
./src/agg_renderer.os

./agg/src

./src/graphics.os

./src/font_set.os

./agg/src/agg_vcgen_markers_term.o

./src/params.os

./agg/src/agg_image_filters.o

./bindings/python/mapnik_symbolizer.os

./src/memory.os

./bindings/python/mapnik_font_engine.os

./plugins/input/shape/dbffile.os

./agg/src/agg_line_aa_basics.o

./src/save_map.os

./bindings/python/mapnik_view_transform.os

./src/color.os

./agg/libagg.a

./src/font_engine_freetype.os

./src/stroke.os

./bindings/python/mapnik_image.os

./src/image_util.os

./bindings/python/mapnik_datasource_cache.os

./agg/include

./bindings/python/mapnik_rule.os

./agg/src/agg_bezier_arc.o

./bindings/python/mapnik_featureset.os

./agg/src/agg_arc.o

./plugins/input/shape/shapefile.os

./plugins/input/raster/raster_datasource.os

./plugins/input/raster/raster_featureset.os

./src/unicode.os

./bindings/python/mapnik/ogcserver

./bindings/python/mapnik_map.os

./src/arrow.os

./plugins

./plugins/input/raster/raster.input

./agg/src/agg_vcgen_contour.o

./agg/src/agg_trans_warp_magnifier.o

./bindings/python/mapnik_datasource.os

./plugins/input/shape/shape_featureset.os

./src/load_map.os

./bindings/python/mapnik_point_symbolizer.os

./src/line_pattern_symbolizer.os

./bindings/python/mapnik

./plugins/input/raster

./src/map.os
./src/wkb.os

./agg/src/agg_vcgen_stroke.o

./agg/src/agg_gsv_text.o

./plugins/input/shape/shape.os

./bindings

./src

./bindings/python/mapnik_filter.os

./agg/src/agg_vcgen_bspline.o

./bindings/python/mapnik_coord.os

./src/envelope.os

./agg/src/agg_vpgen_segmentator.o

./bindings/python/mapnik_layer.os

./bindings/python/mapnik_line_symbolizer.os

./src/shield_symbolizer.os

./agg/src/agg_trans_double_path.o

./src/projection.os

./src/tiff_reader.os

./bindings/python/mapnik_proj_transform.os

./bindings/python/mapnik_style.os

./bindings/python/mapnik_shield_symbolizer.os

./src/image_reader.os

./agg/src/agg_bspline.o

./agg/src/agg_trans_single_path.o

./plugins/input/raster/raster_info.os

./agg/src/agg_vcgen_dash.o

./bindings/python/mapnik_projection.os

./bindings/python/mapnik_image_view.os

./src/distance.os

./src/datasource_cache.os

./bindings/python/mapnik_parameters.os

./src/plugin.os

./agg/src/agg_arrowhead.o

./bindings/python/mapnik_feature.os

./agg/src/agg_embedded_raster_fonts.o

./src/libmapnik.so

./src/placement_finder.os

./agg/src/agg_sqrt_tables.o

./agg/src/agg_vpgen_clip_polyline.o

./bindings/python/mapnik_raster_symbolizer.os

./agg/src/agg_line_profile_aa.o

./bindings/python/mapnik_line_pattern_symbolizer.os

./bindings/python/mapnik_color.os

./src/proj_transform.os

./src/memory_datasource.os

./plugins/input

./bindings/python/mapnik_python.os

./src/png_reader.os

./bindings/python/mapnik_envelope.os

./bindings/python/mapnik_stroke.os

./plugins/input/shape/shape.input

./bindings/python/mapnik_query.os

./src/point_symbolizer.os

./src/filter_factory.os

./bindings/python/mapnik_polygon_symbolizer.os

./agg/src/agg_vcgen_smooth_poly1.o

./plugins/input/shape/shape_index_featureset.os

./bindings/python/python_cairo.os

./src/symbolizer.os

./bindings/python/_mapnik.so

./agg/src/agg_trans_affine.o

./src/polygon_pattern_symbolizer.os

./bindings/python/mapnik_polygon_pattern_symbolizer.os

./agg/src/agg_curves.o

./src/text_symbolizer.os

./src/scale_denominator.os

./plugins/input/shape/shape_io.os

./src/layer.os

./agg

./src/libxml2_loader.os

./agg/src/agg_vpgen_clip_polygon.o

./plugins/input/shape

./bindings/python/mapnik_geometry.os

./bindings/python/mapnik_text_symbolizer.os

./agg/src/agg_rounded_rect.o

./bindings/python

SCons 4.2.0
MAN page

The SCons Development Team

Version 4.2.02001 - 2021The SCons FoundationReleased Mon, 09 Aug 2021 10:31:08 +0000

Name
scons — a software construction tool

Synopsis
scons [options...] [name=val...] [targets...]

DESCRIPTION
scons orchestrates the construction of software (and other tangible products such as documentation files) by
determining which component pieces must be built or rebuilt and invoking the necessary commands to build them.
SCons offers many features to improve developer productivity such as parallel builds, caching of build artifacts,
automatic dependency scanning, and a database of information about previous builds so details do not have to be
recalculated each run.

scons requires Python 3.5 or later to run; there should be no other dependencies or requirements. Support for Python
3.5 is deprecated since SCons 4.2 and will be dropped in a future release. The CPython project has retired 3.5: https://
www.python.org/dev/peps/pep-0478.

You set up an SCons build system by writing a script that describes things to build (targets), and, if necessary, the
rules to build those files (actions). SCons comes with a collection of Builder methods which apply premade actions
for building many common software components such as executable programs, object files and libraries, so that for
many software projects, only the targets and input files (sources) need be specified in a call to a builder. scons thus
can operate at a level of abstraction above that of pure files. For example if you specify a library target named "foo",
scons keeps track of the actual operating system dependent filename (such as libfoo.so on a GNU/Linux system),
and how to refer to that library in later construction steps that want to use it, so you don't have to specify that precise
information yourself. scons can also scan automatically for dependency information, such as header files included by
source code files, so this does not have to be specified manually.

When invoked, scons looks for a file named SConstruct in the current directory and reads the build configuration
from that file (other names are allowed, see the section called “SConscript Files” for more information). The
SConstruct file may specify subsidiary configuration files by calling the SConscript function. By convention,
these subsidiary files are named SConscript, although any name may be used. As a result of this naming convention,
the term SConscript files is used to refer generically to the complete set of configuration files for a project (including
the SConstruct file), regardless of the actual file names or number of such files.

Before reading the SConscript files, scons looks for a directory named site_scons in various system directories
and in the directory containing the SConstruct file or, if specified, the directory from the --site-dir option
instead, and prepends the ones it finds to the Python module search path (sys.path), thus allowing modules in such
directories to be imported in the normal Python way in SConscript files. For each found site directory, (1) if it contains
a file site_init.py that file is evaluated, and (2) if it contains a directory site_tools the path to that directory
is prepended to the default toolpath. See the --site-dir and --no-site-dir options for details on default paths
and controlling the site directories.

SConscript files are written in the Python programming language, although it is normally not necessary to be a Python
programmer to use scons effectively. SConscript files are invoked in a context that makes the facilities described in
this manual page available in their local namespace without any special steps. Standard Python scripting capabilities
such as flow control, data manipulation, and imported Python libraries are available to use to handle complicated build
situations. Other Python files can be made a part of the build system, but they do not automatically have the SCons
context and need to import it if they need access (described later).

scons reads and executes all of the included SConscript files before it begins building any targets. To make this clear,
scons prints the following messages about what it is doing:

3

https://www.python.org/dev/peps/pep-0478
https://www.python.org/dev/peps/pep-0478

$ scons foo.out
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
cp foo.in foo.out
scons: done building targets.
$

The status messages (lines beginning with the scons: tag) may be suppressed using the -Q option.

scons does not automatically propagate the external environment used to execute scons to the commands used to build
target files. This is so that builds will be guaranteed repeatable regardless of the environment variables set at the time
scons is invoked. This also means that if the compiler or other commands that you want to use to build your target
files are not in standard system locations, scons will not find them unless you explicitly include the locations into the
execution environment by setting the path in the ENV construction variable in the internal construction environment:

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

Similarly, if the commands use specific external environment variables that scons does not recognize, they can be
propagated into the execution environment:

import os

env = Environment(
 ENV={
 'PATH': os.environ['PATH'],
 'ANDROID_HOME': os.environ['ANDROID_HOME'],
 'ANDROID_NDK_HOME': os.environ['ANDROID_NDK_HOME'],
 }
)

Or you may explicitly propagate the invoking user's complete external environment:

import os
env = Environment(ENV=os.environ.copy())

This comes at the expense of making your build dependent on the user's environment being set correctly, but it may be
more convenient for many configurations. It should not cause problems if done in a build setup which tightly controls
how the environment is set up before invoking scons, as in many continuous integration setups.

scons can scan known input file types automatically for dependency information (for example, #include
preprocessor directives in C or C++ files) and will rebuild dependent files appropriately whenever any "included"
input file changes. scons supports the ability to define new scanners to support additional input file types.

scons is normally executed in a top-level directory containing an SConstruct file. When scons is invoked, the
command line (including the contents of the SCONSFLAGS environment variable, if set) is processed. Command-line
options (see the section called “OPTIONS”) are consumed. Any variable argument assignments are collected, and
remaining arguments are taken as targets to build.

Values of variables to be passed to the SConscript files may be specified on the command line:

4

scons debug=1

These variables are available through the ARGUMENTS dictionary, and can be used in the SConscript files to modify
the build in any way:

if ARGUMENTS.get('debug', 0):
 env = Environment(CCFLAGS='-g')
else:
 env = Environment()

The command-line variable arguments are also available in the ARGLIST list, indexed by their order on the command
line. This allows you to process them in order rather than by name, if necessary. Each ARGLIST entry is a tuple
containing (argname, argvalue).

See the section called “Command-Line Construction Variables” for more information.

scons can maintain a cache of target (derived) files that can be shared between multiple builds. When derived-file
caching is enabled in an SConscript file, any target files built by scons will be copied to the cache. If an up-to-date target
file is found in the cache, it will be retrieved from the cache instead of being rebuilt locally. Caching behavior may
be disabled and controlled in other ways by the --cache-force, --cache-disable, --cache-readonly,
and --cache-show command-line options. The --random option is useful to prevent multiple builds from trying
to update the cache simultaneously.

By default, scons searches for known programming tools on various systems and initializes itself based on what is
found. On Windows systems which identify as win32, scons searches in order for the Microsoft Visual C++ tools,
the MinGW tool chain, the Intel compiler tools, and the PharLap ETS compiler. On Windows system which identify
as cygwin (that is, if scons is invoked from a cygwin shell), the order changes to prefer the GCC toolchain over the
MSVC tools. On OS/2 systems, scons searches in order for the OS/2 compiler, the GCC tool chain, and the Microsoft
Visual C++ tools, On SGI IRIX, IBM AIX, Hewlett Packard HP-UX, and Oracle Solaris systems, scons searches for
the native compiler tools (MIPSpro, Visual Age, aCC, and Forte tools respectively) and the GCC tool chain. On all
other platforms, including POSIX (Linux and UNIX) platforms, scons searches in order for the GCC tool chain, and
the Intel compiler tools. These default values may be overridden by appropriate setting of construction variables.

Target Selection

SCons acts on the selected targets, whether the requested operation is build, no-exec or clean. Targets are selected
as follows:

1. Targets specified on the command line. These may be files, directories, or phony targets defined using the Alias
function. Directory targets are scanned by scons for any targets that may be found with a destination in or under
that directory. The targets listed on the command line are made available in the COMMAND_LINE_TARGETS list.

2. If no targets are specified on the command line, scons will select those targets specified in the SConscript
files via calls to the Default function. These are known as the default targets, and are made available in the
DEFAULT_TARGETS list.

3. If no targets are selected by the previous steps, scons selects the current directory for scanning, unless command-
line options which affect the target scan are detected (-C, -D, -u, -U). Since targets thus selected were not the
result of user instructions, this target list is not made available for direct inspection; use the --debug=explain
option if they need to be examined.

4. scons always adds to the selected targets any intermediate targets which are necessary to build the specified ones.
For example, if constructing a shared library or dll from C source files, scons will also build the object files which
will make up the library.

5

To ignore the default targets specified through calls to Default and instead build all target files in or below the
current directory specify the current directory (.) as a command-line target:

scons .

To build all target files, including any files outside of the current directory, supply a command-line target of the root
directory (on POSIX systems):

scons /

or the path name(s) of the volume(s) in which all the targets should be built (on Windows systems):

scons C:\ D:\

A subset of a hierarchical tree may be built by remaining at the top-level directory (where the SConstruct file lives)
and specifying the subdirectory as the target to build:

scons src/subdir

or by changing directory and invoking scons with the -u option, which traverses up the directory hierarchy until it
finds the SConstruct file, and then builds targets relatively to the current subdirectory (see also the related -D and
-U options):

cd src/subdir
scons -u .

In all cases, more files may be built than are requested, as scons needs to make sure any dependent files are built.

Specifying "cleanup" targets in SConscript files is usually not necessary. The -c flag removes all selected targets:

scons -c .

to remove all target files in or under the current directory, or:

scons -c build export

to remove target files under build and export.

Additional files or directories to remove can be specified using the Clean function in the SConscript files. Conversely,
targets that would normally be removed by the -c invocation can be retained by calling the NoClean function with
those targets.

scons supports building multiple targets in parallel via a -j option that takes, as its argument, the number of
simultaneous tasks that may be spawned:

scons -j 4

builds four targets in parallel, for example.

6

OPTIONS
In general, scons supports the same command-line options as GNU Make and many of those supported by cons.

-b
Ignored for compatibility with non-GNU versions of Make

-c, --clean, --remove
Set clean mode. Clean up by removing the selected targets, well as any files or directories associated with a
selected target through calls to the Clean function. Will not remove any targets which are marked for preservation
through calls to the NoClean function.

While clean mode removes targets rather than building them, work which is done directly in Python code in
SConscript files will still be carried out. If it is important to avoid some such work from taking place in clean
mode, it should be protected. An SConscript file can determine which mode is active by querying GetOption,
as in the call if GetOption("clean"):

--cache-debug=file
Write debug information about derived-file caching to the specified file. If file is a hyphen (-), the debug
information is printed to the standard output. The printed messages describe what signature-file names are being
looked for in, retrieved from, or written to the derived-file cache specified by CacheDir.

--cache-disable, --no-cache
Disable derived-file caching. scons will neither retrieve files from the cache nor copy files to the cache. This
option can be used to temporarily disable the cache without modifying the build scripts.

--cache-force, --cache-populate
When using CacheDir, populate a derived-file cache by copying any already-existing, up-to-date derived files
to the cache, in addition to files built by this invocation. This is useful to populate a new cache with all the current
derived files, or to add to the cache any derived files recently built with caching disabled via the --cache-
disable option.

--cache-readonly
Use the derived-file cache, if enabled, to retrieve files, but do not not update the cache with any files actually
built during this invocation.

--cache-show
When using a derived-file cache show the command that would have been executed to build the file (or the
corresponding *COMSTR contents if set) even if the file is retrieved from cache. Without this option, scons shows
a cache retrieval message if the file is fetched from cache. This allows producing consistent output for build logs,
regardless of whether a target file was rebuilt or retrieved from the cache.

--config=mode
Control how the Configure call should use or generate the results of configuration tests. mode should be one
of the following choices:

auto
SCons will use its normal dependency mechanisms to decide if a test must be rebuilt or not. This saves time
by not running the same configuration tests every time you invoke scons, but will overlook changes in system
header files or external commands (such as compilers) if you don't specify those dependecies explicitly. This
is the default behavior.

force
If this mode is specified, all configuration tests will be re-run regardless of whether the cached results are out
of date. This can be used to explicitly force the configuration tests to be updated in response to an otherwise
unconfigured change in a system header file or compiler.

7

cache
If this mode is specified, no configuration tests will be rerun and all results will be taken from cache. scons will
report an error if --config=cache is specified and a necessary test does not have any results in the cache.

-C directory, --directory=directory
Run as if scons was started in directory instead of the current working directory. That is, change directory
before searching for the SConstruct, Sconstruct, sconstruct, SConstruct.py, Sconstruct.py
or sconstruct.py file or doing anything else. When multiple -C options are given, each subsequent non-
absolute -C directory is interpreted relative to the preceding one. This option is similar to using -f
directory/SConstruct, but -f does not search for any of the predefined SConstruct names in the
specified directory. See also options -u, -U and -D to change the SConstruct search behavior when this option
is used.

-D
Works exactly the same way as the -u option except for the way default targets are handled. When this option
is used and no targets are specified on the command line, all default targets are built, whether or not they are
below the current directory.

--debug=type[,type...]
Debug the build process. type specifies the kind of debugging info to emit. Multiple types may be specified,
separated by commas. The following types are recognized:

action-timestamps
Prints additional time profiling information. For each command, shows the absolute start and end times. This
may be useful in debugging parallel builds. Implies the --debug=time option.

Available since scons 3.1.

count
Print how many objects are created of the various classes used internally by SCons before and after reading
the SConscript files and before and after building targets. This is not supported when SCons is executed with
the Python -O (optimized) option or when the SCons modules have been compiled with optimization (that
is, when executing from *.pyo files).

duplicate
Print a line for each unlink/relink (or copy) of a variant file from its source file. Includes debugging info for
unlinking stale variant files, as well as unlinking old targets before building them.

explain
Print an explanation of why scons is deciding to (re-)build the targets it selects for building.

findlibs
Instruct the scanner that searches for libraries to print a message about each potential library name it is
searching for, and about the actual libraries it finds.

includes
Print the include tree after each top-level target is built. This is generally used to find out what files are
included by the sources of a given derived file:

$ scons --debug=includes foo.o

memoizer
Prints a summary of hits and misses using the Memoizer, an internal subsystem that counts how often SCons
uses cached values in memory instead of recomputing them each time they're needed.

8

memory
Prints how much memory SCons uses before and after reading the SConscript files and before and after
building targets.

objects
Prints a list of the various objects of the various classes used internally by SCons.

pdb
Re-run scons under the control of the pdb Python debugger.

prepare
Print a line each time any target (internal or external) is prepared for building. scons prints this for each target
it considers, even if that target is up to date (see also --debug=explain). This can help debug problems
with targets that aren't being built; it shows whether scons is at least considering them or not.

presub
Print the raw command line used to build each target before the construction environment variables are
substituted. Also shows which targets are being built by this command. Output looks something like this:

$ scons --debug=presub
Building myprog.o with action(s):
 $SHCC $SHCFLAGS $SHCCFLAGS $CPPFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES
...

stacktrace
Prints an internal Python stack trace when encountering an otherwise unexplained error.

time
Prints various time profiling information:

• The time spent executing each individual build command

• The total build time (time SCons ran from beginning to end)

• The total time spent reading and executing SConscript files

• The total time SCons itself spent running (that is, not counting reading and executing SConscript files)

• The total time spent executing all build commands

• The elapsed wall-clock time spent executing those build commands

• The time spent processing each file passed to the SConscript function

(When scons is executed without the -j option, the elapsed wall-clock time will typically be slightly longer
than the total time spent executing all the build commands, due to the SCons processing that takes place in
between executing each command. When scons is executed with the -j option, and your build configuration
allows good parallelization, the elapsed wall-clock time should be significantly smaller than the total time
spent executing all the build commands, since multiple build commands and intervening SCons processing
should take place in parallel.)

--diskcheck=type
Enable specific checks for whether or not there is a file on disk where the SCons configuration expects a directory
(or vice versa) when searching for source and include files. type can be an available diskcheck type or the special
tokens all or none. A comma-separated string can be used to select multiple checks. The default setting is all.

Current available checks are:

9

match
to check that files and directories on disk match SCons' expected configuration.

Disabling some or all of these checks can provide a performance boost for large configurations, or when the
configuration will check for files and/or directories across networked or shared file systems, at the slight increased
risk of an incorrect build or of not handling errors gracefully.

--duplicate=ORDER
There are three ways to duplicate files in a build tree: hard links, soft (symbolic) links and copies. The default
policy is to prefer hard links to soft links to copies. You can specify a different policy with this option. ORDER
must be one of hard-soft-copy (the default), soft-hard-copy, hard-copy, soft-copy or copy. SCons will attempt to
duplicate files using the mechanisms in the specified order.

--enable-virtualenv
Import virtualenv-related variables to SCons.

--experimental=feature
Enable experimental features and/or tools. feature can be an available feature name or the special tokens all
or none. A comma-separated string can be used to select multiple features. The default setting is none.

Current available features are: ninja.

Caution

No Support offered for any features or tools enabled by this flag.

Available since scons 4.2.

-f file, --file=file, --makefile=file, --sconstruct=file
Use file as the initial SConscript file. Multiple -f options may be specified, in which case scons will read all
of the specified files.

-h, --help
Print a local help message for this project, if one is defined in the SConscript files (see the Help function), plus
a line that refers to the standard SCons help message. If no local help message is defined, prints the standard
SCons help message (as for the -H option) plus help for any local options defined through AddOption. Exits
after displaying the appropriate message.

Note that use of this option requires SCons to process the SConscript files, so syntax errors may cause the help
message not to be displayed.

--hash-chunksize=KILOBYTES
Set the block size used when computing content signatures to KILOBYTES. This value determines the size of
the chunks which are read in at once when computing signature hashes. Files below that size are fully stored in
memory before performing the signature computation while bigger files are read in block-by-block. A huge block-
size leads to high memory consumption while a very small block-size slows down the build considerably.

The default value is to use a chunk size of 64 kilobytes, which should be appropriate for most uses.

Available since scons 4.2.

--hash-format=ALGORITHM
Set the hashing algorithm used by SCons to ALGORITHM. This value determines the hashing algorithm used in
generating content signatures or CacheDir keys.

The supported list of values are: md5, sha1, and sha256. However, the Python interpreter used to run SCons must
have the corresponding support available in the hashlib module to use the specified algorithm.

10

Specifying this value changes the name of the SConsign database. For example, --hash-format=sha256
will create a SConsign database with name .sconsign_sha256.dblite.

If this option is not specified, a hash format of md5 is used, and the SConsign database is .sconsign.dblite.

Available since scons 4.2.

-H, --help-options
Print the standard help message about SCons command-line options and exit.

-i, --ignore-errors
Ignore all errors from commands executed to rebuild files.

-I directory, --include-dir=directory
Specifies a directory to search for imported Python modules. If several -I options are used, the directories
are searched in the order specified.

--ignore-virtualenv
Suppress importing virtualenv-related variables to SCons.

--implicit-cache
Cache implicit dependencies. This causes scons to use the implicit (scanned) dependencies from the last time it
was run instead of scanning the files for implicit dependencies. This can significantly speed up SCons, but with
the following limitations:

scons will not detect changes to implicit dependency search paths (e.g. CPPPATH, LIBPATH) that would
ordinarily cause different versions of same-named files to be used.

scons will miss changes in the implicit dependencies in cases where a new implicit dependency is added earlier
in the implicit dependency search path (e.g. CPPPATH, LIBPATH) than a current implicit dependency with the
same name.

--implicit-deps-changed
Forces SCons to ignore the cached implicit dependencies. This causes the implicit dependencies to be rescanned
and recached. This implies --implicit-cache.

--implicit-deps-unchanged
Force SCons to ignore changes in the implicit dependencies. This causes cached implicit dependencies to always
be used. This implies --implicit-cache.

--install-sandbox=sandbox_path
When using the Install builders, prepend sandbox_path to the installation paths such that all installed
files will be placed under that directory. This option is unavailable if one of Install, InstallAs or
InstallVersionedLib is not used in the SConscript files.

--interactive
Starts SCons in interactive mode. The SConscript files are read once and a scons>>> prompt is printed. Targets
may now be rebuilt by typing commands at interactive prompt without having to re-read the SConscript files and
re-initialize the dependency graph from scratch.

SCons interactive mode supports the following commands:

build [OPTIONS] [TARGETS] ...
Builds the specified TARGETS (and their dependencies) with the specified SCons command-line OPTIONS.
b and scons are synonyms for build.

The following SCons command-line options affect the build command:

11

--cache-debug=FILE
--cache-disable, --no-cache
--cache-force, --cache-populate
--cache-readonly
--cache-show
--debug=TYPE
-i, --ignore-errors
-j N, --jobs=N
-k, --keep-going
-n, --no-exec, --just-print, --dry-run, --recon
-Q
-s, --silent, --quiet
--taskmastertrace=FILE
--tree=OPTIONS

Any other SCons command-line options that are specified do not cause errors but have no effect on the build
command (mainly because they affect how the SConscript files are read, which only happens once at the
beginning of interactive mode).

clean [OPTIONS] [TARGETS] ...
Cleans the specified TARGETS (and their dependencies) with the specified OPTIONS. c is a synonym. This
command is itself a synonym for build --clean

exit
Exits SCons interactive mode. You can also exit by terminating input (Ctrl+D UNIX or Linux systems,
(Ctrl+Z on Windows systems).

help [COMMAND]
Provides a help message about the commands available in SCons interactive mode. If COMMAND is
specified, h and ? are synonyms.

shell [COMMANDLINE]
Executes the specified COMMANDLINE in a subshell. If no COMMANDLINE is specified, executes the
interactive command interpreter specified in the SHELL environment variable (on UNIX and Linux systems)
or the COMSPEC environment variable (on Windows systems). sh and ! are synonyms.

version
Prints SCons version information.

