environment will
be instantiated automatically when the build phase begins if the function has not been called, however calling it
explicitly gives the opportunity to affect and examine the contents of the default environment.

Iy
=== SCONS 78

Dep
env

env

env

Dir
env

The default environment is a singleton, so the keyword arguments affect it only on the first call, on subsequent
calls the already-constructed object is returned and any keyword arguments are silently ignored. The default
environment can be modified after instantiation in the same way as any construction environment. Modifying the
default environment has no effect on the construction environment constructed by an Envi r onnent or Cl one
cal.

ends(t ar get, dependency)

.Depends(t ar get, dependency)

Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usually the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for thefile.

Example:

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env. Library('mylib.c")
installed |ib = env.Install ('lib'", mylib)
bar = env. Progran(' bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program

(Note that this is for exanple only. A "real" library

dependency woul d nornmal Iy be configured through the $LIBS
and $LI BPATH vari abl es, not using an env. Depends() call.)

env. Depends(bar, installed |ib)

.Det ect (pr ogs)

Find an executable from one or more choices: pr ogs may be a string or a list of strings. Returns the
first value from pr ogs that was found, or None. Executable is searched by checking the paths specified
by env[' ENV'] [' PATH]. On Windows systems, additionally applies the filename suffixes found in
env[' ENV'][' PATHEXT'] but will not include any such extension in the return value. env. Det ect isa
wrapper around env. Wer el s.

.Di ctionary([vars])

Returns a dictionary object containing the construction variables in the construction environment. If there are any
arguments specified, the values of the specified construction variables are returned as a string (if one argument)
or asalist of strings.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC, 'CCFLAGS , 'CCCOM)

(name, [directory])

.Dir(nane, [directory])

Returns Directory Node(s). A Directory Node is an object that represents a directory. nane can be arelative or
absolute path or alist of such paths. di r ect or y isan optional directory that will be used asthe parent directory.
If nodi rect ory isspecified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

~

'—‘-‘ SCONS 79

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"File and Directory Nodes' for more information.

env.Dunp([key], [format])
Serializes construction variables to a string. The method supports the following formats specified by f or mat :

pretty
Returns a pretty printed representation of the environment (if f or mat is not specified, thisis the default).

j son
Returns a JSON-formatted string representation of the environment.

If key isNone (the default) the entire dictionary of construction variablesis serialized. If supplied, it istaken as
the name of a construction variable whose value is serialized.

This SConstruct:

env=Envi r onnent ()
print (env. Dunp(' CCCOM))

will print:

"$CC -c -0 $TARGET $CCFLAGS $CPPFLAGS $ CPPDEFFLAGS $ CPPI NCFLAGS $SOURCES
While this SConstruct:

env = Environment ()
print(env. Dunp())

will print:

{ "AR: 'ar',
' ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET' ,
"ARFLAGS' : ['r'],

"AS : 'as',
' ASCOM : ' $AS $ASFLAGS -0 $TARGET $SOURCES',

' ASFLAGS' : [],

Ensur ePyt honVer si on(haj or, m nor)

env.Ensur ePyt honVer si on(naj or, minor)
Ensure that the Python version is at least maj or .nmi nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Ensur ePyt honVer si on(2, 2)

Ensur eSConsVer si on(maj or, mnor, [revision])

env.Ensur eSConsVer si on(maj or, mnor, [revision])
Ensure that the SCons version is at least maj or . mi nor, or maj or. mnor. revision.ifrevisionis
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Iy
=== SCONS 80

Examples:

Ensur eSConsVer si on(0, 14)
Ensur eSConsVer si on(0, 96, 90)

Envi ronnent ([key=val ue, ...])

env.Envi ronnent ([key=val ue, ...])
Return anew construction environment initialized with the specified key=val ue pairs. The keyword arguments
parse_fl ags, pl atform tool path, tool s and vari abl es are also specialy recognized. See the
manpage section "Construction Environments" for more details.

Execut e(action, [strfunction, varlist])

env.Execut e(action, [strfunction, varlist])
Executesan Action object. Thespecifiedact i on may bean Action object (see manpage section "Action Objects’
for an explanation of behavior), or it may be a command-line string, list of commands, or executable Python
function, each of which will be converted into an Action object and then executed. Any additional arguments to
Execut e (strfunction,varli st) are passed on to the Act i on factory function which actualy creates
the Action object. The exit value of the command or return value of the Python function will be returned.

Note that sconswill print an error message if the executed act i on fails--that is, exits with or returns a non-zero
value. scons will not, however, automatically terminate the build if the specified act i on fails. If you want the
build to stop in response to afailed Execut e call, you must explicitly check for a non-zero return value:

Execut e(Copy('file.out', "file.in"))

if Execute("nkdir sub/dir/ectory"):
The nkdir failed, don't try to build.
Exit (1)

Exi t ([val ue])

env.Exi t ([val ue])
Thistells sconsto exit immediately with the specified val ue. A default exit value of O (zero) isused if no value
is specified.

Export ([vars...], [key=value...])

env.Export ([vars...], [key=value...])
Exports variables from the current SConscript file to a global collection where they can be imported by other
SConscript files. var s may be one or more strings representing variable namesto be exported. If astring contains
whitespace, it issplit into separate strings, as if multiple string arguments had been given. A var s argument may
also be adictionary, which can be used to map variables to different names when exported. Keyword arguments
can be used to provide names and their values.

Export calls are cumulative. Specifying a previously exported variable will overwrite the earlier value. Both
local variables and global variables can be exported.

Examples:
env = Environment ()

Make env available for all SConscript files to Inport().
Export ("env")

Iy
=== SCONS 81

package = ' my_nane'
Make env and package avail able for all SConscript files:.
Export ("env", "package")

Make env and package avail able for all SConscript files:
Export (["env", "package"])

Make env avail abl e using the name debug:
Export (debug=env)

Make env avail abl e using the name debug:
Export ({"debug”: env})

Note that the SConscr i pt function supports an expor t s argument that allows exporting a variable or set of

variables to a specific SConscript file or files. See the description below.

Fil e(nane, [directory])

env.Fi | e(nane, [directory])
Returns File Node(s). A File Nodeis an object that represents afile. nane can be arelative or absolute path or a
list of such paths. di r ect or y isan optional directory that will be used asthe parent directory. If nodi r ect ory
is specified, the current script's directory is used as the parent.
If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.
File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "File and Directory
Nodes' for more information.

FindFile(file, dirs)

env.FindFile(file, dirs)
Search for fi | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.
Example:
foo = env.FindFile('foo', ['dirl", 'dir2'])

Fi ndl nstal | edFi | es()

env.Fi ndl nstal | edFi | es()
Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.
This function serves as a convenient method to select the contents of a binary package.
Example:
Install (' /bin', ['executable a', 'executable b'])
will return the file node |i st
['/bin/executable_a', '/bin/executable b']
Fi ndl nstal | edFi | es()
Install (*/1ib", ['some_library'])

‘s
== SCONS 82

wll return the file node |i st
['/bin/executable a', '/bin/executable b, '/lib/some_library']
Fi ndl nstal | edFi | es()

Fi ndPat hDi r s(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthepat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $L1 BPATH,
€tc.).

Note that use of Fi ndPat hDi rs is generaly preferable to writing your own pat h_functi on for the
following reasons: 1) The returned list will contain all appropriate directories found in source trees (when
Vari ant Di r is used) or in code repositories (when Reposi t ory or the - Y option are used). 2) scons will
identify expansions of var i abl e that evaluate to the same list of directories as, in fact, the same list, and avoid
re-scanning the directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
Code to scan file contents goes here...
return include files

scanner = Scanner (name = 'myscanner"',
function = ny_scan,
pat h_function = Fi ndPat hDi rs(' MYPATH))

Fi ndSour ceFi | es(node=""."")
env.Fi ndSour ceFi | es(node=""."")
Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

Thisfunction is a convenient method to select the contents of a Source Package.
Example:

Program(' src/ main_a.c')

Program(' src/ main_b.c")

Program(' main_c.c')

returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

returns ['src/main_b.c', "src/main_a.c' |
Fi ndSour ceFil es('src')

Asyou can see build support files (SConstruct in the above example) will also be returned by this function.

Fl at t en(sequence)

env.Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by

Iy
=== SCONS 83

Get

callsto Builders; other Builders will automatically flatten lists specified asinput, but direct Python manipulation
of these lists does not.

Examples:

f oo
bar

oj ect (' foo.c')
oj ect (' bar.c')

Because "foo' and "bar' are lists returned by the Object() Builder,
“objects' will be a list containing nested |ists:
objects = ['fl.0', foo, 'f2.0', bar, 'f3.0']

Passing such a list to another Builder is all right because
the Builder will flatten the list automatically:
Pr ogram(source = obj ects)

If you need to mani pulate the list directly using Python, you need to
call Flatten() yourself, or otherw se handl e nested lists:
for object in Flatten(objects):

print(str(object))

Bui | dFai | ures()
Returnsalist of exceptionsfor the actionsthat failed while attempting to build targets. Each element in the returned
listisaBui | dEr r or object with the following attributes that record various aspects of the build failure:

. node The node that was being built when the build failure occurred.

. st at us The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

. errstr The SCons error string describing the build failure. (This is often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

. fil ename The name of the file or directory that actually caused the failure. This may be different from the
. node attribute. For example, if an attempt to build atarget named sub/ di r / t ar get fails becausethesub/

di r directory could not be created, then the . node attribute will besub/ di r/t ar get butthe. fil ename
attribute will be sub/ di r .

. execut or The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

. act i on The actual SCons Action object that failed. Thiswill be one specific action out of the possible list of
actions that would have been executed to build the target.

. command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Notethat the Get Bui | dFai | ur es functionwill alwaysreturn an empty list until any build failure has occurred,
which meansthat Get Bui | dFai | ur es will alwaysreturn an empty list whilethe SConscr i pt filesarebeing
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python at exi t . r egi st er () function. Example:

i mport atexit

~

'—‘-‘ SCONS 84

def print_build failures():
from SCons. Scri pt inmport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))

atexit.register(print_build failures)

GetBuil dPath(file, [...])

env.GetBui | dPath(file, [...])
Returns the scons path name (or names) for the specified f i | e (or files). The specified fi | e or files may be
scons Nodes or strings representing path names.

Get LaunchDbDi r ()

env.Cet LaunchDi r ()
Returns the absol ute path name of the directory from which sconswasinitially invoked. This can be useful when
usingthe- u, - Uor - Doptions, which internally change to the directory in which the SConst r uct fileisfound.

Get Opti on(nane)

env.Get Opt i on(nane)
This function provides a way to query the value of options which can be set via the command line or using the
Set Opt i on function.

name can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. nane can be also be the destination variable name from a project-specific option added
using the AddOpt i on function, aslong as the addition happens prior to the Get Opt i on call in the SConscript

files.

Query name Command-line options Notes

cache_debug --cache-debug

cache_di sabl e --cache-di sabl g, --no-
cache

cache _force --cache-force, --cache-
popul at e

cache_readonly --cache-readonly

cache_show --cache-show

cl ean -c,--clean,--renove

clinmb_up -D-U-u--up--search_up

config --config

debug - -debug

directory -C,--directory

di skcheck - -di skcheck

duplicate --duplicate

enabl e_virtual env --enabl e-vi rtual env

experi nent al - -experi nment al since 4.2

file -f, --file, --makefile, --
sconstruct

hash_f or nat --hash-f or nat since 4.2

hel p -h,--help

Iy
=== SCONS 85

Query name

Command-line options

Notes

i gnore_errors

-i,--ignore-errors

i gnore_virtual env

--ignore-virtual env

implicit_cache

--inplicit-cache

i mplicit_deps_changed

--inmplicit-deps-changed

i mplicit_deps_unchanged |--inplicit-deps-
unchanged
i nclude_dir -1,--include-dir

i nstall _sandbox

--install -sandbox

Available only if thei nst al | tool
has been called

keep_goi ng -k, - -keep-goi ng

mex_drift --max-drift

nmd5_chunksi ze --hash-chunksi ze, --md5- |--hash-chunksi ze since4.2
chunksi ze

no_exec -n, --no-exec, --just-

print,--dry-run,--recon

no_progress

-Q

num j obs

-j,--]jobs

package_type

- - package-type

Available only if the packagi ng
tool has been called

profile_file

--profile

question

-q,--question

random

--random

repository

-Y,--repository,--srcdir

sil ent

-s,--silent,--quiet

site dir

--site-dir,--no-site-dir

stack_si ze

--stack-size

taskmastertrace file

--taskmastertrace

tree_printers

--tree

war n

--warn, - -war ni ng

See the documentation for the corresponding command line option for information about each specific option.

d ob(pattern,
env.d ob(pattern,

[ondi sk,
[ondi sk,

source,
source,

strings, exclude])
strings, exclude])

Returns Nodes (or strings) that match the specified patt ern, relative to the directory of the current
SConscri pt file. The evironment method form (env. G ob) performs string substition on patt er n and
returns whatever matches the resulting expanded pattern.

The specified pat t er n uses Unix shell style metacharacters for matching:

* mat ches everyt hi ng
? mat ches any singl e character
[seq] mat ches any character in seq
y
== SCONS

86

Hel

[!seq] matches any char not in seq

If thefirst character of afilenameisadot, it must be matched explicitly. Character matches do not span directory
Separators.

The d ob knows about repositories (see the Repository function) and source directories (see the
Var i ant Di r function) and returns a Node (or string, if so configured) in the local (SConscript) directory if a
matching Node is found anywhere in a corresponding repository or source directory.

The ondi sk argument may be set to a value which evaluates Fal se to disable the search for matches on disk,
thereby only returning matches among already-configured File or Dir Nodes. The default behavior is to return
corresponding Nodes for any on-disk matches found.

The sour ce argument may be set to avalue which evaluates Tr ue to specify that, when the local directory isa
Vari ant Di r, the returned Nodes should be from the corresponding source directory, not the local directory.

Thest ri ngs argument may be set to a value which evaluates Tr ue to have the G ob function return strings,
not Nodes, that represent the matched files or directories. The returned strings will be relative to the local
(SConscript) directory. (Note that This may make it easier to perform arbitrary manipulation of file names, but if
the returned strings are passed to adifferent SConscr i pt file, any Node tranglation will be relative to the other
SConscr i pt directory, not the original SConscr i pt directory.)

The excl ude argument may be set to a pattern or alist of patterns (following the same Unix shell semantics)
which must befiltered out of returned elements. Elements matching aleast one pattern of thislist will be excluded.

Examples:

Program("foo", dob("*.c"))

Zip("/tnmp/everything", dob(".??*") + @ob("*"))

sources = G ob("*.cpp", exclude=["os_* specific_*.cpp"]) + \
G ob("os_¥%_specific_*.cpp" % current0S)

p(text, append=Fal se)

env.Hel p(t ext, append=Fal se)

Specifiesalocal help messageto be printed if the- h argument isgiven to scons. Subsequent callsto Hel p append
t ext tothe previously defined local help text.

For the first call to Hel p only, if append is Fal se (the default) any local help message generated through
AddOpt i on calsisreplaced. If append isTr ue, t ext isappended to the existing help text.

| gnore(target, dependency)

env

dgnore(target, dependency)
The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

You can also use | gnor e to remove atarget from the default build. In order to do this you must specify the
directory the target will be built in as the target, and the file you want to skip building as the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be built if that
dependency is needed by another object being built. See the third and forth examples below.

Examples:
env. |l gnore('foo', 'foo.c')
env.lgnore('bar', ['barl.h', "bar2.h'])
env.lgnore('."', 'foobar.obj")
env. I gnore(' bar', 'bar/foobar.obj")

S

'—‘—' SCONS 87

| mport(vars...)

env.l nport (vars...)
Imports variables into the current SConscript file. var s must be strings representing names of variables which
have been previously exported either by the Export function or by the expor t s argument to SConscri pt .
Variables exported by SConscri pt take precedence. Multiple variable names can be passed to | nport as
separate arguments or as words in a space-separated string. Thewildcard " *" can be used to import all available
variables.

Examples:

| mport ("env")

| mport ("env", "variable")
| mport (["env", "variable"])
| mport ("*")

Literal (string)
env.Literal (string)
The specified st r i ng will be preserved as-is and not have construction variables expanded.

Local (targets)

env.Local (targets)
The specified t ar get s will have copies made in the local tree, even if an aready up-to-date copy existsin a
repository. Returns alist of the target Node or Nodes.

env.Mer geFl ags(arg, [unique])
Merges values from ar g into construction variables in the current construction environment. If ar g is not a
dictionary, it is converted to one by calling env. Par seFl ags on the argument before the values are merged.
Note that ar g must be a single value, so multiple strings must be passed in as a list, hot as separate arguments
toenv. Mer geFl ags.

By default, duplicate values are eliminated; you can, however, specify uni que=Fal se toallow duplicatevalues
to be added. When eliminating duplicate values, any construction variables that end with the string PATH keep
the left-most unique value. All other construction variables keep the right-most unique value.

Examples:

Add an optimzation flag to $CCFLAGS.
env. Mer geFl ags(' - 33')

Conbi ne the flags returned fromrunni ng pkg-config with an optim zation
flag and nmerge the result into the construction vari abl es.
env. MergeFl ags(['! pkg-config gtk+-2.0 --cflags', '-@B'])

Conbi ne an optim zation flag with the flags returned from runni ng pkg-config
twice and nmerge the result into the construction vari abl es.
env. MergeFl ags([' - Q3"

‘I pkg-config gtk+-2.0 --cflags --1ibs',
'I'pkg-config libpngl2 --cflags --libs'])
NoCache(target, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDi r method has been activated. The
specified targets may be alist or an individual target.

Iy
=== SCONS 88

Multiple files should be specified either as separate arguments to the NoCache method, or as alist. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache(' foo. el f')
NoCache(env. Progran{' hell o', '"hello.c'))

NoCl ean(target, ...)

env.Nod ean(target, ...)
Specifies alist of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the- ¢ command line option. The specified targetsmay bealist or anindividual target. Multiple
callsto NoCl ean arelegal, and prevent each specified target from being removed by callsto the - ¢ option.

Multiplefiles or directories should be specified either as separate argumentsto the NoCl ean method, or asalist.
NoCl ean will also accept the return value of any of the construction environment Builder methods.

CallingNoCl ean for atarget overridescallingCl ean for the sametarget, and any targets passed to both functions
will not be removed by the - ¢ option.

Examples:

NoCl ean(' foo. el f')
NoCl ean(env. Progran(' hello', '"hello.c"))

env.Par seConfi g(comand, [function, unique])
Updates the current construction environment with the values extracted from the output from running externa
conmand, by calling a helper function f uncti on which understands the output of command. command
may be a string or a list of strings representing the command and its arguments. If f unct i on is not given,
env. Mer geFl ags is used. By default, duplicate values are not added to any construction variables; you can
specify uni que=Fal se to alow duplicate values to be added.

If env. MergeFl ags is used, it expects a response in the style of a *-config command typical of
the POSIX programming environment (for example, gtk-config) and adds the options to the appropriate
construction variables. Interpreted options and the construction variables they affect are as specified for the
env. Par seFl ags method (which env. Mer geFl ags calls). See that method's description for a table of
options and corresponding construction variables.

If env. Mer geFl ags cannot interpret the results of conmand, you can suppply acustom f unct i on todo so.
funct i on must accept three arguments: the construction environment to modify, the string returned by running
conmand, and the optional uni que flag.

Par seDepends(fi | enane, [must_exist, only_one])

env.Par seDepends(fi | enanme, [rnust_exist, only_one])
Parses the contents of the specified fi | enane as alist of dependencies in the style of Make or mkdep, and
explicitly establishes al of the listed dependencies.

By default, it is not an error if the specified f i | enane does not exist. The optional must _exi st argument
may be set to a non-zero value to have scons throw an exception and generate an error if the file does not exist,
or is otherwise inaccessible.

Theoptional onl y_one argument may be set to anon-zero value to have scons thrown an exception and generate
an error if the file contains dependency information for more than one target. This can provide a small sanity

Iy
=== SCONS 89

env

check for files intended to be generated by, for example, the gcc - Mflag, which should typically only write
dependency information for one output file into a corresponding . d file.

Thef i | enane and al of thefileslisted therein will be interpreted relative to the directory of the SConscr i pt
file which calls the Par seDepends function.

ParseFl ags(fl ags, ...)

Parses one or more strings containing typical command-line flags for GCC tool chains and returns a dictionary
with theflag values separated into the appropriate SCons construction variables. Thisisintended asacompanionto
theenv. Mer geFl ags method, but allows for the valuesin the returned dictionary to be modified, if necessary,
before merging them into the construction environment. (Note that env. Mer geFl ags will call this method if
itsargument isnot adictionary, soitisusually not necessary tocall env. Par seFl ags directly unless you want
to manipulate the values.)

If thefirst character in any string isan exclamation mark (1), therest of the string is executed asacommand, and the
output from the command is parsed as GCC tool chain command-line flags and added to the resulting dictionary.

Flag values are trandlated accordig to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LI NKFLAGS
-D CPPDEFI NES

- franmewor k FRAMVEWORKS

- framewor kdi r = FRAVEWORKPATH
-fnerge-all-constants CCFLAGS, LI NKFLAGS
- f opennp CCFLAGS, LI NKFLAGS
-incl ude CCFLAGS

- i macr os CCFLAGS

-i sysr oot CCFLAGS, LI NKFLAGS
-isystem CCFLAGS

-iquote CCFLAGS

-idirafter CCFLAGS

- CPPPATH

- LI BS

-L LI BPATH

- Mmo- cygw n CCFLAGS, LI NKFLAGS
- mrvi ndows LI NKFLAGS

- opennp CCFLAGS, LI NKFLAGS
- pt hr ead CCFLAGS, LI NKFLAGS
-std= CFLAGS

- 4, ASFLAGS, CCFLAGS
-W, -rpat h= RPATH

-W, -R, RPATH

-W, -R RPATH

-W, LI NKFLAGS

-\, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LI NKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LI BS

construction variable.

Examples (all of which produce the same result):

dict = env.ParseFl ags('-O2 -Df oo -Dbar=1")

~

'—‘-‘ SCONS

90

Pl a

Pre
env

env

env

dict = env.ParseFlags('-O', '-Dfoo', '-Dbar=1")
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-', 'lecho -Dfoo -Dbar=1")
tforn(string)

The Pl at f or mform returns a callable object that can be used to initialize a construction environment using the
platform keyword of the Envi r onnent function.

Example:

env = Environment (pl atform=Pl atfornm('wi n32'))

The env. Pl at f or mform applies the callable object for the specified platform st ri ng to the environment
through which the method was called.

env. Pl at f or n{' posi x")

Note that the wi n32 platform adds the Syst enDr i ve and Syst enRoot variables from the user's external
environment to the construction environment's $ENV dictionary. This is so that any executed commands
that use sockets to connect with other systems (such as fetching source files from external CVS repository
specificationslike : pser ver: anonynous@vs. sour cef or ge. net : / cvsr oot/ scons) will work on
Windows systems.

cious(target, ...)

Precious(target, ...)

Marks each given t ar get as precious o it is not deleted before it is rebuilt. Normally scons deletes a target
before building it. Multiple targets can be passed in to asingle call to Pr eci ous.

Prepend(key=val, [...])

Prepend valuesto construction variables in the current construction environment, Workslikeenv. Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env. Prepend(CCFLAGS='-g ', FOO=['foo0.yyy'])
Seealso env. Append, env. AppendUni que and env. Pr ependUni que.

.PrependENVPat h(name, newpath, [envnane, sep, delete_existing])

Prepend new path elements to the given path in the specified external environment (SENV by default). This will
only add any particular path once (leaving thefirst one it encounters and ignoring the rest, to preserve path order),
and to help assurethis, will normalize all paths (using 0s. pat h. nor npat h and os. pat h. nor ntase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If del et e_exi sting isFal se, then adding a path that already exists will not move it to the beginning; it
will stay whereitisinthelist.

Example:
print('before:', env['ENV][' 1 NCLUDE])

i ncl ude_path = *'/foo/bar:/foo'
env. PrependENVPat h(' | NCLUDE' , i ncl ude_pat h)

~

'—‘—' SCONS 91

print('after:", env['ENV][' I NCLUDE])
Yields:

bef ore: /biz:/foo
after: /fool/bar:/foo:/biz

env.PrependUni que(key=val , del ete_existing=False, [...])
Prepend values to construction variables in the current construction environment, maintaining uniqueness. Works
likeenv. Append (seefor details), except that values are added to the front, rather than the end, of any existing
value of the the construction variable, and values already present in the construction variable will not be added
again. If del et e_exi sti ngisTrue, the existing matching value is first removed, and the requested valueis
inserted, having the effect of moving such values to the front.

Example:

env. PrependUni que(CCFLAGS='-g', FOO=['foo0.yyy'])
Seeasoenv. Append, env. AppendUni que and env. Pr epend.

Progress(cal l able, [interval])

Progress(string, [interval, file, overwite])

Progress(list_of _strings, [interval, file, overwite])
Allows SConsto show progress made during the build by displaying astring or calling afunction while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object that hasa ___cal | __ method), the
functionwill becalledonceeveryi nt er val timesaNodeisevaluated (default 1). Thecallablewill be passed the
evaluated Node asitsonly argument. (For future compatibility, it'sagood ideatoaso add * ar gs and * * kwar gs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additiona argumentsin the future.)

An example of asimple custom progress function that prints a string containing the Node name every 10 Nodes:

def ny_progress _function(node, *args, **kwargs):
print (' Eval uati ng node %!' % node)
Progress(my_progress_function, interval =10)

A more complicated example of acustom progress display object that prints astring containing a count every 100
evaluated Nodes. Notetheuseof \ r (acarriagereturn) at the end so that the string will overwriteitself onadisplay:

i mport sys
cl ass ProgressCount er (obj ect):
count = 0
def _ call__(self, node, *args, **kw):

sel f.count += 100
sys.stderr.wite('Eval uated % nodes\r' % sel f.count)

Progress(ProgressCounter(), interval =100)

If thefirst argument to Pr ogr ess isastring or list of strings, it istaken astext to be displayed every i nt er val
evaluated Nodes. If the first argument is alist of strings, then each string in the list will be displayed in rotating
fashion every i nt er val evaluated Nodes.