An empty line repeats the last typed command. Command-line editing can be used if the readline module is
available.

$ scons --interactive
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons>>> build -n prog
scons>>> exit

-j N, --jobs=N
Specifies the maximum number of comcurrent jobs (commands) to run. If there is more than one -j option, the
last one is effective.

-k, --keep-going
Continue as much as possible after an error. The target that failed and those that depend on it will not be remade,
but other targets specified on the command line will still be processed.

12

-m
Ignored for compatibility with non-GNU versions of Make.

--max-drift=SECONDS
Set the maximum expected drift in the modification time of files to SECONDS. This value determines how long
a file must be unmodified before its cached content signature will be used instead of calculating a new content
signature (MD5 checksum) of the file's contents. The default value is 2 days, which means a file must have a
modification time of at least two days ago in order to have its cached content signature used. A negative value
means to never cache the content signature and to ignore the cached value if there already is one. A value of 0
means to always use the cached signature, no matter how old the file is.

--md5-chunksize=KILOBYTES
A deprecated synonym for --hash-chunksize.

Deprecated since scons 4.2.

-n, --no-exec, --just-print, --dry-run, --recon
Set no execute mode. Print the commands that would be executed to build any out-of-date target files, but do not
execute the commands.

The output is a best effort, as SCons cannot always precisely determine what would be built. For example, if a
file is generated by a builder action that is later used in the build, that file is not available to scan for dependencies
on an unbuilt tree, or may contain out of date information in a built tree.

Work which is done directly in Python code in SConscript files, as opposed to work done by builder actions during
the build phase, will still be carried out. If it is important to avoid some such work from taking place in no execute
mode, it should be protected. An SConscript file can determine which mode is active by querying GetOption,
as in the call if GetOption("no_exec"):

--no-site-dir
Prevents the automatic addition of the standard site_scons dirs to sys.path. Also prevents loading
the site_scons/site_init.py modules if they exist, and prevents adding their site_scons/
site_tools dirs to the toolpath.

--package-type=type
The type or types of package to create when using the Package builder. In the case of multiple types, type
should be a comma-separated string; SCons will try to build for all of those packages. Note this option is only
available if the packaging tool has been enabled.

--profile=file
Run SCons under the Python profiler and save the results in the specified file. The results may be analyzed
using the Python pstats module.

-q, --question
Do not run any commands, or print anything. Just return an exit status that is zero if the specified targets are
already up to date, non-zero otherwise.

-Q
Quiets SCons status messages about reading SConscript files, building targets and entering directories. Commands
that are executed to rebuild target files are still printed.

--random
Build dependencies in a random order. This is useful when building multiple trees simultaneously with caching
enabled, to prevent multiple builds from simultaneously trying to build or retrieve the same target files.

-s, --silent, --quiet
Silent. Do not print commands that are executed to rebuild target files. Also suppresses SCons status messages.

13

-S, --no-keep-going, --stop
Ignored for compatibility with GNU Make

--site-dir=dir
Uses the named dir as the site directory rather than the default site_scons directories. This directory will be
prepended to sys.path, the module dir/site_init.py will be loaded if it exists, and dir/site_tools
will be added to the default toolpath.

The default set of site_scons directories used when --site-dir is not specified depends on the system
platform, as follows. Directories are examined in the order given, from most generic to most specific, so the last-
executed site_init.py file is the most specific one (which gives it the chance to override everything else),
and the directories are prepended to the paths, again so the last directory examined comes first in the resulting path.

Windows:

%ALLUSERSPROFILE/Application Data/scons/site_scons
%USERPROFILE%/Local Settings/Application Data/scons/site_scons
%APPDATA%/scons/site_scons
%HOME%/.scons/site_scons
./site_scons

Mac OS X:

/Library/Application Support/SCons/site_scons
/opt/local/share/scons/site_scons (for MacPorts)
/sw/share/scons/site_scons (for Fink)
$HOME/Library/Application Support/SCons/site_scons
$HOME/.scons/site_scons
./site_scons

Solaris:

/opt/sfw/scons/site_scons
/usr/share/scons/site_scons
$HOME/.scons/site_scons
./site_scons

Linux, HPUX, and other Posix-like systems:

/usr/share/scons/site_scons
$HOME/.scons/site_scons
./site_scons

--stack-size=KILOBYTES
Set the size stack used to run threads to KILOBYTES. This value determines the stack size of the threads used
to run jobs. These threads execute the actions of the builders for the nodes that are out-of-date. This option has
no effect unless the number of concurrent build jobs is larger than one (as set by -j N or --jobs=N on the
command line or SetOption in a script).

Using a stack size that is too small may cause stack overflow errors. This usually shows up as segmentation faults
that cause scons to abort before building anything. Using a stack size that is too large will cause scons to use more
memory than required and may slow down the entire build process. The default value is to use a stack size of

14

256 kilobytes, which should be appropriate for most uses. You should not need to increase this value unless you
encounter stack overflow errors.

-t, --touch
Ignored for compatibility with GNU Make. (Touching a file to make it appear up-to-date is unnecessary when
using scons.)

--taskmastertrace=file
Prints trace information to the specified file about how the internal Taskmaster object evaluates and controls
the order in which Nodes are built. A file name of - may be used to specify the standard output.

--tree=type[,type...]
Prints a tree of the dependencies after each top-level target is built. This prints out some or all of the tree, in various
formats, depending on the type specified:

all
Print the entire dependency tree after each top-level target is built. This prints out the complete dependency
tree, including implicit dependencies and ignored dependencies.

derived
Restricts the tree output to only derived (target) files, not source files.

linedraw
Draw the tree output using Unicode line-drawing characters instead of plain ASCII text. This option acts as a
modifier to the selected type(s). If specified alone, without any type, it behaves as if all had been specified.

Available since scons 4.0.

status
Prints status information for each displayed node.

prune
Prunes the tree to avoid repeating dependency information for nodes that have already been displayed. Any
node that has already been displayed will have its name printed in [square brackets], as an indication that
the dependencies for that node can be found by searching for the relevant output higher up in the tree.

Multiple type choices may be specified, separated by commas:

Prints only derived files, with status information:
scons --tree=derived,status

Prints all dependencies of target, with status information
and pruning dependencies of already-visited Nodes:
scons --tree=all,prune,status target

-u, --up, --search-up
Walks up the directory structure until an SConstruct, Sconstruct, sconstruct, SConstruct.py,
Sconstruct.py or sconstruct.py file is found, and uses that as the top of the directory tree. If no targets
are specified on the command line, only targets at or below the current directory will be built.

-U
Works exactly the same way as the -u option except for the way default targets are handled. When this option is
used and no targets are specified on the command line, all default targets that are defined in the SConscript(s) in
the current directory are built, regardless of what directory the resultant targets end up in.

-v, --version
Print the scons version, copyright information, list of authors, and any other relevant information. Then exit.

15

-w, --print-directory
Print a message containing the working directory before and after other processing.

--no-print-directory
Turn off -w, even if it was turned on implicitly.

--warn=type, --warn=no-type
Enable or disable (with the no- prefix) warnings. type specifies the type of warnings to be enabled or disabled:

all
All warnings.

cache-version
Warnings about the derived-file cache directory specified by CacheDir not using the latest configuration
information. These warnings are enabled by default.

cache-write-error
Warnings about errors trying to write a copy of a built file to a specified derived-file cache specified by
CacheDir. These warnings are disabled by default.

corrupt-sconsign
Warnings about unfamiliar signature data in .sconsign files. These warnings are enabled by default.

dependency
Warnings about dependencies. These warnings are disabled by default.

deprecated
Warnings about use of currently deprecated features. These warnings are enabled by default. Not all
deprecation warnings can be disabled with the --warn=no-deprecated option as some deprecated
features which are late in the deprecation cycle may have been designated as mandatory warnings, and these
will still display. Warnings for certain deprecated features may also be enabled or disabled individually; see
below.

duplicate-environment
Warnings about attempts to specify a build of a target with two different construction environments that use
the same action. These warnings are enabled by default.

fortran-cxx-mix
Warnings about linking Fortran and C++ object files in a single executable, which can yield unpredictable
behavior with some compilers.

future-deprecated
Warnings about features that will be deprecated in the future. Such warnings are disabled by default. Enabling
future deprecation warnings is recommended for projects that redistribute SCons configurations for other
users to build, so that the project can be warned as soon as possible about to-be-deprecated features that may
require changes to the configuration.

link
Warnings about link steps.

misleading-keywords
Warnings about the use of two commonly misspelled keywords targets and sources to Builder calls.
The correct spelling is the singular form, even though target and source can themselves refer to lists
of names or nodes.

missing-sconscript
Warnings about missing SConscript files. These warnings are enabled by default.

16

no-object-count
Warnings about the --debug=object feature not working when scons is run with the Python -O option
or from optimized Python (.pyo) modules.

no-parallel-support
Warnings about the version of Python not being able to support parallel builds when the -j option is used.
These warnings are enabled by default.

python-version
Warnings about running SCons with a deprecated version of Python. These warnings are enabled by default.

reserved-variable
Warnings about attempts to set the reserved construction variable names $CHANGED_SOURCES,
$CHANGED_TARGETS, $TARGET, $TARGETS, $SOURCE, $SOURCES, $UNCHANGED_SOURCES or
$UNCHANGED_TARGETS. These warnings are disabled by default.

stack-size
Warnings about requests to set the stack size that could not be honored. These warnings are enabled by default.

target_not_build
Warnings about a build rule not building the expected targets. These warnings are disabled by default.

-Y repository, --repository=repository, --srcdir=repository
Search the specified repository for any input and target files not found in the local directory hierarchy.
Multiple -Y options may be specified, in which case the repositories are searched in the order specified.

SCONSCRIPT FILE REFERENCE

SConscript Files

The build configuration is described by one or more files, known as SConscript files. There must be at least one file
for a valid build (scons will quit if it does not find one). scons by default looks for this file by the name SConstruct
in the directory from which you run scons, though if necessary, also looks for alternative file names Sconstruct,
sconstruct, SConstruct.py, Sconstruct.py and sconstruct.py in that order. A different file name
(which can include a pathname part) may be specified via the -f option. Except for the SConstruct file, these files
are not searched for automatically; you add additional configuration files to the build by calling the SConscript
function. This allows parts of the build to be conditionally included or excluded at run-time depending on how scons
is invoked.

Each SConscript file in a build configuration is invoked independently in a separate context. This provides necessary
isolation so that different parts of the build don't accidentally step on each other. You have to be explicit about sharing
information, by using the Export function or the exports argument to the SConscript function, as well as the
Return function in a called SConscript file, and comsume shared information by using the Import function.

The following sections describe the various SCons facilities that can be used in SConscript files. Quick links:

Construction Environments
Tools
Builder Methods
Methods and Functions to do Things
SConscript Variables
Construction Variables
Configure Contexts
Command-Line Construction Variables
Node Objects

17

Construction Environments

A Construction Environment is the basic means by which SConscript files communicate build information to scons.
A new construction environment is created using the Environment function:

env = Environment()

Construction environment attributes called Construction Variables may be set either by specifying them as keyword
arguments when the object is created or by assigning them a value after the object is created. These two are nominally
equivalent:

env = Environment(FOO='foo')
env['FOO'] = 'foo'

Note that certain settings which affect tool detection are referenced only during initialization, and so need to be supplied
as part of the call to Environment. For example, setting $MSVC_VERSION selects the version of Microsoft Visual
C++ you wish to use, but setting it after the construction environment is constructed has no effect.

As a convenience, construction variables may also be set or modified by the parse_flags keyword argument during
object creation, which has the effect of the env.MergeFlags method being applied to the argument value after all
other processing is completed. This is useful either if the exact content of the flags is unknown (for example, read
from a control file) or if the flags need to be distributed to a number of construction variables. env.ParseFlags
describes how these arguments are distributed to construction variables.

env = Environment(parse_flags='-Iinclude -DEBUG -lm')

This example adds 'include' to the CPPPATH construction variable, 'EBUG' to CPPDEFINES, and 'm' to LIBS.

An existing construction environment can be duplicated by calling the env.Clone method. Without arguments, it
will be a copy with the same settings. Otherwise, env.Clone takes the same arguments as Environment, and
uses the arguments to create a modified copy.

SCons provides a special construction environment called the Default Environment. The default environment is
used only for global functions, that is, construction activities called without the context of a regular construction
environment. See DefaultEnvironment for more information.

By default, a new construction environment is initialized with a set of builder methods and construction variables that
are appropriate for the current platform. The optional platform keyword argument may be used to specify that the
construction environment should be initialized for a different platform:

env = Environment(platform='cygwin')
env = Environment(platform='os2')
env = Environment(platform='posix')
env = Environment(platform='win32')

Specifying a platform initializes the appropriate construction variables in the environment to use and generate file
names with prefixes and suffixes appropriate for that platform.

Note that the win32 platform adds the SystemDrive and SystemRoot variables from the user's external
environment to the construction environment's ENV dictionary. This is so that any executed commands that use
sockets to connect with other systems (such as fetching source files from external CVS repository specifications like
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/scons) will work on Windows systems.

18

The platform argument may be a function or callable object, in which case the Environment method will call
it to update the new construction environment:

def my_platform(env):
 env['VAR'] = 'xyzzy'

env = Environment(platform=my_platform)

The optional tools and toolpath keyword arguments affect the way tools available to the environment are
initialized. See the section called “Tools” for details.

The optional variables keyword argument allows passing a Variables object which will be used in the initialization
of the construction environment See the section called “Command-Line Construction Variables” for details.

Tools

SCons has a large number of predefined tools (more properly, tool specifications) which are used to help initialize the
construction environment. An scons tool is only responsible for setup. For example, if the SConscript file declares the
need to construct an object file from a C-language source file by calling the Object builder, then a tool representing
an available C compiler needs to have run first, to set up the builder and all the construction variables it needs in the
associated construction environment; the tool itself is not called in the process of the build. Normally this happens
invisibly: scons has per-platform lists of default tools, and it runs through those tools, calling the ones which are actually
applicable, skipping those where necessary programs are not installed on the build system, or other preconditions are
not met.

A specific set of tools with which to initialize an environment when creating it may be specified using the optional
keyword argument tools, which takes a list of tool names. This is useful to override the defaults, to specify non-
default built-in tools, and to supply added tools:

env = Environment(tools=['msvc', 'lex'])

Tools can also be directly called by using the Tool method (see below).

The tools argument overrides the default tool list, it does not add to it, so be sure to include all the tools you need.
For example if you are building a c/c++ program you must specify a tool for at least a compiler and a linker, as in
tools=['clang', 'link']. The tool name 'default' can be used to retain the default list.

If no tools argument is specified, or if tools includes 'default', then scons will auto-detect usable tools, using
the execution environment value of PATH (that is, env['ENV']['PATH'] - the external evironment PATH from
os.environ is not used) for looking up any backing programs, and the platform name in effect to determine the
default tools for that platform. Changing the PATH variable after the construction environment is constructed will not
cause the tools to be re-detected.

Additional tools can be added to a project either by placing them in a site_tools subdirectory of a site directory,
or in a custom location specified to scons by giving the toolpath keyword argument. toolpath also takes a list
as its value:

env = Environment(tools=['default', 'foo'], toolpath=['tools'])

This looks for a tool specification module foo.py in directory tools and in the standard locations, as well as using
the ordinary default tools for the platform.

Directories specified via toolpath are prepended to the existing tool path. The default tool path is any site_tools
directories, so tools in a specified toolpath take priority, followed by tools in a site_tools directory, followed

19

by built-in tools. For example, adding a tool specification module gcc.py to the toolpath directory would override
the built-in gcc tool. The tool path is stored in the environment and will be used by subsequent calls to the Tool
method, as well as by env.Clone.

base = Environment(toolpath=['custom_path'])
derived = base.Clone(tools=['custom_tool'])
derived.CustomBuilder()

A tool specification module must include two functions:

generate(env, **kwargs)
Modifies the environment referenced by env to set up variables so that the facilities represented by the tool can
be executed. It may use any keyword arguments that the user supplies in kwargs to vary its initialization.

exists(env)
Return True if the tool can be called in the context of env. Usually this means looking up one or more known
programs using the PATH from the supplied env, but the tool can make the "exists" decision in any way it chooses.

Note

At the moment, user-added tools do not automatically have their exists function called. As a result, it
is recommended that the generate function be defensively coded - that is, do not rely on any necessary
existence checks already having been performed. This is expected to be a temporary limitation, and the
exists function should still be provided.

The elements of the tools list may also be functions or callable objects, in which case the Environment method
will call those objects to update the new construction environment (see Tool for more details):

def my_tool(env):
 env['XYZZY'] = 'xyzzy'

env = Environment(tools=[my_tool])

The individual elements of the tools list may also themselves be lists or tuples of the form (toolname, kw_dict).
SCons searches for the toolname specification file as described above, and passes kw_dict, which must be a
dictionary, as keyword arguments to the tool's generate function. The generate function can use the arguments
to modify the tool's behavior by setting up the environment in different ways or otherwise changing its initialization.

in tools/my_tool.py:
def generate(env, **kwargs):
 # Sets MY_TOOL to the value of keyword 'arg1' '1' if not supplied
 env['MY_TOOL'] = kwargs.get('arg1', '1')

def exists(env):
 return True

in SConstruct:
env = Environment(tools=['default', ('my_tool', {'arg1': 'abc'})],
 toolpath=['tools'])

The tool specification (my_tool in the example) can use the PLATFORM variable from the construction environment
it is passed to customize the tool for different platforms.

20

Tools can be "nested" - that is, they can be located within a subdirectory in the toolpath. A nested tool name uses a
dot to represent a directory separator

namespaced builder
env = Environment(ENV=os.environ.copy(), tools=['SubDir1.SubDir2.SomeTool'])
env.SomeTool(targets, sources)

Search Paths
SCons\Tool\SubDir1\SubDir2\SomeTool.py
SCons\Tool\SubDir1\SubDir2\SomeTool__init__.py
.\site_scons\site_tools\SubDir1\SubDir2\SomeTool.py
.\site_scons\site_tools\SubDir1\SubDir2\SomeTool__init__.py

SCons supports the following tool specifications out of the box:

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

aixc++
Sets construction variables for the IMB xlc / Visual Age C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHOBJSUFFIX.

aixcc
Sets construction variables for the IBM xlc / Visual Age C compiler.

Sets: $CC, $CCVERSION, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visual Age linker.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

applelink
Sets construction variables for the Apple linker (similar to the GNU linker).

Sets: $APPLELINK_COMPATIBILITY_VERSION, $APPLELINK_CURRENT_VERSION,
$APPLELINK_NO_COMPATIBILITY_VERSION, $APPLELINK_NO_CURRENT_VERSION,
$FRAMEWORKPATHPREFIX, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX,
$LDMODULESUFFIX, $LINKCOM, $SHLINKCOM, $SHLINKFLAGS,
$_APPLELINK_COMPATIBILITY_VERSION, $_APPLELINK_CURRENT_VERSION,
$_FRAMEWORKPATH, $_FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

21

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $RANLIB, $RANLIBCOM, $RANLIBFLAGS.

as
Sets construction variables for the as assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX,
$INCPREFIX, $INCSUFFIX, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHOBJSUFFIX.

Uses: $_CPPDEFFLAGS, $_CPPINCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM, $CCFLAGS, $CFILESUFFIX, $CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX,
$FRAMEWORKPATH, $FRAMEWORKS, $INCPREFIX, $INCSUFFIX, $SHCC, $SHCCCOM, $SHCCFLAGS,
$SHCFLAGS, $SHOBJSUFFIX.

Uses: $CCCOMSTR, $PLATFORM, $SHCCCOMSTR.

clang
Set construction variables for the Clang C compiler.

Sets: $CC, $CCVERSION, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX,
$STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME.

compilation_db
Sets up CompilationDatabase builder which generates a clang tooling compatible compilation database.

Sets: $COMPILATIONDB_COMSTR, $COMPILATIONDB_PATH_FILTER,
$COMPILATIONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compaq Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANMODDIR, $FORTRANMODDIRPREFIX,
$FORTRANMODDIRSUFFIX, $FORTRANPPCOM, $OBJSUFFIX, $SHFORTRANCOM, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS,
$_FORTRANMODFLAG.

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX, $CXXFLAGS,
$INCPREFIX, $INCSUFFIX, $OBJSUFFIX, $SHCXX, $SHCXXCOM, $SHCXXFLAGS, $SHOBJSUFFIX.

22

Uses: $CXXCOMSTR, $SHCXXCOMSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $IMPLIBPREFIX, $IMPLIBSUFFIX, $LDMODULEVERSIONFLAGS, $LINKFLAGS,
$RPATHPREFIX, $RPATHSUFFIX, $SHLIBPREFIX, $SHLIBSUFFIX, $SHLIBVERSIONFLAGS,
$SHLINKCOM, $SHLINKFLAGS, $_LDMODULEVERSIONFLAGS, $_SHLIBVERSIONFLAGS.

default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the tools parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

The list of tools selected by default is not static, but is dependent both on the platform and on the software installed
on the platform. Some tools will not initialize if an underlying command is not found, and some tools are selected
from a list of choices on a first-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, lex, yacc, rpcgen, swig, jar, javac, javah, rmic, dvipdf, dvips, gs, tex, latex,
pdflatex, pdftex, tar, zip, textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc, intelc, icc, cc; a C
++ compiler from g++, intelc, icc, cXX; an assembler from gas, nasm, masm; a linker from gnulink,
ilink; a Fortran compiler from gfortran, g77, ifort, ifl, f95, f90, f77; and a static archiver ar. It
also selects all found from the list m4 rpm.

On Windows systems, the default tools list selects (first-found): a C compiler from msvc, mingw, gcc, intelc,
icl, icc, cc, bcc32; a C++ compiler from msvc, intelc, icc, g++, cXX, bcc32; an assembler from masm,
nasm, gas, 386asm; a linker from mslink, gnulink, ilink, linkloc, ilink32; a Fortran compiler
from gfortran, g77, ifl, cvf, f95, f90, fortran; and a static archiver from mslib, ar, tlib; It also
selects all found from the list msvs, midl.

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; a linker from applelink, gnulink; a Fortran compiler from gfortran, f95,
f90, g77; and a static archiver ar. It also selects all found from the list m4, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/Tool/
__init__.py).

dmd
Sets construction variables for D language compiler DMD.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

docbook
This tool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheets as of version 1.76.1. As long as you don't specify your own stylesheets for customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

23

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet utils/xmldepend.xsl by Paul DuBois is used for this purpose.

Note, that there is no support for XML catalog resolving offered! This tool calls the XSLT processors and PDF
renderers with the stylesheets you specified, that's it. The rest lies in your hands and you still have to know what
you're doing when resolving names via a catalog.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this

env = Environment(tools=['docbook'])

On its startup, the docbook tool tries to find a required xsltproc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system's environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

• the Python lxml binding to libxml2, or

• a standalone XSLT processor, currently detected are xsltproc, saxon, saxon-xslt and xalan.

Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating a HTML or PDF document is very simple and straightforward. Say

env = Environment(tools=['docbook'])
env.DocbookHtml('manual.html', 'manual.xml')
env.DocbookPdf('manual.pdf', 'manual.xml')

to get both outputs from your XML source manual.xml. As a shortcut, you can give the stem of the filenames
alone, like this:

env = Environment(tools=['docbook'])
env.DocbookHtml('manual')
env.DocbookPdf('manual')

and get the same result. Target and source lists are also supported:

env = Environment(tools=['docbook'])
env.DocbookHtml(['manual.html','reference.html'], ['manual.xml','reference.xml'])

or even

env = Environment(tools=['docbook'])
env.DocbookHtml(['manual','reference'])

Important

Whenever you leave out the list of sources, you may not specify a file extension! The Tool uses the given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are valid for the Builders DocbookHtml, DocbookPdf, DocbookEpub,
DocbookSlidesPdf and DocbookXInclude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the refname entries in your XML source.

The Builders DocbookHtmlChunked, DocbookHtmlhelp and DocbookSlidesHtml are special, in that:

1. they create a large set of files, where the exact names and their number depend on the content of the source
file, and

24

2. the main target is always named index.html, i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As a result, there is simply no use in specifying a target HTML name. So the basic syntax for these builders is
always:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual')

If you want to use a specific XSL file, you can set the additional xsl parameter to your Builder call as follows:

env.DocbookHtml('other.html', 'manual.xml', xsl='html.xsl')

Since this may get tedious if you always use the same local naming for your customized XSL files, e.g. html.xsl
for HTML and pdf.xsl for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTML
DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
DOCBOOK_DEFAULT_XSL_HTMLHELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLIDESPDF
DOCBOOK_DEFAULT_XSL_SLIDESHTML

and you can set them when constructing your environment:

env = Environment(
 tools=['docbook'],
 DOCBOOK_DEFAULT_XSL_HTML='html.xsl',
 DOCBOOK_DEFAULT_XSL_PDF='pdf.xsl',
)
env.DocbookHtml('manual') # now uses html.xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTML,
$DOCBOOK_DEFAULT_XSL_HTMLCHUNKED, $DOCBOOK_DEFAULT_XSL_HTMLHELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,
$DOCBOOK_DEFAULT_XSL_SLIDESHTML, $DOCBOOK_DEFAULT_XSL_SLIDESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM, $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLINT, $DOCBOOK_XMLLINTCOM,
$DOCBOOK_XMLLINTFLAGS, $DOCBOOK_XSLTPROC, $DOCBOOK_XSLTPROCCOM,
$DOCBOOK_XSLTPROCFLAGS, $DOCBOOK_XSLTPROCPARAMS.

Uses: $DOCBOOK_FOPCOMSTR, $DOCBOOK_XMLLINTCOMSTR, $DOCBOOK_XSLTPROCCOMSTR.

dvi
Attaches the DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVIPDF, $DVIPDFCOM, $DVIPDFFLAGS.

Uses: $DVIPDFCOMSTR.

dvips
Sets construction variables for the dvips utility.

25

Sets: $DVIPS, $DVIPSFLAGS, $PSCOM, $PSPREFIX, $PSSUFFIX.

Uses: $PSCOMSTR.

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM, $F03FLAGS, $F03PPCOM, $SHF03, $SHF03COM, $SHF03FLAGS, $SHF03PPCOM,
$_F03INCFLAGS.

Uses: $F03COMSTR, $F03PPCOMSTR, $SHF03COMSTR, $SHF03PPCOMSTR.

f08
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $F08COM, $F08FLAGS, $F08PPCOM, $SHF08, $SHF08COM, $SHF08FLAGS, $SHF08PPCOM,
$_F08INCFLAGS.

Uses: $F08COMSTR, $F08PPCOMSTR, $SHF08COMSTR, $SHF08PPCOMSTR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM, $F77FILESUFFIXES, $F77FLAGS, $F77PPCOM, $F77PPFILESUFFIXES,
$FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHF77, $SHF77COM, $SHF77FLAGS, $SHF77PPCOM,
$SHFORTRAN, $SHFORTRANCOM, $SHFORTRANFLAGS, $SHFORTRANPPCOM, $_F77INCFLAGS.

Uses: $F77COMSTR, $F77PPCOMSTR, $FORTRANCOMSTR, $FORTRANPPCOMSTR, $SHF77COMSTR,
$SHF77PPCOMSTR, $SHFORTRANCOMSTR, $SHFORTRANPPCOMSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM, $F90FLAGS, $F90PPCOM, $SHF90, $SHF90COM, $SHF90FLAGS, $SHF90PPCOM,
$_F90INCFLAGS.

Uses: $F90COMSTR, $F90PPCOMSTR, $SHF90COMSTR, $SHF90PPCOMSTR.

f95
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM, $F95FLAGS, $F95PPCOM, $SHF95, $SHF95COM, $SHF95FLAGS, $SHF95PPCOM,
$_F95INCFLAGS.

Uses: $F95COMSTR, $F95PPCOMSTR, $SHF95COMSTR, $SHF95PPCOMSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM,
$SHFORTRANFLAGS, $SHFORTRANPPCOM.

Uses: $FORTRANCOMSTR, $FORTRANPPCOMSTR, $SHFORTRANCOMSTR, $SHFORTRANPPCOMSTR.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS, $SHOBJSUFFIX.

26

g77
Set construction variables for the g77 Fortran compiler. Calls the f77 Tool module to set variables.

gas
Sets construction variables for the gas assembler. Calls the as tool.

Sets: $AS.

gcc
Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSION, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

gettext
This is actually a toolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

• xgettext - to extract internationalized messages from source code to POT file(s),

• msginit - may be optionally used to initialize PO files,

• msgmerge - to update PO files, that already contain translated messages,

• msgfmt - to compile textual PO file to binary installable MO file.

When you enable gettext, it internally loads all abovementioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. You may be however interested in top-level Translate builder.

To use gettext tools add 'gettext' tool to your environment:

 env = Environment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU F95/F2003 GNU compiler.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS, $SHF95,
$SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERSIONFLAGS, $RPATHPREFIX, $RPATHSUFFIX, $SHLIBVERSIONFLAGS,
$SHLINKFLAGS, $_LDMODULESONAME, $_SHLIBSONAME.

27

gs
This Tool sets the required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finally, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM, $GSFLAGS.

Uses: $GSCOMSTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the cXX tool for additional variables.

Sets: $CXX, $CXXVERSION, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LINKFLAGS, $SHLIBSUFFIX, $SHLINKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

icl
Sets construction variables for the Intel C/C++ compiler. Calls the intelc Tool module to set its variables.

ifl
Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM, $FORTRANPPCOM, $SHFORTRANCOM, $SHFORTRANPPCOM.

Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANINCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHF90FLAGS, $SHF95,
$SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for the ilink linker on OS/2 systems.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS.

install
Sets construction variables for file and directory installation.

28

Sets: $INSTALL, $INSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Calls the gcc
or msvc (on Linux and Windows, respectively) tool to set underlying variables.

Sets: $AR, $CC, $CXX, $INTEL_C_COMPILER_VERSION, $LINK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $JARCOM, $JARFLAGS, $JARSUFFIX.

Uses: $JARCOMSTR.

javac
Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM, $JAVACFLAGS, $JAVACLASSPATH,
$JAVACLASSSUFFIX, $JAVAINCLUDES, $JAVASOURCEPATH, $JAVASUFFIX.

Uses: $JAVACCOMSTR.

javah
Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFIX, $JAVAH, $JAVAHCOM, $JAVAHFLAGS.

Uses: $JAVACLASSPATH, $JAVAHCOMSTR.

latex
Sets construction variables for the latex utility.

Sets: $LATEX, $LATEXCOM, $LATEXFLAGS.

Uses: $LATEXCOMSTR.

ldc
Sets construction variables for the D language compiler LDC2.

Sets: $DC, $DCOM, $DDEBUG, $DDEBUGPREFIX, $DDEBUGSUFFIX, $DFILESUFFIX,
$DFLAGPREFIX, $DFLAGS, $DFLAGSUFFIX, $DINCPREFIX, $DINCSUFFIX, $DLIB,
$DLIBCOM, $DLIBDIRPREFIX, $DLIBDIRSUFFIX, $DLIBFLAGPREFIX, $DLIBFLAGSUFFIX,
$DLIBLINKPREFIX, $DLIBLINKSUFFIX, $DLINK, $DLINKCOM, $DLINKFLAGPREFIX,
$DLINKFLAGS, $DLINKFLAGSUFFIX, $DPATH, $DRPATHPREFIX, $DRPATHSUFFIX, $DVERPREFIX,
$DVERSIONS, $DVERSUFFIX, $SHDC, $SHDCOM, $SHDLIBVERSIONFLAGS, $SHDLINK,
$SHDLINKCOM, $SHDLINKFLAGS.

lex
Sets construction variables for the lex lexical analyser.

Sets: $LEX, $LEXCOM, $LEXFLAGS, $LEXUNISTD.

Uses: $LEXCOMSTR.

link
Sets construction variables for generic POSIX linkers. This is a "smart" linker tool which selects a compiler to
complete the linking based on the types of source files.

29

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULENOVERSIONSYMLINKS,
$LDMODULEPREFIX, $LDMODULESUFFIX, $LDMODULEVERSION, $LDMODULEVERSIONFLAGS,
$LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK,
$LINKCOM, $LINKFLAGS, $SHLIBSUFFIX, $SHLINK, $SHLINKCOM, $SHLINKFLAGS,
$__LDMODULEVERSIONFLAGS, $__SHLIBVERSIONFLAGS.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $SHLINKCOMSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

Uses: $LINKCOMSTR, $SHLINKCOMSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $M4, $M4COM, $M4FLAGS.

Uses: $M4COMSTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPINCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $MIDL, $MIDLCOM, $MIDLFLAGS.

Uses: $MIDLCOMSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM, $LIBPREFIX, $LIBSUFFIX, $OBJSUFFIX, $RC,
$RCCOM, $RCFLAGS, $RCINCFLAGS, $RCINCPREFIX, $RCINCSUFFIX, $SHCCFLAGS, $SHCXXFLAGS,
$SHLINKCOM, $SHLINKFLAGS, $SHOBJSUFFIX, $WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX.

Uses: $RCCOMSTR, $SHLINKCOMSTR.

msgfmt
This scons tool is a part of scons gettext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from a textual translation description (PO).

Sets: $MOSUFFIX, $MSGFMT, $MSGFMTCOM, $MSGFMTCOMSTR, $MSGFMTFLAGS, $POSUFFIX.

Uses: $LINGUAS_FILE.

msginit
This scons tool is a part of scons gettext toolset. It provides scons interface to msginit(1) program, which
creates new PO file, initializing the meta information with values from user's environment (or options).

30

Sets: $MSGINIT, $MSGINITCOM, $MSGINITCOMSTR, $MSGINITFLAGS, $POAUTOINIT,
$POCREATE_ALIAS, $POSUFFIX, $POTSUFFIX, $_MSGINITLOCALE.

Uses: $LINGUAS_FILE, $POAUTOINIT, $POTDOMAIN.

msgmerge
This scons tool is a part of scons gettext toolset. It provides scons interface to msgmerge(1) command, which
merges two Uniform style .po files together.

Sets: $MSGMERGE, $MSGMERGECOM, $MSGMERGECOMSTR, $MSGMERGEFLAGS, $POSUFFIX,
$POTSUFFIX, $POUPDATE_ALIAS.

Uses: $LINGUAS_FILE, $POAUTOINIT, $POTDOMAIN.

mslib
Sets construction variables for the Microsoft mslib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM, $LDMODULEFLAGS, $LDMODULEPREFIX, $LDMODULESUFFIX,
$LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX, $LINK, $LINKCOM,
$LINKFLAGS, $REGSVR, $REGSVRCOM, $REGSVRFLAGS, $SHLINK, $SHLINKCOM,
$SHLINKFLAGS, $WINDOWSDEFPREFIX, $WINDOWSDEFSUFFIX, $WINDOWSEXPPREFIX,
$WINDOWSEXPSUFFIX, $WINDOWSPROGMANIFESTPREFIX, $WINDOWSPROGMANIFESTSUFFIX,
$WINDOWSSHLIBMANIFESTPREFIX, $WINDOWSSHLIBMANIFESTSUFFIX, $WINDOWS_INSERT_DEF.

Uses: $LDMODULECOMSTR, $LINKCOMSTR, $REGSVRCOMSTR, $SHLINKCOMSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %INCLUDE%, %LIB%, %LIBPATH% and %PATH%.

Uses: $MSSDK_DIR, $MSSDK_VERSION, $MSVS_VERSION.

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUILDERS, $CC, $CCCOM, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS, $CFILESUFFIX,
$CFLAGS, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM, $CXXFILESUFFIX, $CXXFLAGS,
$INCPREFIX, $INCSUFFIX, $OBJPREFIX, $OBJSUFFIX, $PCHCOM, $PCHPDBFLAGS, $RC, $RCCOM,
$RCFLAGS, $SHCC, $SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM, $SHCXXFLAGS,
$SHOBJPREFIX, $SHOBJSUFFIX.

Uses: $CCCOMSTR, $CXXCOMSTR, $PCH, $PCHSTOP, $PDB, $SHCCCOMSTR, $SHCXXCOMSTR.

msvs
Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUILDCOM, $MSVSCLEANCOM, $MSVSENCODING, $MSVSPROJECTCOM,
$MSVSREBUILDCOM, $MSVSSCONS, $MSVSSCONSCOM, $MSVSSCONSCRIPT, $MSVSSCONSFLAGS,
$MSVSSOLUTIONCOM.

31

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM, $CFILESUFFIX, $CPPDEFPREFIX, $CPPDEFSUFFIX, $CXX, $CXXCOM,
$CXXFILESUFFIX, $INCPREFIX, $INCSUFFIX, $MWCW_VERSION, $MWCW_VERSIONS, $SHCC,
$SHCCCOM, $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM, $SHCXXFLAGS.

Uses: $CCCOMSTR, $CXXCOMSTR, $SHCCCOMSTR, $SHCXXCOMSTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM, $LIBDIRPREFIX, $LIBDIRSUFFIX, $LIBLINKPREFIX, $LIBLINKSUFFIX,
$LINK, $LINKCOM, $SHLINK, $SHLINKCOM, $SHLINKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM, $ASFLAGS, $ASPPCOM, $ASPPFLAGS.

Uses: $ASCOMSTR, $ASPPCOMSTR.

ninja
Sets up Ninja builder which generates a ninja build file, and then optionally runs ninja.

Note

This is an experimental feature.

This functionality is subject to change and/or removal without deprecation cycle.

Sets: $IMPLICIT_COMMAND_DEPENDENCIES, $NINJA_ALIAS_NAME, $NINJA_COMPDB_EXPAND,
$NINJA_DIR, $NINJA_DISABLE_AUTO_RUN, $NINJA_ENV_VAR_CACHE, $NINJA_FILE_NAME,
$NINJA_GENERATED_SOURCE_SUFFIXES, $NINJA_MSVC_DEPS_PREFIX, $NINJA_POOL,
$NINJA_REGENERATE_DEPS, $NINJA_SYNTAX, $_NINJA_REGENERATE_DEPS_FUNC,
$__NINJA_NO.

Uses: $AR, $ARCOM, $ARFLAGS, $CC, $CCCOM, $CCFLAGS, $CXX, $CXXCOM, $ESCAPE, $LINK,
$LINKCOM, $PLATFORM, $PRINT_CMD_LINE_FUNC, $PROGSUFFIX, $RANLIB, $RANLIBCOM,
$SHCCCOM, $SHCXXCOM, $SHLINK, $SHLINKCOM.

packaging
Sets construction variables for the Package Builder. If this tool is enabled, the --package-type command-
line option is also enabled.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFIX, $PDFSUFFIX.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS.

Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

32

Sets: $LATEXRETRIES, $PDFLATEX, $PDFLATEXCOM, $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM,
$PDFTEXFLAGS.

Uses: $PDFLATEXCOMSTR, $PDFTEXCOMSTR.

python
Loads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

qt
Sets construction variables for building Qt applications.

Sets: $QTDIR, $QT_AUTOSCAN, $QT_BINPATH, $QT_CPPPATH, $QT_LIB, $QT_LIBPATH, $QT_MOC,
$QT_MOCCXXPREFIX, $QT_MOCCXXSUFFIX, $QT_MOCFROMCXXCOM, $QT_MOCFROMCXXFLAGS,
$QT_MOCFROMHCOM, $QT_MOCFROMHFLAGS, $QT_MOCHPREFIX, $QT_MOCHSUFFIX,
$QT_UIC, $QT_UICCOM, $QT_UICDECLFLAGS, $QT_UICDECLPREFIX, $QT_UICDECLSUFFIX,
$QT_UICIMPLFLAGS, $QT_UICIMPLPREFIX, $QT_UICIMPLSUFFIX, $QT_UISUFFIX.

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFIX, $RMIC, $RMICCOM, $RMICFLAGS.

Uses: $RMICCOMSTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLIENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVICEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOMSTR, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX, $SHLINK, $SHLINKFLAGS.

Uses: $ARCOMSTR, $SHLINKCOMSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJSUFFIX.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBJSUFFIX.

sgilink
Sets construction variables for the SGI linker.

Sets: $LINK, $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

33

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSION, $SHCXX, $SHCXXFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJPREFIX, $SHOBJSUFFIX.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHF90FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHF95FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: $RPATHPREFIX, $RPATHSUFFIX, $SHLINKFLAGS.

swig
Sets construction variables for the SWIG interface generator.

Sets: $SWIG, $SWIGCFILESUFFIX, $SWIGCOM, $SWIGCXXFILESUFFIX, $SWIGDIRECTORSUFFIX,
$SWIGFLAGS, $SWIGINCPREFIX, $SWIGINCSUFFIX, $SWIGPATH, $SWIGVERSION,
$_SWIGINCFLAGS.

Uses: $SWIGCOMSTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM, $TARFLAGS, $TARSUFFIX.

Uses: $TARCOMSTR.

tex
Sets construction variables for the TeX formatter and typesetter.

Sets: $BIBTEX, $BIBTEXCOM, $BIBTEXFLAGS, $LATEX, $LATEXCOM, $LATEXFLAGS, $MAKEINDEX,
$MAKEINDEXCOM, $MAKEINDEXFLAGS, $TEX, $TEXCOM, $TEXFLAGS.

Uses: $BIBTEXCOMSTR, $LATEXCOMSTR, $MAKEINDEXCOMSTR, $TEXCOMSTR.

textfile
Set construction variables for the Textfile and Substfile builders.

34

Sets: $LINESEPARATOR, $SUBSTFILEPREFIX, $SUBSTFILESUFFIX, $TEXTFILEPREFIX,
$TEXTFILESUFFIX.

Uses: $SUBST_DICT.

tlib
Sets construction variables for the Borlan tib library archiver.

Sets: $AR, $ARCOM, $ARFLAGS, $LIBPREFIX, $LIBSUFFIX.

Uses: $ARCOMSTR.

xgettext
This scons tool is a part of scons gettext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdate builder to make PO
Template files.

Sets: $POTSUFFIX, $POTUPDATE_ALIAS, $XGETTEXTCOM, $XGETTEXTCOMSTR,
$XGETTEXTFLAGS, $XGETTEXTFROM, $XGETTEXTFROMPREFIX, $XGETTEXTFROMSUFFIX,
$XGETTEXTPATH, $XGETTEXTPATHPREFIX, $XGETTEXTPATHSUFFIX, $_XGETTEXTDOMAIN,
$_XGETTEXTFROMFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOMAIN.

yacc
Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM, $YACCFLAGS, $YACCHFILESUFFIX, $YACCHXXFILESUFFIX,
$YACCVCGFILESUFFIX.

Uses: $YACCCOMSTR.

zip
Sets construction variables for the zip archiver.

Sets: $ZIP, $ZIPCOM, $ZIPCOMPRESSION, $ZIPFLAGS, $ZIPSUFFIX.

Uses: $ZIPCOMSTR.

Builder Methods

You tell scons what to build by calling Builders, functions which take particular action(s) to produce a particular result
type (conventionally described by the builder name such as Program) when given source files of a particular type.
Calling a builder defines one or more targets to the build system; whether the targets are actually built on a given
invocation is determined by command-line options, target selection rules, and whether SCons determines the target(s)
are out of date.

SCons defines a number of builders, and you can also write your own. Builders are attached to a construction
environment as methods, and the available builder methods are listed as key-value pairs in the BUILDERS attribute
of the construction environment. The available builders can be displayed like this for debugging purposes:

env = Environment()
print("Builders:", list(env['BUILDERS']))

Builder methods take two required arguments: target and source. Either can be passed as a scalar or as a list. The
target and source arguments can be specified either as positional arguments, in which case target comes first,
or as keyword arguments, using target= and source=. Although both arguments are nominally required, if there

35

is a single source and the target can be inferred the target argument can be omitted (see below). Builder methods
also take a variety of keyword arguments, described below.

The builder may add other targets beyond those requested if indicated by an Emitter (see the section called “Builder
Objects” and, for example, $PROGEMITTER for more information).

Because long lists of file names can lead to a lot of quoting, scons supplies a Split global function and a same-
named environment method that splits a single string into a list, using strings of white-space characters as the delimiter.
(similar to the Python string split method, but succeeds even if the input isn't a string.)

The following are equivalent examples of calling the Program builder method:

env.Program('bar', ['bar.c', 'foo.c'])
env.Program('bar', Split('bar.c foo.c'))
env.Program('bar', env.Split('bar.c foo.c'))
env.Program(source=['bar.c', 'foo.c'], target='bar')
env.Program(target='bar', source=Split('bar.c foo.c'))
env.Program(target='bar', source=env.Split('bar.c foo.c'))
env.Program('bar', source='bar.c foo.c'.split())

Python follows the POSIX pathname convention for path strings: if a string begins with the operating system pathname
separator (on Windows both the slash and backslash separator work, and any leading drive specifier is ignored for the
determination) it is considered an absolute path, otherwise it is a relative path. If the path string contains no separator
characters, it is searched for as a file in the current directory. If it contains separator characters, the search follows
down from the starting point, which is the top of the directory tree for an absolute path and the current directory for
a relative path.

scons recognizes a third way to specify path strings: if the string begins with the # character it is top-relative - it works
like a relative path but the search follows down from the directory containing the top-level SConstruct rather than
from the current directory. The # is allowed to be followed by a pathname separator, which is ignored if found in that
position. Top-relative paths only work in places where scons will interpret the path (see some examples below). To
be used in other contexts the string will need to be converted to a relative or absolute path first.

target and source can be absolute, relative, or top-relative. Relative pathnames are searched considering the
directory of the SConscript file currently being processed as the "current directory".

Examples:

The comments describing the targets that will be built
assume these calls are in a SConscript file in the
a subdirectory named "subdir".

Builds the program "subdir/foo" from "subdir/foo.c":
env.Program('foo', 'foo.c')

Builds the program "/tmp/bar" from "subdir/bar.c":
env.Program('/tmp/bar', 'bar.c')

An initial '#' or '#/' are equivalent; the following
calls build the programs "foo" and "bar" (in the
top-level SConstruct directory) from "subdir/foo.c" and
"subdir/bar.c", respectively:
env.Program('#foo', 'foo.c')
env.Program('#/bar', 'bar.c')

36

Builds the program "other/foo" (relative to the top-level
SConstruct directory) from "subdir/foo.c":
env.Program('#other/foo', 'foo.c')

This will not work, only SCons interfaces understand '#',
os.path.exists is pure Python:
if os.path.exists('#inc/foo.h'):
 env.Append(CPPPATH='#inc')

When the target shares the same base name as the source and only the suffix varies, and if the builder method has a
suffix defined for the target file type, then the target argument may be omitted completely, and scons will deduce the
target file name from the source file name. The following examples all build the executable program bar (on POSIX
systems) or bar.exe (on Windows systems) from the bar.c source file:

env.Program(target='bar', source='bar.c')
env.Program('bar', source='bar.c')
env.Program(source='bar.c')
env.Program('bar.c')

As a convenience, a srcdir keyword argument may be specified when calling a Builder. When specified, all source
file strings that are not absolute paths or top-relative paths will be interpreted relative to the specified srcdir. The
following example will build the build/prog (or build/prog.exe on Windows) program from the files src/
f1.c and src/f2.c:

env.Program('build/prog', ['f1.c', 'f2.c'], srcdir='src')

Keyword arguments that are not specifically recognized are treated as construction variable overrides, which replace
or add those variables on a limited basis. These overrides will only be in effect when building the target of the builder
call, and will not affect other parts of the build. For example, if you want to specify some libraries needed by just
one program:

env.Program('hello', 'hello.c', LIBS=['gl', 'glut'])

or generate a shared library with a non-standard suffix:

env.SharedLibrary(
 target='word',
 source='word.cpp',
 SHLIBSUFFIX='.ocx',
 LIBSUFFIXES=['.ocx'],
)

Note that both the $SHLIBSUFFIX and $LIBSUFFIXES variables must be set if you want scons to search
automatically for dependencies on the non-standard library names; see the descriptions below of these variables for
more information.

The optional parse_flags keyword argument is recognized by builders. This works similarly to the
env.MergeFlags method, where the argument value is broken into individual settings and merged into the
appropriate construction variables.

37

env.Program('hello', 'hello.c', parse_flags='-Iinclude -DEBUG -lm')

This example adds 'include' to CPPPATH, 'EBUG' to CPPDEFINES, and 'm' to LIBS.

Although the builder methods defined by scons are, in fact, methods of a construction environment object, many may
also be called without an explicit environment:

Program('hello', 'hello.c')
SharedLibrary('word', 'word.cpp')

If called this way, methods will internally use the default environment that consists of the tools and values that scons
has determined are appropriate for the local system.

Builder methods that can be called without an explicit environment (indicated in the listing of builders without a
leading env.) may be called from custom Python modules that you import into an SConscript file by adding the
following to the Python module:

from SCons.Script import *

Builder methods return a NodeList, a list-like object whose elements are Nodes, SCons' internal representation
of build targets or sources. See the section called “File and Directory Nodes” for more information. The returned
NodeList object can be passed to other builder methods as source(s) or passed to any SCons function or method
where a filename would normally be accepted.

For example, to add a specific preprocessor define when compiling one specific object file but not the others:

bar_obj_list = env.StaticObject('bar.c', CPPDEFINES='-DBAR')
env.Program("prog", ['foo.c', bar_obj_list, 'main.c'])

Using a Node as in this example makes for a more portable build by avoiding having to specify a platform-specific
object suffix when calling the Program builder method.