Iy
=== SCONS 92

The default is to print the string on standard output. An alternate output stream may be specified withthefi | e
keyword argument, which the caller must pass already opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

i mport sys
Progress('.', interval =100, fil e=sys.stderr)

If the string contains the verbatim substring $TARGET; , it will be replaced with the Node. Note that, for
performance reasons, this is not a regular SCons variable substition, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\ r)
to cause each line to overwritten by the next line, and the over wr i t e keyword argument (default Fal se) to
make sure the previously-printed file name is overwritten with blank spaces:

i mport sys
Progress(' $TARCGET\r', overw ite=True)

A list of strings can be used to implement a" spinner" on the user's screen asfollows, changing every five evaluated

Nodes:

Progress(['-\r", "\\\r', "|\r"', "/\r'], interval =5)
Pseudo(target, ...)
env.Pseudo(target, ...)

This indicates that each givent ar get should not be created by the build rule, and if the target is created, an
error will be generated. Thisis similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Al i as is more appropriate. Multiple targets can be passed in to asingle call to Pseudo.

PyPackageDi r (modul enane)

env.PyPackageDi r (modul enane)
ThisreturnsaDirectory Node similar to Dir. The python module/ packageislooked up and if located the directory
is returned for the location. modul enarme Is a named python package / module to lookup the directory for it's
location.

If modul enane isalist, SConsreturnsalist of Dir nodes. Construction variablesareexpandedinnodul enane.

env.Repl ace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env. Repl ace(CCFLAGS=' -g', FOO=' f 00. xxx")

Reposi t ory(di rect ory)

env.Reposi tory(di rectory)
Specifiesthat di r ect ory isarepository to be searched for files. Multiple callsto Reposi t or y arelegal, and
each one adds to the list of repositories that will be searched.

To scons, arepository isacopy of the source tree, from the top-level directory on down, which may contain both
sourcefilesand derived filesthat can be used to build targetsin thelocal sourcetree. The canonical examplewould
be an officia sourcetree maintained by an integrator. If the repository contains derived files, then the derived files
should have been built using scons, so that the repository contains the necessary signature information to allow
sconsto figureout when it isappropriate to usetherepository copy of aderivedfile, instead of building onelocally.

Iy
=== SCONS 93

Note that if an up-to-date derived file aready exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that alocal copy will be made, usethe Local method.

Requi res(target, prerequisite)

env.Requi res(target, prerequisite)
Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:
env. Requires('foo', 'file-that-nust-be-built-before-foo')
Return([vars..., stop=True])

Return to the calling SConscript, optionally returning the values of variables named in var s. Multiple strings
contaning variable names may be passed to Ret ur n. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tupleif var s is omitted.

By default Ret ur n stops processing the current SConscript and returnsimmediately. Theoptional st op keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Ret ur n
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variablesin the named var s at the point Ret ur n was called.

Examples:
Returns no val ues (eval uates Fal se)
Ret urn()

Returns the value of the 'foo' Python vari able.
Return("foo")

Returns the values of the Python variables 'foo’ and 'bar'.
Return("foo", "bar")

Returns the val ues of Python variables 'vall and 'val2'.
Return('val 1 val 2")

Scanner (functi on, [nane, ar gunent , skeys, pat h_functi on, node cl ass,
node factory, scan_check, recursive])
env.Scanner (f uncti on, [nane, ar gunent , skeys, pat h_functi on, node cl ass,

node factory, scan_check, recursive])
Creates a Scanner object for the specified f unct i on. See manpage section "Scanner Objects’ for a complete
explanation of the arguments and behavior.

SConscri pt (scripts, [exports, variant_dir, duplicate, must_exist])
env.SConscri pt(scripts, [exports, variant_dir, duplicate, nust_exist])
SConscri pt (di r s=subdi rs, [nane=scri pt, exports, variant _dir, duplicate,
must _exi st])
env.SConscri pt (di rs=subdirs, [nane=script, exports, variant_dir, duplicate,
must _exi st])
Execute one or more subsidiary SConscript (configuration) files. There are two ways to call the SConscr i pt
function.

Iy
=== SCONS 94

The first calling style is to explicitly specify one or more scri pt s asthe first argument. A single script may
be specified as a string; multiple scripts must be specified as a list (either explicitly or as created by a function
like Spl i t). Examples:

SConscri pt (' SConscri pt') # run SConscript in the current directory
SConscri pt (' src/ SConscript') # run SConscript in the src directory
SConscri pt (['src/ SConscript', 'doc/SConscript'])

config = SConscript (' MyConfig. py')

The second way to call SConscr i pt isto specify alist of (sub)directory namesasadi r s=subdi r s keyword
argument. In this case, scons will execute a subsidiary configuration file named SConscr i pt in each of the
specified directories. Y ou may specify aname other than SConscr i pt by supplying an optional name=scr i pt
keyword argument. The first three examples below have the same effect as the first three examples above:

SConscript (dirs=".") # run SConscript in the current directory
SConscri pt (dirs="src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])

SConscri pt (di rs=['subl', 'sub2'], name='MySConscript')

The optional expor t s argument provides a string or list of strings representing variable names, or a dictionary
of named values, to export. These variables are locally exported only to the called SConscript file(s) and do not
affect the global pool of variables managed by the Export function. The subsidiary SConscript files must use
thel mport function to import the variables. Examples:

foo = SConscri pt (' sub/ SConscript', exports='env')

SConscript (' dir/SConscript', exports=['env', 'variable'])

SConscri pt (dirs="subdir', exports='env variable')

SConscript(dirs=['one', "two', 'three'], exports='shared info')

If theoptional var i ant _di r argument is present, it causes an effect equivalent tothe Var i ant Di r function.
Thevari ant _di r argument isinterpreted relative to the directory of the calling SConscript file. The optional
dupl i cat e argument is interpreted as for Vari ant Di r. If vari ant _di r is omitted, the dupl i cate
argument isignored. See the description of Var i ant Di r below for additional details and restrictions.

If vari ant _di r is present, the source directory is the directory in which the SConscript file resides and the
SConscript fileis evaluated asif it wereinthevar i ant _di r directory:

SConscri pt (' src/ SConscript', variant_dir="build")

is equivalent to

VariantDir('build, 'src')

SConscri pt (' bui | d/ SConscript')

Thislater paradigm is often used when the sources are in the same directory as the SConst r uct :

SConscri pt (' SConscript', variant_dir="build")

isequivalent to

Iy
=== SCONS 95

VariantDir("build , '.")
SConscri pt (' bui | d/ SConscri pt')

If the optional nust _exi st is Tr ue, causes an exception to be raised if a requested SConscript file is not
found. The current default is Fal se, causing only awarning to be emitted, but this default is deprecated (since
3.1). For scripts which truly intend to be optional, transition to explicitly supplying nust _exi st =Fal se to
the SConscri pt call.

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_i nfo = SConscri pt (' MyConfi g. py')

SConscri pt (' src/ SConscript', exports='shared_info')

SConscri pt (' doc/ SConscript', exports='shared_info')

bui |l d debuggi ng and production versions. SConscri pt

can use Dir('.").path to determ ne vari ant.

SConscri pt (' SConscript', variant_dir="debug', duplicate=0)
SConscri pt (' SConscript', variant_dir="prod' , duplicate=0)

buil d debuggi ng and production versions. SConscri pt
is passed flags to use.

opts = { 'CPPDEFINES : ['DEBUG], 'CCFLAGS : '-pgdb' }
SConscri pt (' SConscript', variant_dir="debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG], 'CCFLAGS : '-0 }

SConscri pt (' SConscript', variant _dir="prod' , duplicate=0, exports=opts)

build comon docunentation and conpile for different architectures
SConscri pt (' doc/ SConscript', variant _dir="buil d/ doc', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="buil d/ x86', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ ppc', duplicate=0)

SConscri pt returns the values of any variables named by the executed SConscript(s) in arguments to the
Ret ur n function (see above for details). If asingle SConscri pt call causes multiple scripts to be executed,
the return value is a tuple containing the returns of all of the scripts. If an executed script does not explicitly call
Ret ur n, it returns None.

SConscri pt Chdi r (val ue)

env.SConscri pt Chdi r (val ue)
By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives.
This behavior may be disabled by specifying either:

SConscri pt Chdi r (0)
env. SConscr i pt Chdi r (0)

inwhich case sconswill stay in the top-level directory whilereading all SConscript files. (This may be necessary
when building from repositories, when all the directoriesin which SConscript files may be found don't necessarily
exist locally.) Y ou may enable and disable this ability by calling SConscriptChdir() multiple times.

Iy
=== SCONS 96

Example:

env = Environnent ()

SConscri pt Chdi r (0)

SConscri pt (' foo/ SConscript') # will not chdir to foo
env. SConscri pt Chdir (1)

SConscri pt (" bar/ SConscript') # will chdir to bar

SConsi gnFi | e([namre, dbm nodul e])

env.SConsi gnFi | e([nane, dbm nodul e])
Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify aternate database files and/or file locations for different types of builds.

The optional nane argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConst ruct file. The default is. sconsi gn. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm _nodul e

Theoptional dbm _nodul e argument specifies which Python database module to use for reading/writing thefile.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons. dbl i t e module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbmmodule for other available types.

If called with no arguments, the database will defaultto. sconsi gn. dbl i t e inthetop directory of the project,
which is also the default if if SConsi gnFi | e isnot called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on nane. There should only be one active call to this function/method in a given build setup.

If name is set to None, sconswill store file signatures in aseparate . sconsi gn filein each directory, notin a
single combined database file. Thisisabackwards-compatibility meaure to support what was the default behavior
prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a future SCons
release.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the default behavior).
SConsi gnFi | e()

Stores signatures in the file "etc/scons-signatures”
relative to the top-Ievel SConstruct directory.

SCons will add a database suffix to this nane.
SConsi gnFi | e("et c/ scons-si gnat ures")

Stores signatures in the specified absolute file nane.
SCons will add a database suffix to this nane.
SConsi gnFi | e("/ hone/ ne/ SCons/ si gnat ur es™)

Stores signatures in a separate .sconsign file
in each directory.
SConsi gnFi | e(None)

Stores signatures in a GNU dom format .sconsign file

Iy
=== SCONS 97

i nport dbm gnu
SConsi gnFi | e(dbm nodul e=dbm gnu)

env.Set Def aul t (key=val , [...])

Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env. Set Def aul t (FOO=' f 00")
if "FOO not in env:
env[' FOO] = 'foo

Set Opti on(nane, val ue)

env.Set Opt i on(nane, val ue)
Sets scons option variable nane to val ue. These options are al also settable via command-line options but the
variable name may differ from the command-line option name - see the table for correspondences. A value set
via command-line option will take precedence over one set with Set Opt i on, which allows setting a project
default in the scripts and temporarily overriding it via command line. Set Opt i on calls can also be placed in
thesite_init. py file

See the documentation in the manpage for the corresponding command line option for information about each
specific option. The val ue parameter is mandatory, for option values which are boolean in nature (that is, the
command line option does not take an argument) use aval ue which evaluates to true (e.g. Tr ue, 1) or false
(eg. Fal se, 0).

Options which affect the reading and processing of SConscript files are not settable using Set Opt i on since
those files must be read in order to find the Set Opt i on call in thefirst place.

The settable variables with their associated command-line options are:

Settable name Command-line options Notes
cl ean -c,--clean,--renove

di skcheck - -di skcheck

duplicate --duplicate

experi nent al - - experi nent al since4.2

hash_chunksi ze

--hash- chunksi ze

Actually sets nd5_chunksi ze.
since 4.2

hash_f or mat --hash-f or mat since4.2

hel p -h,--help

i mplicit_cache --inplicit-cache

i mplicit_deps_changed --inmplicit-deps-changed |Also sets inplicit_cache.

(settable since 4.2)

i mplicit_deps_unchanged |--inplicit-deps- Also sets inplicit_cache.
unchanged (settable since 4.2)

max_drift --max-drift

md5_chunksi ze - -md5- chunksi ze

no_exec -n, --no-exec, --just-
print,--dry-run,--recon

no_progress -Q See?

'—‘-' SCONS

98

Si d
env

Spl
env

env

Settable name Command-line options Notes
num j obs -j,--]jobs

random --random

sil ent -s,--silent,--quiet

stack_si ze --stack-size

war n --warn

8f no_progr ess isset viaSet Opt i on in an SConscript file (but not if setinasi t e_i ni t . py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the Set Opt i on.

Example:

Set Option(' max_drift', 0)

eEf fect (si de_effect, target)

.Si deEf f ect (si de_effect, target)

Declaressi de_ef f ect asasideeffect of buildingt ar get . Bothsi de_ef f ect andt ar get canbealist,
afile name, or anode. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB fileis created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If atarget is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the si de_ef f ect target
is not automatically removed when the t ar get is removed by the - ¢ option. (Note, however, that the
si de_ef f ect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
thesi de_ef f ect iscleaned whenever aspecifict ar get is cleaned, you must specify this explicitly with the
Cl ean or env. C ean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

it(arg)

Split(arg)

Returns alist of file names or other objects. If ar g isastring, it will be split on strings of white-space characters
within the string, making it easier to write long lists of file names. If ar g isalready alist, the list will be returned
untouched. If ar g isany other type of object, it will be returned as alist containing just the object.

Example:
files = Split("fl.c f2.c f3.c")
files = env. Split("f4.c f5.c f6.c")
files = Split("""
f7.c
f8.¢c
f9.c
")
Subst (i nput, [raw, target, source, conv])

Performs construction variable interpolation on the specified string or sequence argument i nput .

By default, leading or trailing white space will be removed from the result. and all sequences of white space will
be compressed to asingle space character. Additionally, any $(and$) character sequenceswill be stripped from

~

'—‘—' SCONS 99

the returned string, The optional r aw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. The r aw argument may be set to 2 if you want to strip all characters between any $(and $) pairs
(asisdonefor signature calculation).

If theinput is a sequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will bereturned asalist.

The optional t ar get and sour ce keyword arguments must be set to lists of target and source nodes,
respectively, if you want the $TARGET, $TARCETS, $SOURCE and $SOURCES to be available for expansion.
Thisisusually necessary if you are calling env. subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use the Python p idiom
to pass in an unnamed function that simply returns its unconverted argument.

Example:

print(env.subst("The C conpiler is: $CC'))

def conpil e(target, source, env):
sourceDir = env. subst (
"${ SOURCE. srcdir}",
t ar get =t ar get
sour ce=sour ce

)
sour ce_nodes = env. subst (' $EXPAND TO NODELI ST', conv=l anbda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All Node-level tags are optional.

Examples:

makes sure the built library will be installed with 644 file access node
Tag(Library('lib.c"), UN X ATTR="00644")

marks file2.txt to be a docunentation file
Tag('file2. txt', DOC)

Tool (name, [tool path, **kwargs])

env.Tool (nane, [tool path, **kwargs])
L ocates the tool specification module name and returns a callable tool object for that tool. The tool module is
searched for in standard locations and in any paths specified by the optional t ool pat h parameter. The standard
locations are SCons own internal path for tools plus the toolpath, if any (see the Tools section in the manual
page for more details). Any additional keyword arguments kwar gs are passed to the tool module'sgener at e
function during tool object construction.

When called, the tool object updates a construction environment with construction variables and arranges any
other initialization needed to use the mechanisms that tool describes.

When theenv. Tool formisused, thetool object is automatically called to update env and the value of t ool
is appended to the $TOOL S construction variable in that environment.

Iy
=== SCONS 100

Examples:

env. Tool (' gcc')
env. Tool (' opengl', tool path=["'build/tools'])

When the global function Tool formisused, thetool object is constructed but not called, asit lacks the context of
an environment to update. Thetool object can bepassedtoan Envi r onnent or Cl one call aspart of thet ool s
keyword argument, in which case the tool is applied to the environment being constructed, or it can be called
directly, in which case a construction environment to update must be passed as the argument. Either approach will
also update the $TOOL S construction variable.

Examples:

env Envi ronnent (t ool s=[Tool (' msvc')])

env = Environment ()

nmsvct ool = Tool (' msvc')

nmsvct ool (env) # adds 'nsvc' to the TOOLS vari abl e
gltool = Tool ('opengl', toolpath = ['tools'])
gltool (env) # adds 'opengl' to the TOOLS vari abl e

Changed in SCons 4.2: env. Tool now returnsthe tool object, previoudly it did not return (i.e. returned None).

Val ue(val ue, [built_value], [nane])

env.Val ue(val ue, [built_value], [nane])
Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies
of targets. If the result of calling str (val ue) changes between SCons runs, any targets depending on
Val ue(val ue) will berebuilt. (Thisistrue even when using timestamps to decideif files are up-to-date.) When
using timestamp source signatures, Value Nodes' timestamps are equal to the system time when the Node is
created. nane can be provided as an alternative name for theresulting Val ue node; thisisadvised if theval ue
parameter can't be converted to a string.

The returned Value Node object has awr i t e() method that can be used to "build" a Value Node by setting a
new value. The optional bui | t _val ue argument can be specified when the Value Node is created to indicate
the Node should already be considered "built." Thereis a corresponding r ead() method that will return the built
value of the Node.

Examples:

env = Environment ()

def create(target, source, env):
A function that will wite a 'prefix=$SOURCE
string into the file name specified as the
$TARCET.
with open(str(target[0]), 'wb') as f:
f.wite('prefix=" + source[0].get _contents())

Fetch the prefix= argunent, if any, fromthe comuand
line, and use /usr/local as the default.
prefix = ARGUVENTS. get (' prefix', '/usr/local")

Attach a .Config() builder for the above function action

Iy
=== SCONS 101

Var
env

to the construction environnent.
env[' BU LDERS][' Config'] = Builder(action = create)
env. Config(target = 'package-config', source = Val ue(prefix))

def build_val ue(target, source, env):
A function that "builds" a Python Value by updating
the the Python value with the contents of the file
specified as the source of the Builder call ($SOURCE).
target[0] . wite(source[0].get_contents())

out put = env. Val ue(' before')
i nput = env. Value('after"')

Attach a .UpdateVal ue() builder for the above function

action to the construction environnent.

env[' BUI LDERS'][' Updat eVal ue'] = Buil der(action = build_val ue)
env. Updat eVal ue(target = Val ue(output), source = Val ue(i nput))

iantDir(variant _dir, src_dir, [duplicate])

NMariantDir(variant _dir, src_dir, [duplicate])

Sets up an aternate build location. When building in the var i ant _di r, SCons backfills as needed with files
fromsrc_di r to create acomplete build directory. Var i ant Di r can be called multiple times with the same
src_dir toset up multiple builds with different options (variants).

Thevari ant location must be in or underneath the project top directory, and sr ¢_di r may not be underneath
variant _dir.

By default, SCons physically duplicates the source files and SConscript files as needed into the variant tree. Thus,
a build performed in the variant tree is guaranteed to be identical to a build performed in the source tree even if
intermediate source files are generated during the build, or if preprocessors or other scanners search for included
files relative to the source file, or if individual compilers or other invoked tools are hard-coded to put derived
filesin the same directory as source files. Only the files SCons calcul ates are needed for the build are duplicated
intovariant _dir.

If possible on the platform, the duplication is performed by linking rather than copying. This behavior is affected
by the - - dupl i cat e command-line option.

Duplicating the source files may be disabled by setting the dupl i cat e argument to Fal se. This will cause
SCons to invoke Builders using the path names of source filesinsrc_di r and the path names of derived files
within var i ant _di r. Thisis more efficient than dupl i cat e=Tr ue, and is safe for most builds; revert to
Tr ue if it causes problems.

Vari ant Di r worksmost naturally with used with asubsidiary SConscript file. The subsidiary SConscript fileis

caled asif it wereinvari ant _di r, regardless of the value of dupl i cat e. Thisishow you tell sconswhich
variant of a source treeto build:

run src/SConscript in tw variant directories

VariantDir (' build/variantl', "src')
SConscri pt (' bui | d/ vari ant 1/ SConscri pt')
VariantDir (' build/variant2', "src')

SConscri pt (' bui | d/ vari ant 2/ SConscri pt"')

SeeasotheSConscr i pt function, described above, for another way to specify avariant directory in conjunction
with calling asubsidiary SConscript file.

~

'—‘-‘ SCONS 102

Examples:

use nanes in the build directory, not the source directory
VariantDir('build', 'src', duplicate=0)
Progran(' bui |l d/ prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir('build, '.', duplicate=0)
SConscri pt (dirs=['build/src',"'build/doc'])

sanme as previous exanple, but only uses SConscri pt
SConscript (dirs="src', variant_dir="build/src', duplicate=0)
SConscri pt (di rs="doc', variant_dir="buil d/doc', duplicate=0)

Wer el s(program [path, pathext, reject])

env

Mherel s(program [path, pathext, reject])
Searches for the specified executable pr ogr am returning the full path to the program or None.

When called as a construction environment method, searches the paths in the pat h keyword argument, or if
None (the default) the paths listed in the construction environment (env[' ENV'] [' PATH]). The externa
environment's path list (0s. envi ron[' PATH]) isused as a falback if the key env[' ENV'][' PATH]
does not exist.

On Windows systems, searches for executable programs with any of the file extensions listed in
the pat hext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env[' ENV'][' PATHEXT']). The external environment's pathname extensionslist
(os. environ[' PATHEXT']) isused asafalback if thekey env[' ENV'] [' PATHEXT'] doesnot exist.

When called as a global function, uses the external environment's path os. envi ron[' PATH] and path
extensionsos. envi ron[' PATHEXT'], respectively, if pat h and pat hext are None.

Will not select any path name or namesin the optional r ej ect list.

SConscript Variables

In addition to the global functions and methods, scons supports a number of variables that can be used in SConscript
files to affect how you want the build to be performed.

ARCGLI ST

A list of the keywor d=val ue arguments specified on the command line. Each element in thelistisatuple containing
the argument. The separate keyword and val ue elements of the tuple can be accessed by subscripting for elements
[O] and [1] of the tuple, or, more readably, by using tuple unpacking. Example:

print("first keyword, value =", ARG.IST[O0][0], ARGLIST[O][1])
print("second keyword, value =", ARGIST[1][0], ARG.IST[1][1])
key, value = ARGI ST[2]

print("third keyword, value =", key, val ue)

for key, value in ARGLI ST:
process key and val ue

ARGUMENTS

A dictionary of all the keyword=value arguments specified on the command line. The dictionary is not in order,
and if a given keyword has more than one value assigned to it on the command line, the last (right-most) value
isthe one in the ARGUVENTS dictionary.

~

'—‘-‘ SCONS 103

Example:

i f ARGUMENTS. get (' debug', 0):

env = Environnment (CCFLAGS=' -g')
el se:

env = Environnent ()

BU LD _TARGETS
A list of the targets which scons has been asked to build. The contents will be either those targets listed on the
command line, or, if none, those targets set via callsto the Def aul t function. It does not contain any dependent
targets that scons selects for building as a result of making the sure the specified targets are up to date, if those
targets did not appear on the command line. The list is empty if neither command line targets or Def aul t calls
are present.

The elements of thislist may be strings or nodes, so you should run the list through the Python st r function to
make sure any Node path names are converted to strings.

Because this list may be taken from the list of targets specified using the Def aul t function, the contents of the
list may change on each successive call to Def aul t . See the DEFAULT_TARGETS list, below, for additional
information.

Example:

if '"foo' in BU LD TARCETS:

print("Don't forget to test the "foo' program")
if 'special/programi in BU LD TARCGETS:

SConscri pt (' speci al ')

COMWAND _LI NE_TARGETS
A list of the targets explicitly specified on the command line. If there are command line targets, thislist will have
the same contentsas BUI LD_TARGETS. If there are no targets specified on the command line, the list is empty.
The elements of this list are strings. This can be used, for example, to take specific actions only when certain
targets are explicitly being built.

Example:

if 'foo' in COVWAND LI NE TARGETS:
print("Don't forget to test the "foo' program")
if 'special/programi in COVMAND LI NE_TARGETS:
SConscri pt (' special ')

DEFAULT_TARGETS
A list of the target nodes that have been specified using the Def aul t function. If there are no command line
targets, this list will have the same contents as BUI LD_TARGETS. Since the elements of the list are nodes, you
need to call the Python st r function on them to get the path name for each Node.

Example:
print(str(DEFAULT_TARGETS[0]))

if "foo' in [str(t) for t in DEFAULT_TARCETS]:
print("Don't forget to test the "foo' program")

Iy
=== SCONS 104

The contents of the DEFAULT_TARGETS list change on on each successive call to the Def aul t function:

print([str(t) for t in DEFAULT TARGETS]) # originally []
Defaul t (' foo')

print([str(t) for t in DEFAULT TARGETS]) # now a node ['foo0']
Defaul t (' bar')

print([str(t) for t in DEFAULT TARGETS]) # now a node ['foo', 'bar']
Def aul t (None)

print([str(t) for t in DEFAULT TARGETS]) # back to []

Consequently, be sure to use DEFAULT_TARGETS only after you've made all of your Def aul t () cals, or else
simply be careful of the order of these statements in your SConscript files so that you don't look for a specific
default target beforeit's actually been added to the list.
These variables may be accessed from custom Python modules that you import into an SConscript file by adding the
following to the Python module;

from SCons. Scri pt inport *

Construction Variables

A construction environment has an associated dictionary of construction variables that are used by built-in or user-
supplied build rules. Construction variable naming must follow the same rules as Python identifier naming: theinitial
character must be an underscore or letter, followed by any number of underscores, letters, or digits. A construction
environment is not a Python dictionary itself, but it can be indexed like one to access a construction variable:

env["CC'] = "cc"
flags = env. get (" CPPDEFI NES", [])
Construction variables can also be retrieved and set by using the Di cti onary method of the construction

environment to create an actual dictionary:

cvars = env. Dictionary()

cvars["CC'] = "cc

Construction variables can also be passed to the construction environment constructor:

env = Environnent (CC="cc")

or when copying a construction environment using the Cl one method:

env2 = env. C one(CC="cl . exe")

Construction variables can a so be supplied as keyword argumentsto a builder, in which case those settings affect only

thework done by that builder call, and not the construction environment as awhole. This concept is called an override:

env. Program(* hello', "hello.c', LIBS=['gl"', "glut'])

Iy
=== SCONS 105

A number of useful construction variables are automatically defined by scons for each supported platform, and you
can modify these or define any additional construction variables for your own use, taking care not to overwrite ones
which SConsisusing. The following isalist of the possible automatically defined construction variables.