The NodeList object is also convenient to pass to the Default function, for the same reason of avoiding a platform-
specific name:

tgt = env.Program("prog", ["foo.c", "bar.c", "main.c"])
Default(tgt)

Builder calls will automatically "flatten" lists passed as source and target, so they are free to contain elements which
are themselves lists, such as bar_obj_list returned by the StaticObject call above. If you need to manipulate
a list of lists returned by builders directly in Python code, you can either build a new list by hand:

foo = Object('foo.c')
bar = Object('bar.c')
objects = ['begin.o'] + foo + ['middle.o'] + bar + ['end.o']
for obj in objects:
 print(str(obj))

Or you can use the Flatten function supplied by scons to create a list containing just the Nodes, which may be
more convenient:

38

foo = Object('foo.c')
bar = Object('bar.c')
objects = Flatten(['begin.o', foo, 'middle.o', bar, 'end.o'])
for obj in objects:
 print(str(obj))

SCons builder calls return a list-like object, not an actual Python list, so it is not appropriate to use the Python add
operator (+ or +=) to append builder results to a Python list. Because the list and the object are different types, Python
will not update the original list in place, but will instead create a new NodeList object containing the concatenation
of the list elements and the builder results. This will cause problems for any other Python variables in your SCons
configuration that still hold on to a reference to the original list. Instead, use the Python list extend method to make
sure the list is updated in-place. Example:

object_files = []

Do NOT use += here:
object_files += Object('bar.c')
#
It will not update the object_files list in place.
#
Instead, use the list extend method:
object_files.extend(Object('bar.c'))

The path name for a Node's file may be used by passing the Node to Python's builtin str function:

bar_obj_list = env.StaticObject('bar.c', CPPDEFINES='-DBAR')
print("The path to bar_obj is:", str(bar_obj_list[0]))

Note that because the Builder call returns a NodeList, you have to access the first element in the list,
(bar_obj_list[0] in the example) to get at the Node that actually represents the object file.

Builder calls support a chdir keyword argument that specifies that the Builder's action(s) should be executed after
changing directory. If the chdir argument is a string or a directory Node, scons will change to the specified directory.
If the chdir is not a string or Node and is non-zero, then scons will change to the target file's directory.

scons will change to the "sub" subdirectory
before executing the "cp" command.
env.Command('sub/dir/foo.out', 'sub/dir/foo.in',
 "cp dir/foo.in dir/foo.out",
 chdir='sub')

Because chdir is not a string, scons will change to the
target's directory ("sub/dir") before executing the
"cp" command.
env.Command('sub/dir/foo.out', 'sub/dir/foo.in',
 "cp foo.in foo.out",
 chdir=1)

Note that SCons will not automatically modify its expansion of construction variables like $TARGET and $SOURCE
when using the chdir keyword argument--that is, the expanded file names will still be relative to the top-level
directory where SConstruct was found, and consequently incorrect relative to the chdir directory. If you use
the chdir keyword argument, you will typically need to supply a different command line using expansions like
${TARGET.file} and ${SOURCE.file} to use just the filename portion of the targets and source.

39

When trying to handle errors that may occur in a builder method, consider that the corresponding Action is executed at a
different time than the SConscript file statement calling the builder. It is not useful to wrap a builder call in a try block,
since success in the builder call is not the same as the builder itself succeeding. If necessary, a Builder's Action should
be coded to exit with a useful exception message indicating the problem in the SConscript files - programmatically
recovering from build errors is rarely useful.

scons predefines the following builder methods. Depending on the setup of a particular construction environment
and on the type and software installation status of the underlying system, not all builders may be available to that
construction environment.

CFile()
env.CFile()

Builds a C source file given a lex (.l) or yacc (.y) input file. The suffix specified by the $CFILESUFFIX
construction variable (.c by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env.CFile(target = 'foo.c', source = 'foo.l')
builds bar.c
env.CFile(target = 'bar', source = 'bar.y')

Command()
env.Command()

The Command "Builder" is actually a function that looks like a Builder, but takes a required third argument,
which is the action to take to construct the target from the source, used for "one-off" builds where a full builder
is not needed. Thus it does not follow the builder calling rules described at the start of this section. See instead
the Command function description for the calling syntax and details.

CompilationDatabase()
env.CompilationDatabase()

CompilationDatabase is a special builder which adds a target to create a JSON formatted
compilation database compatible with clang tooling (see the LLVM specification [https://clang.llvm.org/docs/
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COMPILATIONDB_PATH_FILTER. The target is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to a target name of compile_commands.json.

If called with a single positional argument, scons will "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. This is the usual way to call the builder if a non-default target name
is wanted.

If called with either the target= or source= keyword arguments, the value of the argument is taken as the
target name. If called with both, the target= value is used and source= is ignored. If called with multiple
sources, the source list will be ignored, since there is no way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the compilation_db tool prior to specifying any part of your build or some source/
output files will not show up in the compilation database.

Available since scons 4.0.

40

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

CXXFile()
env.CXXFile()

Builds a C++ source file given a lex (.ll) or yacc (.yy) input file. The suffix specified by the
$CXXFILESUFFIX construction variable (.cc by default) is automatically added to the target if it is not already
present. Example:

builds foo.cc
env.CXXFile(target = 'foo.cc', source = 'foo.ll')
builds bar.cc
env.CXXFile(target = 'bar', source = 'bar.yy')

DocbookEpub()
env.DocbookEpub()

A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environment(tools=['docbook'])
env.DocbookEpub('manual.epub', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookEpub('manual')

DocbookHtml()
env.DocbookHtml()

A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environment(tools=['docbook'])
env.DocbookHtml('manual.html', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookHtml('manual')

DocbookHtmlChunked()
env.DocbookHtmlChunked()

A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base.dir
parameter. The chunkfast.xsl file (requires "EXSLT") is used as the default stylesheet. Basic syntax:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('manual')

where manual.xml is the input file.

If you use the root.filename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('mymanual.html', 'manual', xsl='htmlchunk.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookHtmlChunked('manual', xsl='htmlchunk.xsl', base_dir='output/')

41

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHtmlhelp()
env.DocbookHtmlhelp()

A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual')

where manual.xml is the input file.

If you use the root.filename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('mymanual.html', 'manual', xsl='htmlhelp.xsl')

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookHtmlhelp('manual', xsl='htmlhelp.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbookMan()

A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environment(tools=['docbook'])
env.DocbookMan('manual')

where manual.xml is the input file. Note, that you can specify a target name, but the actual output names are
automatically set from the refname entries in your XML source.

DocbookPdf()
env.DocbookPdf()

A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environment(tools=['docbook'])
env.DocbookPdf('manual.pdf', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookPdf('manual')

DocbookSlidesHtml()
env.DocbookSlidesHtml()

A pseudo-Builder, providing a Docbook toolchain for HTML slides output.

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('manual')

If you use the titlefoil.html parameter in your own stylesheets you have to give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via “scons -c”:

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('mymanual.html','manual', xsl='slideshtml.xsl')

42

Some basic support for the base.dir parameter is provided. You can add the base_dir keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment(tools=['docbook'])
env.DocbookSlidesHtml('manual', xsl='slideshtml.xsl', base_dir='output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSlidesPdf()
env.DocbookSlidesPdf()

A pseudo-Builder, providing a Docbook toolchain for PDF slides output.

env = Environment(tools=['docbook'])
env.DocbookSlidesPdf('manual.pdf', 'manual.xml')

or simply

env = Environment(tools=['docbook'])
env.DocbookSlidesPdf('manual')

DocbookXInclude()
env.DocbookXInclude()

A pseudo-Builder, for resolving XIncludes in a separate processing step.

env = Environment(tools=['docbook'])
env.DocbookXInclude('manual_xincluded.xml', 'manual.xml')

DocbookXslt()
env.DocbookXslt()

A pseudo-Builder, applying a given XSL transformation to the input file.

env = Environment(tools=['docbook'])
env.DocbookXslt('manual_transformed.xml', 'manual.xml', xsl='transform.xslt')

Note, that this builder requires the xsl parameter to be set.

DVI()
env.DVI()

Builds a .dvi file from a .tex, .ltx or .latex input file. If the source file suffix is .tex, scons will examine
the contents of the file; if the string \documentclass or \documentstyle is found, the file is assumed
to be a LaTeX file and the target is built by invoking the $LATEXCOM command line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the .aux file and invoke the $BIBTEX command line if the string bibdata is found, start $MAKEINDEX to
generate an index if a .ind file is found and will examine the contents .log file and re-run the $LATEXCOM
command if the log file says it is necessary.

The suffix .dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex
env.DVI(target = 'aaa.dvi', source = 'aaa.tex')
builds bbb.dvi
env.DVI(target = 'bbb', source = 'bbb.ltx')
builds from ccc.latex
env.DVI(target = 'ccc.dvi', source = 'ccc.latex')

43

Gs()
env.Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos2
and gswin32c are tried.

env = Environment(tools=['gs'])
env.Gs(
 'cover.jpg',
 'scons-scons.pdf',
 GSFLAGS='-dNOPAUSE -dBATCH -sDEVICE=jpeg -dFirstPage=1 -dLastPage=1 -q',
)

Install()
env.Install()

Installs one or more source files or directories in the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
as a string or as a node returned by a builder.

env.Install(target='/usr/local/bin', source=['foo', 'bar'])

Note that if target paths chosen for the Install builder (and the related InstallAs and
InstallVersionedLib builders) are outside the project tree, such as in the example above, they may not be
selected for "building" by default, since in the absence of other instructions scons builds targets that are underneath
the top directory (the directory that contains the SConstruct file, usually the current directory). Use command
line targets or the Default function in this case.

If the --install-sandbox command line option is given, the target directory will be prefixed by the directory
path specified. This is useful to test installs without installing to a "live" location in the system.

See also FindInstalledFiles. For more thoughts on installation, see the User Guide (particularly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

InstallAs()
env.InstallAs()

Installs one or more source files or directories to specific names, allowing changing a file or directory name as
part of the installation. It is an error if the target and source arguments list different numbers of files or directories.

env.InstallAs(target='/usr/local/bin/foo',
 source='foo_debug')
env.InstallAs(target=['../lib/libfoo.a', '../lib/libbar.a'],
 source=['libFOO.a', 'libBAR.a'])

See the note under Install.

InstallVersionedLib()
env.InstallVersionedLib()

Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on
symlinks of the source library.

env.InstallVersionedLib(target='/usr/local/bin/foo',
 source='libxyz.1.5.2.so')

See the note under Install.

44

Jar()
env.Jar()

Builds a Java archive (.jar) file from the specified list of sources. Any directories in the source list will be
searched for .class files). Any .java files in the source list will be compiled to .class files by calling the
Java Builder.

If the $JARCHDIR value is set, the jar command will change to the specified directory using the -C option. If
$JARCHDIR is not set explicitly, SCons will use the top of any subdirectory tree in which Java .class were
built by the Java Builder.

If the contents any of the source files begin with the string Manifest-Version, the file is assumed to be a
manifest and is passed to the jar command with the m option set.

env.Jar(target = 'foo.jar', source = 'classes')

env.Jar(target = 'bar.jar',
 source = ['bar1.java', 'bar2.java'])

Java()
env.Java()

Builds one or more Java class files. The sources may be any combination of explicit .java files, or directory
trees which will be scanned for .java files.

SCons will parse each source .java file to find the classes (including inner classes) defined within that file, and
from that figure out the target .class files that will be created. The class files will be placed underneath the
specified target directory.

SCons will also search each Java file for the Java package name, which it assumes can be found on a line beginning
with the string package in the first column; the resulting .class files will be placed in a directory reflecting
the specified package name. For example, the file Foo.java defining a single public Foo class and containing
a package name of sub.dir will generate a corresponding sub/dir/Foo.class class file.

Examples:

env.Java(target = 'classes', source = 'src')
env.Java(target = 'classes', source = ['src1', 'src2'])
env.Java(target = 'classes', source = ['File1.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compiles in simple ASCII mode
by default, the compiler will generate warnings about unmappable characters, which may lead to errors as the file
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment()
env['ENV']['LANG'] = 'en_GB.UTF-8'

JavaH()
env.JavaH()

Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source

45

can be the names of .class files, the names of .java files to be compiled into .class files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any .class file names.

Examples:

builds java_native.h
classes = env.Java(target="classdir", source="src")
env.JavaH(target="java_native.h", source=classes)

builds include/package_foo.h and include/package_bar.h
env.JavaH(target="include", source=["package/foo.class", "package/bar.class"])

builds export/foo.h and export/bar.h
env.JavaH(
 target="export",
 source=["classes/foo.class", "classes/bar.class"],
 JAVACLASSDIR="classes",
)

Library()
env.Library()

A synonym for the StaticLibrary builder method.

LoadableModule()
env.LoadableModule()

On most systems, this is the same as SharedLibrary. On Mac OS X (Darwin) platforms, this creates a loadable
module bundle.

M4()
env.M4()

Builds an output file from an M4 input file. This uses a default $M4FLAGS value of -E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env.M4(target = 'foo.c', source = 'foo.c.m4')

Moc()
env.Moc()

Builds an output file from a moc input file. Moc input files are either header files or cxx files. This builder is only
available after using the tool 'qt'. See the $QTDIR variable for more information. Example:

env.Moc('foo.h') # generates moc_foo.cc
env.Moc('foo.cpp') # generates foo.moc

MOFiles()
env.MOFiles()

This builder belongs to msgfmt tool. The builder compiles PO files to MO files.

Example 1. Create pl.mo and en.mo by compiling pl.po and en.po:

 # ...

46

 env.MOFiles(['pl', 'en'])

Example 2. Compile files for languages defined in LINGUAS file:

 # ...
 env.MOFiles(LINGUAS_FILE = 1)

Example 3. Create pl.mo and en.mo by compiling pl.po and en.po plus files for languages defined in
LINGUAS file:

 # ...
 env.MOFiles(['pl', 'en'], LINGUAS_FILE = 1)

Example 4. Compile files for languages defined in LINGUAS file (another version):

 # ...
 env['LINGUAS_FILE'] = 1
 env.MOFiles()

MSVSProject()
env.MSVSProject()

Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

This builds a Visual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSION in the Environment constructor). For Visual
Studio 6, it will generate a .dsp file. For Visual Studio 7, 8, and 9, it will generate a .vcproj file. For Visual
Studio 10 and later, it will generate a .vcxproj file.

By default, this also generates a solution file for the specified project, a .dsw file for Visual Studio 6 or a .sln
file for Visual Studio 7 and later. This behavior may be disabled by specifying auto_build_solution=0
when you call MSVSProject, in which case you presumably want to build the solution file(s) by calling the
MSVSSolution Builder (see below).

The MSVSProject builder takes several lists of filenames to be placed into the project file. These are currently
limited to srcs, incs, localincs, resources, and misc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are all optional, although at least one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

target
The name of the target .dsp or .vcproj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPROJECTSUFFIX construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These are typically things like "Debug" or "Release", but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a | (vertical pipe)
character: Debug|Xbox. The default target platform is Win32. Multiple calls to MSVSProject with

47

different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cmdargs
Additional command line arguments for the different variants. The number of cmdargs entries must match
the number of variant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

cppdefines
Preprocessor definitions for the different variants. The number of cppdefines entries must match the
number of variant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
CPPDEFINES entry for all variants.

cppflags
Compiler flags for the different variants. If a /std:c++ flag is found then /Zc:__cplusplus is appended to the
flags if not already found, this ensures that intellisense uses the /std:c++ switch. The number of cppflags
entries must match the number of variant entries, or be empty (not specified). If you give only one, it will
automatically be propagated to all variants. If you don't give this parameter, SCons will combine the invoking
environment's CCFLAGS, CXXFLAGS, CPPFLAGS entries for all variants.

cpppaths
Compiler include paths for the different variants. The number of cpppaths entries must match the number
of variant entries, or be empty (not specified). If you give only one, it will automatically be propagated
to all variants. If you don't give this parameter, SCons will use the invoking environment's CPPPATH entry
for all variants.

buildtarget
An optional string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to use in what build variant. The number of buildtarget entries must match the number
of variant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Output field in the resulting Visual Studio project file. If this is not specified, the default is the same as
the specified buildtarget value.

Note that because SCons always executes its build commands from the directory in which the SConstruct file
is located, if you generate a project file in a different directory than the SConstruct directory, users will not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++ /FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = ['bar.cpp']
barincs = ['bar.h']
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc','resource.h']
barmisc = ['bar_readme.txt']

dll = env.SharedLibrary(target='bar.dll',
 source=barsrcs)
buildtarget = [s for s in dll if str(s).endswith('dll')]
env.MSVSProject(target='Bar' + env['MSVSPROJECTSUFFIX'],

48

 srcs=barsrcs,
 incs=barincs,
 localincs=barlocalincs,
 resources=barresources,
 misc=barmisc,
 buildtarget=buildtarget,
 variant='Release')

Starting with version 2.4 of SCons it is also possible to specify the optional argument DebugSettings, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the .vcproj.user or the .vcxproj.user
file, depending on the version installed. As it is done for cmdargs (see above), you can specify a
DebugSettings dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no file is
generated. To generate the user file, you just need to add a DebugSettings dictionary to the environment with
the right parameters for your MSVS version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Assuming you store your defaults in a file
vars = Variables('variables.py')
msvcver = vars.args.get('vc', '9')

Check command args to force one Microsoft Visual Studio version
if msvcver == '9' or msvcver == '11':
 env = Environment(MSVC_VERSION=msvcver+'.0', MSVC_BATCH=False)
else:
 env = Environment()

AddOption('--userfile', action='store_true', dest='userfile', default=False,
 help="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the list
of allowed options, for instance if you want to create a user file to launch
a specific application for testing your dll with Microsoft Visual Studio 2008 (v9):
#
V9DebugSettings = {
 'Command':'c:\\myapp\\using\\thisdll.exe',
 'WorkingDirectory': 'c:\\myapp\\using\\',
 'CommandArguments': '-p password',
'Attach':'false',
'DebuggerType':'3',
'Remote':'1',
'RemoteMachine': None,
'RemoteCommand': None,
'HttpUrl': None,
'PDBPath': None,
'SQLDebugging': None,

49

'Environment': '',
'EnvironmentMerge':'true',
'DebuggerFlavor': None,
'MPIRunCommand': None,
'MPIRunArguments': None,
'MPIRunWorkingDirectory': None,
'ApplicationCommand': None,
'ApplicationArguments': None,
'ShimCommand': None,
'MPIAcceptMode': None,
'MPIAcceptFilter': None,
}

#
2. Because there are a lot of different options depending on the Microsoft
Visual Studio version, if you use more than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with Microsoft
Visual Studio 2012 (v11):
#
V10DebugSettings = {
 'LocalDebuggerCommand': 'c:\\myapp\\using\\thisdll.exe',
 'LocalDebuggerWorkingDirectory': 'c:\\myapp\\using\\',
 'LocalDebuggerCommandArguments': '-p password',
'LocalDebuggerEnvironment': None,
'DebuggerFlavor': 'WindowsLocalDebugger',
'LocalDebuggerAttach': None,
'LocalDebuggerDebuggerType': None,
'LocalDebuggerMergeEnvironment': None,
'LocalDebuggerSQLDebugging': None,
'RemoteDebuggerCommand': None,
'RemoteDebuggerCommandArguments': None,
'RemoteDebuggerWorkingDirectory': None,
'RemoteDebuggerServerName': None,
'RemoteDebuggerConnection': None,
'RemoteDebuggerDebuggerType': None,
'RemoteDebuggerAttach': None,
'RemoteDebuggerSQLDebugging': None,
'DeploymentDirectory': None,
'AdditionalFiles': None,
'RemoteDebuggerDeployDebugCppRuntime': None,
'WebBrowserDebuggerHttpUrl': None,
'WebBrowserDebuggerDebuggerType': None,
'WebServiceDebuggerHttpUrl': None,
'WebServiceDebuggerDebuggerType': None,
'WebServiceDebuggerSQLDebugging': None,
}

#
3. Select the dictionary you want depending on the version of visual Studio
Files you want to generate.
#
if not env.GetOption('userfile'):
 dbgSettings = None

50

elif env.get('MSVC_VERSION', None) == '9.0':
 dbgSettings = V9DebugSettings
elif env.get('MSVC_VERSION', None) == '11.0':
 dbgSettings = V10DebugSettings
else:
 dbgSettings = None

#
4. Add the dictionary to the DebugSettings keyword.
#
barsrcs = ['bar.cpp', 'dllmain.cpp', 'stdafx.cpp']
barincs = ['targetver.h']
barlocalincs = ['StdAfx.h']
barresources = ['bar.rc','resource.h']
barmisc = ['ReadMe.txt']

dll = env.SharedLibrary(target='bar.dll',
 source=barsrcs)

env.MSVSProject(target='Bar' + env['MSVSPROJECTSUFFIX'],
 srcs=barsrcs,
 incs=barincs,
 localincs=barlocalincs,
 resources=barresources,
 misc=barmisc,
 buildtarget=[dll[0]] * 2,
 variant=('Debug|Win32', 'Release|Win32'),
 cmdargs='vc=%s' % msvcver,
 DebugSettings=(dbgSettings, {}))

MSVSSolution()
env.MSVSSolution()

Builds a Microsoft Visual Studio solution file.

This builds a Visual Studio solution file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSION in the construction environment). For Visual
Studio 6, it will generate a .dsw file. For Visual Studio 7 (.NET), it will generate a .sln file.

The following values must be specified:

target
The name of the target .dsw or .sln file. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSOLUTIONSUFFIX will be defined to the correct value (see example below).

variant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release", but really can be anything you want. For
MSVS 7 they may also specify target platform, like this "Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSProject Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

51

Example Usage:

env.MSVSSolution(
 target="Bar" + env["MSVSSOLUTIONSUFFIX"],
 projects=["bar" + env["MSVSPROJECTSUFFIX"]],
 variant="Release",
)

Ninja()
env.Ninja()

Ninja is a special builder which adds a target to create a ninja build file. The builder does not require any source
files to be specified.

Note

This is an experimental feature. To enable it you must use one of the following methods

 # On the command line
 --experimental=ninja

 # Or in your SConstruct
 SetOption('experimental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you must install pypi's ninja package [https://pypi.org/project/ninja/]. This can be done
via pip install ninja

If called with no arguments, the builder will default to a target name of ninja.build.

If called with a single positional argument, scons will "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. This is the usual way to call the builder if a non-default target name
is wanted.

If called with either the target= or source= keyword arguments, the value of the argument is taken as the
target name. If called with both, the target= value is used and source= is ignored. If called with multiple
sources, the source list will be ignored, since there is no way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

Object()
env.Object()

A synonym for the StaticObject builder method.

Package()
env.Package()

Builds software distribution packages. A package is a container format which includes files to install along with
metadata. Packaging is optional, and must be enabled by specifying the packaging tool. For example:

52

https://pypi.org/project/ninja/
https://pypi.org/project/ninja/

env = Environment(tools=['default', 'packaging'])

SCons can build packages in a number of well known packaging formats. The target package type may be
selected with the the $PACKAGETYPE construction variable or the --package-type command line option.
The package type may be a list, in which case SCons will attempt to build packages for each type in the list.
Example:

env.Package(PACKAGETYPE=['src_zip', 'src_targz'], ...other args...)

The currently supported packagers are:

msi Microsoft Installer package

rpm RPM Package Manger package

ipkg Itsy Package Management package

tarbz2 bzip2-compressed tar file

targz gzip-compressed tar file

tarxz xz-compressed tar file

zip zip file

src_tarbz2 bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the source keyword argument. If omitted,
the FindInstalledFiles function is called behind the scenes to select all files that have an Install,
InstallAs or InstallVersionedLib Builder attached. If the target keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of the files to be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may also be attached to files (or more accurately,
Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the $PACKAGEROOT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environment(tools=["default", "packaging"])
env.Install("/bin/", "my_program")
env.Package(
 NAME="foo",
 VERSION="1.2.3",
 PACKAGEVERSION=0,
 PACKAGETYPE="rpm",
 LICENSE="gpl",
 SUMMARY="balalalalal",

53

 DESCRIPTION="this should be really really long",
 X_RPM_GROUP="Application/fu",
 SOURCE_URL="https://foo.org/foo-1.2.3.tar.gz",
)

In this example, the target /bin/my_program created by the Install call would not be built by default since
it is not under the project top directory. However, since no source is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGEROOT, no write is
actually done to the system's /bin directory, and the target will be selected since after rebasing to underneath
$PACKAGEROOT it is now under the top directory of the project.

PCH()
env.PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder returns a list of two targets: the PCH as
the first element, and the object file as the second element. Normally the object file is ignored. This builder is
only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder is generally used in
conjunction with the $PCH construction variable to force object files to use the precompiled header:

env['PCH'] = env.PCH('StdAfx.cpp')[0]

PDF()
env.PDF()

Builds a .pdf file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The suffix
specified by the $PDFSUFFIX construction variable (.pdf by default) is added automatically to the target if it
is not already present. Example:

builds from aaa.tex
env.PDF(target = 'aaa.pdf', source = 'aaa.tex')
builds bbb.pdf from bbb.dvi
env.PDF(target = 'bbb', source = 'bbb.dvi')

POInit()
env.POInit()

This builder belongs to msginit tool. The builder initializes missing PO file(s) if $POAUTOINIT is set. If
$POAUTOINIT is not set (default), POInit prints instruction for user (that is supposed to be a translator), telling
how the PO file should be initialized. In normal projects you should not use POInit and use POUpdate instead.
POUpdate chooses intelligently between msgmerge(1) and msginit(1). POInit always uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
a bunch of PO files) or for tests.

Target nodes defined through POInit are not built by default (they're Ignored from '.' node) but are added to
special Alias ('po-create' by default). The alias name may be changed through the $POCREATE_ALIAS
construction variable. All PO files defined through POInit may be easily initialized by scons po-create.