Note the actual list available at execution time will never include al of these, as the ones detected as not being useful
(wrong platform, necessary external command or filesnot installed, etc.) will not be set up. Correct build setups should
be resilient to the possible absence of certain construction variables before using them, for example by using a Python
dictionary get method to retrieve the value and taking alternative action if the return indicates the variable is unset.
Theenv. Dunp method can be called to examine the construction variables set in a particular environment.

__LDMODULEVERSI ONFLAGS
This construction variable automatically introduces $_ L DMODUL EVERSI ONFLAGS if $L DMODULEVERSI ON
is set. Othervise it evaluates to an empty string.

__NINJA _NO
Internal flag. Used to tell SCons whether or not to try to import pypi's ninja python package. Thisis set to True
when being called by Ninja?

__SHLI BVERSI ONFLAGS
This construction variable automatically introduces $_SHLI BVERSI ONFLAGS if $SHLI BVERSI ON is set.
Othervise it evaluatesto an empty string.

APPLELI NK_COWPATI BI LI TY_VERSI ON
On Mac OS X thisisused to set the linker flag: -compatibility_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLI BVERSI ON if not specified. The
lowest digit will be dropped and replaced by a 0.

If the SAPPLELI NK_NO_COWPATI BI LI TY_VERSI ONis set then no -compatibility_version will be outpuit.
See MacOS's |d manpage for more details

_APPLELI NK_COWPATI BI LI TY_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELI NK_COWPATI Bl LI TY_VERSI ON and
$APPLELI NK_NO_COWPATI BI LI TY_VERSI ONand $SHL| BVERSI ON to determine the correct flag.

APPLELI NK_CURRENT_VERSI ON
On Mac OS X thisis used to set the linker flag: -current_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This vaue will be set to $SHLI BVERSI ON if not specified.

If the SAPPLELI NK_NO_CURRENT_VERSI ONis set then no -current_version will be output.
See MacOS's |d manpage for more details

_APPLELI NK_CURRENT_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELI NK_CURRENT_VERSI ON and
$APPLELI NK_NO_CURRENT_VERSI ONand $SHLI BVERSI ON to determine the correct flag.

APPLELI NK_NO_COWPATI BI LI TY_VERSI ON
Set thisto any True (1|Truelnon-empty string) valueto disable adding -compatibility_version flag when generating
versioned shared libraries.

Iy
=== SCONS 106

This overrides SAPPLEL| NK_COMPATI BI LI TY_VERSI ON.

APPLELI NK_NO_CURRENT_VERSI ON
Set this to any True (1|Truenon-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides SAPPLEL| NK_CURRENT_VERSI ON.

AR
The static library archiver.

ARCHI TECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SConsisrunning. Thisisusedtofill inthe Ar chi t ect ur e: fieldinanlpkgcontr ol
file, and the Bui | dAr ch: field in the RPM . spec file, as well as forming part of the name of a generated
RPM packagefile.

See the Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environnment (ARCOVBTR = "Archi vi ng $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not set,
then $ASCOM (the command line) is displayed.

env = Environnment (ASCOMSTR = "Assenbl i ng $TARCGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assembl e an assembly-language sourcefileinto an object file after first running thefile
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
areincluded on this command line.

ASPPCOVSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If thisis not set, then $ASPPCOM (the command line) is displayed.

Iy
=== SCONS 107

env = Environnment (ASPPCOVSTR = "Assenbl i ng $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

Bl BTEX
Thebibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

Bl BTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

Bl BTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If thisis not set, then $Bl BTEXCOM
(the command line) is displayed.

env = Environnent (Bl BTEXCOVBTR = "CGenerating bi bl i ography $TARGET")

Bl BTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUI LDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program Li brary etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUI LDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUI LDERS will override any defaults:

bl d
env

Bui | der (acti on=' foobuild < $SOURCE > $TARGET')
Envi ronment (BUl LDERS={' NewBui | der': bl d})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment ()
env. Append(BUl LDERS={' NewBui | der': bl d})

or this:

env = Environnent ()
env[' BU LDERS][' NewBuil der'] = bld

CACHEDI R_CLASS
The class type that SCons should use when instantiating anew CacheDbi r for the given environment. It must be
a subclass of the SCons.CacheDir.CacheDir class.

CcC
The C compiler.

Iy
=== SCONS 108

CCccom
The command line used to compile a C sourcefile to a(static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOVBTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See aso $SHCCCOMSTR for compiling to shared objects.

env = Environnment (CCCOVBTR = "Conpi li ng static object $TARCGET")

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variableis set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variableis set.

The Visual C++ compiler option that SCons uses by default to generate PDB information is/ Z7. This works
correctly with paralée (-) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is aso the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although parallél builds will no longer work.

Y ou can generate PDB fileswith the/ Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS'] = [' ${(PDB and "/Zi /Fd%" %File(PDB)) or ""}']

An dternative would be to usethe/ Zi to put the debugging information in a separate . pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS' | = '/Zi /Fd${TARGET}. pdb

CCVERSI ON
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFl LESUFFI X
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.I)
or YACC (.y) input files. The default suffix, of course, is. ¢ (lower case). On case-insensitive systems (like
Windows), SCons also treats. C (upper case) filesas C files.

CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

Iy
=== SCONS 109

CHANGE_SPECFI LE
A hook for modifying thefile that controls the packaging build (the. spec for RPM, thecont r ol for Ipkg, the
.wxs for MSl). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANGED _SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution" for more information).

CHANGELOG
The name of a file containing the change log text to be included in the package. This is included as the
% hangel og section of the RPM . spec file.

See the Package builder.

COVPI LATI ONDB_COVBTR
The string displayed when the Conpi | at i onDat abase builder's action is run.

COVPI LATI ONDB_PATH_FI LTER
A string whichinstructs Conpi | at i onDat abase to only include entrieswherethe out put member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string ", which disables filtering.

COVPI LATI ONDB_USE_ABSPATH
A boolean flag to instruct Conpi | at i onDat abase whether to writethef i | e and out put membersin the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

concat

A function used to produce variables like $_CPPI NCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) alist of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optiona function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optiona af f ect _si gnat ur e flag which will wrap non-
empty returned value with $(and $) to indicate the contents should not affect the signature of the generated
command line.

env[' _CPPI NCFLAGS'] = ' ${_concat (| NCPREFI X, CPPPATH, |INCSUFFI X, __env__, RDrs,

CONFI GUREDI R
The name of the directory in which Configure context test files are written. The defaultis. sconf _t enp inthe
top-level directory containing the SConst r uct file.

CONFI GURELOG
The name of the Conf i gur e context log file. Thedefaultisconfi g. | og inthetop-level directory containing
the SConst r uct file.

Iy
=== SCONS 110

_ CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. Thevalueof $ CPPDEFFLAGS iscreated by respectively prepending and appending $CPPDEFPREFI X
and $CPPDEFSUFFI X to each definition in $CPPDEFI NES.

CPPDEFI NES
A platform independent specification of C preprocessor macro definitions. The definitions will be added to
command lines through the automatically-generated $_ CPPDEFFLAGS construction variable (see above), which
is constructed according to the type of value of SCPPDEFI NES:

If $CPPDEFI NES isastring, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
will be respectively prepended and appended to each definition in SCPPDEFI NES.

WIl add -Dxyz to POSI X conpil er conmand |i nes,
and /Dxyz to Mcrosoft Visual C++ command |i nes.
env = Environment (CPPDEFI NES=' xyz')

If $CPPDEFI NES is aligt, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
will be respectively prepended and appended to each element in thelist. If any element isalist or tuple, then the
first item is the name being defined and the second item isits value:

WI| add -DB=2 -DA to PCSI X conpil er command |i nes,
and /DB=2 /DA to Mcrosoft Visual C++ conmand |i nes.
env = Environment (CPPDEFI NES=[(' B, 2), 'A])

If $CPPDEFI NES is a dictionary, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variableswill berespectively prepended and appended to each item from the dictionary. Thekey of each dictionary
item is a name being defined to the dictionary item's corresponding value; if the value is None, then the name is
defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of
the options on the command line is consistent each time sconsisrun.

WI|l add -DA -DB=2 to PCSI X conpil er command |i nes,
and /DA /DB=2 to Mcrosoft Visual C++ conmand |i nes.
env = Environment (CPPDEFI NES={' B' : 2, ' A" : None})

CPPDEFPREFI X
The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable
isautomatically generated.

CPPDEFSUFFI X
The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable
isautomatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM $SHCCCOM $CXXCOM and
$SHCXXCOM command lines, but also the $FORTRANPPCOM $SHFORTRANPPCOM $F77PPCOM and
$SHF77PPCOMcommand lines used to compile a Fortran source file, and the $ASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
thisvariable does not contain - | (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPI NCFLAGS, below, for the variable that expands to those options.

Iy
=== SCONS 111

_CPPI NCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for includefiles. The value of $_CPPI NCFLAGS is created by respectively
prepending and appending $I NCPREFI X and $1 NCSUFFI X to each directory in $CPPPATH.

CPPPATH
Thelist of directoriesthat the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directoriesfor includefiles. In general it's not advised to put include directory directives
directly into $CCFLAGS or $CXXFLAGS astheresult will be non-portable and the directorieswill not be searched
by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list
joined by Python'sos. sep.

Note: directory names in $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used inacommand. To force sconsto look-up adirectory relativeto theroot of the source tree use the# prefix:

env = Environnent (CPPPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r function:
include = Dir("include')

env = Environment (CPPPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $ CPPI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$I NCPREFI X and $1 NCSUFFI X construction variables to each directory in $CPPPATH. Any command lines
you define that need the $CPPPATH directory list should include $_CPPI NCFLAGS:

env = Environnent (CCCOVE"ny_conpi | er $_CPPI NCFLAGS -c -0 $TARGET $SOURCE")

CPPSUFFI XES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default listis:

[".c", ".C", ".cxx", ".cpp", ".cC++", .cc",
“.h", ".H, ".hxx", ".hpp", ".hh",
“LF, ".fpp", ".FPP",
".8", ".spp", ".SPP"]
CXX

The C++ compiler. See also $SHCXX for compiling to shared objects..

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the SCXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOMfor compiling
to shared objects..

CXXCOVBTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See also $SHCXXCOMSTR for compiling to shared objects..

Iy
=== SCONS 112

env = Environnment (CXXCOVSTR = "Conpi ling static object $TARGET")

CXXFI LESUFFI X
The suffix for C++ sourcefiles. Thisisused by theinternal CXXFile builder when generating C++ files from Lex
(I or YACC (.yy) input files. The default suffix is. cc. SCons also treats files with the suffixes. cpp, . cxXx,
. C++, and . C++ as C++ files, and files with . mm suffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats. C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSI ON
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOoM
The command line used to compile aD file to an object file. Any options specified in the $DFLAGS construction
variable isincluded on this command line. See also $SHDCOMfor compiling to shared objects.

DCOMSTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See aso $SHDCOMSTR for compiling to shared objects.

DDEBUG
List of debug tags to enable when compiling.

DDEBUGPREFI X
DDEBUGPREFIX.

DDEBUGSUFFI X
DDEBUGSUFFIX.

DESCRI PTI ON
A long description of the project being packaged. Thisisincluded in the relevant section of the file that controls
the packaging build.

See the Package builder.

DESCRI PTI ON_I ang
A language-specific long description for the specified | ang. Thisis used to populate a %descri pti on -1
section of an RPM . spec file.

See the Package builder.

DFI LESUFFI X
DFILESUFFIX.

DFLAGPREFI X
DFLAGPREFIX.

DFLAGS
General options that are passed to the D compiler.

Iy
=== SCONS 113

DFLAGSUFFI X
DFLAGSUFFIX.

DI NCPREFI X
DINCPREFIX.

DI NCSUFFI X
DLIBFLAGSUFFIX.

Dir
A function that converts a string into a Dir instance relative to the target being built.
Drs
A function that converts alist of stringsinto alist of Dir instances relative to the target being built.

DLI B
Name of thelib tool to use for D codes.

DLI BCOM
The command line to use when creating libraries.

DLI BDI RPREFI X
DLIBLINKPREFIX.

DLI BDI RSUFFI X
DLIBLINKSUFFIX.

DLI BFLAGPREFI X
DLIBFLAGPREFIX.

DLI BFLAGSUFFI X
DLIBFLAGSUFFIX.

DLI BLI NKPREFI X
DLIBLINKPREFIX.

DLI BLI NKSUFFI X
DLIBLINKSUFFIX.

DLI NK
Name of thelinker to usefor linking systemsincluding D sources. See also $SHDL I NK for linking shared objects.

DLI NKCOM
The command line to use when linking systemsincluding D sources. See aso $SHDLI NKCOMfor linking shared
objects.

DLI NKFLAGPREFI X
DLINKFLAGPREFIX.

DLI NKFLAGS
List of linker flags. See also $SHDLI NKFLAGS for linking shared objects.

DLI NKFLAGSUFFI X
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

Iy
=== SCONS 114

DOCBOOK_DEFAULT_XSL_HTM.
The default XSLT file for the DocbookHt m builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTM_CHUNKED
Thedefault XSLT filefor theDocbookHt ml Chunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHt m hel p builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK _DEFAULT_XSL_SLI DESHTM.
Thedefault XSLT filefor the Docbook Sl i desHt nl builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK _DEFAULT_XSL_SL| DESPDF
The default XSLT file for the DocbookS| i desPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer f op or xep, if one of themisinstalled (f op gets checked first).

DOCBOCOK_FOPCOM
The full command-line for the PDF renderer f op or xep.

DOCBOOK_FOPCOVSTR
The string displayed when arenderer likef op or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer f op or xep.

DOCBOOK_XML_LI NT
The path to the external executable xi | i nt , if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no Ixml Python binding can be imported in the current system.

DOCBOOK_XM_LI NTCOM
The full command-line for the external executablexm | i nt .

DOCBOOK_XM_LI NTCOVSTR
The string displayed when xmi | i nt isused to resolve XIncludes for agiven XML file.

DOCBOOK_XMLLI NTFLAGS
Additonal command-line flags for the external executablexm i nt .

DOCBOOK_XSLTPRCC
The path to the external executable xsl t pr oc (or saxon, xal an), if one of them isinstalled. Note, that this
isonly used as last fallback for XSL transformations, if no Ixml Python binding can be imported in the current
system.

Iy
=== SCONS 115

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xs! t pr oc isused to transform an XML file viaagiven XSLT stylesheet.

DOCBOCOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCPARANS
Additonal parametersthat are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon- xsl t , respectively.

DPATH
List of paths to search for import modules.

DRPATHPREFI X
DRPATHPREFIX.

DRPATHSUFFI X
DRPATHSUFFIX.

DSUFFI XES
Thelist of suffixes of filesthat will be scanned for imported D package files. The default listis[' . d"] .

DVERPREFI X
DVERPREFIX.

DVERSI ONS
List of version tags to enable when compiling.

DVERSUFFI X
DVERSUFFIX.

DVI PDF
The TeX DVI file to PDF file converter.

DVI PDFCOM
The command line used to convert TeX DVI filesinto a PDF file.

DVI PDFCOVBTR
The string displayed when aTeX DVI fileis converted into a PDF file. If thisis not set, then $DVI PDFCOM(the
command line) is displayed.

DVI PDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVI PS
The TeX DVI file to PostScript converter.

DVI PSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
A dictionary of environment variables to use when invoking commands. When $ENV is used in a command
all list values will be joined using the path separator and any other non-string values will simply be coerced to
a string. Note that, by default, scons does not propagate the environment in effect when you execute scons to

Iy
=== SCONS 116

the commands used to build target files. This is so that builds will be guaranteed repeatable regardliess of the
environment variables set at the time sconsis invoked.

If you want to propagate your environment variables to the commands executed to build target files, you must
do so explicitly:

i mport os
env = Environnment (ENV=0s. envi ron. copy())

Note that you can choose only to propagate certain environment variables. A common example is the system
PATH environment variable, so that scons uses the same utilities as the invoking shell (or other process):

i mport os
env = Environnment (ENV={' PATH : os.environ[' PATH]})

ESCAPE
A function that will be called to escape shell specia charactersin command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

FO03
The Fortran 03 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

FO3COM
The command line used to compile aFortran 03 sourcefile to an object file. Y ou only need to set $FO3COMif you
need to use a specific command line for Fortran 03 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

FO3COVSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $FO03COM
or $FORTRANCOM (the command line) is displayed.

FO3FI LESUFFI XES
Thelist of file extensions for which the FO3 dialect will be used. By default, thisis[' . f 03"]

FO3FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO3PATH. See
$_F03I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO3FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_FO31 NCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F031 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO3PATH.

FO3PATH
The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO3FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO3PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only

Iy
=== SCONS 117

need to set $FO3PATH if you need to define a specific include path for Fortran 03 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FO3PATH=' #/i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environnent (FO3PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO31 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FO3PATH. Any command lines you define
that need the FO3PATH directory list should include $_FO03I NCFLAGS:

env = Envi ronnent (FO3COMVE" my_conpi | er $_FO3I NCFLAGS -c -0 $TARGET $SOURCE")

FO3PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO3FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO3PPCOMif you need to use a specific C-preprocessor command
line for Fortran 03 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO3PPCOVBTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO3PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO3PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO3 dialect will be used. By defaullt,
thisis empty.

FO08
The Fortran 08 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

FOo8COM
The command line used to compile a Fortran 08 sourcefileto an object file. Y ou only need to set $F08 COMif you
need to use a specific command line for Fortran 08 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FO8COVSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $FO08COM
or $FORTRANCOM (the command line) is displayed.

FO8FI LESUFFI XES
Thelist of file extensions for which the FO8 dialect will be used. By default, thisis[' . f 08"]

FOBFLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO8PATH. See

Iy
=== SCONS 118

$_FO8I NCFLAGS below, for the variable that expands to those options. Y ou only need to set SFO8FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F08I NCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F081 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO8PATH.

FO8PATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO8FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO8PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $FO8PATH if you need to define a specific include path for Fortran 08 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOBPATH=' #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environnment (FO8BPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO081 NCFLAGS
construction variable, which is constructed by appending the values of the $| NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FO8PATH. Any command lines you define
that need the FOBPATH directory list should include $_FO08I NCFLAGS:

env = Environnent (FOBCOM-"ny_conpi |l er $_FO08I NCFLAGS -c -0 $TARGET $SOURCE")

FO8PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO8FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO8PPCOMIf you need to use a specific C-preprocessor command
line for Fortran 08 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO8PPCOVETR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO8 PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO8PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO8 dialect will be used. By default,
thisis empty.

F77
The Fortran 77 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

Iy
=== SCONS 119

F77CoM
The command line used to compile aFortran 77 sourcefileto an object file. Y ou only need to set $F77 COMif you
need to use a specific command line for Fortran 77 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

F77COVBTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FI LESUFFI XES
Thelist of file extensions for which the F77 dialect will be used. By default, thisis[' . f 77"]

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F771 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the SFORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F771 NCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F771 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relative to the root of the sourcetree use#: Y ou only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. Y ou should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnent (F77PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environnent (F77PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ F771 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F771 NCFLAGS:

env = Environnent (F77COM="ny_conpi |l er $ F771 NCFLAGS -c -0 $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F77PPCOMif you need to use a specific C-preprocessor command

Iy
=== SCONS 120

line for Fortran 77 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOVBTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOMor $FORTRANPPCOM(the command line) is displayed.

F77PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
thisis empty.

F90
The Fortran 90 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

FooCom
The command line used to compile a Fortran 90 sourcefileto an object file. Y ou only need to set $F90COMif you
need to use a specific command line for Fortran 90 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FOOCOMBTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

FOOFI LESUFFI XES
Thelist of file extensions for which the FO0 dialect will be used. By default, thisis[' . f 90"]

FOOFLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FOQOPATH. See
$_F90I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FOOFLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90l NCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F90PATH.

FOOPATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI0FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relative to the root of the sourcetree use#: Y ou only
need to set $FOOPATH if you need to define a specific include path for Fortran 90 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOOPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')

Iy
=== SCONS 121

env = Environment (FOOPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F90! NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $F90PATH. Any command lines you define
that need the FOOPATH directory list should include $_F90! NCFLAGS:

env = Environnent (FOOCOVE"ny_conpi | er $_F90I NCFLAGS -c -0 $TARGET $SOURCE")

FOOPPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F90PPCOMif you need to use a specific C-preprocessor command
line for Fortran 90 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FOOPPCOVBTR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. If not set, then $F90PPCOMor $FORTRANPPCOM (the command line) is displayed.

FOOPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By defaullt,
thisis empty.

F95
The Fortran 95 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COM
The command line used to compile aFortran 95 sourcefile to an object file. Y ou only need to set $F95 COMif you
need to use a specific command line for Fortran 95 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

FO5COVSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

FO5FI LESUFFI XES
Thelist of file extensions for which the F95 dialect will be used. By default, thisis[' . f 95"]

FO5FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F95I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO5FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95I1 NCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F951 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F95PATH.

F95PATH
The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in

Iy
=== SCONS 122

$FI5FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $F95PATH if you need to define a specific include path for Fortran 95 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FO5PATH=' #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FO5PATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $ F951 NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $SF95PATH. Any command lines you define
that need the FO5PATH directory list should include $_F95I NCFLAGS:

env = Environnment (FO5COME"nmy_conpil er $ F951 NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FO5PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F95PPCOMif you need to use a specific C-preprocessor command
line for Fortran 95 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO5PPCOVBTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO5PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By default,
thisis empty.

File
A function that converts a string into a File instance relative to the target being built.

FORTRAN
The default Fortran compiler for al versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS
construction variables are included on this command line.

FORTRANCOMBTR
If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFI LESUFFI XES
Thelist of file extensions for which the FORTRAN dialect will be used. By default, thisis[' . f', '.for",
Lftn']

Iy
=== SCONS 123

FORTRANFLAGS
General user-specified options that are passed to the Fortran compiler. Note that this variable does not contain -
| (or similar) include or module search path options that scons generates automatically from $FORTRANPATH.
See$ FORTRANI NCFLAGS and $_FORTRANMODFLAG, below, for the variables that expand those options.

_FORTRANI NCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $_FORTRANI NCFLAGS is
created by respectively prepending and appending $| NCPREFI X and $| NCSUFFI X to the beginning and end
of each directory in SFORTRANPATH.

FORTRANMODDI R
Directory location where the Fortran compiler should place any module filesit generates. This variable is empty,
by default. Some Fortran compilerswill internally append thisdirectory in the search path for modulefiles, aswell.

FORTRANMODDI RPREFI X
The prefix used to specify amodul e directory on the Fortran compiler command line. Thiswill be prepended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

FORTRANMODDI RSUFFI X
The suffix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
end of the directory in the SFORTRANMODDI R construction variableswhenthe$ FORTRANMODFLAGvariables
isautomatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $_FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDI RPREFI X and $FORTRANMODDI RSUFFI X to the beginning and end of the
directory in $FORTRANMODDI R.

FORTRANMODPREFI X
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for modulefiles of nodul e_namne. nod. Asaresult, thisvariableisleft empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
thisvariable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFI X
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of nodul e_nane. nod. Asaresult, thisvariableis set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH

Thelist of directoriesthat the Fortran compiler will search for include filesand (for some compilers) modulefiles.
The Fortran implicit dependency scanner will search these directories for include files (but not modulefiles since
they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory argumentsin FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory namesin FORTRANPATH will belooked-up relative
to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to
the root of the source tree use #:

env = Envi ronnment (FORTRANPATH=" #/i ncl ude")

Iy
=== SCONS 124

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environnent (FORTRANPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $ FORTRANI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$1 NCPREFI X and $I NCSUFFI X construction variables to the beginning and end of each directory in
$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANI NCFLAGS:

env = Envi ronnent (FORTRANCOVE" ny_conpi | er $ FORTRANI NCFLAGS -c -0 $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $ CPPDEFFLAGS,
$ FORTRANMODFLAG, and $ FORTRANI NCFLAGS construction variables are included on this command line.

FORTRANPPCOVSTR
If set, the string displayed when aFortran sourcefileis compiled to an object file after first running the filethrough
the C preprocessor. If not set, then $FORTRANPPCOM(the command line) is displayed.

FORTRANPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, thisis[' . fpp', '.FPP"]

FORTRANSUFFI XES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

(*.f*, ".F, ".for", ".FOR", ".ftn", ".FTIN', ".fpp", ".FPP",
“frrt, t.F77Y, t.f90", ".F90", ".f95", ".F95"]
FRAMVEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEVORKS). For example:

env. AppendUni que(FRANMNEWORKPATH=" #nyf r anewor kdi r ')
will add
- Fnyf r amewor kdi r
to the compiler and linker command lines.
_ FRAMEWWORKPATH

On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAVEWORKPATH.

Iy
=== SCONS 125

FRAMEWORKPATHPREFI X
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see SFRAVEWORKPATH).
The default valueis- F.

FRAMEVWORKPREFI X
On Mac OS X with gec, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value
is-frameworKk.

FRAMEWORKS
On Mac OS X with gcc, alist of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env. AppendUni que(FRAVMEWORKS=Spl i t (' Syst em Cocoa SystemConfiguration'))

_ FRAMEWORKS
On Mac OS X with gec, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAMEWORKPATH,
SFRAVEVWORKPATHPREF| X, $FRANMEVWORKPREF| X and $FRAVEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCom
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sCQut put Fi | e=$TARGET $SOURCES".

GSCOVSTR
The string displayed when Ghostscript is called for the conversion process. If thisis not set (the default), then
$GSCOM (the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default valueis*“- dNOPAUSE - dBATCH - sDEVI CE=pdf wri te”

HOST_ARCH
The name of the host hardware architecture used to create the Environment. If aplatformis specified when creating
the Environment, then that Platform'slogic will handle setting thisvalue. Thisvalueisimmutable, and should not
be changed by the user after the Environment isinitialized. Currently only set for Win32.

Setsthe host architecture for the Visual C++ compiler. If not set, default to the detected host architecture: note that
this may depend on the python you are using. This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect.

Valid values are the same as for STARGET _ARCH.
Thisis currently only used on Windows, but in the future it may be used on other OSes as well.

HOST_CS
The name of the host operating system used to create the Environment. If a platform is specified when creating
the Environment, then that Platform'slogic will handle setting thisvalue. Thisvalueisimmutable, and should not
be changed by the user after the Environment isinitialized. Currently only set for Win32.