Example 1. Initialize en.po and pl.po from messages.pot:

 # ...
 env.POInit(['en', 'pl']) # messages.pot --> [en.po, pl.po]

Example 2. Initialize en.po and pl.po from foo.pot:

 # ...

54

 env.POInit(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initialize en.po and pl.po from foo.pot but using $POTDOMAIN construction variable:

 # ...
 env.POInit(['en', 'pl'], POTDOMAIN='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize PO files for languages defined in LINGUAS file. The files will be initialized from template
messages.pot:

 # ...
 env.POInit(LINGUAS_FILE = 1) # needs 'LINGUAS' file

Example 5. Initialize en.po and pl.pl PO files plus files for languages defined in LINGUAS file. The files will
be initialized from template messages.pot:

 # ...
 env.POInit(['en', 'pl'], LINGUAS_FILE = 1)

Example 6. You may preconfigure your environment first, and then initialize PO files:

 # ...
 env['POAUTOINIT'] = 1
 env['LINGUAS_FILE'] = 1
 env['POTDOMAIN'] = 'foo'
 env.POInit()

which has same efect as:

 # ...
 env.POInit(POAUTOINIT = 1, LINGUAS_FILE = 1, POTDOMAIN = 'foo')

PostScript()
env.PostScript()

Builds a .ps file from a .dvi input file (or, by extension, a .tex, .ltx, or .latex input file). The suffix
specified by the $PSSUFFIX construction variable (.ps by default) is added automatically to the target if it is
not already present. Example:

builds from aaa.tex
env.PostScript(target = 'aaa.ps', source = 'aaa.tex')
builds bbb.ps from bbb.dvi
env.PostScript(target = 'bbb', source = 'bbb.dvi')

POTUpdate()
env.POTUpdate()

The builder belongs to xgettext tool. The builder updates target POT file if exists or creates one if it doesn't.
The node is not built by default (i.e. it is Ignored from '.'), but only on demand (i.e. when given POT file is
required or when special alias is invoked). This builder adds its targe node (messages.pot, say) to a special
alias (pot-update by default, see $POTUPDATE_ALIAS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

55

Note

You may see xgettext(1) being invoked by the xgettext tool even if there is no real change in
internationalized messages (so the POT file is not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConstruct script there:

 # SConstruct in 'po/' subdir
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
 env.POTUpdate(['bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

 user@host:$ scons # Does not create foo.pot nor bar.pot
 user@host:$ scons foo.pot # Updates or creates foo.pot
 user@host:$ scons pot-update # Updates or creates foo.pot and bar.pot
 user@host:$ scons -c # Does not clean foo.pot nor bar.pot.

the results shall be as the comments above say.

Example 2. The POTUpdate builder may be used with no target specified, in which case default target
messages.pot will be used. The default target may also be overridden by setting $POTDOMAIN construction
variable or providing it as an override to POTUpdate builder:

 # SConstruct script
 env = Environment(tools = ['default', 'xgettext'])
 env['POTDOMAIN'] = "foo"
 env.POTUpdate(source = ["a.cpp", "b.cpp"]) # Creates foo.pot ...
 env.POTUpdate(POTDOMAIN = "bar", source = ["c.cpp", "d.cpp"]) # and bar.pot

Example 3. The sources may be specified within separate file, for example POTFILES.in:

 # POTFILES.in in 'po/' subdirectory
 ../a.cpp
 ../b.cpp
 # end of file

The name of the file (POTFILES.in) containing the list of sources is provided via $XGETTEXTFROM:

 # SConstruct file in 'po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in')

Example 4. You may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
files a.cpp, b.cpp, po/SConstruct, po/POTFILES.in. Then your POT-related files could look as below:

 # POTFILES.in in 'po/' subdirectory
 a.cpp

56

 b.cpp
 # end of file

 # SConstruct file in 'po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH='../')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dir1',
'dir2', ...]. The order in the list determines the search order of source files. The path to the first file found
is used.

Let's create 0/1/po/SConstruct script:

 # SConstruct file in '0/1/po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH=['../', '../../'])

and 0/1/po/POTFILES.in:

 # POTFILES.in in '0/1/po/' subdirectory
 a.cpp
 # end of file

Write two *.cpp files, the first one is 0/a.cpp:

 /* 0/a.cpp */
 gettext("Hello from ../../a.cpp")

and the second is 0/1/a.cpp:

 /* 0/1/a.cpp */
 gettext("Hello from ../a.cpp")

then run scons. You'll obtain 0/1/po/messages.pot with the message "Hello from ../a.cpp". When
you reverse order in $XGETTEXTFOM, i.e. when you write SConscript as

 # SConstruct file in '0/1/po/' subdirectory
 env = Environment(tools = ['default', 'xgettext'])
 env.POTUpdate(XGETTEXTFROM = 'POTFILES.in', XGETTEXTPATH=['../../', '../'])

then the messages.pot will contain msgid "Hello from ../../a.cpp" line and not msgid "Hello
from ../a.cpp".

POUpdate()
env.POUpdate()

The builder belongs to msgmerge tool. The builder updates PO files with msgmerge(1), or initializes missing
PO files as described in documentation of msginit tool and POInit builder (see also $POAUTOINIT). Note,
that POUpdate does not add its targets to po-create alias as POInit does.

Target nodes defined through POUpdate are not built by default (they're Ignored from '.' node). Instead,
they are added automatically to special Alias ('po-update' by default). The alias name may be changed

57

through the $POUPDATE_ALIAS construction variable. You can easily update PO files in your project by scons
po-update.

Example 1. Update en.po and pl.po from messages.pot template (see also $POTDOMAIN), assuming that
the later one exists or there is rule to build it (see POTUpdate):

 # ...
 env.POUpdate(['en','pl']) # messages.pot --> [en.po, pl.po]

Example 2. Update en.po and pl.po from foo.pot template:

 # ...
 env.POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Update en.po and pl.po from foo.pot (another version):

 # ...
 env.POUpdate(['en', 'pl'], POTDOMAIN='foo') # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LINGUAS file. The files are updated from messages.pot
template:

 # ...
 env.POUpdate(LINGUAS_FILE = 1) # needs 'LINGUAS' file

Example 5. Same as above, but update from foo.pot template:

 # ...
 env.POUpdate(LINGUAS_FILE = 1, source = ['foo'])

Example 6. Update en.po and pl.po plus files for languages defined in LINGUAS file. The files are updated
from messages.pot template:

 # produce 'en.po', 'pl.po' + files defined in 'LINGUAS':
 env.POUpdate(['en', 'pl'], LINGUAS_FILE = 1)

Example 7. Use $POAUTOINIT to automatically initialize PO file if it doesn't exist:

 # ...
 env.POUpdate(LINGUAS_FILE = 1, POAUTOINIT = 1)

Example 8. Update PO files for languages defined in LINGUAS file. The files are updated from foo.pot
template. All necessary settings are pre-configured via environment.

 # ...
 env['POAUTOINIT'] = 1
 env['LINGUAS_FILE'] = 1
 env['POTDOMAIN'] = 'foo'
 env.POUpdate()

58

Program()
env.Program()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Object
builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $PROGPREFIX construction variable (nothing
by default), and suffix, specified by the $PROGSUFFIX construction variable (by default, .exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env.Program(target='foo', source=['foo.o', 'bar.c', 'baz.f'])

ProgramAllAtOnce()
env.ProgramAllAtOnce()

Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the
testing frameworks do this). For this it is imperative that all sources are compiled and linked in a single call to
the D compiler. This builder serves that purpose.

 env.ProgramAllAtOnce('executable', ['mod_a.d, mod_b.d', 'mod_c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in a single compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()
env.RES()

Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The .res (or .o for MinGW) suffix is added to the target name if no
other suffix is given. The source file is scanned for implicit dependencies as though it were a C file. Example:

env.RES('resource.rc')

RMIC()
env.RMIC()

Builds stub and skeleton class files for remote objects from Java .class files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of .class files, or the
objects return from the Java builder method.

If the construction variable $JAVACLASSDIR is set, either in the environment or in the call to the RMIC builder
method itself, then the value of the variable will be stripped from the beginning of any .class file names.

classes = env.Java(target = 'classdir', source = 'src')
env.RMIC(target = 'outdir1', source = classes)

env.RMIC(target = 'outdir2',
 source = ['package/foo.class', 'package/bar.class'])

env.RMIC(target = 'outdir3',
 source = ['classes/foo.class', 'classes/bar.class'],
 JAVACLASSDIR = 'classes')

59

RPCGenClient()
env.RPCGenClient()

Generates an RPC client stub (_clnt.c) file from a specified RPC (.x) source file. Because rpcgen only builds
output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env.RPCGenClient('src/rpcif.x')

RPCGenHeader()
env.RPCGenHeader()

Generates an RPC header (.h) file from a specified RPC (.x) source file. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env.RPCGenHeader('src/rpcif.x')

RPCGenService()
env.RPCGenService()

Generates an RPC server-skeleton (_svc.c) file from a specified RPC (.x) source file. Because rpcgen only
builds output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env.RPCGenClient('src/rpcif.x')

RPCGenXDR()
env.RPCGenXDR()

Generates an RPC XDR routine (_xdr.c) file from a specified RPC (.x) source file. Because rpcgen only builds
output files in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env.RPCGenClient('src/rpcif.x')

SharedLibrary()
env.SharedLibrary()

Builds a shared library (.so on a POSIX system, .dll on Windows) given one or more object files or C, C++,
D or Fortran source files. If any source files are given, then they will be automatically compiled to object files.
The target library file prefix, specified by the $SHLIBPREFIX construction variable (by default, lib on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLIBSUFFIX construction variable (by
default, .dll on Windows systems, .so on POSIX systems), are automatically added to the target if not already
present. Example:

env.SharedLibrary(target='bar', source=['bar.c', 'foo.o'])

On Windows systems, the SharedLibrary builder method will always build an import library (.lib) in
addition to the shared library (.dll), adding a .lib library with the same basename if there is not already a
.lib file explicitly listed in the targets.

On Cygwin systems, the SharedLibrary builder method will always build an import library (.dll.a) in
addition to the shared library (.dll), adding a .dll.a library with the same basename if there is not already
a .dll.a file explicitly listed in the targets.

60

Any object files listed in the source must have been built for a shared library (that is, using the SharedObject
builder method). scons will raise an error if there is any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
LoadableModule builder for the latter.

When the $SHLIBVERSION construction variable is defined, a versioned shared library is created. This modifies
$SHLINKFLAGS as required, adds the version number to the library name, and creates any symbolic links that
are needed.

env.SharedLibrary(target='bar', source=['bar.c', 'foo.o'], SHLIBVERSION='1.5.2')

On a POSIX system, versions with a single token create exactly one symlink: libbar.so.6 would have
symlink libbar.so only. On a POSIX system, versions with two or more tokens create exactly two symlinks:
libbar.so.2.3.1 would have symlinks libbar.so and libbar.so.2; on a Darwin (OSX) system the
library would be libbar.2.3.1.dylib and the link would be libbar.dylib.

On Windows systems, specifying register=1 will cause the .dll to be registered after it is built. The
command that is run is determined by the $REGSVR construction variable (regsvr32 by default), and the flags
passed are determined by $REGSVRFLAGS. By default, $REGSVRFLAGS includes the /s option, to prevent
dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS, be sure to
include the /s option. For example,

env.SharedLibrary(target='bar', source=['bar.cxx', 'foo.obj'], register=1)

will register bar.dll as a COM object when it is done linking it.

SharedObject()
env.SharedObject()

Builds an object file intended for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the StaticObject builder method. On some platforms building a shared object
requires additional compiler option (e.g. -fPIC for gcc) in addition to those needed to build a normal (static)
object, but on some platforms there is no difference between a shared object and a normal (static) one. When there
is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different
suffix for shared objects. On platforms where there is no difference, SCons will allow both normal (static) and
shared objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix, specified by the $SHOBJPREFIX construction variable (by default, the same as
$OBJPREFIX), and suffix, specified by the $SHOBJSUFFIX construction variable, are automatically added to
the target if not already present. Examples:

env.SharedObject(target='ddd', source='ddd.c')
env.SharedObject(target='eee.o', source='eee.cpp')
env.SharedObject(target='fff.obj', source='fff.for')

Note that the source files will be scanned according to the suffix mappings in the SourceFileScanner object.
See the manpage section "Scanner Objects" for more information.

StaticLibrary()
env.StaticLibrary()

Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $LIBPREFIX construction variable (by default, lib on POSIX systems, nothing on Windows systems),

61

and suffix, specified by the $LIBSUFFIX construction variable (by default, .lib on Windows systems, .a on
POSIX systems), are automatically added to the target if not already present. Example:

env.StaticLibrary(target='bar', source=['bar.c', 'foo.o'])

Any object files listed in the source must have been built for a static library (that is, using the StaticObject
builder method). scons will raise an error if there is any mismatch.

StaticObject()
env.StaticObject()

Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

 .asm assembly language file
 .ASM assembly language file
 .c C file
 .C Windows: C file
 POSIX: C++ file
 .cc C++ file
 .cpp C++ file
 .cxx C++ file
 .cxx C++ file
 .c++ C++ file
 .C++ C++ file
 .d D file
 .f Fortran file
 .F Windows: Fortran file
 POSIX: Fortran file + C pre-processor
 .for Fortran file
 .FOR Fortran file
 .fpp Fortran file + C pre-processor
 .FPP Fortran file + C pre-processor
 .m Object C file
 .mm Object C++ file
 .s assembly language file
 .S Windows: assembly language file
 ARM: CodeSourcery Sourcery Lite
 .sx assembly language file + C pre-processor
 POSIX: assembly language file + C pre-processor
 .spp assembly language file + C pre-processor
 .SPP assembly language file + C pre-processor

The target object file prefix, specified by the $OBJPREFIX construction variable (nothing by default), and suffix,
specified by the $OBJSUFFIX construction variable (.obj on Windows systems, .o on POSIX systems), are
automatically added to the target if not already present. Examples:

env.StaticObject(target='aaa', source='aaa.c')
env.StaticObject(target='bbb.o', source='bbb.c++')
env.StaticObject(target='ccc.obj', source='ccc.f')

Note that the source files will be scanned according to the suffix mappings in the SourceFileScanner object.
See the manpage section "Scanner Objects" for more information.

62

Substfile()
env.Substfile()

The Substfile builder creates a single text file from a template consisting of a file or set of files (or nodes),
replacing text using the $SUBST_DICT construction variable (if set). If a set, they are concatenated into the target
file using the value of the $LINESEPARATOR construction variable as a separator between contents; the separator
is not emitted after the contents of the last file. Nested lists of source files are flattened. See also Textfile.

If a single source file name is specified and has a .in suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFILEPREFIX and $SUBSTFILESUFFIX construction variables
(an empty string by default in both cases) are automatically added to the target if they are not already present.

If a construction variable named $SUBST_DICT is present, it may be either a Python dictionary or a sequence of
(key, value) tuples. If it is a dictionary it is converted into a list of tuples with unspecified order, so if one key is
a prefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of a key in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment(tools=['default'])

env['prefix'] = '/usr/bin'
script_dict = {'@prefix@': '/bin', '@exec_prefix@': '$prefix'}
env.Substfile('script.in', SUBST_DICT=script_dict)

conf_dict = {'%VERSION%': '1.2.3', '%BASE%': 'MyProg'}
env.Substfile('config.h.in', conf_dict, SUBST_DICT=conf_dict)

UNPREDICTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env.Substfile('foo.in', SUBST_DICT=bad_foo)

PREDICTABLE - keys are applied longest first
good_foo = [('$foobar', '$foobar'), ('$foo', '$foo')]
env.Substfile('foo.in', SUBST_DICT=good_foo)

UNPREDICTABLE - one substitution could be futher expanded
bad_bar = {'@bar@': '@soap@', '@soap@': 'lye'}
env.Substfile('bar.in', SUBST_DICT=bad_bar)

PREDICTABLE - substitutions are expanded in order
good_bar = (('@bar@', '@soap@'), ('@soap@', 'lye'))
env.Substfile('bar.in', SUBST_DICT=good_bar)

the SUBST_DICT may be in common (and not an override)
substutions = {}
subst = Environment(tools=['textfile'], SUBST_DICT=substitutions)
substitutions['@foo@'] = 'foo'
subst['SUBST_DICT']['@bar@'] = 'bar'
subst.Substfile(
 'pgm1.c',

63

 [Value('#include "@foo@.h"'), Value('#include "@bar@.h"'), "common.in", "pgm1.in"],
)
subst.Substfile(
 'pgm2.c',
 [Value('#include "@foo@.h"'), Value('#include "@bar@.h"'), "common.in", "pgm2.in"],
)

Tar()
env.Tar()

Builds a tar archive of the specified files and/or directories. Unlike most builder methods, the Tar builder method
may be called multiple times for a given target; each additional call adds to the list of entries that will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env.Tar('src.tar', 'src')

Create the stuff.tar file.
env.Tar('stuff', ['subdir1', 'subdir2'])
Also add "another" to the stuff.tar file.
env.Tar('stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment(TARFLAGS = '-c -z')
env.Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.
env = Environment(TARFLAGS = '-c -z',
 TARSUFFIX = '.tgz')
env.Tar('foo')

Textfile()
env.Textfile()

The Textfile builder generates a single text file from a template consisting of a list of strings, replacing text
using the $SUBST_DICT construction variable (if set) - see Substfile for a description of replacement. The
strings will be separated in the target file using the value of the $LINESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings: they can be Nodes or Python objects that convert cleanly to Value nodes

The prefix and suffix specified by the $TEXTFILEPREFIX and $TEXTFILESUFFIX construction variables
(by default an empty string and .txt, respectively) are automatically added to the target if they are not already
present. Examples:

builds/writes foo.txt
env.Textfile(target='foo.txt', source=['Goethe', 42, 'Schiller'])

builds/writes bar.txt
env.Textfile(target='bar', source=['lalala', 'tanteratei'], LINESEPARATOR='|*')

nested lists are flattened automatically
env.Textfile(target='blob', source=['lalala', ['Goethe', 42, 'Schiller'], 'tanteratei'])

files may be used as input by wraping them in File()

64

env.Textfile(
 target='concat', # concatenate files with a marker between
 source=[File('concat1'), File('concat2')],
 LINESEPARATOR='====================\n',
)

Results:

foo.txt

 Goethe
 42
 Schiller

bar.txt

 lalala|*tanteratei

blob.txt

 lalala
 Goethe
 42
 Schiller
 tanteratei

Translate()
env.Translate()

This pseudo-builder belongs to gettext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO translations (if necessary). If $POAUTOINIT
is set, missing PO files will be automatically created (i.e. without translator person intervention). The variables
$LINGUAS_FILE and $POTDOMAIN are taken into acount too. All other construction variables used by
POTUpdate, and POUpdate work here too.

Example 1. The simplest way is to specify input files and output languages inline in a SCons script when invoking
Translate

SConscript in 'po/' directory
env = Environment(tools = ["default", "gettext"])
env['POAUTOINIT'] = 1
env.Translate(['en','pl'], ['../a.cpp','../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFILES.in
and LINGUAS files

LINGUAS
en pl
#end

POTFILES.in

65

a.cpp
b.cpp
end

SConscript
env = Environment(tools = ["default", "gettext"])
env['POAUTOINIT'] = 1
env['XGETTEXTPATH'] = ['../']
env.Translate(LINGUAS_FILE = 1, XGETTEXTFROM = 'POTFILES.in')

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to PO files) and
script(s) under variant directories are responsible for compilation of PO to MO files to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LINGUAS file. Note, that the
updated POT and PO files are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the file listing of po/ directory contains
LINGUAS file, so the source tree looks familiar to translators, and they may work with the project in their usual
way.

Example 3. Let's prepare a development tree as below

 project/
 + SConstruct
 + build/
 + src/
 + po/
 + SConscript
 + SConscript.i18n
 + POTFILES.in
 + LINGUAS

with build being variant directory. Write the top-level SConstruct script as follows

 # SConstruct
 env = Environment(tools = ["default", "gettext"])
 VariantDir('build', 'src', duplicate = 0)
 env['POAUTOINIT'] = 1
 SConscript('src/po/SConscript.i18n', exports = 'env')
 SConscript('build/po/SConscript', exports = 'env')

the src/po/SConscript.i18n as

 # src/po/SConscript.i18n
 Import('env')
 env.Translate(LINGUAS_FILE=1, XGETTEXTFROM='POTFILES.in', XGETTEXTPATH=['../'])

and the src/po/SConscript

 # src/po/SConscript
 Import('env')
 env.MOFiles(LINGUAS_FILE = 1)

66

Such setup produces POT and PO files under source tree in src/po/ and binary MO files under variant tree in
build/po/. This way the POT and PO files are separated from other output files, which must not be committed
back to source repositories (e.g. MO files).

Note

In above example, the PO files are not updated, nor created automatically when you issue scons '.'
command. The files must be updated (created) by hand via scons po-update and then MO files can be
compiled by running scons '.'.

TypeLibrary()
env.TypeLibrary()

Builds a Windows type library (.tlb) file from an input IDL file (.idl). In addition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the .idl file. For example,

env.TypeLibrary(source="foo.idl")

Will create foo.tlb, foo.h, foo_i.c, foo_p.c and foo_data.c files.

Uic()
env.Uic()

Builds a header file, an implementation file and a moc file from an ui file. and returns the corresponding nodes in
the above order. This builder is only available after using the tool 'qt'. Note: you can specify .ui files directly as
source files to the Program, Library and SharedLibrary builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are always prepended to names
of built files; if you don't want prefixes, you may set them to ``). See the $QTDIR variable for more information.
Example:

env.Uic('foo.ui') # -> ['foo.h', 'uic_foo.cc', 'moc_foo.cc']
env.Uic(target = Split('include/foo.h gen/uicfoo.cc gen/mocfoo.cc'),
 source = 'foo.ui') # -> ['include/foo.h', 'gen/uicfoo.cc', 'gen/mocfoo.cc']

Zip()
env.Zip()

Builds a zip archive of the specified files and/or directories. Unlike most builder methods, the Zip builder method
may be called multiple times for a given target; each additional call adds to the list of entries that will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env.Zip('src.zip', 'src')

Create the stuff.zip file.
env.Zip('stuff', ['subdir1', 'subdir2'])
Also add "another" to the stuff.tar file.
env.Zip('stuff', 'another')

All targets of builder methods automatically depend on their sources. An explicit dependency can be specified using
the env.Depends method of a construction environment (see below).

In addition, scons automatically scans source files for various programming languages, so the dependencies do not
need to be specified explicitly. By default, SCons can C source files, C++ source files, Fortran source files with .F
(POSIX systems only), .fpp, or .FPP file extensions, and assembly language files with .S (POSIX systems only),
.spp, or .SPP files extensions for C preprocessor dependencies. SCons also has default support for scanning D

67

source files, You can also write your own Scanners to add support for additional source file types. These can be added
to the default Scanner object used by the Object, StaticObject and SharedObject Builders by adding them
to the SourceFileScanner object. See the section called “Scanner Objects” for more information about defining
your own Scanner objects and using the SourceFileScanner object.

Methods and Functions To Do Things

In addition to Builder methods, scons provides a number of other construction environment methods and global
functions to manipulate the build configuration.

Usually, a construction environment method and global function with the same name both exist for convenience. In
the following list, the global function is documented in this style:

Function(arguments, [optional arguments])

and the construction environment method looks like:

env.Function(arguments, [optional arguments])

If the function can be called both ways, then both forms are listed.

The global function and same-named construction environment method provide almost identical functionality, with a
couple of exceptions. First, many of the construction environment methods affect only that construction environment,
while the global function has a global effect. Second, where appropriate, calling the functionality through a construction
environment will substitute construction variables into any supplied string arguments, while the global function doesn't
have the context of a construction environment to pick variables from, so it cannot perform the substitution. For
example:

Default('$FOO')

env = Environment(FOO='foo')
env.Default('$FOO')

In the above example, the call to the global Default function will add a target named $FOO to the list of default
targets, while the call to the env.Default construction environment method will expand the value and add a
target named foo to the list of default targets. For more on construction variable expansion, see the next section on
construction variables.

Global functions may be called from custom Python modules that you import into an SConscript file by adding the
following import to the Python module:

from SCons.Script import *

Construction environment methods and global functions provided by scons include:

Action(action, [output, [var, ...]] [key=value, ...])
env.Action(action, [output, [var, ...]] [key=value, ...])

A factory function to create an Action object for the specified action. See the manpage section "Action Objects"
for a complete explanation of the arguments and behavior.

Note that the env.Action form of the invocation will expand construction variables in any argument strings,
including the action argument, at the time it is called using the construction variables in the env construction

68

environment through which env.Action was called. The Action global function form delays all variable
expansion until the Action object is actually used.

AddMethod(object, function, [name])
env.AddMethod(function, [name])

Adds function to an object as a method. function will be called with an instance object as the first argument
as for other methods. If name is given, it is used as the name of the new method, else the name of function
is used.

When the global function AddMethod is called, the object to add the method to must be passed as the first
argument; typically this will be Environment, in order to create a method which applies to all construction
environments subsequently constructed. When called using the env.AddMethod form, the method is added to
the specified construction environment only. Added methods propagate through env.Clone calls.

Examples:

Function to add must accept an instance argument.
The Python convention is to call this 'self'.
def my_method(self, arg):
 print("my_method() got", arg)

Use the global function to add a method to the Environment class:
AddMethod(Environment, my_method)
env = Environment()
env.my_method('arg')

Use the optional name argument to set the name of the method:
env.AddMethod(my_method, 'other_method_name')
env.other_method_name('another arg')

AddOption(arguments)
Adds a local (project-specific) command-line option. arguments are the same as those supported by the
add_option method in the standard Python library module optparse, with a few additional capabilities noted
below. See the documentation for optparse for a thorough discussion of its option-processing capabities.

In addition to the arguments and values supported by the optparse add_option method, AddOption allows
setting the nargs keyword value to a string consisting of a question mark ('?') to indicate that the option
argument for that option string is optional. If the option string is present on the command line but has no matching
option argument, the value of the const keyword argument is produced as the value of the option. If the option
string is omitted from the command line, the value of the default keyword argument is produced, as usual; if
there is no default keyword argument in the AddOption call, None is produced.

optparse recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_option is called to define a --devicename option, it will recognize --device, --dev
and so forth as long as there is no other option which could also match to the same abbreviation. Options added via
AddOption do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOption call itself.

Once a new command-line option has been added with AddOption, the option value may be accessed
using GetOption or env.GetOption. SetOption is not currently supported for options added with
AddOption.

Help text for an option is a combination of the string supplied in the help keyword argument to AddOption and
information collected from the other keyword arguments. Such help is displayed if the -h command line option

69

is used (but not with -H). Help for all local options is displayed under the separate heading Local Options. The
options are unsorted - they will appear in the help text in the order in which the AddOption calls occur.

Example:

AddOption(
 '--prefix',
 dest='prefix',
 nargs=1,
 type='string',
 action='store',
 metavar='DIR',
 help='installation prefix',
)
env = Environment(PREFIX=GetOption('prefix'))

For that example, the following help text would be produced:

Local Options:
 --prefix=DIR installation prefix

Help text for local options may be unavailable if the Help function has been called, see the Help documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOption which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nargs keyword is used to specify
more than one following option argument (that is, with a value of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOption this
way. Future versions of SCons will likely forbid such usage.

AddPostAction(target, action)
env.AddPostAction(target, action)

Arranges for the specified action to be performed after the specified target has been built. The specified
action(s) may be an Action object, or anything that can be converted into an Action object See the manpage section
"Action Objects" for a complete explanation.

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targets in the list.

AddPreAction(target, action)
env.AddPreAction(target, action)

Arranges for the specified action to be performed before the specified target is built. The specified action(s)
may be an Action object, or anything that can be converted into an Action object See the manpage section "Action
Objects" for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targets in the list.

Note that if any of the targets are built in multiple steps, the action will be invoked just before the "final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source .c file via an intermediate object file:

70

foo = Program('foo.c')
AddPreAction(foo, 'pre_action')

The specified pre_action would be executed before scons calls the link command that actually generates the
executable program binary foo, not before compiling the foo.c file into an object file.

Alias(alias, [targets, [action]])
env.Alias(alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional action (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. This Node object, or the alias name,
may be used as a dependency of any other target, including another alias. Alias can be called multiple times for
the same alias to add additional targets to the alias, or additional actions to the list for this alias. Aliases are global
even if set through the construction environment method.

Examples:

Alias('install')
Alias('install', '/usr/bin')
Alias(['install', 'install-lib'], '/usr/local/lib')

env.Alias('install', ['/usr/local/bin', '/usr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env.Alias('update', ['file1', 'file2'], "update_database $SOURCES")

AllowSubstExceptions([exception, ...])
Specifies the exceptions that will be allowed when expanding construction variables. By default, any construction
variable expansions that generate a NameError or IndexError exception will expand to a '' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.

If AllowSubstExceptions is called multiple times, each call completely overwrites the previous list of
allowed exceptions.

Example:

Requires that all construction variable names exist.
(You may wish to do this if you want to enforce strictly
that all construction variables must be defined before use.)
AllowSubstExceptions()

Also allow a string containing a zero-division expansion
like '${1 / 0}' to evalute to ''.
AllowSubstExceptions(IndexError, NameError, ZeroDivisionError)

AlwaysBuild(target, ...)
env.AlwaysBuild(target, ...)

Marks each given target so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that AlwaysBuild does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of a target specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to a single call to AlwaysBuild.

71

env.Append(key=val, [...])
Intelligently append values to construction variables in the construction environment named by env. The
construction variables and values to add to them are passed as key=val pairs (Python keyword arguments).
env.Append is designed to allow adding values without normally having to know the data type of an existing
construction variable. Regular Python syntax can also be used to manipulate the construction variable, but for that
you must know the type of the construction variable: for example, different Python syntax is needed to combine
a list of values with a single string value, or vice versa. Some pre-defined construction variables do have type
expectations based on how SCons will use them, for example $CPPDEFINES is normally a string or a list of
strings, but can be a string, a list of strings, a list of tuples, or a dictionary, while $LIBEMITTER would expect
a callable or list of callables, and $BUILDERS would expect a mapping type. Consult the documentation for the
various construction variables for more details.

The following descriptions apply to both the append and prepend functions, the only difference being the insertion
point of the added values.

If env. does not have a construction variable indicated by key, val is added to the environment under that key
as-is.

val can be almost any type, and SCons will combine it with an existing value into an appropriate type, but
there are a few special cases to be aware of. When two strings are combined, the result is normally a new string,
with the caller responsible for supplying any needed separation. The exception to this is the construction variable
$CPPDEFINES, in which each item will be postprocessed by adding a prefix and/or suffix, so the contents are
treated as a list of strings, that is, adding a string will result in a separate string entry, not a combined string. For
$CPPDEFINES as well as for $LIBS, and the various *PATH variables, SCons will supply the compiler-specific
syntax (e.g. adding a -D or /D prefix for $CPPDEFINES), so this syntax should be omitted when adding values
to these variables. Example (gcc syntax shown in the expansion of CPPDEFINES):

env = Environment(CXXFLAGS="-std=c11", CPPDEFINES="RELEASE")
print("CXXFLAGS={}, CPPDEFINES={}".format(env['CXXFLAGS'], env['CPPDEFINES']))
notice including a leading space in CXXFLAGS value
env.Append(CXXFLAGS=" -O", CPPDEFINES="EXTRA")
print("CXXFLAGS={}, CPPDEFINES={}".format(env['CXXFLAGS'], env['CPPDEFINES']))
print("CPPDEFINES will expand to {}".format(env.subst("$_CPPDEFFLAGS")))

$ scons -Q
CXXFLAGS=-std=c11, CPPDEFINES=RELEASE
CXXFLAGS=-std=c11 -O, CPPDEFINES=['RELEASE', 'EXTRA']
CPPDEFINES will expand to -DRELEASE -DEXTRA
scons: `.' is up to date.

Because $CPPDEFINES is intended to describe C/C++ pre-processor macro definitions, it accepts additional
syntax. Preprocessor macros can be valued, or un-valued, as in -DBAR=1 or -DFOO. The macro can be be supplied
as a complete string including the value, or as a tuple (or list) of macro, value, or as a dictionary. Example (again
gcc syntax in the expanded defines):

env = Environment(CPPDEFINES="FOO")
print("CPPDEFINES={}".format(env['CPPDEFINES']))
env.Append(CPPDEFINES="BAR=1")
print("CPPDEFINES={}".format(env['CPPDEFINES']))
env.Append(CPPDEFINES=("OTHER", 2))
print("CPPDEFINES={}".format(env['CPPDEFINES']))
env.Append(CPPDEFINES={"EXTRA": "arg"})

72

print("CPPDEFINES={}".format(env['CPPDEFINES']))
print("CPPDEFINES will expand to {}".format(env.subst("$_CPPDEFFLAGS")))

$ scons -Q
CPPDEFINES=FOO
CPPDEFINES=['FOO', 'BAR=1']
CPPDEFINES=['FOO', 'BAR=1', ('OTHER', 2)]
CPPDEFINES=['FOO', 'BAR=1', ('OTHER', 2), {'EXTRA': 'arg'}]
CPPDEFINES will expand to -DFOO -DBAR=1 -DOTHER=2 -DEXTRA=arg
scons: `.' is up to date.

Adding a string val to a dictonary construction variable will enter val as the key in the dict, and None as its
value. Using a tuple type to supply a key + value only works for the special case of $CPPDEFINES described
above.

Although most combinations of types work without needing to know the details, some combinations do not make
sense and a Python exception will be raised.

When using env.Append to modify construction variables which are path specifications (normally, those names
which end in PATH), it is recommended to add the values as a list of strings, even if there is only a single string
to add. The same goes for adding library names to $LIBS.

env.Append(CPPPATH=["#/include"])

See also env.AppendUnique, env.Prepend and env.PrependUnique.

env.AppendENVPath(name, newpath, [envname, sep, delete_existing=False])
Append new path elements to the given path in the specified external environment ($ENV by default). This will
only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path order),
and to help assure this, will normalize all paths (using os.path.normpath and os.path.normcase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If delete_existing is False, then adding a path that already exists will not move it to the end; it will stay
where it is in the list.

Example:

print('before:', env['ENV']['INCLUDE'])
include_path = '/foo/bar:/foo'
env.AppendENVPath('INCLUDE', include_path)
print('after:', env['ENV']['INCLUDE'])

Yields:

before: /foo:/biz
after: /biz:/foo/bar:/foo

env.AppendUnique(key=val, [...], delete_existing=False)
Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env.Append (see for details), except that values already present in the construction variable will not be
added again. If delete_existing is True, the existing matching value is first removed, and the requested
value is added, having the effect of moving such values to the end.

73

Example:

env.AppendUnique(CCFLAGS='-g', FOO=['foo.yyy'])

See also env.Append, env.Prepend and env.PrependUnique.

Builder(action, [arguments])
env.Builder(action, [arguments])

Creates a Builder object for the specified action. See the manpage section "Builder Objects" for a complete
explanation of the arguments and behavior.

Note that the env.Builder() form of the invocation will expand construction variables in any arguments strings,
including the action argument, at the time it is called using the construction variables in the env construction
environment through which env.Builder was called. The Builder form delays all variable expansion until
after the Builder object is actually called.

CacheDir(cache_dir, custom_class=None)
env.CacheDir(cache_dir, custom_class=None)

Direct scons to maintain a derived-file cache in cache_dir. The derived files in the cache will be shared among
all the builds specifying the same cache_dir. Specifying a cache_dir of None disables derived file caching.

When specifying a custom_class which should be a class type which is a subclass of
SCons.CacheDir.CacheDir, SCons will internally invoke this class to use for performing
caching operations. This argument is optional and if left to default None, will use the default
SCons.CacheDir.CacheDir class.

Calling the environment method env.CacheDir limits the effect to targets built through the specified
construction environment. Calling the global function CacheDir sets a global default that will be used by
all targets built through construction environments that do not set up environment-specific caching by calling
env.CacheDir.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if a file with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved `file' from cache instead of the normal build message. If the derived file is not present in
the cache, scons will build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

The Retrieved `file' from cache messages are useful for human consumption, but less so when
comparing log files between scons runs which will show differences that are noisy and not actually significant.
To disable, use the --cache-show option. With this option, scons will print the action that would have been
used to build the file without considering cache retrieval.

Derived-file caching may be disabled for any invocation of scons by giving the --cache-disable command
line option. Cache updating may be disabled, leaving cache fetching enabled, by giving the --cache-
readonly.

If the --cache-force option is used, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by this invocation. This is useful to populate a cache the first time a cache_dir
is used for a build, or to bring a cache up to date after a build with cache updating disabled (--cache-disable
or --cache-readonly) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of some tool are impossible to predict or prohibitively large.

74

Clean(targets, files_or_dirs)
env.Clean(targets, files_or_dirs)

This specifies a list of files or directories which should be removed whenever the targets are specified with the -
c command line option. The specified targets may be a list or an individual target. Multiple calls to Clean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Clean method, or as a list.
Clean will also accept the return value of any of the construction environment Builder methods. Examples:

The related NoClean function overrides calling Clean for the same target, and any targets passed to both
functions will not be removed by the -c option.

Examples:

Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', 'hello.c'))
Clean(['foo', 'bar'], 'something_else_to_clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Clean(docdir, os.path.join(docdir, projectname))

env.Clone([key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:

env2 = env.Clone()
env3 = env.Clone(CCFLAGS='-g')

Additionally, a list of tools and a toolpath may be specified, as in the Environment constructor:

def MyTool(env):
 env['FOO'] = 'bar'

env4 = env.Clone(tools=['msvc', MyTool])

The parse_flags keyword argument is also recognized to allow merging command-line style arguments into
the appropriate construction variables (see env.MergeFlags).

create an environment for compiling programs that use wxWidgets
wx_env = env.Clone(parse_flags='!wx-config --cflags --cxxflags')

Command(target, source, action, [key=val, ...])
env.Command(target, source, action, [key=val, ...])

Executes a specific action (or list of actions) to build a target file or files from a source file or files. This
is more convenient than defining a separate Builder object for a single special-case build.

The Command function accepts source_scanner, target_scanner, source_factory, and
target_factory keyword arguments. These arguments can be used to specify a Scanner object that will be

75

used to apply a custom scanner for a source or target. For example, the global DirScanner object can be used if
any of the sources will be directories that must be scanned on-disk for changes to files that aren't already specified
in other Builder of function calls. The *_factory arguments take a factory function that Command will use to
turn any sources or targets specified as strings into SCons Nodes. See the manpage section "Builder Objects" for
more information about how these arguments work in a Builder.

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified as a string, or a callable Python object; see the manpage section
"Action Objects" for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@) to suppress printing the command in question, or by a hyphen (-) to ignore the exit
status of the external command.

Examples:

env.Command(
 target='foo.out',
 source='foo.in',
 action="$FOO_BUILD < $SOURCES > $TARGET"
)

env.Command(
 target='bar.out',
 source='bar.in',
 action=["rm -f $TARGET", "$BAR_BUILD < $SOURCES > $TARGET"],
 ENV={'PATH': '/usr/local/bin/'},
)

import os
def rename(env, target, source):
 os.rename('.tmp', str(target[0]))

env.Command(
 target='baz.out',
 source='baz.in',
 action=["$BAZ_BUILD < $SOURCES > .tmp", rename],
)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entries they are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Dir or env.Dir functions.

Examples:

env.Command('ddd.list', Dir('ddd'), 'ls -l $SOURCE > $TARGET')

env['DISTDIR'] = 'destination/directory'
env.Command(env.Dir('$DISTDIR')), None, make_distdir)

Also note that SCons will usually automatically create any directory necessary to hold a target file, so you normally
don't need to create directories by hand.

76

Configure(env, [custom_tests, conf_dir, log_file, config_h])
env.Configure([custom_tests, conf_dir, log_file, config_h])

Creates a Configure object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts" for a complete explanation of the arguments and behavior.

Decider(function)
env.Decider(function)

Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified function. function can be the name of a function or one of the following strings that specify
the predefined decision function that will be applied:

"timestamp-newer"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is newer than
the target file's timestamp. This is the behavior of the classic Make utility, and make can be used a synonym
for timestamp-newer.

"timestamp-match"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that the target will also be rebuilt if a dependency file has been restored to a version with an earlier timestamp,
such as can happen when restoring files from backup archives.

"content"
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, as determined be performing an checksum on the dependency's contents
and comparing it to the checksum recorded the last time the target was built. MD5 can be used as a synonym
for content, but it is deprecated.

"content-timestamp"
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
content behavior of always checksumming file contents, with an optimization of not checking the contents
of files whose timestamps haven't changed. The drawback is that SCons will not detect if a file's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runs the build again, all within a single second. MD5-timestamp can be used as a synonym for
content-timestamp, but it is deprecated.

Examples:

Use exact timestamp matches by default.
Decider('timestamp-match')

Use hash content signatures for any targets built
with the attached construction environment.
env.Decider('content')

In addition to the above already-available functions, the function argument may be a Python function you
supply. Such a function must accept the following four arguments:

dependency
The Node (file) which should cause the target to be rebuilt if it has "changed" since the last tme target
was built.

77

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed."

prev_ni
Stored information about the state of the dependency the last time the target was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
as repo_node=None). A caller will normally only set this if the target only exists in a Repository.

The function should return a value which evaluates True if the dependency has "changed" since the last
time the target was built (indicating that the target should be rebuilt), and a value which evaluates False
otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteria are appopriate. Ignoring some or all of the function arguments is perfectly normal.

Example:

def my_decider(dependency, target, prev_ni, repo_node=None):
 return not os.path.exists(str(target))

env.Decider(my_decider)

Default(target[, ...])
env.Default(target[, ...])

Specify default targets to the SCons target selection mechanism. Any call to Default will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection").

target may be one or more strings, a list of strings, a NodeList as returned by a Builder, or None. A string
target may be the name of a file or directory, or a target previously defined by a call to Alias (defining the
alias later will still create the alias, but it will not be recognized as a default). Calls to Default are additive. A
target of None will clear any existing default target list; subsequent calls to Default will add to the (now
empty) default target list like normal.

Both forms of this call affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Default is available in the DEFAULT_TARGETS list (see below).

Examples:

Default('foo', 'bar', 'baz')
env.Default(['a', 'b', 'c'])
hello = env.Program('hello', 'hello.c')
env.Default(hello)

DefaultEnvironment([**kwargs])
Instantiates and returns the default construction environment object. The default environment is used internally by
SCons in order to execute many of the global functions in this list (that is, those not called as methods of a specific
construction environment). It is not mandatory to call DefaultEnvironment: the default environment will
be instantiated automatically when the build phase begins if the function has not been called, however calling it
explicitly gives the opportunity to affect and examine the contents of the default environment.

78

The default environment is a singleton, so the keyword arguments affect it only on the first call, on subsequent
calls the already-constructed object is returned and any keyword arguments are silently ignored. The default
environment can be modified after instantiation in the same way as any construction environment. Modifying the
default environment has no effect on the construction environment constructed by an Environment or Clone
call.

Depends(target, dependency)
env.Depends(target, dependency)

Specifies an explicit dependency; the target will be rebuilt whenever the dependency has changed. Both
the specified target and dependency can be a string (usually the path name of a file or directory) or Node
objects, or a list of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for the file.

Example:

env.Depends('foo', 'other-input-file-for-foo')

mylib = env.Library('mylib.c')
installed_lib = env.Install('lib', mylib)
bar = env.Program('bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program.
(Note that this is for example only. A "real" library
dependency would normally be configured through the $LIBS
and $LIBPATH variables, not using an env.Depends() call.)

env.Depends(bar, installed_lib)

env.Detect(progs)
Find an executable from one or more choices: progs may be a string or a list of strings. Returns the
first value from progs that was found, or None. Executable is searched by checking the paths specified
by env['ENV']['PATH']. On Windows systems, additionally applies the filename suffixes found in
env['ENV']['PATHEXT'] but will not include any such extension in the return value. env.Detect is a
wrapper around env.WhereIs.

env.Dictionary([vars])
Returns a dictionary object containing the construction variables in the construction environment. If there are any
arguments specified, the values of the specified construction variables are returned as a string (if one argument)
or as a list of strings.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC', 'CCFLAGS', 'CCCOM')

Dir(name, [directory])
env.Dir(name, [directory])

Returns Directory Node(s). A Directory Node is an object that represents a directory. name can be a relative or
absolute path or a list of such paths. directory is an optional directory that will be used as the parent directory.
If no directory is specified, the current script's directory is used as the parent.

If name is a single pathname, the corresponding node is returned. If name is a list, SCons returns a list of nodes.
Construction variables are expanded in name.

79

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"File and Directory Nodes" for more information.

env.Dump([key], [format])
Serializes construction variables to a string. The method supports the following formats specified by format:

pretty
Returns a pretty printed representation of the environment (if format is not specified, this is the default).

json
Returns a JSON-formatted string representation of the environment.

If key is None (the default) the entire dictionary of construction variables is serialized. If supplied, it is taken as
the name of a construction variable whose value is serialized.

This SConstruct:

env=Environment()
print(env.Dump('CCCOM'))

will print:

'$CC -c -o $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS $SOURCES'

While this SConstruct:

env = Environment()
print(env.Dump())

will print:

{ 'AR': 'ar',
 'ARCOM': '$AR $ARFLAGS $TARGET $SOURCES\n$RANLIB $RANLIBFLAGS $TARGET',
 'ARFLAGS': ['r'],
 'AS': 'as',
 'ASCOM': '$AS $ASFLAGS -o $TARGET $SOURCES',
 'ASFLAGS': [],
 ...

EnsurePythonVersion(major, minor)
env.EnsurePythonVersion(major, minor)

Ensure that the Python version is at least major.minor. This function will print out an error message and exit
SCons with a non-zero exit code if the actual Python version is not late enough.

Example:

EnsurePythonVersion(2,2)

EnsureSConsVersion(major, minor, [revision])
env.EnsureSConsVersion(major, minor, [revision])

Ensure that the SCons version is at least major.minor, or major.minor.revision. if revision is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

80

Examples:

EnsureSConsVersion(0,14)

EnsureSConsVersion(0,96,90)

Environment([key=value, ...])
env.Environment([key=value, ...])

Return a new construction environment initialized with the specified key=value pairs. The keyword arguments
parse_flags, platform, toolpath, tools and variables are also specially recognized. See the
manpage section "Construction Environments" for more details.

Execute(action, [strfunction, varlist])
env.Execute(action, [strfunction, varlist])

Executes an Action object. The specified action may be an Action object (see manpage section "Action Objects"
for an explanation of behavior), or it may be a command-line string, list of commands, or executable Python
function, each of which will be converted into an Action object and then executed. Any additional arguments to
Execute (strfunction, varlist) are passed on to the Action factory function which actually creates
the Action object. The exit value of the command or return value of the Python function will be returned.

Note that scons will print an error message if the executed action fails--that is, exits with or returns a non-zero
value. scons will not, however, automatically terminate the build if the specified action fails. If you want the
build to stop in response to a failed Execute call, you must explicitly check for a non-zero return value:

Execute(Copy('file.out', 'file.in'))

if Execute("mkdir sub/dir/ectory"):
 # The mkdir failed, don't try to build.
 Exit(1)

Exit([value])
env.Exit([value])

This tells scons to exit immediately with the specified value. A default exit value of 0 (zero) is used if no value
is specified.

Export([vars...], [key=value...])
env.Export([vars...], [key=value...])

Exports variables from the current SConscript file to a global collection where they can be imported by other
SConscript files. vars may be one or more strings representing variable names to be exported. If a string contains
whitespace, it is split into separate strings, as if multiple string arguments had been given. A vars argument may
also be a dictionary, which can be used to map variables to different names when exported. Keyword arguments
can be used to provide names and their values.

Export calls are cumulative. Specifying a previously exported variable will overwrite the earlier value. Both
local variables and global variables can be exported.

Examples:

env = Environment()
Make env available for all SConscript files to Import().
Export("env")

81

package = 'my_name'
Make env and package available for all SConscript files:.
Export("env", "package")

Make env and package available for all SConscript files:
Export(["env", "package"])

Make env available using the name debug:
Export(debug=env)

Make env available using the name debug:
Export({"debug": env})

Note that the SConscript function supports an exports argument that allows exporting a variable or set of
variables to a specific SConscript file or files. See the description below.

File(name, [directory])
env.File(name, [directory])

Returns File Node(s). A File Node is an object that represents a file. name can be a relative or absolute path or a
list of such paths. directory is an optional directory that will be used as the parent directory. If no directory
is specified, the current script's directory is used as the parent.

If name is a single pathname, the corresponding node is returned. If name is a list, SCons returns a list of nodes.
Construction variables are expanded in name.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "File and Directory
Nodes" for more information.

FindFile(file, dirs)
env.FindFile(file, dirs)

Search for file in the path specified by dirs. dirs may be a list of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dir1', 'dir2'])

FindInstalledFiles()
env.FindInstalledFiles()

Returns the list of targets set up by the Install or InstallAs builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install('/bin', ['executable_a', 'executable_b'])

will return the file node list
['/bin/executable_a', '/bin/executable_b']
FindInstalledFiles()

Install('/lib', ['some_library'])

82

will return the file node list
['/bin/executable_a', '/bin/executable_b', '/lib/some_library']
FindInstalledFiles()

FindPathDirs(variable)
Returns a function (actually a callable Python object) intended to be used as the path_function of a Scanner
object. The returned object will look up the specified variable in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $LIBPATH,
etc.).

Note that use of FindPathDirs is generally preferable to writing your own path_function for the
following reasons: 1) The returned list will contain all appropriate directories found in source trees (when
VariantDir is used) or in code repositories (when Repository or the -Y option are used). 2) scons will
identify expansions of variable that evaluate to the same list of directories as, in fact, the same list, and avoid
re-scanning the directories for files, when possible.

Example:

def my_scan(node, env, path, arg):
 # Code to scan file contents goes here...
 return include_files

scanner = Scanner(name = 'myscanner',
 function = my_scan,
 path_function = FindPathDirs('MYPATH'))

FindSourceFiles(node='"."')
env.FindSourceFiles(node='"."')

Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree
starting at the optional argument node which defaults to the '"."'-node. It will then return all leaves of node.
These are all children which have no further children.

This function is a convenient method to select the contents of a Source Package.

Example:

Program('src/main_a.c')
Program('src/main_b.c')
Program('main_c.c')

returns ['main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
FindSourceFiles()

returns ['src/main_b.c', 'src/main_a.c']
FindSourceFiles('src')

As you can see build support files (SConstruct in the above example) will also be returned by this function.