Iy
=== SCONS 126

| DLSUFFI XES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default listis:

[*.idl™, ".1DL"]

| MPLI BNOVERSI ONSYMLI NKS
Used to override $SHLI BNOVERSI ONSYMLI NKS/$LDMODULENOVERSI ONSYMLI NKS when creating
versioned import library for a shared library/loadable module. If not defined, then
$SHLI BNOVERSI ONSYMLI NKS/$L DMODUL ENOVERSI ONSYMLI NKS isused to determine whether to disable
symlink generation or not.

| MPLI BPREFI X
The prefix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl |). The cygl i nk linker sets $| MPLI BPREFI X to ' I i b' and
$SHLI BPREFI Xto' cyg' .

| MPLI BSUFFI X
The suffix used for import library names. For example, cygwin uses import libraries (1 i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl I). Thecygl i nk linker sets $| MPLI BSUFFI Xto' . dl|.a' and
$SHLI BSUFFI Xto' . dl | ".

| MPLI BVERSI ON
Used to override $SHLI BVERSI ON$SLDMODULEVERSI ON when generating versioned import library for a
shared library/loadable module. If undefined, the $SHL 1 BVERSI ON'$L DMODUL EVERSI ONisused to determine
the version of versioned import library.

| MPLI CI T_COVIVAND _DEPENDENCI ES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SConswill add to each target animplicit dependency on the command represented by thefirst argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable$! MPLI CI T_COMVAND DEPENDENCI EStoaTrue-likevalue (“true”, “yes’, or “1” - but not anumber
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a
separate “ command line”, these are run sequentially until onefails or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $| MPLI CI T_COMVAND _DEPENDENCI ES is applied
to each segment.

If $1 MPLI CI T_COMMAND_DEPENDENCI ES is set to a False-like value (“none”, “false”, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to “2” or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependenciesto the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $I MPLI CI T_COMVAND DEPENDENCI ES is set to “al”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added asimplicit dependenciesto the targets

Iy
=== SCONS 127

built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

env = Environment (I MPLI CI T_COMVAND_DEPENDENCI ES=Fal se)

I NCPREFI X
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS and
$_FORTRANI NCFLAGS variables are automatically generated.

I NCSUFFI X
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPI NCFLAGS and
$ FORTRANI NCFLAGS variables are automatically generated.

| NSTALL
A function to be called to install afile into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the sourcefile's). The function takes
the following arguments:

def install(dest, source, env):

dest isthe path name of the destination file. sour ce isthe path name of the sourcefile. env isthe construction
environment (a dictionary of construction values) in force for thisfile installation.

I NSTALLSTR
The string displayed when afileisinstalled into a destination file name. The default is:

Install file: "$SOURCE" as "S$TARGET"

| NTEL_C COWPI LER_VERSI ON
Set by thei nt el ¢ Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDI R
The directory to which the Java archive tool should change (using the - C option).

JARCOM
The command line used to call the Java archive tool.

JARCOVSTR
The string displayed when the Java archive toal is called If thisis not set, then $J ARCOM (the command line)
is displayed.

env = Environnent (JARCOMSTR="JARchi vi ng $SOURCES i nto $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

JARSUFFI X
The suffix for Javaarchives:. . j ar by default.

Iy
=== SCONS 128

JAVABOOTCLASSPATH
Specifiesthe list of directories that will be added to the javac command line viathe - boot cl asspat h option.
The individual directory names will be separated by the operating system's path separate character (: on UNIX/
Linux/POSIX, ; on Windows).

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java classfiles.
Any options specified in the $J AVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source filesto corresponding Java classfiles. If this
is not set, then $J AVACCOM(the command line) is displayed.

env = Environnment (JAVACCOVSTR="Conpi |l ing class files $TARCGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDI R
The directory in which Java class files may be found. This s stripped from the beginning of any Java .classfile
names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the list of directories that will be searched for Java . cl ass file. The directories in this list will be
added to the javac and javah command lines viathe - cl asspat h option. The individual directory names will
be separated by the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - cl asspat h option. SCons does not currently
search the $J AVACLASSPATH directories for dependency . cl ass files.

JAVACLASSSUFFI X
The suffix for Javaclassfiles; . ¢l ass by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$J AVAHCOM (the command line) is displayed.

env = Environnment (JAVAHCOVETR="Gener ati ng header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAI NCLUDES
Include path for Java header files (such asjni.h)

Iy
=== SCONS 129

JAVASOURCEPATH
Specifiesthelist of directoriesthat will be searched for input . j ava file. Thedirectoriesin thislist will be added
to the javac command line viathe - sour cepat h option. The individual directory names will be separated by
the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - sour cepat h option. SCons does not currently
search the $J AVASOURCEPATH directories for dependency . j ava files.

JAVASUFFI X
The suffix for Javafiles; . j ava by default.

JAVAVERSI ON
Specifies the Java version being used by the Java builder. Thisis not currently used to select one version of
the Java compiler vs. another. Instead, you should set thisto specify the version of Java supported by your javac
compiler. The defaultis 1. 4.

Thisis sometimes necessary because Java 1.5 changed the file namesthat are created for nested anonymous inner
classes, which can cause a mismatch with the files that SCons expects will be generated by the javac compiler.
Setting $JAVAVERSI ONto 1. 5 (or 1. 6, as appropriate) can make SCons realize that a Java 1.5 or 1.6 build
isactualy up to date.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOVSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
$LATEXCOM(the command line) is displayed.

env = Environnment (LATEXCOVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRI ES
The maximum number of times that LaTeX will bere-run if the. | og generated by the $L ATEXCOMcommand
indicates that there are undefined references. The default isto try to resolve undefined references by re-running
LaTeX up to three times.

LATEXSUFFI XES
Thelist of suffixes of filesthat will be scanned for LaTeX implicit dependencies(\ i ncl ude or\i nport files).
The default list is:

[".tex", ".ltx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, thisisthe same as $SHLI NK.

L DMODULECOM
The command linefor building loadable modules. On Mac OS X, this usesthe $L. DMODUL E, $L DMODUL EFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, thisisthe same as $SHLI NK.

Iy
=== SCONS 130

L DMODULECOVSTR
If set, the string displayed when building loadable modules. If not set, then $L DMODUL ECOM(the command line)
isdisplayed.

LDMODULEEM TTER
Contains the emitter specification for the Loadabl eModul e builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

LDMODULEFLAGS
General user options passed to the linker for building |oadable modules.

L DMODUL ENOVERSI ONSYMLI NKS
Instructs the Loadabl eMbdul e builder to not automatically create symlinks for versioned modules. Defaults
to $SHLI BNOVERSI ONSYMLI NKS

L DMODUL EPREFI X
The prefix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLI BPREFI X.

_ L DMODUL ESONAMVE
A macro that automatically generates loadable modules SONAME based on $TARGET,
$LDMODULEVERSION and $L DMODULESUFFIX. Used by Loadabl eModul e builder when thelinker tool
supports SONAME (e.g. gnul i nk).

L DMODUL ESUFFI X
The suffix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLIBSUFFIX.

L DMODULEVERSI ON
When this construction variable is defined, a versioned loadable module is created by Loadabl eModul e
builder. This activates the $_ L DMODUL EVERSI ONFLAGS and thus modifies the $L DMODUL ECOMas required,
adds the version number to the library name, and creates the symlinks that are needed. $L DMODULEVERSI ON
versions should exist in the same format as $SHLI BVERSI ON.

_LDMODULEVERSI ONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
Loadabl eMbdul e (that is when $LDMODULEVERSI ON is set). _LDMODULEVERSI ONFLAGS usualy
adds $SHLI BVERSI ONFLAGS and some extra dynamically generated options (such as - W, - sonane=
$_LDMODULESONANME). It is unused by plain (unversioned) loadable modules.

L DMODUL EVERSI ONFLAGS
Extra flags added to $L DMODULECOMwhen building versioned Loadabl eMbdul e. These flags are only used
when $LDMODULEVERSI ONis set.

LEX
Thelexical analyzer generator.

LEXCOM
The command line used to call the lexical analyzer generator to generate a sourcefile.

LEXCOMBTR
The string displayed when generating a source file using the lexical analyzer generator. If thisis not set, then
$LEXCOM(the command line) is displayed.

env = Envi ronnment (LEXCOMBTR = "Lex'ing $TARGET from $SOURCES")

Iy
=== SCONS 131

LEXFLAGS
General options passed to the lexical analyzer generator.

LEXUNI STD
Used only on windows environments to set alex flag to prevent 'unistd.h’ from being included. The default value
is'--nounistd'.

_LI BDI RFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directoriesto be searched for library. The value of $_LI BDI RFLAGS is created by respectively prepending and
appending $L1 BDI RPREFI X and $LI BDI RSUFFI X to each directory in $L1 BPATH.

LI BDI RPREFI X
The prefix used to specify alibrary directory on the linker command line. Thiswill be prepended to each directory
inthe $LI BPATH construction variable whenthe $_ L1 BDI RFLAGS variable is automatically generated.

LI BDI RSUFFI X
The suffix used to specify alibrary directory on the linker command line. Thiswill be appended to each directory
inthe $LI BPATH construction variable when the $_ L1 BDI RFLAGS variable is automatically generated.

LI BEM TTER
Contains the emitter specification for the St at i cLi br ary builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

_LI BFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_LI BFLAGS is created by respectively prepending
and appending $LI BLI NKPREFI X and $L1 BLI NKSUFFI X to each filenamein $LI BS.

LI BLI NKPREFI X
The prefix used to specify alibrary to link on the linker command line. Thiswill be prepended to each library in
the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LI BLI NKSUFFI X
The suffix used to specify alibrary to link on the linker command line. This will be appended to each library in
the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LI BPATH
Thelist of directoriesthat will be searched for libraries specified by the $L1 BS construction variable. $LI BPATH
should be a list of path strings, or a single string, not a pathname list joined by Python's os. sep. Do not put
library search directives directly into $L1 NKFLAGS or $SHLI NKFLAGS as the result will be non-portable.

Note: directory namesin $LI BPATHwill be looked-up relative to the directory of the SConscript file when they
are used inacommand. To force sconsto look-up adirectory relativeto theroot of the source tree use the# prefix:
env = Environnment (LI BPATH=" #/1i bs")

The directory look-up can also be forced using the Di r function:

libs = Dir('libs")

env = Environment (LI BPATH=I i bs)

The directory list will be added to command lines through the automatically-generated $_LI BDI RFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

Iy
=== SCONS 132

$LI BDI RPREFI X and $LI BDI RSUFFI X construction variables to each directory in $LI BPATH. Any
command lines you define that need the $LI BPATH directory list should include $_LI| BDI RFLAGS:

env = Environment (LI NKCOVE"ny_| i nker $_LI BDI RFLAGS $ LI BFLAGS -0 $TARGET $SOURCE")

LI BPREFI X
The prefix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mglib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BPREFI XES
A list of al legal prefixes for library file names. When searching for library dependencies, SCons will look for
files with these prefixes, the base library name, and suffixes from the $LI BSUFFI XES list.

LI BS
A list of one or more libraries that will be added to the link line for linking with any executable program, shared
library, or loadable module created by the construction environment or override.

String-valued library names should include only the library base names, without prefixessuch asl i b or suffixes
such as. so or . dl | . The library list will be added to command lines through the automatically-generated
$_LI BFLAGS construction variable which is constructed by respectively prepending and appending the val ues of
the$L1 BLI NKPREFI Xand $L1 BLI NKSUFFI X construction variablesto each library namein $LI BS. Library
name strings should not include a path component, instead the compiler will be directed to look for librariesin
the paths specified by $L1 BPATH.

Any command lines you define that need the $LI BS library list should include $_LI BFLAGS:

env = Environment (LI NKCOVE"ny_| i nker $_LI BDI RFLAGS $ LI BFLAGS -0 $TARCGET $SOURCE")

If youadd aFi | e object to the $LI BS list, the name of that file will be added to $_L| BFLAGS, and thusto the
link line, as-is, without $LI BLI NKPREFI X or $L1 BLI NKSUFFI X. For example:

env. Append(LIBS=Fil e(' /tnmp/ nylib.so"))
In all cases, sconswill add dependencies from the executable program to al the librariesin thislist.

LI BSUFFI X
The suffix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BSUFFI XES
A list of al legal suffixes for library file names. When searching for library dependencies, SCons will look for
fileswith prefixes from the $L1 BPREFI XES list, the base library name, and these suffixes.

LI CENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause e€tc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for alist of license names and SPDX codes.

See the Package builder.

L1 NESEPARATOR
The separator used by the Substfil e and Text fi |l e builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

Iy
=== SCONS 133

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

LI NGUAS_FI LE
The $LI NGUAS_FI LE defines filg(s) containing list of additiona linguas to be processed by PO nit,
PQOUpdat e or MOFi | es builders. It also affects Tr ans| at e builder. If the variable contains a string, it defines
name of the list file. The $LI NGUAS_FI LE may be alist of file names aswell. If $LI NGUAS_FI LE is set to
Tr ue (or non-zero numeric value), the list will be read from default file named LI NGUAS.

LI NK
The linker. See also $SHLI NK for linking shared objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart” linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LI NKCOM
The command line used to link object files into an executable. See aso $SHLI NKCOMfor linking shared objects.

LI NKCOVBTR
If set, the string displayed when object filesarelinked into an executable. If not set, then $L1 NKCOM(the command
line) isdisplayed. See d'so $SHLI NKCOMBTR. for linking shared objects.

env = Environnent (LI NKCOVSTR = "Li nki ng $TARGET")

LI NKFLAGS
General user options passed to the linker. Note that this variable should not contain -1 (or similar) options
for linking with the libraries listed in $LI BS, nor - L (or similar) library search path options that scons
generates automatically from $L1 BPATH. See $_LI| BFLAGS above, for the variable that expands to library-
link options, and $_L| BDI RFLAGS above, for the variable that expands to library search path options. See also
$SHLI NKFLAGS. for linking shared objects.

M4
The M4 macro preprocessor.

MACOM
The command line used to pass files through the M4 macro preprocessor.

MACOVBTR
The string displayed when afile is passed through the M4 macro preprocessor. If thisis not set, then $MACOM
(the command line) is displayed.

MAFLAGS
General options passed to the M4 macro preprocessor.

MAKEI NDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEI NDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEI NDEXCOVSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If thisis not set, then $MAKEI NDEXCOM (the command line) is displayed.

MAKEI NDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

Iy
=== SCONS 134

MAXLI NELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

M DL
The Microsoft IDL compiler.

M DLCOM
The command line used to pass files to the Microsoft IDL compiler.

M DLCOMSTR
The string displayed when the Microsoft IDL compiler iscalled. If thisis not set, then $M DLCOM(the command
line) is displayed.

M DLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFI X
Suffix used for MOfiles (default: * . mo'). Seenrsgf nt tool and MOFi | es builder.

VSGFMT
Absolute path to msgfmt(1) binary, found by Det ect () . Seensgf nt tool and MOFi | es builder.

MSGFMICoMm
Complete command line to run msgfmt(1) program. See nsgf mt tool and MOFi | es builder.

MSGFMITCOMSTR
String to display when msgfmt(1) is invoked (default: ' ' , which means *“print $MSGFMITCOM'). See msgf nt
tool and MOFi | es builder.

MSGFMTFLAGS
Additional flags to msgfmt(1). See nsgf nt tool and MOFi | es builder.

MSG NI T
Path to msginit(1) program (found viaDet ect ()). Seensgi ni t tool and PO ni t builder.

MBG NI TCOM
Complete command line to run msginit(1) program. See nsgi ni t tool and PO ni t builder.

M5G NIl TCOMSTR
String to display when msginit(1) isinvoked (default: * ', which means ™ print SMSG NI TCOM'). Seensgi ni t
tool and POl ni t builder.

M5GA NI TFLAGS
List of additional flags to msginit(1) (default: []). Seensgi ni t tool and PO ni t builder.

_MBSG NI TLOCALE
Interna “macro". Computes locale (language) name based on target filename (default:
" ${ TARGET. fi | ebase}"').

Seensgi ni t tool and PA ni t builder.

MSGVERCGE
Absolute path to msgmer ge(1) binary as found by Det ect () . See nsgner ge tool and POUpdat e builder.

MBGVERGECOM
Complete command line to run msgmer ge(1) command. See nsgner ge tool and POUpdat e builder.

Iy
=== SCONS 135

MSGVERGECOVETR
String to be displayed when msgmer ge(1) isinvoked (default: ' * , which means ™ print SMSGVERGECOM'). See
nsgner ge tool and POUpdat e builder.

MSGVERCGEFLAGS
Additional flags to msgmer ge(1) command. See nsgner ge tool and POUpdat e builder.

MBSDK_DI R
Thedirectory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSI ON
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versionsinclude 6. 1, 6. 0A, 6. 0, 2003R2 and 2003R1.

MBVC_BATCH

When set to any trueval ue, specifiesthat SCons should batch compilation of object fileswhen calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in asingle cal to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invacation (via the $CHANGED SOURCES construction variable). Any compilations
where the object (target) file base name (minus the . obj) does not match the source file base name will be
compiled separately.

MBVC_USE_SCRI PT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of aVisual Studio . bat file (e.g. vcvar s. bat), SConswill run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %8 NCLUDEY, %1 B% and %°ATH
9 for supplying to the build. This can be useful to force the use of a compiler version that SCons does not detect.

Setting $MSVC_USE_SCRI PT to None bypasses the Visua Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MSVC_USE_SCRI PT overrides $SMSVC_VERSI ON and $TARGET_ARCH.

MBVC_UWP_APP
Build libraries for a Universal Windows Platform (UWP) Application.

If SMSVC_UWP_APP is set, the Visual C++ environment will be set up to point to the Windows Store compatible
libraries and Visual C++ runtimes. In doing so, any libraries that are built will be able to be used in a UWP App
and published to the Windows Store. This flag will only have an effect with Visual Studio 2015 or later. This
variable must be passed as an argument to the Environment() constructor; setting it later has no effect.

Validvauesare'l or '0f

M5VC_VERSI ON
Sets the preferred version of Microsoft Visual C/C++ to use.

If $MSVC_VERSI ONis not set, SCons will (by default) select the latest version of Visua C/C++ installed on
your system. If the specified version isn't installed, tool initialization will fail. This variable must be passed as an
argument to the Envi r onment constructor; setting it later has no effect.

Valid valuesfor Windowsare14. 2,14. 1, 14. 1Exp, 14. 0, 14. OExp, 12. 0,12. OExp, 11. 0,11. OExp,
10. 0,10. OExp,9. 0,9. OEXxp, 8. 0,8. OExp,7. 1,7. 0,and6. 0. Versionsendingin Exp refer to "Express’
or "Express for Desktop" editions.

Iy
=== SCONS 136

MBVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSV S being used (can be set via$MSVS_VERSI ON)

VERSIONS
the available versions of MSVSinstaled

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visua Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted |atest to oldest.

FRAMEWORKVERSION
|atest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If avalueis not set, it was not availablein the registry.

MBVS_ARCH
Sets the architecture for which the generated project(s) should build.

Thedefault valueisx86. and64 isalso supported by SConsfor most Visual Studio versions. SinceVisual Studio
2015 ar mis supported, and since Visua Studio 2017 ar m64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for a given Visual Studio version will generate an error.

MBVS_PRQIECT_GUI D
The string placed in agenerated Microsoft Visual Studio project file asthe value of the Pr oj ect GUI Dattribute.
Thereis no default value. If not defined, anew GUID is generated.

MBVS_SCC AUX PATH
The path name placed in a generated Microsoft Visual Studio project file as the value of the SccAuxPat h
attribute if the MSVS_SCC_PROVI DER construction variable is also set. Thereis no default value.

MBVS_SCC_CONNECTI ON_ROOT
The root path of projects in your SCC workspace, i.e the path under which al project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visual Studio project and solution files are computed. The relative project file path is
placed as the value of the ScclLocal Pat h attribute of the project file and as the values of the
SccProj ect Fi | ePat hRel ati vi zedFromConnection[i] (where [i] ranges from O to the number

Iy
=== SCONS 137

of projects in the solution) attributes of the @ obal Sect i on(Sour ceCodeCont rol) section of the
Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
ScclLocal Pat h[i] (where [i] ranges from O to the number of projects in the solution) attributes of the
d obal Secti on(Sour ceCodeCont rol) section of the Microsoft Visua Studio solution file. Thisis used
only if the MSBVS_SCC_PROVI DER construction variable is also set. The default value is the current working
directory.

MBVS_SCC_PRQIECT_NANME
The project name placed in a generated Microsoft Visua Studio project file as the value of the
SccPr oj ect Nane attribute if the MSVS_SCC_PROVI DER construction variable is also set. In this case the
string isalso placed in the SccPr oj ect NaneO0 attribute of thed obal Sect i on(Sour ceCodeCont r ol)
section of the Microsoft Visual Studio solution file. Thereis no default value.

MBVS_SCC_PROVI DER
The string placed in agenerated Microsoft Visual Studio project file asthe value of the SccPr ovi der attribute.
The string isalso placed inthe SccPr ovi der 0 attribute of the G obal Sect i on(Sour ceCodeCont r ol)
section of the Microsoft Visual Studio solution file. Thereis no default value.

MBVS_VERSI ON
Sets the preferred version of Microsoft Visual Studio to use.

If $MBVS_ VERSI ONisnot set, SConswill (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. Y ou can override
this by specifying the MSVS_VERSI ON variable in the Environment initialization, setting it to the appropriate
version ('6.0" or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

This is obsolete: use $MSVC_VERSI ON instead. If $MSVS_VERSI ON is set and $MSVC_VERSI ON is not,
$MBVC_VERSI ONwill be set automatically to $MSVS_VERSI ON. If both are set to different values, scons will
raise an error.

MBVSBUI LDCOM
The build command line placed in a generated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified build targets.

MBVSCL EANCOM
The clean command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MBVSENCODI NG
The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding
W ndows- 1252.

MBVSPRQJECTCOM
The action used to generate Microsoft Visual Studio project files.

MBVSPRQJECTSUFFI X
The suffix used for Microsoft Visua Studio project (DSP) files. The default valueis. vepr oj whenusing Visual
Studio version 7.x (.NET) or later version, and . dsp when using earlier versions of Visual Studio.

MSVSREBUI LDCOM
Therebuild command line placed in agenerated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified rebuild targets.

MBVSSCONS
The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being
used to generate the project file.

Iy
=== SCONS 138

MBVSSCONSCOM
The default SCons command used in generated Microsoft Visual Studio project files.

MBVSSCONSCRI PT
The sconscript file (that is, SConst ruct or SConscr i pt file) that will be invoked by Visual Studio project
files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that contains the call to
MBVSPr oj ect to build the project file.

MBVSSCONSFLAGS
The SCons flags used in generated Microsoft Visua Studio project files.

MBVSSCLUTI ONCOM
The action used to generate Microsoft Visual Studio solution files.

MBVSSCOLUTI ONSUFFI X
The suffix used for Microsoft Visua Studio solution (DSW) files. The default valueis. sl n when using Visual
Studio version 7.x (.NET), and . dswwhen using earlier versions of Visual Studio.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See aso
$W NDONS_EMBED _MANI FEST.

MTEXECOM
The Windows command line used to embed manifests into executables. See also $MI'SHL1 BCOM

MIFLAGS
Flags passed to the $MT" manifest embedding program (Windows only).

MT'SHLI BCOM
The Windows command line used to embed manifests into shared libraries (DLLS). See also $MIEXECOM

MACW VERSI ON
The version number of the Metrowerks CodeWarrior C compiler to be used.

MACW VERSI ONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NANMVE
Specfies the name of the project to package.

See the Package builder.

NI NJA_ALI AS_NAME
Name of the Alias() which iswill cause SConsto create the ni nj a. bui | d file, and then (optionally) run ninja.

NI NJA_COVPDB_EXPAND
Boolean value (True|False) to instruct ninja to expand the command line arguments normally put into response
files. This prevents lines in the compilation database like “gcc @rsp_file” and instead yields “gcec -¢ -0 myfile.o
myfile.c-la-DXYZ"

Ninja's compdb tool added the “-x” flag in NinjaV1.9.0

NI NJA DI R
This propagates directly into the generated ni nj a. bui | d file. From Ninja's docs.

builddir A directory for some Ninja output files. ... (You can also store other build output in
this directory.)

Iy
=== SCONS 139

NI NJA DI SABLE_AUTO_RUN
Boolean (Trueg|False). Default: False When True, SCons will not run ninja automatically after
creating the ni nj a. bui l d file. If not set, this will be set to True if “--disable execute ninja’ or
Set Option(' di sabl e_execute_ninja', True)

NI NJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and
the SCons command ENV. It will be compatible with the default shell of the operating system. If not explicitly
specified, SConswill generate thisdynamically from the Environment()'s'ENV' “env['ENV']” where those values
differ from the existing shell..

NI NJA_FI LE_NAME
The filename for the generated Ninja build file defaultsto ni nj a. bui | d

NI NJA GENERATED_ SOURCE_SUFFI XES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixes will be added to the _generated sources alias in the output ni nj a. bui | d file. Then all other source
fileswill be made to depend on thisin the ni nj a. bui | d file, forcing the generated sources to be built first.

NI NJA_MSVC DEPS_PREFI X
This propagates directly into the generated ni nj a. bui | d file. From Ninjas docs “ defines the string which
should be stripped from msvc’s /showlIncludes output”

NI NJA POOL
Set the “ninja_pool” for thisor all targetsin scope for this env var.

NI NJA REGENERATE_DEPS
A generator function used to create a ninja depsfile which includes all the files which would require SConsto be
invoked if they change. Or alist of said files.

_NI NJA_REGENERATE_DEPS FUNC
Internal value used to specify the function to call with argument env to generate the list of fileswhich if changed
would require the ninjafile to be regenerated.

NI NJA_SYNTAX
Theres aso NINJA_SYNTAX which is the path to a custom ninja_syntax.py file which is used in generation.
The tool currently assumes you have ninja installed through pip, and grabs the syntax file from that installation
if none specified.

no_inport _lib
When set to non-zero, suppresses creation of acorresponding Windows static import lib by the Shar edLi br ary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (. exp) file when using Microsoft Visual Studio.

OBJPREFI X
The prefix used for (static) object file names.

OBJ SUFFI X
The suffix used for (static) object file names.

PACKAGEROOT
Specifiesthedirectory whereall filesinresulting archivewill be placed if applicable. The default valueis” SNAME-
$VERSI ON'.

See the Package builder.

Iy
=== SCONS 140

PACKAGETYPE
Selects the package type to build when using the Package builder. May be a string or list of strings. See the
docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the - - package- t ype command line option.
See the Package builder.

PACKAGEVERSI ON
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

See the Package builder.

PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

env[' PCH] = ' St dAfx. pch’

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOVSTR
The string displayed when generating a precompiled header. If thisis not set, then $PCHCOM (the command line)
is displayed.

PCHPDBFLAGS
A construction variablethat, when expanded, addsthe/ y Dflag to the command line only if the $PDB construction
variableis set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variableis not being used. When thisvariableis defineit must be astring
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env[' PCHSTOP'] = ' St dAf x. h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env[' PDB'] = 'hello.pdb’

The Visual C++ compiler switch that SCons uses by default to generate PDB information is/ Z7. This works
correctly with paraléel (-) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,

Iy
=== SCONS 141

although parallel builds will no longer work. Y ou can generate PDB files with the/ Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOVSTR
The string displayed when calling the pdflatex utility. If thisisnot set, then $PDFLATEXCOM(the command line)
isdisplayed.

env = Envi ronnent (PDFLATEX; COVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFI X
The prefix used for PDF file names.

PDFSUFFI X
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOVSTR
The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line)
isdisplayed.

env = Envi ronnent (PDFTEXCOVSTR = "Bui | di ng $TARGET from TeX i nput $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKA NFO) to look for installed
versions of the Sun PRO C++ compiler. The default is/ usr/ sbi n/ pgkchk.

PKG NFO
On Solaris systems, the package informati on program that will be used (along with $PKGCHK) to look for installed
versions of the Sun PRO C++ compiler. The default is pkgi nf o.

PLATFORM
The name of the platform used to create the Environment. If no platform is specified when the Environment is
created, scons autodetects the platform.

env = Environment(tools = [])
if env[' PLATFORM] == 'cygwi n':
Tool (" m ngw) (env)

Iy
=== SCONS 142

el se:
Tool (" nsvc') (env)

POAUTO NI T
The$PQAUTA NI T variable, if set to Tr ue (on non-zero numeric value), let thensgi ni t tool to automatically
initialize missing PO files with msginit(1). This applies to both, PO ni t and POUpdat e builders (and others
that use any of them).

POCREATE_ALI AS
Common alias for all POfiles created with POl ni t builder (default: ' po- creat e'). Seensgi ni t tool and
PO ni t builder.

POSUFFI X
Suffix used for POfiles (default: * . po') Seensgi ni t tool and PO ni t builder.

POTDOVAI N
The $POTDOMAI N defines default domain, used to generate POT filename as $SPOTDOVAI N. pot when no POT
filenameis provided by the user. Thisappliesto POTUpdat e, PO ni t and POUpdat e builders (and builders,
that usethem, e.g. Tr ansl at e). Normally (if $POTDOMAI Nis not defined), the buildersuse nessages. pot
as default POT file name.

POTSUFFI X
Suffix used for PO Template files (default: ' . pot '). Seexget t ext tool and POTUpdat e builder.

POTUPDATE_ALI AS
Name of the common phony target for all PO Templates created with POUpdat e (default: ' pot - updat e').
Seexget t ext tool and POTUpdat e builder.

POUPDATE_ALI AS
Common aliasfor all POfilesbeing defined with POUpdat e builder (default: * po- updat e'). Seensgmner ge
tool and POUpdat e builder.

PRI NT_CMD_LI NE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the - g or - s options or their equivalents). The function should take four arguments: s, the command
being executed (astring), t ar get , thetarget being built (filenode, list, or string name(s)), sour ce, the source(s)
used (file node, list, or string name(s)), and env, the environment being used.

The function must do the printing itself. The default implementation, used if thisvariableis not set or isNone, is:

def print_cnd_|ine(s, target, source, env):
sys.stdout.wite(s + "\n")

Here's an example of amore interesting function:

def print_cnd |ine(s, target, source, env):
sys.stdout.wite("Building % -> 9%...\n" %
(" and '.join([str(x) for x in source]),
'"‘and '.join([str(x) for x in target])))
env=Envi ronment (PRI NT_CVD LI NE_ FUNC=print_cnd_| i ne)
env. Program(' foo', 'foo.c')

Thisjust prints"Buildingt ar get nanme fromsour cenane..." instead of the actual commands. Such afunction
could also log the actual commandsto alog file, for example.

Iy
=== SCONS 143

PROGEM TTER
Contains the emitter specification for the Pr ogr ambuilder. The manpage section "Builder Objects’ contains
general information on specifying emitters.

PROGPREFI X
The prefix used for executable file names.

PROGSUFFI X
The suffix used for executable file names.

PSCoM
The command line used to convert TeX DVI filesinto a PostScript file.

PSCOVSTR
The string displayed when a TeX DVI fileis converted into a PostScript file. If thisis not set, then $PSCOM(the
command line) is displayed.

PSPREFI X
The prefix used for PostScript file names.

PSSUFFI X
The prefix used for PostScript file names.

Qr_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify filesto run moc on.

QT_BI NPATH
The path where the gt binaries are installed. The default valueis'$QTDI R/bin'.

QT_CPPPATH
The path where the gt header files are installed. The default value is '$QTDI Rlinclude. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

QT_DEBUG
Prints lots of debugging information while scanning for moc files.

Qr_LiB
Default value is 'gt'. You may want to set this to 'gt-mt'. Note: If you set this variable to None, the tool won't

change the $LI BS variable.

Qr_LI BPATH
The path where the gt libraries are installed. The default value is '$QTDI R/lib'. Note: If you set this variable to
None, the tool won't change the $L1 BPATH construction variable.

Qr_MoC
Default valueis'$QT_BlI NPATH/moc'.

QI_MOCCXXPREFI X
Default value is™. Prefix for moc output files, when source is a cxx file.

QTI_MOCCXXSUFFI X
Default value is'.moc'. Suffix for moc output files, when source isacxx file.

QT_MOCFROMCXXCOM
Command to generate amoc file from a cpp file.

QT_MOCFROMCXXCOMSTR
The string displayed when generating a moc file from acpp file. If thisis not set, then $QT_ MOCFROMCXXCOM
(the command line) is displayed.

Iy
=== SCONS 144

QT _MOCFROMCXXFLAGS
Default value is'-i'. These flags are passed to moc, when moccing a C++ file.

QT_MOCFROVHCOM
Command to generate a moc file from a header.

QT_MOCFROVHCOMBTR
The string displayed when generating a moc file from acpp file. If thisis not set, then $QT_ MOCFROVHCOM(the
command line) is displayed.

Qr_MOCFROVHFLAGS
Default value is ™. These flags are passed to moc, when moccing a header file.

QT_MOCHPREFI X
Default valueis'moc . Prefix for moc output files, when source is a header.

QT _MOCHSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for moc output files, when source is a header.

Qruc
Default valueis'$QT_BI NPATHuic'.

Qr_u ccom
Command to generate header files from .ui files.

QT_Ul CCOMBTR
The string displayed when generating header files from .ui files. If this is not set, then $QT_UI CCOM (the
command line) is displayed.

QT_UlI CDECLFLAGS
Default valueis ™. These flags are passed to uic, when creating aah file from a.ui file.

QT_UI CDECLPREFI X
Default valueis". Prefix for uic generated header files.

Qr_Ul CDECLSUFFI X
Default value is'.h'. Suffix for uic generated header files.

Qr_Ul Cl MPLFLAGS
Default value is ™. These flags are passed to uic, when creating a cxx file from a..ui file.

QT_Ul Cl MPLPREFI X
Default valueis'uic_'. Prefix for uic generated implementation files.

Qr_uU C MPLSUFFI X
Default valueis'$CXXFI LESUFFI X' Suffix for uic generated implementation files.

Qr_Ul SUFFI X
Default value is'.ui'. Suffix of designer input files.

QIDI R

The gt tool triesto take thisfrom os.environ. It alsoinitializesall QT_* construction variableslisted below. (Note
that all paths are constructed with python's os.path.join() method, but are listed here with the /' separator for
easier reading.) In addition, the construction environment variables $CPPPATH, $LI BPATH and $L1 BS may
be modified and the variables $PROGEM TTER, $SHLI BEM TTERand $L1 BEM TTER are modified. Because
the build-performance is affected when using this tool, you have to explicitly specify it at Environment creation:

Iy
=== SCONS 145

Envi ronnent (tool s=["' default', ' qt'])
The qt tool supports the following operations:

Automatic moc file generation from header files. Y ou do not have to specify moc files explicitly, the tool does
it for you. However, there are afew preconditions to do so: Y our header file must have the same filebase as your
implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H, .hxx, .hh.
You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding
Moc () builder method.

Automatic moc file generation from cxx files. As stated in the gt documentation, include the moc file at
the end of the cxx file. Note that you have to include the file, which is generated by the transformation
${ QT_MOCCXXPREFI X} <basename>$ QT _MOCCXXSUFFIX}, by default <basename>.moc. A warning is
generated after building the moc file, if you do not include the correct file. If you are using VariantDir, you may
need to specify duplicate=1. You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0.
See also the corresponding Moc builder method.

Automatic handling of .ui files. The implementation files generated from .ui files are handled much the same as
yacc or lex files. Each .ui file given as asource of Program, Library or SharedLibrary will generate threefiles, the
declaration file, the implementation file and a moc file. Because there are also generated headers, you may need
to specify duplicate=1in callsto VariantDir. See also the corresponding Ui ¢ builder method.

RANLI B
The archive indexer.

RANL| BCOM
The command line used to index a static library archive.

RANLI BCOMBTR
The string displayed when a static library archive isindexed. If thisis not set, then $RANLI BCOM(the command
line) is displayed.

env = Environnent (RANLI BCOVSTR = " | ndexi ng $TARCGET")

RANLI BFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resourcefile.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOVBTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM(the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCl NCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCI NCFLAGS is created by respectively prepending and
appending $RCI NCPREFI X and $RClI NCSUFFI X to the beginning and end of each directory in $CPPPATH.

Iy
=== SCONS 146

RClI NCPREFI X
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS
variableis expanded.

RClI NCSUFFI X
The suffix used to specify an include directory on the resource compiler command line. Thiswill be appended to
the end of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS variableis expanded.

RDirs
A function that converts astring into alist of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the Shar edLi brary
builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
Shar edLi br ar y builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOMSTR
The string displayed when registering a newly-built DLL file. If thisis not set, then $REGSVRCOM(the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when anewly-built DLL library isregistered.
By default, thisincludesthe/ s that prevents dialog boxes from popping up and requiring user attention.

RM C
The Java RMI stub compiler.

RM CCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified inthe SRM CFLAGS construction variable areincluded on thiscommand
line.

RM CCOVBTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If thisis not set, then $RM CCOM (the command line) is displayed.

env = Environnment (RM CCOVSTR = "Generating stub/skeleton class files $TARGETS from $SCU

RM CFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFI X and
appending $RPATHSUFFI X to the beginning and end of each directory in SRPATH.

Iy
=== SCONS 147

RPATHPREFI X
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_ RPATH variable
isautomatically generated.

RPATHSUFFI X
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLI ENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENSERVI CEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These arein addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects" and "Scanner Objects’ for more information.

SCONS_HOVE
The (optional) path to the SCons library directory, initialized from the external environment. If set, thisisused to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visua Studio project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOMfor compiling to static objects.

SHCCCOMSTR
If set, the string displayed when a C sourcefileis compiled to a shared object file. If not set, then $SHCCCOM(the
command line) is displayed. See also $CCCOMBTR for compiling to static objects.

env = Environnent (SHCCCOVETR = "Conpi |l i ng shared obj ect $TARCGET")

Iy
=== SCONS 148

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See also $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CXXCOM
for compiling to static objects.

SHCXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOVSTR for compiling to static objects.

env = Environnment (SHCXXCOVSTR = " Conpi | i ng shared obj ect $TARCGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

SHDC
The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOMfor compiling to
static objects.

SHDCOVBTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLI BVERSI ONFLAGS
Extra flags added to $SHDLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used
when $SHLI BVERSI ONis set.

SHDLI NK
The linker to use when creating shared objects for code bases include D sources. See also $DLI NK for linking
static objects.

SHDL| NKCOM
The command line to use when generating shared objects. See also $DLI NKCOMfor linking static objects.

SHDLI NKFLAGS
The list of flags to use when generating a shared object. See also $DLI NKFLAGS for linking static objects.

SHELL
A string naming the shell program that will be passed to the $SPAVN function. See the $SPAVWN construction
variable for more information.

Iy
=== SCONS 149

SHF03
The Fortran 03 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHFO3COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHFO3COMif you need to use a specific command line for Fortran 03 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO3COVSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHFO3COMor $SHFORTRANCOM(the command line) is displayed.

SHFO3FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHFO3FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHFO3PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO3FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO3PPCOMif you need to use a specific
C-preprocessor command line for Fortran 03 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO3PPCOVBTR
If set, the string displayed when aFortran 03 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF03PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF08
The Fortran 08 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHFO8COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHFO8COMif you need to use a specific command line for Fortran 08 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO8COMVSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHFO8COMor $SHFORTRANCOM(the command line) is displayed.

SHFO8FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHFOBFLAGS if you need to define specific user options for Fortran 08 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHFO8PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO8FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO8PPCOMif you need to use a specific

Iy
=== SCONS 150

C-preprocessor command line for Fortran 08 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO8PPCOMSTR
If set, the string displayed when aFortran 08 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF08PPCOMor $SHFORTRANPPCOM(the command line)
is displayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COMIif you need to use a specific command line for Fortran 77 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF77COVSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COMor $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF77PPCOMif you need to use a specific
C-preprocessor command line for Fortran 77 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOVSTR
If set, the string displayed when aFortran 77 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF77PPCOMor $SHFORTRANPPCOM(the command line)
is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COMIif you need to use a specific command line for Fortran 90 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF90COMBTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHFI90COMor $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHFIOFLAGS if you need to define specific user options for Fortran 90 files. You should normally set the

Iy
=== SCONS 151

$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFOOFLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF90PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 90 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFOOPPCOVSTR
If set, the string displayed when aFortran 90 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF90PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COMif you need to use a specific command line for Fortran 95 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF95COMVBTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHF95COMor $SHFORTRANCOM (the command line) is displayed.

SHFI5FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHFISFLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for al Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFI95FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF95PPCOMif you need to use a specific
C-preprocessor command line for Fortran 95 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for al Fortran versions.

SHFO5PPCOMSTR
If set, the string displayed when aFortran 95 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF95PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file.

SHFORTRANCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

Iy
=== SCONS 152

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the file
through the C preprocessor. Any options specified in the $SHFORTRANFLAGS and $CPPFLAGS construction
variables are included on this command line.

SHFORTRANPPCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLI BEM TTER
Contains the emitter specification for the Shar edLi br ary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

SHLI BNOVERSI ONSYMLI NKS
Instructsthe Shar edLi br ar y builder to not create symlinks for versioned shared libraries.

SHLI BPREFI X
The prefix used for shared library file names.

_SHLI BSONAME
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by Shar edLi br ar y builder when the linker tool supports SONAME (e.g. gnul i nk).

SHLI BSUFFI X
The suffix used for shared library file names.

SHLI BVERSI ON
When this construction variable is defined, a versioned shared library is created by the Shar edLi brary
builder. Thisactivatesthe$_SHLI BVERSI ONFLAGS and thus modifies the $SHLI NKCOMas required, adds the
version number to thelibrary name, and creates the symlinksthat are needed. $SHL1 BVERSI ONversions should
exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLI BVERSI ONvaluesinclude'1', '1.2.3', and '1.2.gitaad12c8b'".

_SHLI BVERSI ONFLAGS
This macro automatically introduces extra flags to $SHLI NKCOMwhen building versioned Shar edLi br ary
(that is when $SHLI BVERSI ON is set). _ SHLI BVERSI ONFLAGS usualy adds $SHLI BVERSI ONFLAGS
and some extra dynamically generated options (such as - W, - sonane=$_SHLI BSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLI BVERSI ONFLAGS
Extraflags added to $SHLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used when
$SHLI BVERSI ONis set.

SHLI NK
The linker for programs that use shared libraries. See also $L1 NK for linking static objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart” linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $SHCXX to aspecific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLI NKCOM
The command line used to link programs using shared libraries. See also $L1 NKCOMfor linking static objects.

Iy
=== SCONS 153

SHLI NKCOVSTR
The string displayed when programs using shared libraries are linked. If thisis not set, then $SHLI NKCOM(the
command line) is displayed. See adso $LI NKCOVSTR for linking static objects.

env = Environnment (SHLI NKCOMBTR = "Li nki ng shared $TARGET")

SHLI NKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain - | (or similar) options for linking with the libraries listed in $LI BS, nor - L (or similar) include search
path options that scons generates automatically from $L1 BPATH. See $_ LI BFLAGS above, for the variable that
expandsto library-link options, and $_LI| BDI RFLAGS above, for the variable that expandsto library search path
options. See also $L1 NKFLAGS for linking static objects.

SHOBJPREFI X
The prefix used for shared object file names.

SHOBJ SUFFI X
The suffix used for shared object file names.

SONAME
Variable used to hard-code SONAME for versioned shared library/loadable module.

env. SharedLi brary('test', '"test.c', SHLIBVERSION="0.1.2', SONAME='Ili btest.so0.2")
The variableis used, for example, by gnul i nk linker tool.

SQURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. Thisisused tofill in the Sour ce:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSI ON
This will construct the SONAME using on the base library name (t est in the example below) and use specified
SOVERSI ONto create SONAME.

env. SharedLi brary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSI ON='2')
The variableis used, for example, by gnul i nk linker tool.

In the example above SONAME would be |i bt est.so.2 which would be a symlink and point to
libtest.so0.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must expect
the following arguments:

Iy
=== SCONS 154

def spawn(shell, escape, cnd, args, env):

sh is astring naming the shell program to use. escape is afunction that can be called to escape shell special
characters in the command line. cnd is the path to the command to be executed. ar gs is the arguments to the
command. env isadictionary of the environment variables in which the command should be executed.

STATI C_AND_SHARED OBJECTS ARE_THE SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does hot
check for linking static objectsinto a shared library.

SUBST_DI CT
The dictionary used by the Substfil e or Textfil e builders for substitution values. It can be anything
acceptableto thedi ct () constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFI LEPREFI X
The prefix used for Subst f i | e file names, an empty string by default.

SUBSTFI LESUFFI X
The suffix used for Subst f i | e file names, an empty string by defaullt.

SUMVARY
A short summary of what the project is about. This is used to fill in the Sunmary: field in the controlling
information for Ipkg and RPM packages, and asthe Descr i pti on: fieldin MSI packages.

Seethe Package builder.

SW G
The scripting language wrapper and interface generator.

SW GCFI LESUFFI X
The suffix that will be used for intermediate C source files generated by the scripting language wrapper and
interface generator. The default valueis_wr ap$CFI LESUFFI X. By default, this value is used whenever the -
c++ option is not specified as part of the $SW GFLAGS construction variable.

SW GCOM
The command line used to call the scripting language wrapper and interface generator.

SW GCOVBTR
The string displayed when calling the scripting language wrapper and interface generator. If thisis not set, then
$SW GCOM(the command line) is displayed.

SW GCXXFI LESUFFI X
The suffix that will be used for intermediate C++ source files generated by the scripting language wrapper and
interface generator. The default valueis _wr ap$CFI LESUFFI X. By default, this value is used whenever the -
c++ option is specified as part of the $SW GFLAGS construction variable.

SW GDI RECTORSUFFI X
The suffix that will be used for intermediate C++ header files generated by the scripting language wrapper and
interface generator. These are only generated for C++ code when the SWIG 'directors feature is turned on. The
default valueis_wr ap. h.

SW GFLAGS
General options passed to the scripting language wrapper and interface generator. Thisis where you should set -
pyt hon, - per| 5, -t cl , or whatever other options you want to specify to SWIG. If you set the - c++ option
inthisvariable, sconswill, by default, generate a C++ intermediate source file with the extension that is specified
asthe $CXXFI LESUFFI X variable.

Iy
=== SCONS 155

_SW G NCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $ SW G NCFLAGS is created by respectively
prepending and appending $SW G NCPREFI X and $SW G NCSUFFI X to the beginning and end of each
directory in $SW GPATH.

SW G NCPREFI X
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SW GPATH construction variable when the $_SW G NCFLAGS variableis
automatically generated.

SW G NCSUFFI X
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SW GPATH construction variable whenthe $_ SW G NCFLAGS variable is automatically
generated.

SW GOUTDI R
Specifies the output directory in which the scripting language wrapper and interface generator should place
generated language-specific files. This will be used by SCons to identify the files that will be generated by the
swig call, and trandlated into the swi g - out di r option on the command line.

SW GPATH
Thelist of directoriesthat the scripting language wrapper and interface generate will search for included files. The
SWIG implicit dependency scanner will search thesedirectoriesfor includefiles. The default valueisan empty list.

Don't explicitly put include directory arguments in SWIGFLAGS; the result will be non-portable and the
directorieswill not be searched by the dependency scanner. Note: directory namesin SWIGPATH will belooked-
up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environnent (SW GPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environnment (SW GPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $ SW A NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SW A NCPREFI X and $SW G NCSUFFI X construction variables to the beginning and end of each directory
in $SW GPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SW d NCFLAGS:

env = Environnent (SW GCOVE"ny_swi g -0 $TARGET $_SW A NCFLAGS $SOURCES")

SW GVERSI ON
The version number of the SWIG tool.

TAR
Thetar archiver.

TARCOM
The command line used to call the tar archiver.

Iy
=== SCONS 156

TARCOVSTR
The string displayed when archiving files using the tar archiver. If thisis not set, then $TARCOM (the command
line) is displayed.

env = Envi ronnment (TARCOMSTR = "Archi vi ng $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARGET_ARCH
The name of the target hardware architecture for the compiled objects created by this Environment. This defaults
to the value of HOST_ARCH, and the user can override it. Currently only set for Win32.

Sets the target architecture for the Visual C++ compiler (i.e. the arch of the binaries generated by the compiler).
If not set, default to SHOST_ARCH, or, if that is unset, to the architecture of the running machine's OS (note that
the python build or architecture has no effect). This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect. Thisis currently only used on Windows, but in the future it will be used
on other OSesaswell. If thisisset and SMSVC_VERSI ONis not set, thiswill search for al installed MSV C's that
support the $STARGET _ARCH, selecting the latest version for use.

On Windows, valid target values are x86, ar m i 386 for 32-hit targets and antd64, ar nb4, enb4t , x86_64
and i a64 (Itanium) for 64-bit targets. Note that not all target architectures are supported for all Visual Studio /
MSV C versions. Check the relevant Microsoft documentation.

For example, if you want to compile 64-bit binaries, you would set TARGET _ARCH=' x86_64" in your SCons
environment.

TARGET_OS
The name of the target operating system for the compiled objects created by this Environment. This defaults to
the value of HOST _OS, and the user can override it. Currently only set for Win32.

TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFI X
The suffix used for tar file names.

TEMPFI LEARGESCFUNC
A default argument escape function is ~~SCons.Subst.quote_spaces™. If you need to apply extra operations on
a command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
"TEMPFILEARGESCFUNC' variable to a custom function. Example::

i mport sys
i mport re
from SCons. Subst inport quote_spaces

W NPATHSEP_RE = re.conpile(r"\\([AM\""\\]|$)")

def tenpfile_arg esc _func(arg):
arg = quote_spaces(arQg)

Iy
=== SCONS 157

if sys.platform!= "w n32":

return arg
GCC requi res doubl e Wndows sl ashes, let's use UN X separ at or
return WNPATHSEP_RE. sub(r"/\ 1", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

TEVPFI LEARGIO N
The string (or character) to be used to join the arguments passed to TEMPFILE when command line exceeds the
limit set by $SMAXLI NELENGTH. The default valueis a space. However for MSVC, MSLINK thedefault isaline
seperator characters as defined by os.linesep. Note thisvalueis used literally and not expanded by the subst logic.

TEMPFI LEDI R
The directory to create the tempfilein.

TEMPFI LEPREFI X
The prefix for atemporary file used to storelineslineslonger than SMAXLINELENGTH as operationswhich call
out to a shell will fail if the line is too long, which particularly impacts linking. The default is'@', which works
for the Microsoft and GNU toolchains on Windows. Set this appropriately for other toolchains, for example '-@'
for the diab compiler or '-via for ARM toolchain.

TEMPFI LESUFFI X
The suffix used for the temporary file name used for long command lines. The name should include the dot ('.")
if oneiswanted asit will not be added automatically. The default is".Ink'.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOVSTR
Thestring displayed when calling the TeX formatter and typesetter. If thisisnot set, then $TEXCOM(the command
line) is displayed.

env = Envi ronnment (TEXCOMBTR = "Bui | di ng $TARCGET from TeX i nput $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXI NPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFI LEPREFI X
The prefix used for Text f i | e file names, an empty string by default.

TEXTFI LESUFFI X
The suffix used for Text f i | e filenames; . t xt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

Iy
=== SCONS 158

UNCHANGED TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor : field in the
controlling information for RPM packages, and the Manuf act ur er: field in the controlling information for
MSI packages.

Seethe Package builder.

VERSI ON
The version of the project, specified asastring.

Seethe Package builder.

VSVHERE
Specify the location of vswher e. exe.

The vswher e. exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017
edition, but is also available standalone. It provides full information about installations of 2017 and later editions.
With the - | egacy argument, vswher e. exe can detect installations of the 2010 through 2015 editions with
limited data returned. If VSWHERE is set, SCons will use that location.