Flatten(sequence)
env.Flatten(sequence)

Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elements in any sequence. This can be helpful for collecting the lists returned by

83

calls to Builders; other Builders will automatically flatten lists specified as input, but direct Python manipulation
of these lists does not.

Examples:

foo = Object('foo.c')
bar = Object('bar.c')

Because `foo' and `bar' are lists returned by the Object() Builder,
`objects' will be a list containing nested lists:
objects = ['f1.o', foo, 'f2.o', bar, 'f3.o']

Passing such a list to another Builder is all right because
the Builder will flatten the list automatically:
Program(source = objects)

If you need to manipulate the list directly using Python, you need to
call Flatten() yourself, or otherwise handle nested lists:
for object in Flatten(objects):
 print(str(object))

GetBuildFailures()
Returns a list of exceptions for the actions that failed while attempting to build targets. Each element in the returned
list is a BuildError object with the following attributes that record various aspects of the build failure:

.node The node that was being built when the build failure occurred.

.status The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

.errstr The SCons error string describing the build failure. (This is often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

.filename The name of the file or directory that actually caused the failure. This may be different from the

.node attribute. For example, if an attempt to build a target named sub/dir/target fails because the sub/
dir directory could not be created, then the .node attribute will be sub/dir/target but the .filename
attribute will be sub/dir.

.executor The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

.action The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

.command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Note that the GetBuildFailures function will always return an empty list until any build failure has occurred,
which means that GetBuildFailures will always return an empty list while the SConscript files are being
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python atexit.register() function. Example:

import atexit

84

def print_build_failures():
 from SCons.Script import GetBuildFailures
 for bf in GetBuildFailures():
 print("%s failed: %s" % (bf.node, bf.errstr))

atexit.register(print_build_failures)

GetBuildPath(file, [...])
env.GetBuildPath(file, [...])

Returns the scons path name (or names) for the specified file (or files). The specified file or files may be
scons Nodes or strings representing path names.

GetLaunchDir()
env.GetLaunchDir()

Returns the absolute path name of the directory from which scons was initially invoked. This can be useful when
using the -u, -U or -D options, which internally change to the directory in which the SConstruct file is found.

GetOption(name)
env.GetOption(name)

This function provides a way to query the value of options which can be set via the command line or using the
SetOption function.

name can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. name can be also be the destination variable name from a project-specific option added
using the AddOption function, as long as the addition happens prior to the GetOption call in the SConscript
files.

Query name Command-line options Notes

cache_debug --cache-debug

cache_disable --cache-disable, --no-
cache

cache_force --cache-force, --cache-
populate

cache_readonly --cache-readonly

cache_show --cache-show

clean -c, --clean, --remove

climb_up -D -U -u --up --search_up

config --config

debug --debug

directory -C, --directory

diskcheck --diskcheck

duplicate --duplicate

enable_virtualenv --enable-virtualenv

experimental --experimental since 4.2

file -f, --file, --makefile, --
sconstruct

hash_format --hash-format since 4.2

help -h, --help

85

Query name Command-line options Notes

ignore_errors -i, --ignore-errors

ignore_virtualenv --ignore-virtualenv

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed

implicit_deps_unchanged --implicit-deps-
unchanged

include_dir -I, --include-dir

install_sandbox --install-sandbox Available only if the install tool
has been called

keep_going -k, --keep-going

max_drift --max-drift

md5_chunksize --hash-chunksize, --md5-
chunksize

--hash-chunksize since 4.2

no_exec -n, --no-exec, --just-
print, --dry-run, --recon

no_progress -Q

num_jobs -j, --jobs

package_type --package-type Available only if the packaging
tool has been called

profile_file --profile

question -q, --question

random --random

repository -Y, --repository, --srcdir

silent -s, --silent, --quiet

site_dir --site-dir, --no-site-dir

stack_size --stack-size

taskmastertrace_file --taskmastertrace

tree_printers --tree

warn --warn, --warning

See the documentation for the corresponding command line option for information about each specific option.

Glob(pattern, [ondisk, source, strings, exclude])
env.Glob(pattern, [ondisk, source, strings, exclude])

Returns Nodes (or strings) that match the specified pattern, relative to the directory of the current
SConscript file. The evironment method form (env.Glob) performs string substition on pattern and
returns whatever matches the resulting expanded pattern.

The specified pattern uses Unix shell style metacharacters for matching:

 * matches everything
 ? matches any single character
 [seq] matches any character in seq

86

 [!seq] matches any char not in seq

If the first character of a filename is a dot, it must be matched explicitly. Character matches do not span directory
separators.

The Glob knows about repositories (see the Repository function) and source directories (see the
VariantDir function) and returns a Node (or string, if so configured) in the local (SConscript) directory if a
matching Node is found anywhere in a corresponding repository or source directory.

The ondisk argument may be set to a value which evaluates False to disable the search for matches on disk,
thereby only returning matches among already-configured File or Dir Nodes. The default behavior is to return
corresponding Nodes for any on-disk matches found.

The source argument may be set to a value which evaluates True to specify that, when the local directory is a
VariantDir, the returned Nodes should be from the corresponding source directory, not the local directory.

The strings argument may be set to a value which evaluates True to have the Glob function return strings,
not Nodes, that represent the matched files or directories. The returned strings will be relative to the local
(SConscript) directory. (Note that This may make it easier to perform arbitrary manipulation of file names, but if
the returned strings are passed to a different SConscript file, any Node translation will be relative to the other
SConscript directory, not the original SConscript directory.)

The exclude argument may be set to a pattern or a list of patterns (following the same Unix shell semantics)
which must be filtered out of returned elements. Elements matching a least one pattern of this list will be excluded.

Examples:

Program("foo", Glob("*.c"))
Zip("/tmp/everything", Glob(".??*") + Glob("*"))
sources = Glob("*.cpp", exclude=["os_*_specific_*.cpp"]) + \
 Glob("os_%s_specific_*.cpp" % currentOS)

Help(text, append=False)
env.Help(text, append=False)

Specifies a local help message to be printed if the -h argument is given to scons. Subsequent calls to Help append
text to the previously defined local help text.

For the first call to Help only, if append is False (the default) any local help message generated through
AddOption calls is replaced. If append is True, text is appended to the existing help text.

Ignore(target, dependency)
env.Ignore(target, dependency)

The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

You can also use Ignore to remove a target from the default build. In order to do this you must specify the
directory the target will be built in as the target, and the file you want to skip building as the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be built if that
dependency is needed by another object being built. See the third and forth examples below.

Examples:

env.Ignore('foo', 'foo.c')
env.Ignore('bar', ['bar1.h', 'bar2.h'])
env.Ignore('.', 'foobar.obj')
env.Ignore('bar', 'bar/foobar.obj')

87

Import(vars...)
env.Import(vars...)

Imports variables into the current SConscript file. vars must be strings representing names of variables which
have been previously exported either by the Export function or by the exports argument to SConscript.
Variables exported by SConscript take precedence. Multiple variable names can be passed to Import as
separate arguments or as words in a space-separated string. The wildcard "*" can be used to import all available
variables.

Examples:

Import("env")
Import("env", "variable")
Import(["env", "variable"])
Import("*")

Literal(string)
env.Literal(string)

The specified string will be preserved as-is and not have construction variables expanded.

Local(targets)
env.Local(targets)

The specified targets will have copies made in the local tree, even if an already up-to-date copy exists in a
repository. Returns a list of the target Node or Nodes.

env.MergeFlags(arg, [unique])
Merges values from arg into construction variables in the current construction environment. If arg is not a
dictionary, it is converted to one by calling env.ParseFlags on the argument before the values are merged.
Note that arg must be a single value, so multiple strings must be passed in as a list, not as separate arguments
to env.MergeFlags.

By default, duplicate values are eliminated; you can, however, specify unique=False to allow duplicate values
to be added. When eliminating duplicate values, any construction variables that end with the string PATH keep
the left-most unique value. All other construction variables keep the right-most unique value.

Examples:

Add an optimization flag to $CCFLAGS.
env.MergeFlags('-O3')

Combine the flags returned from running pkg-config with an optimization
flag and merge the result into the construction variables.
env.MergeFlags(['!pkg-config gtk+-2.0 --cflags', '-O3'])

Combine an optimization flag with the flags returned from running pkg-config
twice and merge the result into the construction variables.
env.MergeFlags(['-O3',
 '!pkg-config gtk+-2.0 --cflags --libs',
 '!pkg-config libpng12 --cflags --libs'])

NoCache(target, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDir method has been activated. The
specified targets may be a list or an individual target.

88

Multiple files should be specified either as separate arguments to the NoCache method, or as a list. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache('foo.elf')
NoCache(env.Program('hello', 'hello.c'))

NoClean(target, ...)
env.NoClean(target, ...)

Specifies a list of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the -c command line option. The specified targets may be a list or an individual target. Multiple
calls to NoClean are legal, and prevent each specified target from being removed by calls to the -c option.

Multiple files or directories should be specified either as separate arguments to the NoClean method, or as a list.
NoClean will also accept the return value of any of the construction environment Builder methods.

Calling NoClean for a target overrides calling Clean for the same target, and any targets passed to both functions
will not be removed by the -c option.

Examples:

NoClean('foo.elf')
NoClean(env.Program('hello', 'hello.c'))

env.ParseConfig(command, [function, unique])
Updates the current construction environment with the values extracted from the output from running external
command, by calling a helper function function which understands the output of command. command
may be a string or a list of strings representing the command and its arguments. If function is not given,
env.MergeFlags is used. By default, duplicate values are not added to any construction variables; you can
specify unique=False to allow duplicate values to be added.

If env.MergeFlags is used, it expects a response in the style of a *-config command typical of
the POSIX programming environment (for example, gtk-config) and adds the options to the appropriate
construction variables. Interpreted options and the construction variables they affect are as specified for the
env.ParseFlags method (which env.MergeFlags calls). See that method's description for a table of
options and corresponding construction variables.

If env.MergeFlags cannot interpret the results of command, you can suppply a custom function to do so.
function must accept three arguments: the construction environment to modify, the string returned by running
command, and the optional unique flag.

ParseDepends(filename, [must_exist, only_one])
env.ParseDepends(filename, [must_exist, only_one])

Parses the contents of the specified filename as a list of dependencies in the style of Make or mkdep, and
explicitly establishes all of the listed dependencies.

By default, it is not an error if the specified filename does not exist. The optional must_exist argument
may be set to a non-zero value to have scons throw an exception and generate an error if the file does not exist,
or is otherwise inaccessible.

The optional only_one argument may be set to a non-zero value to have scons thrown an exception and generate
an error if the file contains dependency information for more than one target. This can provide a small sanity

89

check for files intended to be generated by, for example, the gcc -M flag, which should typically only write
dependency information for one output file into a corresponding .d file.

The filename and all of the files listed therein will be interpreted relative to the directory of the SConscript
file which calls the ParseDepends function.

env.ParseFlags(flags, ...)
Parses one or more strings containing typical command-line flags for GCC tool chains and returns a dictionary
with the flag values separated into the appropriate SCons construction variables. This is intended as a companion to
the env.MergeFlags method, but allows for the values in the returned dictionary to be modified, if necessary,
before merging them into the construction environment. (Note that env.MergeFlags will call this method if
its argument is not a dictionary, so it is usually not necessary to call env.ParseFlags directly unless you want
to manipulate the values.)

If the first character in any string is an exclamation mark (!), the rest of the string is executed as a command, and the
output from the command is parsed as GCC tool chain command-line flags and added to the resulting dictionary.

Flag values are translated accordig to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LINKFLAGS
-D CPPDEFINES
-framework FRAMEWORKS
-frameworkdir= FRAMEWORKPATH
-fmerge-all-constants CCFLAGS, LINKFLAGS
-fopenmp CCFLAGS, LINKFLAGS
-include CCFLAGS
-imacros CCFLAGS
-isysroot CCFLAGS, LINKFLAGS
-isystem CCFLAGS
-iquote CCFLAGS
-idirafter CCFLAGS
-I CPPPATH
-l LIBS
-L LIBPATH
-mno-cygwin CCFLAGS, LINKFLAGS
-mwindows LINKFLAGS
-openmp CCFLAGS, LINKFLAGS
-pthread CCFLAGS, LINKFLAGS
-std= CFLAGS
-Wa, ASFLAGS, CCFLAGS
-Wl,-rpath= RPATH
-Wl,-R, RPATH
-Wl,-R RPATH
-Wl, LINKFLAGS
-Wp, CPPFLAGS
- CCFLAGS
+ CCFLAGS, LINKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LIBS
construction variable.

Examples (all of which produce the same result):

dict = env.ParseFlags('-O2 -Dfoo -Dbar=1')

90

dict = env.ParseFlags('-O2', '-Dfoo', '-Dbar=1')
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-O2', '!echo -Dfoo -Dbar=1')

Platform(string)
The Platform form returns a callable object that can be used to initialize a construction environment using the
platform keyword of the Environment function.

Example:

env = Environment(platform=Platform('win32'))

The env.Platform form applies the callable object for the specified platform string to the environment
through which the method was called.

env.Platform('posix')

Note that the win32 platform adds the SystemDrive and SystemRoot variables from the user's external
environment to the construction environment's $ENV dictionary. This is so that any executed commands
that use sockets to connect with other systems (such as fetching source files from external CVS repository
specifications like :pserver:anonymous@cvs.sourceforge.net:/cvsroot/scons) will work on
Windows systems.

Precious(target, ...)
env.Precious(target, ...)

Marks each given target as precious so it is not deleted before it is rebuilt. Normally scons deletes a target
before building it. Multiple targets can be passed in to a single call to Precious.

env.Prepend(key=val, [...])
Prepend values to construction variables in the current construction environment, Works like env.Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env.Prepend(CCFLAGS='-g ', FOO=['foo.yyy'])

See also env.Append, env.AppendUnique and env.PrependUnique.

env.PrependENVPath(name, newpath, [envname, sep, delete_existing])
Prepend new path elements to the given path in the specified external environment ($ENV by default). This will
only add any particular path once (leaving the first one it encounters and ignoring the rest, to preserve path order),
and to help assure this, will normalize all paths (using os.path.normpath and os.path.normcase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If delete_existing is False, then adding a path that already exists will not move it to the beginning; it
will stay where it is in the list.

Example:

print('before:', env['ENV']['INCLUDE'])
include_path = '/foo/bar:/foo'
env.PrependENVPath('INCLUDE', include_path)

91

print('after:', env['ENV']['INCLUDE'])

Yields:

before: /biz:/foo
after: /foo/bar:/foo:/biz

env.PrependUnique(key=val, delete_existing=False, [...])
Prepend values to construction variables in the current construction environment, maintaining uniqueness. Works
like env.Append (see for details), except that values are added to the front, rather than the end, of any existing
value of the the construction variable, and values already present in the construction variable will not be added
again. If delete_existing is True, the existing matching value is first removed, and the requested value is
inserted, having the effect of moving such values to the front.

Example:

env.PrependUnique(CCFLAGS='-g', FOO=['foo.yyy'])

See also env.Append, env.AppendUnique and env.Prepend.

Progress(callable, [interval])
Progress(string, [interval, file, overwrite])
Progress(list_of_strings, [interval, file, overwrite])

Allows SCons to show progress made during the build by displaying a string or calling a function while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object that has a __call__ method), the
function will be called once every interval times a Node is evaluated (default 1). The callable will be passed the
evaluated Node as its only argument. (For future compatibility, it's a good idea to also add *args and **kwargs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additional arguments in the future.)

An example of a simple custom progress function that prints a string containing the Node name every 10 Nodes:

def my_progress_function(node, *args, **kwargs):
 print('Evaluating node %s!' % node)
Progress(my_progress_function, interval=10)

A more complicated example of a custom progress display object that prints a string containing a count every 100
evaluated Nodes. Note the use of \r (a carriage return) at the end so that the string will overwrite itself on a display:

import sys
class ProgressCounter(object):
 count = 0
 def __call__(self, node, *args, **kw):
 self.count += 100
 sys.stderr.write('Evaluated %s nodes\r' % self.count)

Progress(ProgressCounter(), interval=100)

If the first argument to Progress is a string or list of strings, it is taken as text to be displayed every interval
evaluated Nodes. If the first argument is a list of strings, then each string in the list will be displayed in rotating
fashion every interval evaluated Nodes.

92

The default is to print the string on standard output. An alternate output stream may be specified with the file
keyword argument, which the caller must pass already opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

import sys
Progress('.', interval=100, file=sys.stderr)

If the string contains the verbatim substring $TARGET;, it will be replaced with the Node. Note that, for
performance reasons, this is not a regular SCons variable substition, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\r)
to cause each line to overwritten by the next line, and the overwrite keyword argument (default False) to
make sure the previously-printed file name is overwritten with blank spaces:

import sys
Progress('$TARGET\r', overwrite=True)

A list of strings can be used to implement a "spinner" on the user's screen as follows, changing every five evaluated
Nodes:

Progress(['-\r', '\\\r', '|\r', '/\r'], interval=5)

Pseudo(target, ...)
env.Pseudo(target, ...)

This indicates that each given target should not be created by the build rule, and if the target is created, an
error will be generated. This is similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Alias is more appropriate. Multiple targets can be passed in to a single call to Pseudo.

PyPackageDir(modulename)
env.PyPackageDir(modulename)

This returns a Directory Node similar to Dir. The python module / package is looked up and if located the directory
is returned for the location. modulename Is a named python package / module to lookup the directory for it's
location.

If modulename is a list, SCons returns a list of Dir nodes. Construction variables are expanded in modulename.

env.Replace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env.Replace(CCFLAGS='-g', FOO='foo.xxx')

Repository(directory)
env.Repository(directory)

Specifies that directory is a repository to be searched for files. Multiple calls to Repository are legal, and
each one adds to the list of repositories that will be searched.

To scons, a repository is a copy of the source tree, from the top-level directory on down, which may contain both
source files and derived files that can be used to build targets in the local source tree. The canonical example would
be an official source tree maintained by an integrator. If the repository contains derived files, then the derived files
should have been built using scons, so that the repository contains the necessary signature information to allow
scons to figure out when it is appropriate to use the repository copy of a derived file, instead of building one locally.

93

Note that if an up-to-date derived file already exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that a local copy will be made, use the Local method.

Requires(target, prerequisite)
env.Requires(target, prerequisite)

Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:

env.Requires('foo', 'file-that-must-be-built-before-foo')

Return([vars..., stop=True])
Return to the calling SConscript, optionally returning the values of variables named in vars. Multiple strings
contaning variable names may be passed to Return. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tuple if vars is omitted.

By default Return stops processing the current SConscript and returns immediately. The optional stop keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Return
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variables in the named vars at the point Return was called.

Examples:

Returns no values (evaluates False)
Return()

Returns the value of the 'foo' Python variable.
Return("foo")

Returns the values of the Python variables 'foo' and 'bar'.
Return("foo", "bar")

Returns the values of Python variables 'val1' and 'val2'.
Return('val1 val2')

Scanner(function, [name, argument, skeys, path_function, node_class,
node_factory, scan_check, recursive])
env.Scanner(function, [name, argument, skeys, path_function, node_class,
node_factory, scan_check, recursive])

Creates a Scanner object for the specified function. See manpage section "Scanner Objects" for a complete
explanation of the arguments and behavior.

SConscript(scripts, [exports, variant_dir, duplicate, must_exist])
env.SConscript(scripts, [exports, variant_dir, duplicate, must_exist])
SConscript(dirs=subdirs, [name=script, exports, variant_dir, duplicate,
must_exist])
env.SConscript(dirs=subdirs, [name=script, exports, variant_dir, duplicate,
must_exist])

Execute one or more subsidiary SConscript (configuration) files. There are two ways to call the SConscript
function.

94

The first calling style is to explicitly specify one or more scripts as the first argument. A single script may
be specified as a string; multiple scripts must be specified as a list (either explicitly or as created by a function
like Split). Examples:

SConscript('SConscript') # run SConscript in the current directory
SConscript('src/SConscript') # run SConscript in the src directory
SConscript(['src/SConscript', 'doc/SConscript'])
config = SConscript('MyConfig.py')

The second way to call SConscript is to specify a list of (sub)directory names as a dirs=subdirs keyword
argument. In this case, scons will execute a subsidiary configuration file named SConscript in each of the
specified directories. You may specify a name other than SConscript by supplying an optional name=script
keyword argument. The first three examples below have the same effect as the first three examples above:

SConscript(dirs='.') # run SConscript in the current directory
SConscript(dirs='src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])
SConscript(dirs=['sub1', 'sub2'], name='MySConscript')

The optional exports argument provides a string or list of strings representing variable names, or a dictionary
of named values, to export. These variables are locally exported only to the called SConscript file(s) and do not
affect the global pool of variables managed by the Export function. The subsidiary SConscript files must use
the Import function to import the variables. Examples:

foo = SConscript('sub/SConscript', exports='env')
SConscript('dir/SConscript', exports=['env', 'variable'])
SConscript(dirs='subdir', exports='env variable')
SConscript(dirs=['one', 'two', 'three'], exports='shared_info')

If the optional variant_dir argument is present, it causes an effect equivalent to the VariantDir function.
The variant_dir argument is interpreted relative to the directory of the calling SConscript file. The optional
duplicate argument is interpreted as for VariantDir. If variant_dir is omitted, the duplicate
argument is ignored. See the description of VariantDir below for additional details and restrictions.

If variant_dir is present, the source directory is the directory in which the SConscript file resides and the
SConscript file is evaluated as if it were in the variant_dir directory:

SConscript('src/SConscript', variant_dir='build')

is equivalent to

VariantDir('build', 'src')
SConscript('build/SConscript')

This later paradigm is often used when the sources are in the same directory as the SConstruct:

SConscript('SConscript', variant_dir='build')

is equivalent to

95

VariantDir('build', '.')
SConscript('build/SConscript')

If the optional must_exist is True, causes an exception to be raised if a requested SConscript file is not
found. The current default is False, causing only a warning to be emitted, but this default is deprecated (since
3.1). For scripts which truly intend to be optional, transition to explicitly supplying must_exist=False to
the SConscript call.

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_info = SConscript('MyConfig.py')
SConscript('src/SConscript', exports='shared_info')
SConscript('doc/SConscript', exports='shared_info')

build debugging and production versions. SConscript
can use Dir('.').path to determine variant.
SConscript('SConscript', variant_dir='debug', duplicate=0)
SConscript('SConscript', variant_dir='prod', duplicate=0)

build debugging and production versions. SConscript
is passed flags to use.
opts = { 'CPPDEFINES' : ['DEBUG'], 'CCFLAGS' : '-pgdb' }
SConscript('SConscript', variant_dir='debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG'], 'CCFLAGS' : '-O' }
SConscript('SConscript', variant_dir='prod', duplicate=0, exports=opts)

build common documentation and compile for different architectures
SConscript('doc/SConscript', variant_dir='build/doc', duplicate=0)
SConscript('src/SConscript', variant_dir='build/x86', duplicate=0)
SConscript('src/SConscript', variant_dir='build/ppc', duplicate=0)

SConscript returns the values of any variables named by the executed SConscript(s) in arguments to the
Return function (see above for details). If a single SConscript call causes multiple scripts to be executed,
the return value is a tuple containing the returns of all of the scripts. If an executed script does not explicitly call
Return, it returns None.

SConscriptChdir(value)
env.SConscriptChdir(value)

By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives.
This behavior may be disabled by specifying either:

SConscriptChdir(0)
env.SConscriptChdir(0)

in which case scons will stay in the top-level directory while reading all SConscript files. (This may be necessary
when building from repositories, when all the directories in which SConscript files may be found don't necessarily
exist locally.) You may enable and disable this ability by calling SConscriptChdir() multiple times.

96

Example:

env = Environment()
SConscriptChdir(0)
SConscript('foo/SConscript') # will not chdir to foo
env.SConscriptChdir(1)
SConscript('bar/SConscript') # will chdir to bar

SConsignFile([name, dbm_module])
env.SConsignFile([name, dbm_module])

Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify alternate database files and/or file locations for different types of builds.

The optional name argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConstruct file. The default is .sconsign. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm_module

The optional dbm_module argument specifies which Python database module to use for reading/writing the file.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons.dblite module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbm module for other available types.

If called with no arguments, the database will default to .sconsign.dblite in the top directory of the project,
which is also the default if if SConsignFile is not called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on name. There should only be one active call to this function/method in a given build setup.

If name is set to None, scons will store file signatures in a separate .sconsign file in each directory, not in a
single combined database file. This is a backwards-compatibility meaure to support what was the default behavior
prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a future SCons
release.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the default behavior).
SConsignFile()

Stores signatures in the file "etc/scons-signatures"
relative to the top-level SConstruct directory.
SCons will add a database suffix to this name.
SConsignFile("etc/scons-signatures")

Stores signatures in the specified absolute file name.
SCons will add a database suffix to this name.
SConsignFile("/home/me/SCons/signatures")

Stores signatures in a separate .sconsign file
in each directory.
SConsignFile(None)

Stores signatures in a GNU dbm format .sconsign file

97

import dbm.gnu
SConsignFile(dbm_module=dbm.gnu)

env.SetDefault(key=val, [...])
Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env.SetDefault(FOO='foo')
if 'FOO' not in env:
 env['FOO'] = 'foo'

SetOption(name, value)
env.SetOption(name, value)

Sets scons option variable name to value. These options are all also settable via command-line options but the
variable name may differ from the command-line option name - see the table for correspondences. A value set
via command-line option will take precedence over one set with SetOption, which allows setting a project
default in the scripts and temporarily overriding it via command line. SetOption calls can also be placed in
the site_init.py file.