Otherwise SCons will look in the following locations and set VSWHERE to the path of the first vswher e. exe
located.

e 9rogranfil es(x86)% M crosoft Visual Studio\lnstaller
* 9rograntil es® M crosoft Visual Studio\lnstaller
e 9%Chocol ateylnstall % bin

Note that VSWHERE must be set at the same time or prior to any of msvc, msvs , and/or msl i nk Tool being
initialized. Either set it asfollows

env = Environment (VSWHERE=' c: / ny/ pat h/ t o/ vswhere')

or if your construction environment is created specifying an empty tools list (or alist of tools which omits all of
default, msvs, msvc, and mslink), and also beforeenv. Tool iscalled toininitialize any of those tools:

env = Environment (tool s=[])

env['VSWHERE'] = r'c:/ny/vswhere/install/location/vswhere. exe'
env. Tool (' msvc')

env. Tool (' sl i nk')

env. Tool (' nmsvS')

W NDOAS_EMBED NMANI FEST
Set to Tr ue to embed the compiler-generated manifest (normally ${ TARGET} . mani f est) into al Windows
executables and DLLs built with this environment, as a resource during their link step. This is done using $MT
and $MIEXECOMand $MT'SHLI BCOM See also $W NDOWS_| NSERT_MANI FEST.

W NDOWE_| NSERT_DEF
If set to true, alibrary build of aWindowsshared library (. dl | file) will include areferenceto the corresponding
module-definition file at the same time, if amodule-definition fileis not already listed as a build target. The name

Iy
=== SCONS 159

of the module-definition file will be constructed from the base name of the library and the construction variables
$W NDOWSDEFSUFFI X and $W NDOWSDEFPREFI X. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the devel oper.

W NDOWE_| NSERT_MANI FEST
If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $W NDOWSPROGVANI FESTSUFFI X and $W NDOANSPROGVANI FESTPREFI X. Inthe case
of a shared library, the manifest file name is constructed using $W NDOASSHLI BMANI FESTSUFFI X and
$W NDOWSSHLI BMANI FESTPREFI X. See also $W NDOAS_EMBED MANI FEST.

W NDOWSDEFPREFI X
The prefix used for aWindows linker module-definition file name. Defaults to empty.

W NDOWSDEFSUFFI X
The suffix used for a Windows linker module-definition file name. Defaultsto . def .

W NDOWSEXPPREFI X
The prefix used for Windows linker exports file names. Defaults to empty.

W NDOWBEXPSUFFI X
The suffix used for Windows linker exports file names. Defaultsto . exp.

W NDOWSPROGVANI FESTPREFI X
The prefix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to empty.

W NDOWSPROGVANI FESTSUFFI X
The suffix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to
. mani f est .

W NDOWESHLI BMANI FESTPREFI X
The prefix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to empty.

W NDOWESHLI BMANI FESTSUFFI X
The suffix used for shared library manifest files generated by Microsoft Visual C/C++. Defaultsto . mani f est .

X _| PK_DEPENDS
Thisisused to fill inthe Depends: field in the controlling information for |pkg packages.

See the Package builder.

X_| PK_DESCRI PTI ON
Thisis used to fill in the Descri pti on: field in the controlling information for Ipkg packages. The default
vaueis“$SUMVARY\n$DESCRI PTI ON’

X_I PK_MAI NTAI NER
Thisisused to fill inthe Mai nt ai ner : field in the controlling information for |pkg packages.

X IPK PRRORITY
Thisisusedtofill inthePri ori ty: fieldinthe controlling information for | pkg packages.

X_I PK_SECTI ON
Thisisusedto fill inthe Sect i on: field in the controlling information for |pkg packages.

X_MBI _LANGUAGE
Thisisused to fill inthe Language: attribute in the controlling information for MSI packages.

Iy
=== SCONS 160

Seethe Package builder.

X_MBI _LI CENSE_TEXT
Thetext of the softwarelicensein RTF format. Carriage return characterswill bereplaced with the RTF equivalent
\\par.

See the Package builder.

X_NMS| _UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
Thisisused tofill inthe Aut oReqPr ov: fieldinthe RPM . spec file.

Seethe Package builder.

X RPM BUI LD
internal, but overridable

X_RPM BUI LDREQUI RES
Thisisused to fill inthe Bui | dRequi r es: fieldinthe RPM . spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM BUI LDROOT
internal, but overridable

X RPM CLEAN
internal, but overridable

X_RPM _CONFLI CTS
Thisisusedtofill inthe Conf |l i cts: fieldinthe RPM . spec file.

X_RPM DEFATTR
Thisvalueis used as the default attributes for the files in the RPM package. The default valueis*“ (-,root,root)”.

X_RPM DI STRI BUTI ON
Thisisusedtofill intheDi stri buti on: fieldinthe RPM . spec file.

X_RPM_EPCCH
Thisisusedto fill inthe Epoch: fieldinthe RPM . spec file.

X_RPM_EXCLUDEARCH
Thisisusedto fill inthe Excl udeAr ch: fieldinthe RPM . spec file.

X_RPM_EXLUSI VEARCH
Thisisused to fill inthe Excl usi veAr ch: fieldinthe RPM . spec file.

X_RPM_EXTRADEFS
A list used to supply extra defintions or flags to be added to the RPM . spec file. Each item is added as-is
with a carriage return appended. Thisis useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Noteif this variable is omitted, SCons will by default supply the value' %gl obal
debug package % ni |l }' todisabledebug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line. Added in version 3.1.

env. Package(
NAMVE="f 00",

Iy
=== SCONS 161

X_RPM_EXTRADEFS=[
"%defi ne _unpackaged files termnnate build 0"
"0define _mssing_doc files term nate build 0"
] 1
)

X_RPM_GROUP
Thisisusedto fill inthe G oup: fieldinthe RPM . spec file.

X_RPM _GROUP_I| ang
Thisisused tofill inthe G- oup(| ang) : fieldinthe RPM . spec file. Notethat | ang isnot literal and should
be replaced by the appropriate language code.

X_RPM_| CON
Thisisusedtofill inthel con: fieldinthe RPM . spec file.

X RPM | NSTALL
internal, but overridable

X_RPM_PACKAGER
Thisisused to fill inthe Packager : fieldinthe RPM . spec file.

X_RPM _POSTI NSTALL
Thisisused tofill inthe %post : sectioninthe RPM . spec file.

X_RPM_POSTUNI NSTALL
Thisisused to fill inthe %post un: sectioninthe RPM . spec file.

X_RPM PREFI X
Thisisusedtofill inthe Pr ef i x: fieldinthe RPM . spec file.

X_RPM _PREI NSTALL
Thisisusedto fill inthe %pr e: sectioninthe RPM . spec file.

X_RPM PREP
internal, but overridable

X_RPM_PREUNI NSTALL
Thisisused to fill inthe %pr eun: sectioninthe RPM . spec file.

X_RPM _PROVI DES
Thisisusedto fill inthe Pr ovi des: fieldinthe RPM . spec file.

X_RPM_REQUI RES
Thisisused to fill inthe Requi r es: fieldinthe RPM . spec file.

X _RPM SERI AL
Thisisusedtofill inthe Seri al : fieldinthe RPM . spec file.

X_RPM_URL
Thisisusedtofill intheUr | : fieldinthe RPM . spec file.

XCGETTEXT
Path to xgettext(1) program (found viaDet ect ()). Seexget t ext tool and POTUpdat e builder.

Iy
=== SCONS 162

XCGETTEXTCOM
Complete xgettext command line. See xget t ext tool and POTUpdat e builder.

XGETTEXTCOVSTR
A string that is shown when xgettext(1) command is invoked (default:
$XGETTEXTCOM'). Seexget t ext tool and POTUpdat e builder.

, which means "print

_XGETTEXTDOVAI N
Internal "macro”. Generates xgettext domain name form source and target (default:
" ${ TARGET. fi | ebase}").

XCGETTEXTFLAGS
Additional flags to xgettext(1). See xget t ext tool and POTUpdat e builder.

XCGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFI LES. i n so they
will in most cases set XGETTEXTFROME" POTFI LES. i n" here. The $XGET TEXTFROM(files have same syntax
and semantics as the well known GNU POTFI LES. i n. Seexget t ext tool and POTUpdat e builder.

_ XGETTEXTFROMFLAGS
Internal "macro”. Genrateslist of - D<di r > flags from the $XGETTEXTPATH list.

XCGETTEXTFROVPREFI X
Thisflag is used to add single $XGETTEXTFROMfile to xgettext(1)'s commandline (default: * - f ').

XGETTEXTFROVBUFFI X
(default: " *)

XCGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
Seealso xget t ext tool and POTUpdat e builder.

_XGETTEXTPATHFLAGS
Internal "macro”. Generates list of - f <f i | e> flags from $XGETTEXTFROM

XCGETTEXTPATHPREFI X
Thisflag is used to add single search path to xgettext(1)'s commandline (default; ' - D').

XGETTEXTPATHSUFFI X
(default: " ')

YACC
The parser generator.

YACCCOM
The command line used to call the parser generator to generate a sourcefile.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If thisis not set, then $YACCCOM
(the command line) is displayed.

env = Environnent (YACCCOMSTR = "Yacc'ing $TARGET from $SOURCES")

Iy
=== SCONS 163

YACCFLAGS
General options passed to the parser generator. If $YACCFLAGS contains a - d option, SCons assumes that the
call will also create a.hfile (if the yacc source file ends in a .y suffix) or a.hpp file (if the yacc source file ends
ina.yy suffix)

YACCHFI LESUFFI X
The suffix of the C header file generated by the parser generator when the - d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default valueis. h.

YACCHXXFI LESUFFI X
The suffix of the C++ header file generated by the parser generator when the - d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to
allow you to specify what suffix the parser generator will use of itsown accord. The default valueis. hpp, except
on Mac OS X, where the default is ${ TARGET. suf f i x} . h. because the default bison parser generator just
appends. h to the name of the generated C++ file.

YACCVCGFI LESUFFI X
The suffix of the file containing the VCG grammar automaton definition when the - - gr aph= option is used.
Note that setting this variable does not cause the parser generator to generate aV CG file with the specified suffix,
it exists to alow you to specify what suffix the parser generator will use of its own accord. The default value
is. vcg.

ZIP
The zip compression and file packaging utility.

ZI P_OVERRI DE_TI MESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
Thisis atuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZI PCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

Z| PCOVPRESSI ON
The conpr essi on flag from the Python zi pfi | e module used by the internal Python function to control
whether the zip archive is compressed or not. The default valueiszi pfi | e. ZI P_DEFLATED, which createsa
compressed zip archive. Thisvalue has no effect if the zi pfi | e moduleis unavailable.

ZI PCOVBTR
The string displayed when archiving files using the zip utility. If thisis not set, then $ZI PCOM (the command
line or internal Python function) is displayed.

env = Environnent (ZI PCOVSTR = "Zi ppi ng $TARGET")

ZI PFLAGS
General options passed to the zip utility.

ZI PROOT
Anoptional zip root directory (default empty). The filenames stored in the zip filewill berelativeto thisdirectory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environment ()
env. Zi p(' foo.zip', 'subdirl/subdir2/filel", ZlI PROOT='subdirl")

Iy
=== SCONS 164

will produce a zip file f 00. zi p containing a file with the name subdi r 2/ fi | el rather than subdi r 1/
subdir2/filel.

ZI PSUFFI X
The suffix used for zip file names.

Configure Contexts

SCons supports a configure context, an integrated mechanism similar to the various AC_CHECK macros in GNU
Autoconf for testing the existence of external items needed for the build, such as C header files, libraries, etc. The
mechanism is portable across platforms.

scons does not maintain an explicit cache of the tested values (this is different than Autoconf), but uses its normal
dependency tracking to keep the checked values up to date. However, users may override this behaviour with the - -
conf i g command line option.

Configure(env, [customtests, conf_dir, log file, config_h, clean, help])

env.Configure(fcustomtests, conf_dir, log file, config_h, clean, help])
Create a configure context, which tracks information discovered while running tests. The context includes alocal
construction environment (available as cont ext .env) which is used when running the tests and which can be
updated with the check results. Only one context may be active at atime (since 4.0, sconswill raise an exception
on an attempt to create a new context when there is an active context), but anew context can be created after the
active oneiscompleted. For the global function form, therequired env describestheinitial valuesfor the context's
local construction environment; for the construction environment method form the instance provides the values.

cust om t est s specifies a dictionary containing custom tests (see the section on custom tests below). The
default value is None, meaning no custom tests are added to the configure context.

conf _di r specifies a directory where the test cases are built. This directory is not used for building normal
targets. The default valueis“#/ . sconf _t enp”.

I og_fil e specifiesafile which collects the output from commands that are executed to check for the existence
of header files, libraries, etc. Thedefaultis“#/ confi g. | og”. If youareusingtheVar i ant Di r function, you
may want to specify a subdirectory under your variant directory.

conf i g_h specifiesa C header file where the results of testswill be written. The resultswill consist of lineslike
#def i ne HAVE_STDI O H, #defi ne HAVE_LI BM etc. Customarily, the name chosen is “confi g. h”.
The default is to not write a confi g_h file. You can specify the same confi g_h file in multiple calls to
Conf i gur e, in which case SCons will concatenate all results in the specified file. Note that SCons uses its
normal dependency checking to decide if it's necessary to rebuild the specified conf i g_h file. This means that
the file is not necessarily re-built each time sconsis run, but is only rebuilt if its contents will have changed and
some target that depends on the conf i g_h fileis being built.

Thecl ean and hel p arguments can be used to suppress execution of the configuration tests when the - ¢/- -

cl ean or - H- h/- - hel p options are used, respectively. The default behavior is always to execute configure
context tests, sincetheresults of the tests may affect thelist of targetsto be cleaned or the help text. If the configure
tests do not affect these, then you may add the cl ean=Fal se or hel p=Fal se arguments (or both) to avoid
unnecessary test execution.

SConf .Fi ni sh(cont ext)

cont ext .Fi ni sh()
This method must be called after configuration is done. Though required, this is not enforced except if
Conf i gur e iscalled again while there is still an active context, in which case an exception israised. Fi ni sh
returns the environment as modified during the course of running the configuration checks. After this method
is called, no further checks can be performed with this configuration context. However, you can create a new
configure context to perform additional checks.

Iy
=== SCONS 165

Example of atypical Configure usage:

env = Environnent ()
conf = Configure(env)
i f not conf.CheckCHeader ("nmath. h"):
print("We really need math. h!'")
Exit(1)
i f conf.CheckLi bWt hHeader ("qt", "qgapp.h", "c++", "QApplication gapp(0,0);"):
do stuff for qt - usage, e.g.
conf . env. Append(CPPDEFI NES="W TH_QT")
env = conf. Fini sh()

A configure context has the following predefined methods which can be used to perform checks. Where| anguage
isarequired or optional parameter, the choice can currently be C or C++. The spellings accepted for Care“C” or “c”;
for C++ the value can be “CXX”, “cxx”, “C++” or “ct++".

SConf .CheckHeader (cont ext, header, [include_quotes, |anguage])

cont ext .CheckHeader (header, [include_quotes, |anguage])
Checksif header isusablein the specified language. header may be alist, in which case the last item in the
list is the header file to be checked, and the previous list items are header files whose #i ncl ude lines should
precede the header line being checked for. The optional argument i ncl ude_quot es must be a two character
string, where the first character denotes the opening quote and the second character denotes the closing quote. By
default, both charactersare™ (double quote). The optional argument | anguage should be either C or C++ and
selects the compiler to be used for the check. Returns a boolean indicating success or failure.

SConf .CheckCHeader (cont ext, header, [include_quotes])

cont ext .CheckCHeader (header, [incl ude_quotes])
Thisisawrapper around SConf . CheckHeader which checksif header isusableinthe Clanguage. header
may be alist, in which case the last item in the list is the header file to be checked, and the previous list items
are header fileswhose#i ncl ude lines should precede the header line being checked for. The optional argument
i ncl ude_quot es must be atwo character string, where the first character denotes the opening quote and the
second character denotes the closing quote. By default, both characters are " (double quote). Returns a boolean
indicating success or falure.

SConf .CheckCXXHeader (cont ext, header, [include_quotes])

cont ext .CheckCXXHeader (header, [i nclude_quotes])
This is a wrapper around SConf . CheckHeader which checks if header is usable in the C++ language.
header may be alist, in which case the last item in the list is the header file to be checked, and the previous
list items are header fileswhose#i ncl ude lines should precede the header line being checked for. The optional
argumenti ncl ude_quot es must be atwo character string, where thefirst character denotes the opening quote
and the second character denotes the closing quote. By default, both characters are " (double quote). Returns a
boolean indicating success or failure.

SConf .CheckFunc(cont ext, function_nanme, [header, |anguage])

cont ext .CheckFunc(f uncti on_nane, [header, |anguage])
Checks if the specified C or C++ library function is available based on the context's local environment settings
(that is, using the values of CFLAGS, CPPFLAGS, LI BS or other relevant construction variables).

funct i on_nane isthe name of the function to check for. The optional header argument is a string that will

be placed at the top of the test file that will be compiled to check if the function exists; the default is:

#i fdef __ cpl uspl us
extern "C'

Iy
=== SCONS 166

#endi f
char function_nane();

Returns an empty string on success, a string containing an error message on failure.

SConf .CheckLi b(context, [library, synmbol, header, |anguage, autoadd=True])

cont ext .CheckLi b([li brary, synbol, header, |anguage, autoadd=True])
Checksif | i brary providessynbol . If aut oadd istrue (the default) and the library provides the specified
synbol , appends the library to the LI BS construction variable | i br ary may also be None (the default), in
which case synbol is checked with the current LI BS variable, or alist of library names, in which case each
library in the list will be checked for synbol . If synbol isnot set or isNone, then SConf . CheckLi b just
checksif you can link against the specified | i br ar y. Note though it islegal syntax, it would not be very useful
to call this method with | i br ary and synbol both omitted or None. Returns a boolean indicating success
or failure.

SConf .CheckLi bW t hHeader (cont ext , library, header, | anguage, [call,

aut oadd=True])

cont ext .CheckLi bWt hHeader (I i brary, header, |anguage, [call, autoadd=True])
Provides a more sophisticated way to check against libraries then the SConf . CheckLi b call. I i brary
specifies the library or alist of libraries to check. header specifies a header to check for. header may be a
list, in which case the last item in the list is the header file to be checked, and the previous list items are header
fileswhose#i ncl ude linesshould precede the header line being checked for. cal | can be any valid expression
(withatrailing ;). If cal | isnot set, the default simply checks that you can link against the specified | i brary.
aut oadd (default true) specifies whether to add the library to the environment if the check succeeds. Returns
aboolean indicating success or failure.

SConf .CheckType(cont ext, type_nane, [includes, |anguage])

cont ext .CheckType(t ype_nane, [includes, |anguage])
Checks for the existence of atype defined by t ypedef .t ype_nane specifies the typedef name to check for.
i ncl udes isastring containing one or more #i ncl ude lines that will be inserted into the program that will
be run to test for the existence of the type. Example:

sconf. CheckType(' foo_type', '#include "nmy types.h"', 'C++')
Returns an empty string on success, a string containing an error message on failure.

SConf .CheckCC(cont ext)

cont ext .CheckCC()
Checks whether the C compiler (as defined by the CC construction variable) works by trying to compile a small
source file. Returns a boolean indicating success or failure.

By default, SCons only detectsif there is a program with the correct name, not if it is afunctioning compiler.

This uses the exact same command as the one used by the object builder for C source files, so it can be used to
detect if aparticular compiler flag works or not.

SConf .Check CXX(cont ext)

cont ext .CheckCXX()
Checkswhether the C++ compiler (as defined by the CXX construction variabl€) works by trying to compileasmall
source file. By default, SCons only detects if there is a program with the correct name, not if it is a functioning
compiler. Returns a boolean indicating success or failure.

This uses the exact same command as the one used by the object builder for C++ source files, so it can be used
to detect if aparticular compiler flag works or not.

Iy
=== SCONS 167

SConf .Check SHCC(cont ext)

cont ext .Check SHCC()
Checks whether the shared-object C compiler (as defined by the SHCC construction variable) works by trying to
compile a small source file. By default, SCons only detects if there is a program with the correct name, not if it
isafunctioning compiler. Returns a boolean indicating success or failure.

This uses the exact same command as the one used by the object builder for C source file, so it can be used to
detect if aparticular compiler flag works or not. This does not check whether the object code can be used to build
ashared library, only that the compilation (not link) succeeds.

SConf .Check SHCXX(cont ext)

cont ext .Check SHCXX()
Checkswhether the shared-object C++ compiler (as defined by the SHCXX construction variable) works by trying
to compile a small source file. By default, SCons only detects if there is a program with the correct name, not if
it isafunctioning compiler. Returns a bool ean indicating success or failure.

This uses the exact same command as the one used by the object builder for C++ source files, so it can be used
to detect if a particular compiler flag works or not. This does not check whether the object code can be used to
build a shared library, only that the compilation (not link) succeeds.

SConf .CheckTypeSi ze(cont ext, type_nane, [header, |anguage, expect])

cont ext .CheckTypeSi ze(t ype_nane, [header, |anguage, expect])
Checks for the size of atype defined by t ypedef .t ype_nane specifies the typedef name to check for. The
optional header argument is a string that will be placed at the top of the test file that will be compiled to
check if the type exists; the default is empty. If the optional expect , is supplied, it should be an integer size;
CheckTypeSi ze will fail unlesst ype_nane isactualy that size. Returnsthe size in bytes, or zero if the type
was not found (or if the size did not match expect).

For example,

CheckTypeSi ze(' short', expect=2)
will return the size 2 only if short is actually two bytes.

SConf .CheckDecl ar ati on(cont ext, synbol, [includes, |anguage])

cont ext .CheckDecl arati on(synbol , [includes, |anguage])
Checks if the specified synbol is declared. i ncl udes is a string containing one or more #i ncl ude lines
that will be inserted into the program that will be run to test for the existence of the symbol. Returns a boolean
indicating success or failure.

SConf .Def i ne(cont ext, synbol, [value, comment])

cont ext .Def i ne(synbol , [val ue, coment])
Thisfunction doesnot check for anything, but definesapreprocessor symbol that will be added to the configuration
header file. It isthe equivalent of AC_DEFI NE, and defines the symbol nane with the optional val ue and the
optional comment conmrent .

Define Examples:

env = Environment ()
conf = Configure(env)

Puts the following line in the config header file:
#defi ne A SYMBOL
conf . Def i ne("A_SYMBOL")

Iy
=== SCONS 168

Puts the following line in the config header file:
#define A SYMBOL 1
conf . Defi ne("A _SYmMBOL", 1)

Be careful about quoting string values, though:

env = Environment ()
conf = Configure(env)

Puts the following line in the config header file:
#define A _SYMBOL YA
conf. Define("A_SYMBCOL", "YA")

Puts the following line in the config header file:
#define A SYMBOL " YA"
conf. Define("A _SYMBOL", '"YA"')

For comment:

env = Environment ()
conf = Configure(env)

Puts the following lines in the config header file:

/* Set to 1 if you have a synbol */

#define A SYMBOL 1

conf. Define("A SYMBOL", 1, "Set to 1 if you have a synbol ")

Y ou can define your own custom checks in addition to the predefined checks. Y ou pass a dictionary of these to the
Conf i gur e function asthe cust om t est s argument. This dictionary maps the names of the checks to the user
defined Python callables (either Python functionsor classinstancesimplementinga___cal | _ method). Each custom
check will be called with a first argument of a CheckContext, instance followed by the arguments, which must be
supplied by the user of the check. A CheckContext instance defines the following methods:

cont ext .Message(t ext)
Displaysamessage, asan indicator of progess.t ext will bedisplayed, e.g. Checki ng for library X ...
Usually called before the check is started.

cont ext .Resul t (res)
Displays a “result” message, as an indicator of progress. r es can be either an integer or a string. If an integer,
displaysyes (if r es evaluates Tr ue) or no (if r es evaluates Fal se). If astring, it isdisplayed as-is. Usually
called after the check has completed.

cont ext .TryConpi | e(t ext, extension="")
Checks if a file with the specified ext ensi on (e.g. .c') containing t ext can be compiled using the
environment's Obj ect builder. Returns a boolean indicating success or failure.

cont ext .TryLi nk(t ext, extension="'")
Checks, if a file with the specified ext ensi on (e.g. '.c') containing t ext can be compiled using the
environment's Pr ogr ambuilder. Returns a boolean indicating success or failure.

cont ext .TryRun(t ext, extension="")
Checks if a file with the specified ext ensi on (e.g. '.c') containing t ext can be compiled using the
environment's Pr ogr ambuilder. On success, the program is run. If the program executes successfully (that is,

Iy
=== SCONS 169

itsreturn statusis 0), atuple (1, outputStr) isreturned, where out put St r isthe standard output of the program.
If the program fails execution (its return status is non-zero), then (0, ") is returned.

cont ext .TryAction(action, [text, extension="'])
Checks if the specified act i on with an optional source file (contents t ext , extension ext ensi on) can be
executed. acti on may be anything which can be converted to a scons Action. On success, (1, outputStr) is
returned, where out put St r isthe content of the target file. On failure (0,) is returned.

cont ext .TryBui | d(bui | der[, text, extension="'])
Low level implementation for testing specific builds; the methods above are based on this method. Given the
Builder instance bui | der and the optional t ext of asourcefile with optional ext ensi on, returns aboolean
indicating success or failure. In addition, cont ext . | ast Tar get is set to the build target node if the build
was successful.

Example of implementing and using custom tests:

def CheckQ (context, qtdir):
cont ext . Message(' Checking for gt ...")
| ast LI BS = context.env['LIBS]
| ast LI BPATH = cont ext. env[' LI BPATH]
| ast CPPPATH= cont ext . env[' CPPPATH]
cont ext . env. Append(LIBS="qt', LIBPATH=qtdir + '/lib', CPPPATH=qtdir + '/include')
ret = context. TryLink("""
#i ncl ude <qgapp. h>
int main(int argc, char **argv) {
QAppl i cati on gapp(argc, argv);
return O;
}
")

if not ret:

cont ext . env. Repl ace(LI BS=Il ast LI BS, LI BPATH=I ast LI BPATH, CPPPATH=l ast CPPPATH)
context.Result(ret)
return ret

env = Environment ()
conf = Configure(env, customtests={"'CheckQ': CheckQ})
if not conf.CheckQ ('/usr/lib/qt"):
print('W really need qt!"')
Exit (1)
env = conf. Fini sh()

Command-Line Construction Variables

Often when building software, some variables need to be specified at build time. For example, libraries needed for
the build may be in non-standard locations, or site-specific compiler options may need to be passed to the compiler.
SConsprovidesaVar i abl es object to support overriding construction variables with values obtained from various
sources, often from the command line;

scons VARI ABLE=f oo

The variable values can also be specified in a configuration file or an SConscript file.

To obtain the object for manipulating values, call the Var i abl es function:

Iy
=== SCONS 170

Variables([files, [args]])
Iffil esisafileor list of files, those are executed as Python scripts, and the values of (global) Python variables
set in those files are added as construction variables in the Default Environment. If no files are specified, or the
fil es argument is None, then no files will be read (supplying None is necessary if there are no files but you
want to specify ar gs asapositional argument).

The following example file contents could be used to set an alternative C compiler:

CC = "ny_cc'

If ar gs is specified, it isadictionary of values that will override anything read from f i | es. Thisis primarily
intended to pass the ARGUMENTS dictionary that holds variables specified on the command line. Example:

vars = Vari abl es(' custom py')
vars = Variabl es(' overrides. py', ARGUVENTS)
vars = Vari abl es(None, {FOO 'expansion', BAR 7})

Calling Var i abl es with no arguments is equivalent to:

vars = Variabl es(fil es=None, ar gs=ARGUMENTS)

Note that since the variables are eventually added as construction variables, you should choose variable names
which do not unintentionally change pre-defined construction variables that your project will make use of (see
the section called “ Construction Variables”).

Variables objects have the following methods:

var s.Add(key, [hel p, default, validator, converter])

Add a customizable construction variable to the Variables object. key is the name of the variable. hel p isthe
help text for the variable. def aul t is the default value of the variable; if the default value is None and there
is no explicit value specified, the construction variable will not be added to the construction environment. If
set, val i dat or is called to validate the value of the variable. A function supplied as a validator shall accept
arguments: key, val ue, and env. The recommended way to handle an invalid value is to raise an exception
(see example below). If set, convert er iscalled to convert the value before putting it in the environment, and
should take either a value, or the value and environment, as parameters. The converter function must return a
value, which will be converted into a string before being validated by the val i dat or (if any) and then added
to the construction environment.

Examples:

vars. Add(' CC , hel p='The C conpiler')

def valid_col or(key, val, env):
if not val in['red , 'blue', 'yellow]:
rai se Exception("lnvalid color value '%'" % val)

vars. Add(' COLOR , validator=valid_col or)
var s.AddVar i abl es(ar gs)

A convenience method that adds multiple customizable construction variables to a Variables object in one call;
equivalent to calling Add multipletimes. Thear gs aretuples(or lists) that contain the argumentsfor anindividual

Iy
=== SCONS 171

call to the Add method. Since tuples are not Python mappings, the arguments cannot use the keyword form, but
rather are positional arguments as documented for Add: a required name, the rest optional but must be in the
specified in order if used.

opt . AddVar i abl es(

(ll debug"' n II' o) ,

("Ccc', "The C conpiler"),

(" VALI DATE", "An option for testing validation", "notset", validator, None),
)

var s.Updat e(env, [args])
Update a construction environment env with the customized construction variables . Any specified variables that

are not configured for the Variables object will be saved and may be retrieved using the UnknownVar i abl es
method, below.

Normally this method is not called directly, but rather invoked indirectly by passing the Variables object to the
Envi r onnent function:

env = Environnment (vari abl es=vars)

var s.UnknownVar i abl es()

Returns a dictionary containing any variables that were specified either in the files or the dictionary with which
the Variables object was initialized, but for which the Variables object was not configured.

env = Environnment (vari abl es=vars)
for key, value in vars. UnknownVari abl es():
print("unknown variable: %=%" % (key, value))

vars.Save(fil enane, env)

Save the currently set variablesinto ascript file named by f i | enane that can be used on the next invocation to
automatically load the current settings. This method combined with the Variables method can be used to support
caching of variables between runs.

env = Environment ()

vars = Variabl es(['vari abl es. cache', 'custompy'])
vars. Add(. . .)

vars. Updat e(env)

vars. Save(' vari abl es. cache', env)

var s.Gener at eHel pText (env, [sort])
Generate help text documenting the customizable construction variables, suitable for passing in to the Hel p
function. env is the construction environment that will be used to get the actual values of the customizable
variables. If the (optional) value of sor t iscallable, it isused as a comparison function to determine how to sort
the added variables. This function must accept two arguments, compare them, and return a negative integer if the
first is less-than the second, zero for equality, or a positive integer for greater-than. Optionally a Boolean value
of Tr ue for sort will cause a standard alphabetical sort to be performed.

Hel p(vars. Gener at eHel pText (env))

def cmp(a, b):

Iy
=== SCONS 172

return (a > b) - (a < b)
Hel p(vars. Gener at eHel pText (env, sort=cnp))

var s.For mat Var i abl eHel pText (env, opt, help, default, actual)
Returns a formatted string containing the printable help text for one option. It is normally not called directly, but
iscaled by the Gener at eHel pText method to create the returned help text. It may be overridden with your
own function that takes the arguments specified above and returns a string of help text formatted to your liking.
Note that Gener at eHel pText will not put any blank lines or extra characters in between the entries, so you
must add those characters to the returned string if you want the entries separated.

def ny_format (env, opt, help, default, actual):
fm = "\n%: default=% actual =% (%)\n"
return fnt % (opt, default, actual, help)
vars. For mat Var i abl eHel pText = my_f or mat

To make it more convenient to work with customizable Variables, scons provides a number of functions that make it
easy to set up varioustypesof Variables. Each of thesereturn atupleready to be passedtothe Add or AddVar i abl es
method:

Bool Vari abl e(key, hel p, default)
Returns a tuple of arguments to set up a Boolean option. The option will use the specified name key, have a
default value of def aul t , and hel p will form the descriptive part of the help text. The option will interpret the
valuesy,yes,t,true,1,onandal | astrue andthevaluesn, no,f,fal se,0,of f andnone asfase.

Enunvari abl e(key, hel p, default, allowed values, [map, ignorecase])

Returns a tuple of arguments to set up an option whose value may be one of a specified list of legal enumerated
values. The option will use the specified name key, have adefault value of def aul t, and hel p will form the
descriptive part of the help text. The option will only support those valuesin the al | owed_val ues list. The
optional map argument is a dictionary that can be used to convert input values into specific legal values in the
al | owed_val ues list. If thevalue of i gnor e_case is0 (the default), then the values are case-sensitive. If
thevalueof i gnor e_case is1, then valueswill be matched case-insensitively. If thevalueof i gnor e_case
is2, then values will be matched case-insensitively, and al input values will be converted to lower case.

Li st Vari abl e(key, hel p, default, nanmes, [map])

Returns a tuple of arguments to set up an option whose value may be one or more of a specified list of lega
enumerated values. The option will use the specified name key, have a default value of def aul t, and hel p
will form the descriptive part of the help text. The option will only accept the values “al”, “none”, or the values
in the nanes list. More than one value may be specified, separated by commas. The default may be a string of
comma-separated default values, or alist of the default values. The optional map argument is a dictionary that
can be used to convert input values into specific legal valuesin the names list. (Note that the additional values
accepted through the use of amap are not reflected in the generated help message).

PackageVari abl e(key, hel p, default)
Returns a tuple of arguments to set up an option whose value is a path name of a package that may be enabled,
disabled or given an explicit path name. The option will use the specified name key, have a default value of
def aul t, and hel p will form the descriptive part of the help text. The option will support the values yes,
true,on, enabl e or sear ch, in which case the specified def aul t will be used, or the option may be set to
an arbitrary string (typically the path name to a package that is being enabled). The option will aso support the
valuesno, f al se, of f or di sabl e to disable use of the specified option.

Pat hvari abl e(key, hel p, default, [validator])
Returns a tuple of arguments to set up an option whose value is expected to be a path name. The option will use
the specified name key, have a default value of def aul t , and hel p will form the descriptive part of the help

Iy
=== SCONS 173

text. Anadditional val i dat or may be specified that will be called to verify that the specified path is acceptable.
SCons supplies the following ready-made validators:

Pat hVari abl e.Pat hExi sts
Verify that the specified path exists (this the default behavior if noval i dat or issupplied).

Pat hVvari abl e.Pat hl sFi |l e
Verify that the specified path exists and isaregular file.

Pat hVari abl e.Pat hl sDi r
Verify that the specified path exists and is adirectory.

Pat hVvari abl e.Pat hl sDi r Creat e
Verify that the specified path exists and is a directory; if it does not exist, create the directory.

Pat hVari abl e.Pat hAccept
Accept the specific path name argument without validation, suitable for when you want your usersto be able
to specify adirectory path that will be created as part of the build process, for example.

Y ou may supply your own validator function, which must accept three arguments (key, the name of the variable
to be set; val , the specified value being checked; and env, the construction environment) and should raise an
exception if the specified value is not acceptable.

These functions make it convenient to create a number of variables with consistent behavior in a single cal to the
AddVar i abl es method:

vars. AddVar i abl es(

Bool Vari abl e(
"war ni ngs",
hel p="conpilation with -Wall and simlar"
def aul t =1,

).

EnunVar i abl e(
"debug”,
hel p="debug out put and synbol s",
def aul t ="no",
al | owed_val ues=("yes",
map={},
i gnorecase=0, # case sensitive

no", "full"),

I
Li st Vari abl e(
"shar ed",
hel p="libraries to build as shared libraries",
defaul t="al | ",
nanmes=li st _of |ibs,
P
PackageVari abl e(
"x11",
hel p="use X11 installed here (yes = search sone pl aces)",
def aul t ="yes",
P
Pat hVar i abl e(
"qtdir",
hel p="where the root of @ is installed",
defaul t=qtdir),

Iy
=== SCONS 174

Pat hVar i abl e(
"f oopat h",
hel p="where the foo library is installed",
def aul t =f oopat h,
val i dat or =Pat hVari abl e. Pat hl sDi r,
),
)

File and Directory Nodes

TheFi | e and Di r functions/methods return File and Directory Nodes, respectively. Such nodes are Python objects
with several user-visible attributes and methods that are often useful to accessin SConscript files:

n.pat h
The build path of the given file or directory. This path is relative to the top-level directory (where the
SConst r uct fileisfound). The build path is the same as the source path if variant_dir is not being used.

n.abspat h
The absolute build path of the given file or directory.

n.rel pat h
The build path of the given file or directory relative to the root SConstruct file's directory.

n.srcnode()
The sr cnode method returns another File or Directory Node representing the source path of the given File or
Directory Node.

For example:

Get the current build dir's path, relative to top.

Dr(".").path

Current dir's absolute path

Dir('.").abspath

Current dir's path relative to the root SConstruct file's directory
Dir(".").rel path

Next line is always '.', because it is the top dir's path relative to itself.
Dir("#.').path

File('foo.c').srcnode(). path # source path of the given source file.

Builders also return File objects:
foo = env. Program(' foo.c')
print(“"foo will be built in", foo.path)

File and Directory Node objects have methods to create File and Directory Nodes relative to the original Node.
If the object isa Directory Node, these methods will place the the new Node within the directory the Node represents:

d.Di r (nane)
Returns adirectory Node for a subdirectory of d named nane.

d.Fi | e(nane)
Returns afile Node for afile within d named nane.

d.Ent ry(nane)
Returns an unresolved Node within d named namne.

Iy
=== SCONS 175

If the object is a File Node, these methods will place the the new Node in the same directory as the one the Node
represents:

f.Di r (nane)
Returns a directory named nane within the parent directory of f .

f.Fi | e(nane)
Returns a file named nane within the parent directory of f .

f .Entry(name)
Returns an unresolved Node named nane within the parent directory of f .

For example:

CGet a Node for a file within a directory
incl = Dir("include')

f = incl.File('header.h')

Get a Node for a subdirectory within a directory
dist = Dir('project-3.2.1")

src = dist.Dir("'src')

CGet a Node for a file in the sanme directory
cfile = File('sanple.c')
hfile = cfile.File('sanple.h")

Conbi ned exanpl e

docs Dir('docs')

ht m docs.Dir('htm ")

index = html .File('index.htm")
css = index. File('app.css')

EXTENDING SCONS
Builder Objects

scons can be extended to build different types of targets by adding new Builder objects to a construction environment.
In general, you should only need to add anew Builder object when you want to build anew type of file or other external
target. For output file types scons aready knows about, you can usually modify the behavior of premade Builders
such asPr ogr am Qbj ect orLi br ary by changing the construction variablesthey use ($CC, $LI NK, etc.). Inthis
manner you can, for example, change the compiler to use, which is simpler and less error-prone than writing a new
builder. The documentation for each Builder lists which construction variablesit uses.

Builder objects are created using the Bui | der factory function. Once created, a builder is added to an environment
by entering it in the $BUI LDERS dictionary in that environment (some of the examplesin this section illustrate that).

TheBui | der function accepts the following keyword arguments:

action
The command used to build the target from the source. act i on may be astring representing atemplate command
line to execute, alist of strings representing the command to execute with its arguments (suitable for enclosing
white spacein an argument), adictionary mapping source file name suffixes to any combination of command line
strings (if the builder should accept multiple source file extensions), a Python function, an Action object (see the
section called “Action Objects’) or alist of any of the above.

Iy
=== SCONS 176

An action function must accept three arguments: sour ce, t ar get and env. sour ce isalist of source nodes;
t ar get isalist of target nodes; env isthe construction environment to use for context.

Theact i on and gener at or arguments must not both be used for the same Builder.

prefix
The prefix to prepend to the target file name. pr ef i x may be astring, afunction (or other callable) that takestwo
arguments (a construction environment and alist of sources) and returns a prefix string, or adictionary specifying
amapping from a specific source suffix (of the first source specified) to a corresponding target prefix string. For
the dictionary form, both the source suffix (key) and target prefix (value) specifications may use environment
variable substitution, and the target prefix may also be acallable object. The default target prefix may beindicated
by adictionary entry with akey of None.

b = Builder("build_it < $SOURCE > $TARGET",
prefix="file-")

def gen_prefix(env, sources):
return "file-" + env[' PLATFORM] + '-'

b = Builder("build_it < $SOURCE > $TARCET",
prefix=gen_prefi x)
b = Builder("build_it < $SOURCE > $TARCET",
suffix={None: "file-", "$SRC SFX A': gen_prefix})
suffix

The suffix to append to the target file name. Specified in the same manner asfor pr ef i x above. If the suffix isa
string, then scons prependsa’ . ' to the suffix if it's not already there. The string returned by the callable object
or obtained from the dictionary is untouched and you need to manually prepend a' . ' if oneisrequired.

b = Builder("build_it < $SOURCE > $TARGET"
suffix="-file")

def gen_suffix(env, sources):

return "." + env[' PLATFORM] + "-file"

b = Builder("build_it < $SOURCE > $TARCET",
suf fi x=gen_suf fi x)

b = Builder("build_it < $SOURCE > $TARCET",

suf fix={None: ".sfx1", "$SRC SFX A': gen_suffix})

ensure_suffix
If set to atrue value, ensures that targets will end in suf f i x. Thus, the suffix will also be added to any target
strings that have a suffix that is not already suf f i x. The default behavior (also indicated by afalse value) isto
leave unchanged any target string that looks like it already has a suffix.

bl = Builder("build_ it < $SOURCE > $TARGET"
suffix = ".out")
b2 = Builder("build_ it < $SOURCE > $TARGET"
suffix = ".out",
ensur e_suf fi x=Tr ue)
S

=!l=5CoNs Loy

env = Environment ()
env[' BU LDERS][' Bl']
env[' BU LDERS][’ B2']

bl
b2

Builds "foo.txt" because ensure suffix is not set.
env.Bl('foo.txt', 'foo.in")

Builds "bar.txt.out"” because ensure_suffix is set.
env. B2('bar.txt', "bar.in")

src_suffix
The expected source file name suffix. sr c_suf fi x may beastring or alist of strings.

target _scanner
A Scanner object that will be invoked to find implicit dependencies for this target file. This keyword argument
should be used for Scanner objectsthat find implicit dependencies based only on thetarget file and the construction
environment, not for implicit dependencies based on source files. See the section called “ Scanner Objects’ for
information about creating Scanner objects.

sour ce_scanner
A Scanner object that will be invoked to find implicit dependencies in any source files used to build this target
file. This is where you would specify a scanner to find things like #i ncl ude lines in source files. The pre-
built Di r Scanner Scanner object may be used to indicate that this Builder should scan directory trees for on-
disk changes to files that scons does not know about from other Builder or function calls. See the section called
“Scanner Objects’ for information about creating your own Scanner objects.

target _factory
A factory function that the Builder will use to turn any targets specified as strings into SCons Nodes. By defaullt,
SCons assumesthat all targets are files. Other useful target_factory valuesinclude Dir, for when aBuilder creates
adirectory target, and Entry, for when aBuilder can create either afile or directory target.

Example:

MakeDi r ect or yBui | der = Buil der (acti on=nmy_nkdir, target_factory=Dir)
env = Environment ()

env. Append(BU LDERS={"' MakeDi rectory': MakeDirectoryBuil der})

env. MakeDirectory(' new directory', [])

Note that the call to this MakeDi r ect or y Builder needs to specify an empty source list to make the string
represent the builder's target; without that, it would assume the argument is the source, and would try to deduce
the target name from it, which in the absence of an automatically-added prefix or suffix would lead to amatching
target and source name and acircular dependency.

source_factory
A factory function that the Builder will use to turn any sources specified as strings into SCons Nodes. By defaullt,
SCons assumes that all source are files. Other useful source factory valuesinclude Dir, for when a Builder uses
adirectory as a source, and Entry, for when a Builder can usefiles or directories (or both) as sources.

Example:

Col | ect Bui | der = Buil der (acti on=my_nkdir, source_factory=Entry)
env = Environment ()

env. Append(BU LDERS={"' Col | ect' : Col | ect Bui | der})

env. Col l ect (' archive', ['directory_nanme', 'file_nane'])

Iy
=== SCONS 178

emtter
A function or list of functions to manipulate the target and source lists before dependencies are established and
the target(s) are actually built. emi t t er can also be a string containing a construction variable to expand to an
emitter function or list of functions, or a dictionary mapping source file suffixes to emitter functions. (Only the
suffix of the first source fileis used to select the actual emitter function from an emitter dictionary.)

A function passed asem t t er must accept three arguments: sour ce, t ar get and env. sour ce isalist of
source nodes, t ar get isalist of target nodes, env isthe construction environment to use for context.

An emitter must return a tuple containing two lists, the list of targets to be built by this builder, and the list of
sources for this builder.

Example:

def e(target, source, env):
return (target + ['foo.foo'], source + ['foo.src'])

Sinple association of an emitter function with a Buil der.
b = Builder("ny_build < $TARCET > $SOURCE",
emtter = e)

def e2(target, source, env):
return (target + ['bar.foo'], source + ['bar.src'])

Sinple association of a list of emtter functions with a Buil der.
b = Builder("ny_build < $TARCET > $SOURCE",
emtter = [e, e2])

Calling an emtter function through a construction vari abl e.
env = Environment (MY_EM TTER=e)
b = Builder("ny_build < $TARCET > $SOURCE",

emtter='"$MY_EM TTER')

Calling a list of emitter functions through a construction vari abl e.
env = Environment (EM TTER LI ST=[e, e2])
b = Builder("ny_build < $TARCET > $SOURCE",

em tter="$EM TTER LI ST')

Associating multiple emtters with different file
suffixes using a dictionary.
def e _sufl(target, source, env):
return (target + ['another _target file'], source)
def e _suf?2(target, source, env):
return (target, source + ['another_source file'])
b = Builder("ny_build < $TARCET > $SOURCE",
emtter={'.sufl" : e_sufl,
".suf2' : e _suf2})

mul ti
Specifies whether this builder is allowed to be called multiple times for the same target file(s). The default is
Fal se, which means the builder can not be called multiple times for the same target file(s). Calling a builder
multiple times for the same target simply adds additional source files to the target; it is not allowed to change the
environment associated with the target, specify additional environment overrides, or associate a different builder
with the target.

Iy
=== SCONS 179

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file))

gener at or
A function that returns alist of actionsthat will be executed to build the target(s) from the source(s). The returned
action(s) may be an Action object, or anything that can be converted into an Action object (see the next section).

A function passed asgener at or must accept four arguments: sour ce,t ar get ,env andf or _si gnat ur e.
sour ce isalist of sourcenodes, t ar get isalist of target nodes, env isthe construction environment to use for
context, f or _si gnat ur e isaBoolean value that specifies whether the generator is being called for generating
abuild signature (as opposed to actually executing the command).

Example:

def g(source, target, env, for_signature):
return [["gcc", "

-c", "-0"] + target + source]
b = Buil der (gener at or =g)
The generator and action arguments must not both be used for the same Builder.

src_buil der
Specifies abuilder to use when a source file name suffix does not match any of the suffixes of the builder. Using
this argument produces a multi-stage builder.

si ngl e_source
Specifiesthat this builder expects exactly one source file per call. Giving more than one source file without target
filesresults in implicitly calling the builder multiple times (once for each source given). Giving multiple source
filestogether with target filesresultsin aUser Er r or exception.

source_ext _match
When the specified act i on argument is a dictionary, the default behavior when a builder is passed multiple
sourcefilesisto make sure that the extensions of all the source filesmatch. If it islegal for thisbuilder to be called
with alist of sourcefileswith different extensions, thischeck can be suppressed by settingsour ce_ext _mat ch
to Fal se or some other non-true value. In this case, scons will use the suffix of the first specified source file to
select the appropriate action from theact i on dictionary.

In the following example, the setting of sour ce_ext _nat ch prevents scons from exiting with an error due to
the mismatched suffixes of f 00. i nandf 0o. extr a.

b = Builder(action={"'.in" : 'build $SOURCES > $TARCET },
sour ce_ext mat ch=Fal se)

env = Environnent (BUI LDERS={' MyBui | d' : b})
env. MyBui | d(' foo.out', ['foo.in', 'foo.extra'])

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file.)

Iy
=== SCONS 180

b = Builder(action="build < $SOURCE > $TARGET")
env = Environment (BU LDERS={' MyBui | d* : b})
env. MyBui | d(' foo.out', 'foo.in', ny_arg= xyzzy')

chdir
A directory from which scons will execute the action(s) specified for this Builder. If the chdi r argument isa
string or a directory Node, scons will change to the specified directory. If the chdi r isnot a string or Node and
is non-zero, then scons will change to the target file's directory.

Note that scons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdi r keyword argument--that is, the expanded file names will still be relative
to the top-level directory containing the SConst r uct file, and consequently incorrect relative to the chdir
directory. Builders created using chdi r keyword argument, will need to use construction variable expansions
like ${ TARCET. fi | e} and ${ SOURCE. fi | e} to usejust the filename portion of the targets and source.

b = Builder(action="build < ${SOURCE. file} > ${TARGET.file}",
chdi r =1)

env = Environment (BU LDERS={' MyBui | d* : b})

env. MyBui | d(' sub/dir/foo.out', 'sub/dir/foo.in")

Warning

Python only keeps one current directory location even if there are multiple threads. This means that use
of the chdi r argument will not work with the SCons - j option, because individual worker threads
spawned by SCons interfere with each other when they start changing directory.

Any additional keyword arguments supplied when a Builder object is created (that is, when the Bui | der functionis
called) will be set in the executing construction environment when the Builder object is called. The canonical example
here would be to set a construction variable to the repository of a source code system.

Any additional keyword arguments supplied when a Builder object is called will only be associated with the target
created by that particular Bui | der call (and any other files built as aresult of the call).

These extrakeyword arguments are passed to the following functions. command generator functions, function Actions,
and emitter functions.

Action Objects

TheBui | der factory functionwill turnitsact i on keyword argument into an appropriate internal Action object, as
will the Conmmaind function. Y ou can also explicitly create Action objectsfor passing to Bui | der , or other functions
that take actionsasarguments, by callingthe Act i on factory function. This may more efficient when multiple Builder
objects need to do the same thing rather than letting each of those Builder objects create a separate Action object. It
also alows more flexible configuration of an Action object. For example, to control the message printed when the
action is taken you need to create the action object using Act i on.

The Act i on factory function returns an appropriate object for the action represented by the type of the act i on
argument (the first positional parmeter):

» If acti onisaready an Action object, the object is simply returned.

» If acti on isastring, a command-line Action is returned. If such a string begins with @ the command line is
not printed. If the string begins with hyphen (-), the exit status from the specified command is ignored, alowing
execution to continue even if the command reports failure:

Iy
=== SCONS 181

Action(' $CC -c -0 $TARGET $SOURCES')

Doesn't print the |line being executed.
Action(' @uild $TARGET $SOURCES')

lgnores return val ue
Action('-build $TARGET $SOURCES')

Ifacti onisalist, thenalist of Action objectsisreturned. An Action object is created as necessary for each element
in thelist. If an element within the list isitself alist, the embedded list is taken as the command and arguments to
be executed via the command line. This allows white space to be enclosed in an argument rather than taken as a
separator by defining acommand in alist within alist:

Action([['cc', '-c', '-DWH TE SPACE', '-0', 'S$TARGET', '$SOURCES]])

If act i on isacallable object, a Function Action is returned. The callable must accept three keyword arguments:
target, source and env. t ar get is a Node object representing the target file, sour ce is a Node object
representing the source file and env isthe construction environment used for building the target file.

Thet ar get and sour ce arguments may be lists of Node objects if there is more than one target file or source
file. The actual target and source file name(s) may be retrieved from their Node objects viathe built-in Python st r
function:

target file_name = str(target)
source_file nanmes = [str(x) for x in source]

The function should return O or None to indicate a successful build of the target file(s). The function may raise an
exception or return a non-zero exit status to indicate an unsuccessful build.

def build_it(target=None, source=None, env=None):
build the target fromthe source
return O

a = Action(build_it)

If act i on isnot one of the above types, no action object is generated and Act i on returns None.

The environment method form env. Act i on will expand construction variables in any argument strings, including
act i on, at thetimeitiscalled, using the construction variablesin the construction environment through which it was
called. The global function form Act i on delays variable expansion until the Action object is actually used.

The optional second argument to Act i on is used to control the output which is printed when the Action is actually
performed. If this parameter is omitted, or if the value is an empty string, a default output depending on the type of
the action is used. For example, a command-line action will print the executed command. The following argument
types are accepted:

If out put is a string, substitution is performed on the string before it is printed. The string typically contains
variables, notably $TARGET(S) and $SOURCE(S) , or consists of just a single variable, which is optionally
defined somewhere else. SCons itself heavily uses the latter variant.

If out put is afunction, the function will be called to obtain a string describing the action being executed. The
function must accept three keyword arguments: t ar get , sour ce and env, with the same interpretation as for
acdlableact i on argument above.

~

'—‘-‘ SCONS 182

 If out put isNone, output is suppressed entirely.

Instead of using a positional argument, the cndst r keyword argument may be used to specify the output string, or
thest r f unct i on keyword argument may be used to specify afunction to return the output string. cndst r =None
suppresses output entirely.

Examples:
def build it(target, source, env):

build the target fromthe source
return O

def string it(target, source, env):
return "building '%' from'%'" % (target[0], source[0])

Use a positional argunent.
Action(build_it, string_it)

S Action(build it, "building '$TARGET' from ' $SOURCE ")

Alternatively, use a keyword argunent.

f = Action(build it, strfunction=string it)

s = Action(build it, cndstr="building ' $TARGET'" from ' $SOURCE ")

You can provi de a configurable variable.
| = Action(build it, '$STRING T')

Any additional positional arguments, if present, may either be construction variables or lists of construction variables
whose values will beincluded in the signature of the Action when deciding whether atarget should be rebuilt because
the action changed. Such variables may also be specified usingthevar | i st keyword parameter; both positional and
keyword forms may be present, and will be combined. Thisis necessary whenever you want atarget to be rebuilt when
a specific construction variable changes. This is not often needed for a string action, as the expanded variables will
normally be part of the command line, but may be needed if a Python function action uses the value of a construction
variable when generating the command line.

def build_ it(target, source, env):
build the target fromthe ' XXX construction variabl e
with open(target[0], 'wW) as f:
f.wite(env[' XXX])
return O

Use positional argunents.
a = Action(build_it, "$STRING T, ['XXX'])

Alternatively, use a keyword argunent.
a = Action(build_it, varlist=['XXX1])

The Act i on factory function can be passed the following optional keyword arguments to modify the Action object's
behavior:

chdir
If chdi r istrue (the default is Fal se), SCons will change directories before executing the action. If the value
of chdi r isastring or a directory Node, SCons will change to the specified directory. Otherwise, if chdi r
evaluates true, SCons will change to the target file's directory.

Iy
=== SCONS 183

ex

bat

Note that SCons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdi r parameter - that is, the expanded file names will still be relative to the top-
level directory containing the SConst r uct file, and consequently incorrect relative to the chdir directory.
Builders created using chdi r keyword argument, will need to use construction variable expansions like
${ TARGET. fi | e} and${ SOURCE. fi | e} tousejust thefilename portion of the targets and source. Example:

a = Action("build < ${SOURCE.file} > ${TARGET.file}", chdir=True)

tstatfunc

If provided, must be acallable which accepts asingle parameter, the exit status (or return value) from the specified
action, and which returns an arbitrary or modified value. This can be used, for example, to specify that an Action
object's return value should be ignored under special conditions and SCons should, therefore, consider that the
action always succeeds. Example;

def al ways_succeed(s):
Always return O, which indicates success.
return O

a = Action("build < ${SOURCE. fil e} > ${TARGET.file}",
exi t st at f unc=al ways_succeed)

ch_key

If provided, indicates that the Action can create multiple target files by processing multiple independent source
files ssimultaneously. (The canonical example is "batch compilation” of multiple object files by passing multiple
sourcefilesto asingleinvocation of acompiler such asMicrosoft's Visual C/ C++ compiler.) If thebat ch_key
argument evaluates True and is not a callable object, the configured Action object will cause scons to collect
all targets built with the Action object and configured with the same construction environment into single
invocations of the Action object's command line or function. Command lines will typically want to use the
$CHANGED SOURCES construction variable (and possibly $CHANGED TARGETS as well) to only pass to the
command line those sources that have actually changed since their targets were built. Example;

a = Action('build $CHANGED SOURCES', batch_key=Tr ue)

Thebat ch_key argument may also be acallable function that returnsakey that will be used to identify different
"batches' of target files to be collected for batch building. A bat ch_key function must accept four parameters:
action, env, target and sour ce. The first parameter, act i on, is the active action object. The second
parameter, env, isthe construction environment configured for thetarget. Thet ar get and sour ce parameters
arethelists of targets and sources for the configured action.

The returned key should typically be atuple of values derived from the arguments, using any appropriate logic to
decide how multiple invocations should be batched. For example, abat ch_key function may decide to return
the value of a specific construction variable from env which will cause sconsto batch-build targets with matching
values of that construction variable, or perhaps return the Python i d() of the entire construction environment,
in which case scons will batch-build all targets configured with the same construction environment. Returning
None indicates that the particular target should not be part of any batched build, but instead will be built by a
separate invocation of action's command or function. Example:

def batch_key(action, env, target, source):
tdir = target[O].dir
if tdir.nane == 'special':

Don't batch-build any target

~

'—‘-‘ SCONS 184

in the special/ subdirectory.
return None
return (id(action), id(env), tdir)
a = Action('build $CHANGED SOURCES', batch_key=bat ch_key)

Miscellaneous Action Functions

SCons supplies Action functions that arrange for various common file and directory manipulations to be performed.
These are similar in concept to "tasks" in the Ant build tool, although the implementation is dightly different. These
functions do not actually perform the specified action at the time the function is called, but rather are factory functions
which return an Action object that can be executed at the appropriate time.

There are two natural ways that these Action Functions are intended to be used.

First, if you need to perform the action at the time the SConscript file is being read, you can use the Execut e global
function:

Execut e(Touch('file'))

Second, you can use these functions to supply Actions in a list for use by the env. Cormand method. This can
allow you to perform more complicated sequences of file manipulation without relying on platform-specific external
commands:

env = Environnment (TMPBUI LD="/t np/ bui | ddir")
env. Comand(
target='foo0.out',
source='foo.in",
action=[
Mkdi r (' $TMPBUI LD),
Copy (' $TMPBUI LD , '${SOURCE.dir}"'),
"cd $TMPBU LD && make",
Del et e(' $TMPBUI LD),
1,
)

Chnod(dest, node)
Returns an Action object that changes the permissions on the specified dest file or directory to the specified
node which can be octal or string, similar to the bash command. Examples:

Execut e(Chnod(' file', 00755))

env. Command(' foo. out', 'foo.in',
[Copy(' $TARGET', ' $SOURCE'),
Chnod(' $TARGET' , 00755)])

Execut e(Chnod(' file', "ugo+w'))
env. Command(' foo. out', 'foo.in',
[Copy(' $TARGET', ' $SOURCE'),
Chnod("' $TARGET' , "ugo+w')])

Thebehavior of Chrrod islimited on Windows, see the notesin the Python documentation for os. chnod, which
is the underlying function.

Iy
=== SCONS 185

Copy(dest, src)
Returns an Action object that will copy the sr ¢ sourcefile or directory to thedest destination file or directory.
Examples:

Execut e(Copy(' foo. output', 'foo.input'))

env. Command(' bar.out', 'bar.in', Copy('$TARGET', ' $SOURCE'))

De

ete(entry, [nust_exist])

Returns an Action that deletes the specified ent ry, which may be a file or a directory tree. If a directory is
specified, the entire directory tree will be removed. If thenust _exi st flagisset to atrue value, then a Python
error will be raised if the specified entry does not exist; the default is false, that is, the Action will silently do
nothing if the entry does not exist. Examples:

Execut e(Del ete(' /tnp/ buil droot'))

env. Comand(
'foo.out',
‘foo.in',
acti on=[
Del ete(' ${TARGET.dir}"'),
MyBui | dAct i on,
1
)

Execute(Del ete(' file that nust exist', nust_exist=True))

Mkdi r (namne)
Returns an Action that creates the directory nane and all needed intermediate directories. name may also be a
list of directoriesto create. Examples:

Execut e(Mkdi r (' /tnp/ outputdir'))

env. Comand(

'foo.out',

'foo.in',

action=[
Mkdir('/tnmp/builddir'),
Copy('/tnmp/builddir/foo.in', '$SOURCE),
“cd /tnp/builddir &% make",
Copy(' $TARGET', '/tnp/builddir/foo.out'),

)

Move(dest, src)
Returnsan Action that movesthe specified sr ¢ fileor directory to the specifieddest fileor directory. Examples:

Execut e(Move(' file.destination', 'file.source'))

env. Comand(
"output _file',

Iy
=== SCONS 186

"input_file',
action=[MyBui | dActi on, Myve(' $TARGET', 'file_created_by M/Buil dAction')],
)

Touch(fil e)
Returns an Action that updates the modification time on the specified f i | e. Examples:

Execut e(Touch('file_to_be touched'))
env. Conmand(' marker', 'input_file', action=[M/BuildAction, Touch('$TARCGET)])

Variable Substitution

Before executing a command, scons performs variable substitution on the string that makes up the action part of
the builder. Variables to be interpolated are indicated in the string with a leading $, to distinguish them from plain
text which is not to be substituted. The name may be surrounded by curly braces (${ }) to separate the name from
surrounding characters if necessary. Curly braces are required when you use Python list subscripting/slicing notation
on avariable to select one or moreitems from alist, or access avariable's special attributes, or use Python expression
substitution.

Besidesregular construction variables, scons providesthe following specia variablesfor usein expanding commands:

$CHANGED SOURCES
Thefile names of all sources of the build command that have changed since the target was last built.

$CHANGED TARCGETS
Thefile names of al targets that would be built from sources that have changed since the target was last built.

$SOURCE
The file name of the source of the build command, or the file name of the first source if multiple sources are
being built.

$SOURCES
The file names of the sources of the build command.

$TARGET
Thefile name of the target being built, or the file name of the first target if multiple targets are being built.

$TARGETS
The file names of all targets being built.

$UNCHANGED_SOURCES
Thefile names of all sources of the build command that have not changed since the target was last built.

$UNCHANGED_TARGETS
Thefile names of al targets that would be built from sources that have not changed since the target was last built.

These names are reserved and may not be assigned to or used as construction variables.

For example, the following builder call:

env = Environment (CC='cc')
env. Comand(
target=['foo'],
source=['foo.c', "bar.c'],
action=' @cho $CC -c -o $TARGET $SOURCES

Iy
=== SCONS 187

)

would produce the following output:

cc -c -o foo foo.c bar.c
In the previous example, astring ${ SOURCES][1] } would expand to: bar . c.

A variable name may have the following modifiers appended within the enclosing curly bracesto access properties of
the interpolated string. These are known as special attributes.

base - The base path of the file name, including the directory path but excluding any suffix.

di r - The name of the directory in which thefile exists.

fil e - Thefile name, minus any directory portion.

fil ebase -Likefi | e but minusits suffix.

suf fi x - Just the file suffix.

abspat h - The absolute path name of the file.

r el pat h - The path name of thefile relative to the root SConstruct file's directory.

posi x - The path with directories separated by forward slashes (/). Sometimes necessary on Windows systems when
apath references afile on other (POSIX) systems.

wi ndows - The path with directories separated by backslashes (\ \). Sometimes necessary on POSI X-style systems
when a path references afile on other (Windows) systems. wi n32 is a (deprecated) synonym for wi ndows.

sr cpat h - The directory and file name to the source file linked to this file through Var i ant Di r (). If thisfileisn't
linked, it just returns the directory and filename unchanged.

srcdi r - Thedirectory containing the source file linked to this file through Var i ant Di r (). If thisfile isn't linked,
it just returns the directory part of the filename.

r sr cpat h - Thedirectory and file name to the source file linked to thisfile through Var i ant Di r (). If thefile does
not exist locally but existsin a Repository, the path in the Repository is returned. If thisfile isn't linked, it just returns
the directory and filename unchanged.

r srcdi r - The Repository directory containing the sourcefile linked to thisfile through Var i ant Di r (). If thisfile
isn't linked, it just returns the directory part of the filename.

For example, the specified target will expand as follows for the corresponding modifiers:

$TARCGET => sub/dir/file.x

${ TARGET. base} => sub/dir/file

${ TARGET. di r} => sub/dir

${ TARGET. fi | e} => file.x

${ TARGET. fi | ebase} = file

${ TARGET. suf fi x} = . X

${ TARGET. abspat h} => [/top/dir/sub/dir/file.x
${ TARGET. r el pat h} => sub/dir/file.x

$TARCGET => .. /dir2/file.x

${ TARGET. abspat h} => [/top/dir2/file.x

${ TARGET. r el pat h} => ../dir2/file.x
SConscri pt (' src/ SConscript', variant _dir="sub/dir")
$SOURCE => sub/dir/file.x

${ SOURCE. sr cpat h} => src/file.x

${ SOURCE. srcdi r} => src

Repository('/usr/repository')

Iy
=== SCONS 188

$SOURCE => sub/dir/file.x
${ SOURCE. r sr cpat h} => [usr/repository/src/file.x
${ SOURCE. rsrcdi r} => [usr/repository/src

Some modifiers can be combined, like ${ TARGET. sr cpat h. base) , ${ TARGET. fi | e. suf fi x}, etc.

The curly brace notation may also be used to enclose a Python expression to be evaluated. See the section called
“Python Code Substitution” below for a description.

A variable name may al so be aPython function associated with aconstruction variablein the environment. Thefunction
should accept four arguments:

t ar get - alist of target nodes

sour ce - alist of source nodes

env - the construction environment

f or _si gnat ur e - aBoolean valuethat specifieswhether thefunctionisbeing called for generating abuild signature.

SCons will insert whatever the called function returns into the expanded string:

def foo(target, source, env, for_signature):
return "bar"

WIIl expand $BAR to "bar baz"
env=Envi r onnment (FOO=f oo, BAR="$FCO baz")

As areminder, this evaluation happens when $BAR is actually used in a builder action. The value of env[' BAR']
will be exactly asit was set: " $FOO baz".

You can use this feature to pass arguments to a Python function by creating a callable class that stores one or more
argumentsin an object, and then usesthemwhenthe __cal | __ () method iscalled. Notethat in this case, the entire
variable expansion must be enclosed by curly braces so that the arguments will be associated with the instantiation
of the class:

cl ass foo:
def __init_ (self, arg):
self.arg = arg

def _ call__(self, target, source, env, for_signature):
return self.arg + " bar"

WIIl expand $BAR to "my argunent bar baz"
env=Envi r onnent (FOO=f oo, BAR="${FOQ(' my argunent')} baz")

The special pseudo-variables $(and $) may be used to surround parts of a command line that may change without
causing a rebuild--that is, which are not included in the signature of target files built with this command. All text
between $(and $) will be removed from the command line before it is added to file signatures, and the $(and $) will
be removed before the command is executed. For example, the command line:

echo Last build occurred $($TODAY $). > $TARGET

would execute the command:

echo Last build occurred $TODAY. > $TARGET

Iy
=== SCONS 189

but the command signature added to any target files would be:

echo Last build occurred . > $TARGET

Python Code Substitution

If asubstitutable expression using the notation ${ sonet hi ng} doesnot appear to match one of the other substitution
patterns, it is evaluated as a Python expression. This uses Python'seval function, with the gl obal s parameter set
to the current environment's set of construction variables, and the result substituted in. So in the following case:

env. Comand(
'foo.out', 'foo.in', "echo ${COND==1 and ' FOO or 'BAR } > $TARGET"
)

the command executed will be either

echo FOO > f oo. out

or

echo BAR > f 00. out

according to the current valueof env[' COND'] when the command isexecuted. The evaluation takes place when the
target is being built, not when the SConscript isbeing read. So if env[' COND] ischanged later in the SConscript,
the final value will be used.

Here'samore complete example. Note that all of COND, FOO, and BAR are construction variables, and their values are
substituted into the final command. FOOis alist, so its elements are interpol ated separated by spaces.

env=Envi r onnment ()
env['COND'] =1
env['FOO] = ['fool', 'fo002']
env['BAR] = 'barbar'
env. Comand(
"foo.out', 'foo.in', "echo ${COND==1 and FOO or BAR} > $TARGET"

)

will execute:

echo fool foo2 > foo. out

In point of fact, Python expression evaluation is how the special attributes are substituted: they are simply attributes of
the Python objects that represent $TARGET, $SOURCES, etc., which SCons passesto eval which returns the value.

SCons uses the following rules when converting construction variables into command lines:

string
When the valueisastring it isinterpreted as a space delimited list of command line arguments.

list
Whenthevaueisalistitisinterpreted asalist of command line arguments. Each element of the list is converted
to astring.

Iy
=== SCONS 190

other
Anything that isnot alist or string is converted to a string and interpreted as a single command line argument.

newline
Newline characters (\ n) delimit lines. The newline parsing is done after all other parsing, so it is nhot possible for
arguments (e.g. file names) to contain embedded newline characters.

Note

Use of the Python eval function is considered to have security implications, since, depending on input
sources, arbitrary unchecked strings of code can be executed by the Python interpreter. Although SCons makes
use of it in a somewhat restricted context, you should be aware of this issue when using the ${ pyt hon-

expr essi on-for-subst} form.

Scanner Objects

You can usethe Scanner function to define objects to scan new file typesfor implicit dependencies. The Scanner
function accepts the following arguments:

function
This can be either:

 a Python function that will process the Node (file) and return a list of File Nodes representing the implicit
dependencies (file names) found in the contents.

« adictionary that maps keys (typically the file suffix, but see below for more discussion) to other Scanners that
should be called.

If the argument is a Python function, the function must accept three required arguments and an optional fourth:

node - The internal SCons node representing the file. Use st r (node) to fetch the name of the file, and
node.get _cont ent s() to fetch the contents of the file as bytes or node.get _t ext cont ent s() to fetch
the contents astext. Note that the fileis not guaranteed to exist before the scanner iscalled, so the scanner function
should check that if there's any chance that the scanned file might not exist (for example, if it's built from other
files).

env - The construction environment for the scan.

pat h - A tuple (or list) of directories that can be searched for files. Thiswill usually be the tuple returned by the
pat h_f uncti on argument (see below).

ar g - The argument supplied when the scanner was created, if any (default None.

nane
The name of the Scanner. Thisis mainly used to identify the Scanner internally. The default valueis™ NONE" .

ar gument
An optiona argument that, if specified, will be passed to the scanner function (described above) and the path
function (specified below).

skeys
An optional list that can be used to determine which scanner should be used for a given Node. In the usual case of
scanning for file names, this argument will be alist of suffixesfor the different file types that this Scanner knows
how to scan. If the argument is a string, then it will be expanded into alist by the current environment.

pat h_functi on
A Python function that takes four or five arguments. a construction environment, a Node for the directory
containing the SConscript filein which thefirst target was defined, alist of target nodes, alist of source nodes, and
an optional argument supplied when the scanner was created. Thepat h_f unct i on returnsatupleof directories
that can be searched for files to be returned by this Scanner object. (Note that the Fi ndPat hDi r s function can

Iy
=== SCONS 191

be used to return aready-made pat h_f unct i on for a given construction variable name, instead of having to
write your own function from scratch.)

node_cl ass
The class of Node that should be returned by this Scanner object. Any strings or other objects returned by the
scanner function that are not of this class will be run through the function supplied by the node_f act ory
argument.

node_factory
A Python function that will take astring or other object and turn it into the appropriate class of Nodeto be returned
by this Scanner object.

scan_check
An optional Python function that takes two arguments, a Node (file) and a construction environment, and returns
whether the Node should, in fact, be scanned for dependencies. This check can be used to eliminate unnecessary
calls to the scanner function when, for example, the underlying file represented by a Node does not yet exist.

recursive
An optiona flag that specifies whether this scanner should be re-invoked on the dependency files returned by the
scanner. When thisflag is not set, the Node subsystem will only invoke the scanner on the file being scanned, and
not (for example) also on the files specified by the#i ncl ude linesin the file being scanned. recursive may bea
callable function, in which case it will be called with alist of Nodes found and should return alist of Nodes that
should be scanned recursively; this can be used to select a specific subset of Nodes for additional scanning.

Note that scons has a global Sour ceFi | eScanner object that is used by the Qbj ect , Shar edChj ect and
Stati cObj ect builders to decide which scanner should be used for different file extensions. You can use the
Sour ceFi | eScanner . add_scanner () method to add your own Scanner object to the SCons infrastructure
that builds target programs or libraries from alist of source files of different types:

def xyz _scan(node, env, path):
contents = node.get _text contents()
Scan the contents and return the included files.

XYZScanner = Scanner (xyz_scan)
Sour ceFi | eScanner . add_scanner (' . xyz', XYZScanner)

env. Program(' my_prog', ['filel.c', 'file2.f', '"file3.xyz'])

SYSTEM-SPECIFIC BEHAVIOR

scons and its configuration files are very portable, due largely to its implementation in Python. There are, however,
afew portability issues waiting to trap the unwary.

.C file suffix

scons handles the upper-case . C file suffix differently, depending on the capabilities of the underlying system. On
a case-sensitive system such as Linux or UNIX, scons treats afile with a. C suffix as a C++ source file. On a case-
insensitive system such as Windows, sconstreats afile with a. C suffix asa C sourcefile.

Fortran file suffixes

scons handles upper-case Fortran file suffixes differently depending on the capabilities of the underlying system. On
a case-sensitive system such as Linux or UNIX, scons treats a file with a . F as a Fortran source file that is to be

Iy
=== SCONS 192

first run through the standard C preprocessor, while the lower-case version is not. This matches the convention of
gfortran, which may also be followed by other Fortran compilers. This also applies to other naming variants, . FOR,
. FTN, . F90, . F95,. FO3 and . F08; files suffixed with. FPP and . f pp are both run through the preprocessor, as
indicated by the pp part of the name. On a case-insensitive system such as Windows, scons treats afile witha . F
suffix as a Fortran source file that should not be run through the C preprocessor.

Run through the C preprocessor here means that a different set of construction variables will be applied in
constructed commands, for example $FORTRANPPCOMand $FORTRANPPCOVSTR instead of $FORTRANCOMand
$FORTRANCOVSTR. See the Fortran-related construction variables for more details.

Windows: Cygwin Tools and Cygwin Python vs. Windows Pythons

Cygwin supplies a set of tools and utilities that let users work on a Windows system using a more POSIX-like
environment. The Cygwin tools, including Cygwin Python, do this, in part, by sharing an ability to interpret UNIX-
like path names. For example, the Cygwin tools will internally translate a Cygwin path name like/ cygdri ve/ c/

nmydi r to an equivalent Windows pathname of C: / mydi r (equivalentto C: \ mydi r).

Versionsof Python that are built for native Windows execution, such asthe python.org and ActiveState versions, do not
have the Cygwin path name semantics. This means that using a native Windows version of Python to build compiled
programs using Cygwin tools (such as gec, bison and flex) may yield unpredictable results. "Mixing and matching” in
this way can be made to work, but it requires careful attention to the use of path namesin your SConscript files.

In practice, users can sidestep the issue by adopting the following rules: When using gcc, use the Cygwin-supplied
Python interpreter to run scons; when using Microsoft Visual C/C++ (or some other Windows compiler) use the
python.org or Microsoft Store or ActiveState version of Python to run scons.

Windows: scons. bat file

On Windows systems, scons is executed viaawrapper scons. bat file. This has (at least) two ramifications:

First, Windows command-line users that want to use variabl e assignment on the command line may have to put double
guotes around the assignments:

scons " FOO=BAR' "BAZ=BLEH'

Second, the Cygwin shell does not recognize thisfile as being the same as an scons command issued at the command-
line prompt. Y ou can work around thiseither by executingscons. bat fromthe Cygwincommand line, or by creating
awrapper shell script named scons.

MinGW

The MinGW bi n directory must be in your PATH environment variable or the[" ENV'] [' PATH] construction
variable for scons to detect and use the MinGW tools. When running under the native Windows Python interpreter,
scons will prefer the MinGW tools over the Cygwin toals, if they are both installed, regardless of the order of the bin
directoriesin the PATH variable. If you have both MSVC and MinGW installed and you want to use MinGW instead
of MSVC, then you must explicitly tell sconsto use MinGW by passingt ool s=[' mi ngw] totheEnvi r onnent
function, because scons will prefer the MSV C tools over the MinGW tools.

ENVIRONMENT

In general, scons is not controlled by environment variables set in the shell used to invoke it, leaving it up to the
SConscript file author to import those if desired. However the following variables are imported by sconsitself if set:

Iy
=== SCONS 193

SCONS LIB DIR
Specifies the directory that contains the scons Python module directory. Normally scons can deduce this, but in
some circumstances, such asworking with asource release, it may be necessary to specify (for example, / home/
aroach/ scons-src-0. 01/ src/ engi ne).

SCONSFLAGS
A string containing options that will be used by scons in addition to those passed on the command line. Can be
used to reduce frequent retyping of common options. The contents of SCONSFLAGS are considered before any
passed command line options, so the command line can be used to override SCONSFLAGS optionsif necessary.

SCONS_CACHE_MSVC_CONFI G
(Windows only). If set, save the shell environment variables generated when setting up the Microsoft Visual
C++ compiler (and/or Build Tools) to a cache file, to give these settings, which are relatively expensive to
generate, persistence across scons invocations. Use of this option is primarily intended to aid performance in
tightly controlled Continuous Integration setups.

If settoaTruelikevalue (" 1","true" or" True") will cachetoafilenamed. scons_nsvc_cache inthe
user's home directory. If set to a pathname, will use that pathname for the cache.

Note: use this cache with caution as it might be somewhat fragile: while each mgjor toolset version (e.g. Visua
Studio 2017 vs 2019) and architecture pair will get separate cache entries, if toolset updates cause a change to
settings within a given release series, scons will not detect the change and will reuse old settings. Remove the
cache file in case of problems with this. scons will ignore failures reading or writing the file and will silently
revert to non-cached behavior in such cases.

Available since scons 3.1 (experimental).

SEE ALSO

The SCons User Guide at https://scons.org/doc/production/HTML/scons-user.html

The SCons Design Document (ol d)

The SCons Cookbook at https:.//scons-cookbook.readthedocs.io for examples of how to solve various problems with
SCons.

SCons source code on GitHub [https://github.com/SCons/scons]

The SCons API Reference https://scons.org/doc/production/HTM L/scons-api/index.html (for internal details)

AUTHORS

Originaly: Steven Knight <kni ght @al dnt . con and Anthony Roach
<aroach@l ectri ceyebal | . conp.

Since 2010: The SCons Development Team <scons- dev@cons. or g>.

Iy
=== SCONS 194

https://scons.org/doc/production/HTML/scons-user.html
https://scons-cookbook.readthedocs.io
https://github.com/SCons/scons
https://github.com/SCons/scons
https://scons.org/doc/production/HTML/scons-api/index.html