See the documentation in the manpage for the corresponding command line option for information about each
specific option. The value parameter is mandatory, for option values which are boolean in nature (that is, the
command line option does not take an argument) use a value which evaluates to true (e.g. True, 1) or false
(e.g. False, 0).

Options which affect the reading and processing of SConscript files are not settable using SetOption since
those files must be read in order to find the SetOption call in the first place.

The settable variables with their associated command-line options are:

Settable name Command-line options Notes

clean -c, --clean, --remove

diskcheck --diskcheck

duplicate --duplicate

experimental --experimental since 4.2

hash_chunksize --hash-chunksize Actually sets md5_chunksize.
since 4.2

hash_format --hash-format since 4.2

help -h, --help

implicit_cache --implicit-cache

implicit_deps_changed --implicit-deps-changed Also sets implicit_cache.
(settable since 4.2)

implicit_deps_unchanged --implicit-deps-
unchanged

Also sets implicit_cache.
(settable since 4.2)

max_drift --max-drift

md5_chunksize --md5-chunksize

no_exec -n, --no-exec, --just-
print, --dry-run, --recon

no_progress -Q See a

98

Settable name Command-line options Notes

num_jobs -j, --jobs

random --random

silent -s, --silent, --quiet

stack_size --stack-size

warn --warn
aIf no_progress is set via SetOption in an SConscript file (but not if set in a site_init.py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the SetOption.

Example:

SetOption('max_drift', 0)

SideEffect(side_effect, target)
env.SideEffect(side_effect, target)

Declares side_effect as a side effect of building target. Both side_effect and target can be a list,
a file name, or a node. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB file is created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If a target is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the side_effect target
is not automatically removed when the target is removed by the -c option. (Note, however, that the
side_effect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
the side_effect is cleaned whenever a specific target is cleaned, you must specify this explicitly with the
Clean or env.Clean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

Split(arg)
env.Split(arg)

Returns a list of file names or other objects. If arg is a string, it will be split on strings of white-space characters
within the string, making it easier to write long lists of file names. If arg is already a list, the list will be returned
untouched. If arg is any other type of object, it will be returned as a list containing just the object.

Example:

files = Split("f1.c f2.c f3.c")
files = env.Split("f4.c f5.c f6.c")
files = Split("""
 f7.c
 f8.c
 f9.c
""")

env.subst(input, [raw, target, source, conv])
Performs construction variable interpolation on the specified string or sequence argument input.

By default, leading or trailing white space will be removed from the result. and all sequences of white space will
be compressed to a single space character. Additionally, any $(and $) character sequences will be stripped from

99

the returned string, The optional raw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. The raw argument may be set to 2 if you want to strip all characters between any $(and $) pairs
(as is done for signature calculation).

If the input is a sequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will be returned as a list.

The optional target and source keyword arguments must be set to lists of target and source nodes,
respectively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion.
This is usually necessary if you are calling env.subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use the Python Λ idiom
to pass in an unnamed function that simply returns its unconverted argument.

Example:

print(env.subst("The C compiler is: $CC"))

def compile(target, source, env):
 sourceDir = env.subst(
 "${SOURCE.srcdir}",
 target=target,
 source=source
)

source_nodes = env.subst('$EXPAND_TO_NODELIST', conv=lambda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All Node-level tags are optional.

Examples:

makes sure the built library will be installed with 644 file access mode
Tag(Library('lib.c'), UNIX_ATTR="0o644")

marks file2.txt to be a documentation file
Tag('file2.txt', DOC)

Tool(name, [toolpath, **kwargs])
env.Tool(name, [toolpath, **kwargs])

Locates the tool specification module name and returns a callable tool object for that tool. The tool module is
searched for in standard locations and in any paths specified by the optional toolpath parameter. The standard
locations are SCons' own internal path for tools plus the toolpath, if any (see the Tools section in the manual
page for more details). Any additional keyword arguments kwargs are passed to the tool module's generate
function during tool object construction.

When called, the tool object updates a construction environment with construction variables and arranges any
other initialization needed to use the mechanisms that tool describes.

When the env.Tool form is used, the tool object is automatically called to update env and the value of tool
is appended to the $TOOLS construction variable in that environment.

100

Examples:

env.Tool('gcc')
env.Tool('opengl', toolpath=['build/tools'])

When the global function Tool form is used, the tool object is constructed but not called, as it lacks the context of
an environment to update. The tool object can be passed to an Environment or Clone call as part of the tools
keyword argument, in which case the tool is applied to the environment being constructed, or it can be called
directly, in which case a construction environment to update must be passed as the argument. Either approach will
also update the $TOOLS construction variable.

Examples:

env = Environment(tools=[Tool('msvc')])

env = Environment()
msvctool = Tool('msvc')
msvctool(env) # adds 'msvc' to the TOOLS variable
gltool = Tool('opengl', toolpath = ['tools'])
gltool(env) # adds 'opengl' to the TOOLS variable

Changed in SCons 4.2: env.Tool now returns the tool object, previously it did not return (i.e. returned None).

Value(value, [built_value], [name])
env.Value(value, [built_value], [name])

Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies
of targets. If the result of calling str(value) changes between SCons runs, any targets depending on
Value(value) will be rebuilt. (This is true even when using timestamps to decide if files are up-to-date.) When
using timestamp source signatures, Value Nodes' timestamps are equal to the system time when the Node is
created. name can be provided as an alternative name for the resulting Value node; this is advised if the value
parameter can't be converted to a string.

The returned Value Node object has a write() method that can be used to "build" a Value Node by setting a
new value. The optional built_value argument can be specified when the Value Node is created to indicate
the Node should already be considered "built." There is a corresponding read() method that will return the built
value of the Node.

Examples:

env = Environment()

def create(target, source, env):
 # A function that will write a 'prefix=$SOURCE'
 # string into the file name specified as the
 # $TARGET.
 with open(str(target[0]), 'wb') as f:
 f.write('prefix=' + source[0].get_contents())

Fetch the prefix= argument, if any, from the command
line, and use /usr/local as the default.
prefix = ARGUMENTS.get('prefix', '/usr/local')

Attach a .Config() builder for the above function action

101

to the construction environment.
env['BUILDERS']['Config'] = Builder(action = create)
env.Config(target = 'package-config', source = Value(prefix))

def build_value(target, source, env):
 # A function that "builds" a Python Value by updating
 # the the Python value with the contents of the file
 # specified as the source of the Builder call ($SOURCE).
 target[0].write(source[0].get_contents())

output = env.Value('before')
input = env.Value('after')

Attach a .UpdateValue() builder for the above function
action to the construction environment.
env['BUILDERS']['UpdateValue'] = Builder(action = build_value)
env.UpdateValue(target = Value(output), source = Value(input))

VariantDir(variant_dir, src_dir, [duplicate])
env.VariantDir(variant_dir, src_dir, [duplicate])

Sets up an alternate build location. When building in the variant_dir, SCons backfills as needed with files
from src_dir to create a complete build directory. VariantDir can be called multiple times with the same
src_dir to set up multiple builds with different options (variants).

The variant location must be in or underneath the project top directory, and src_dir may not be underneath
variant_dir.

By default, SCons physically duplicates the source files and SConscript files as needed into the variant tree. Thus,
a build performed in the variant tree is guaranteed to be identical to a build performed in the source tree even if
intermediate source files are generated during the build, or if preprocessors or other scanners search for included
files relative to the source file, or if individual compilers or other invoked tools are hard-coded to put derived
files in the same directory as source files. Only the files SCons calculates are needed for the build are duplicated
into variant_dir.

If possible on the platform, the duplication is performed by linking rather than copying. This behavior is affected
by the --duplicate command-line option.

Duplicating the source files may be disabled by setting the duplicate argument to False. This will cause
SCons to invoke Builders using the path names of source files in src_dir and the path names of derived files
within variant_dir. This is more efficient than duplicate=True, and is safe for most builds; revert to
True if it causes problems.

VariantDir works most naturally with used with a subsidiary SConscript file. The subsidiary SConscript file is
called as if it were in variant_dir, regardless of the value of duplicate. This is how you tell scons which
variant of a source tree to build:

run src/SConscript in two variant directories
VariantDir('build/variant1', 'src')
SConscript('build/variant1/SConscript')
VariantDir('build/variant2', 'src')
SConscript('build/variant2/SConscript')

See also the SConscript function, described above, for another way to specify a variant directory in conjunction
with calling a subsidiary SConscript file.

102

Examples:

use names in the build directory, not the source directory
VariantDir('build', 'src', duplicate=0)
Program('build/prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir('build', '.', duplicate=0)
SConscript(dirs=['build/src','build/doc'])

same as previous example, but only uses SConscript
SConscript(dirs='src', variant_dir='build/src', duplicate=0)
SConscript(dirs='doc', variant_dir='build/doc', duplicate=0)

WhereIs(program, [path, pathext, reject])
env.WhereIs(program, [path, pathext, reject])

Searches for the specified executable program, returning the full path to the program or None.

When called as a construction environment method, searches the paths in the path keyword argument, or if
None (the default) the paths listed in the construction environment (env['ENV']['PATH']). The external
environment's path list (os.environ['PATH']) is used as a fallback if the key env['ENV']['PATH']
does not exist.

On Windows systems, searches for executable programs with any of the file extensions listed in
the pathext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env['ENV']['PATHEXT']). The external environment's pathname extensions list
(os.environ['PATHEXT']) is used as a fallback if the key env['ENV']['PATHEXT'] does not exist.

When called as a global function, uses the external environment's path os.environ['PATH'] and path
extensions os.environ['PATHEXT'], respectively, if path and pathext are None.

Will not select any path name or names in the optional reject list.

SConscript Variables

In addition to the global functions and methods, scons supports a number of variables that can be used in SConscript
files to affect how you want the build to be performed.

ARGLIST
A list of the keyword=value arguments specified on the command line. Each element in the list is a tuple containing
the argument. The separate keyword and value elements of the tuple can be accessed by subscripting for elements
[0] and [1] of the tuple, or, more readably, by using tuple unpacking. Example:

print("first keyword, value =", ARGLIST[0][0], ARGLIST[0][1])
print("second keyword, value =", ARGLIST[1][0], ARGLIST[1][1])
key, value = ARGLIST[2]
print("third keyword, value =", key, value)
for key, value in ARGLIST:
 # process key and value

ARGUMENTS
A dictionary of all the keyword=value arguments specified on the command line. The dictionary is not in order,
and if a given keyword has more than one value assigned to it on the command line, the last (right-most) value
is the one in the ARGUMENTS dictionary.

103

Example:

if ARGUMENTS.get('debug', 0):
 env = Environment(CCFLAGS='-g')
else:
 env = Environment()

BUILD_TARGETS
A list of the targets which scons has been asked to build. The contents will be either those targets listed on the
command line, or, if none, those targets set via calls to the Default function. It does not contain any dependent
targets that scons selects for building as a result of making the sure the specified targets are up to date, if those
targets did not appear on the command line. The list is empty if neither command line targets or Default calls
are present.

The elements of this list may be strings or nodes, so you should run the list through the Python str function to
make sure any Node path names are converted to strings.

Because this list may be taken from the list of targets specified using the Default function, the contents of the
list may change on each successive call to Default. See the DEFAULT_TARGETS list, below, for additional
information.

Example:

if 'foo' in BUILD_TARGETS:
 print("Don't forget to test the `foo' program!")
if 'special/program' in BUILD_TARGETS:
 SConscript('special')

COMMAND_LINE_TARGETS
A list of the targets explicitly specified on the command line. If there are command line targets, this list will have
the same contents as BUILD_TARGETS. If there are no targets specified on the command line, the list is empty.
The elements of this list are strings. This can be used, for example, to take specific actions only when certain
targets are explicitly being built.

Example:

if 'foo' in COMMAND_LINE_TARGETS:
 print("Don't forget to test the `foo' program!")
if 'special/program' in COMMAND_LINE_TARGETS:
 SConscript('special')

DEFAULT_TARGETS
A list of the target nodes that have been specified using the Default function. If there are no command line
targets, this list will have the same contents as BUILD_TARGETS. Since the elements of the list are nodes, you
need to call the Python str function on them to get the path name for each Node.

Example:

print(str(DEFAULT_TARGETS[0]))
if 'foo' in [str(t) for t in DEFAULT_TARGETS]:
 print("Don't forget to test the `foo' program!")

104

The contents of the DEFAULT_TARGETS list change on on each successive call to the Default function:

print([str(t) for t in DEFAULT_TARGETS]) # originally []
Default('foo')
print([str(t) for t in DEFAULT_TARGETS]) # now a node ['foo']
Default('bar')
print([str(t) for t in DEFAULT_TARGETS]) # now a node ['foo', 'bar']
Default(None)
print([str(t) for t in DEFAULT_TARGETS]) # back to []

Consequently, be sure to use DEFAULT_TARGETS only after you've made all of your Default() calls, or else
simply be careful of the order of these statements in your SConscript files so that you don't look for a specific
default target before it's actually been added to the list.

These variables may be accessed from custom Python modules that you import into an SConscript file by adding the
following to the Python module:

from SCons.Script import *

Construction Variables

A construction environment has an associated dictionary of construction variables that are used by built-in or user-
supplied build rules. Construction variable naming must follow the same rules as Python identifier naming: the initial
character must be an underscore or letter, followed by any number of underscores, letters, or digits. A construction
environment is not a Python dictionary itself, but it can be indexed like one to access a construction variable:

env["CC"] = "cc"
flags = env.get("CPPDEFINES", [])

Construction variables can also be retrieved and set by using the Dictionary method of the construction
environment to create an actual dictionary:

cvars = env.Dictionary()
cvars["CC"] = "cc"

Construction variables can also be passed to the construction environment constructor:

env = Environment(CC="cc")

or when copying a construction environment using the Clone method:

env2 = env.Clone(CC="cl.exe")

Construction variables can also be supplied as keyword arguments to a builder, in which case those settings affect only
the work done by that builder call, and not the construction environment as a whole. This concept is called an override:

env.Program('hello', 'hello.c', LIBS=['gl', 'glut'])

105

A number of useful construction variables are automatically defined by scons for each supported platform, and you
can modify these or define any additional construction variables for your own use, taking care not to overwrite ones
which SCons is using. The following is a list of the possible automatically defined construction variables.

Note the actual list available at execution time will never include all of these, as the ones detected as not being useful
(wrong platform, necessary external command or files not installed, etc.) will not be set up. Correct build setups should
be resilient to the possible absence of certain construction variables before using them, for example by using a Python
dictionary get method to retrieve the value and taking alternative action if the return indicates the variable is unset.
The env.Dump method can be called to examine the construction variables set in a particular environment.

__LDMODULEVERSIONFLAGS
This construction variable automatically introduces $_LDMODULEVERSIONFLAGS if $LDMODULEVERSION
is set. Othervise it evaluates to an empty string.

__NINJA_NO
Internal flag. Used to tell SCons whether or not to try to import pypi's ninja python package. This is set to True
when being called by Ninja?

__SHLIBVERSIONFLAGS
This construction variable automatically introduces $_SHLIBVERSIONFLAGS if $SHLIBVERSION is set.
Othervise it evaluates to an empty string.

APPLELINK_COMPATIBILITY_VERSION
On Mac OS X this is used to set the linker flag: -compatibility_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLIBVERSION if not specified. The
lowest digit will be dropped and replaced by a 0.

If the $APPLELINK_NO_COMPATIBILITY_VERSION is set then no -compatibility_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_COMPATIBILITY_VERSION
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELINK_COMPATIBILITY_VERSION and
$APPLELINK_NO_COMPATIBILITY_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_CURRENT_VERSION
On Mac OS X this is used to set the linker flag: -current_version

The value is specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be set to $SHLIBVERSION if not specified.

If the $APPLELINK_NO_CURRENT_VERSION is set then no -current_version will be output.

See MacOS's ld manpage for more details

_APPLELINK_CURRENT_VERSION
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELINK_CURRENT_VERSION and
$APPLELINK_NO_CURRENT_VERSION and $SHLIBVERSION to determine the correct flag.

APPLELINK_NO_COMPATIBILITY_VERSION
Set this to any True (1|True|non-empty string) value to disable adding -compatibility_version flag when generating
versioned shared libraries.

106

This overrides $APPLELINK_COMPATIBILITY_VERSION.

APPLELINK_NO_CURRENT_VERSION
Set this to any True (1|True|non-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides $APPLELINK_CURRENT_VERSION.

AR
The static library archiver.

ARCHITECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SCons is running. This is used to fill in the Architecture: field in an Ipkg control
file, and the BuildArch: field in the RPM .spec file, as well as forming part of the name of a generated
RPM package file.

See the Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environment(ARCOMSTR = "Archiving $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If this is not set,
then $ASCOM (the command line) is displayed.

env = Environment(ASCOMSTR = "Assembling $TARGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assemble an assembly-language source file into an object file after first running the file
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
are included on this command line.

ASPPCOMSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If this is not set, then $ASPPCOM (the command line) is displayed.

107

env = Environment(ASPPCOMSTR = "Assembling $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX
The bibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOM
The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BIBTEXCOMSTR
The string displayed when generating a bibliography for TeX or LaTeX. If this is not set, then $BIBTEXCOM
(the command line) is displayed.

env = Environment(BIBTEXCOMSTR = "Generating bibliography $TARGET")

BIBTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUILDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program, Library etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUILDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUILDERS will override any defaults:

bld = Builder(action='foobuild < $SOURCE > $TARGET')
env = Environment(BUILDERS={'NewBuilder': bld})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment()
env.Append(BUILDERS={'NewBuilder': bld})

or this:

env = Environment()
env['BUILDERS']['NewBuilder'] = bld

CACHEDIR_CLASS
The class type that SCons should use when instantiating a new CacheDir for the given environment. It must be
a subclass of the SCons.CacheDir.CacheDir class.

CC
The C compiler.

108

CCCOM
The command line used to compile a C source file to a (static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOMSTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See also $SHCCCOMSTR for compiling to shared objects.

env = Environment(CCCOMSTR = "Compiling static object $TARGET")

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variable is set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

The Visual C++ compiler option that SCons uses by default to generate PDB information is /Z7. This works
correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the /Zi instead may yield improved link-time performance,
although parallel builds will no longer work.

You can generate PDB files with the /Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%s" % File(PDB)) or ""}']

An alternative would be to use the /Zi to put the debugging information in a separate .pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env['CCPDBFLAGS'] = '/Zi /Fd${TARGET}.pdb'

CCVERSION
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFILESUFFIX
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.l)
or YACC (.y) input files. The default suffix, of course, is .c (lower case). On case-insensitive systems (like
Windows), SCons also treats .C (upper case) files as C files.

CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

109

CHANGE_SPECFILE
A hook for modifying the file that controls the packaging build (the .spec for RPM, the control for Ipkg, the
.wxs for MSI). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGELOG
The name of a file containing the change log text to be included in the package. This is included as the
%changelog section of the RPM .spec file.

See the Package builder.

COMPILATIONDB_COMSTR
The string displayed when the CompilationDatabase builder's action is run.

COMPILATIONDB_PATH_FILTER
A string which instructs CompilationDatabase to only include entries where the output member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string '', which disables filtering.

COMPILATIONDB_USE_ABSPATH
A boolean flag to instruct CompilationDatabase whether to write the file and output members in the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

_concat
A function used to produce variables like $_CPPINCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) a list of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optional affect_signature flag which will wrap non-
empty returned value with $(and $) to indicate the contents should not affect the signature of the generated
command line.

 env['_CPPINCFLAGS'] = '${_concat(INCPREFIX, CPPPATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE, affect_signature=False)}'

CONFIGUREDIR
The name of the directory in which Configure context test files are written. The default is .sconf_temp in the
top-level directory containing the SConstruct file.

CONFIGURELOG
The name of the Configure context log file. The default is config.log in the top-level directory containing
the SConstruct file.

110

_CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. The value of $_CPPDEFFLAGS is created by respectively prepending and appending $CPPDEFPREFIX
and $CPPDEFSUFFIX to each definition in $CPPDEFINES.

CPPDEFINES
A platform independent specification of C preprocessor macro definitions. The definitions will be added to
command lines through the automatically-generated $_CPPDEFFLAGS construction variable (see above), which
is constructed according to the type of value of $CPPDEFINES:

If $CPPDEFINES is a string, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables
will be respectively prepended and appended to each definition in $CPPDEFINES.

Will add -Dxyz to POSIX compiler command lines,
and /Dxyz to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES='xyz')

If $CPPDEFINES is a list, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction variables
will be respectively prepended and appended to each element in the list. If any element is a list or tuple, then the
first item is the name being defined and the second item is its value:

Will add -DB=2 -DA to POSIX compiler command lines,
and /DB=2 /DA to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES=[('B', 2), 'A'])

If $CPPDEFINES is a dictionary, the values of the $CPPDEFPREFIX and $CPPDEFSUFFIX construction
variables will be respectively prepended and appended to each item from the dictionary. The key of each dictionary
item is a name being defined to the dictionary item's corresponding value; if the value is None, then the name is
defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of
the options on the command line is consistent each time scons is run.

Will add -DA -DB=2 to POSIX compiler command lines,
and /DA /DB=2 to Microsoft Visual C++ command lines.
env = Environment(CPPDEFINES={'B':2, 'A':None})

CPPDEFPREFIX
The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable
is automatically generated.

CPPDEFSUFFIX
The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFINES construction variable when the $_CPPDEFFLAGS variable
is automatically generated.

CPPFLAGS
User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM, $SHCCCOM, $CXXCOM and
$SHCXXCOM command lines, but also the $FORTRANPPCOM, $SHFORTRANPPCOM, $F77PPCOM and
$SHF77PPCOM command lines used to compile a Fortran source file, and the $ASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
this variable does not contain -I (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPINCFLAGS, below, for the variable that expands to those options.

111

_CPPINCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for include files. The value of $_CPPINCFLAGS is created by respectively
prepending and appending $INCPREFIX and $INCSUFFIX to each directory in $CPPPATH.

CPPPATH
The list of directories that the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directories for include files. In general it's not advised to put include directory directives
directly into $CCFLAGS or $CXXFLAGS as the result will be non-portable and the directories will not be searched
by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list
joined by Python's os.sep.

Note: directory names in $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(CPPPATH='#/include')

The directory look-up can also be forced using the Dir function:

include = Dir('include')
env = Environment(CPPPATH=include)

The directory list will be added to command lines through the automatically-generated $_CPPINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to each directory in $CPPPATH. Any command lines
you define that need the $CPPPATH directory list should include $_CPPINCFLAGS:

env = Environment(CCCOM="my_compiler $_CPPINCFLAGS -c -o $TARGET $SOURCE")

CPPSUFFIXES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default list is:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
 ".h", ".H", ".hxx", ".hpp", ".hh",
 ".F", ".fpp", ".FPP",
 ".m", ".mm",
 ".S", ".spp", ".SPP"]

CXX
The C++ compiler. See also $SHCXX for compiling to shared objects..

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOM for compiling
to shared objects..

CXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See also $SHCXXCOMSTR for compiling to shared objects..

112

env = Environment(CXXCOMSTR = "Compiling static object $TARGET")

CXXFILESUFFIX
The suffix for C++ source files. This is used by the internal CXXFile builder when generating C++ files from Lex
(.ll) or YACC (.yy) input files. The default suffix is .cc. SCons also treats files with the suffixes .cpp, .cxx,
.c++, and .C++ as C++ files, and files with .mm suffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats .C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSION
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM
The command line used to compile a D file to an object file. Any options specified in the $DFLAGS construction
variable is included on this command line. See also $SHDCOM for compiling to shared objects.

DCOMSTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See also $SHDCOMSTR for compiling to shared objects.

DDEBUG
List of debug tags to enable when compiling.

DDEBUGPREFIX
DDEBUGPREFIX.

DDEBUGSUFFIX
DDEBUGSUFFIX.

DESCRIPTION
A long description of the project being packaged. This is included in the relevant section of the file that controls
the packaging build.

See the Package builder.

DESCRIPTION_lang
A language-specific long description for the specified lang. This is used to populate a %description -l
section of an RPM .spec file.

See the Package builder.

DFILESUFFIX
DFILESUFFIX.

DFLAGPREFIX
DFLAGPREFIX.

DFLAGS
General options that are passed to the D compiler.

113

DFLAGSUFFIX
DFLAGSUFFIX.

DINCPREFIX
DINCPREFIX.

DINCSUFFIX
DLIBFLAGSUFFIX.

Dir
A function that converts a string into a Dir instance relative to the target being built.

Dirs
A function that converts a list of strings into a list of Dir instances relative to the target being built.

DLIB
Name of the lib tool to use for D codes.

DLIBCOM
The command line to use when creating libraries.

DLIBDIRPREFIX
DLIBLINKPREFIX.

DLIBDIRSUFFIX
DLIBLINKSUFFIX.

DLIBFLAGPREFIX
DLIBFLAGPREFIX.

DLIBFLAGSUFFIX
DLIBFLAGSUFFIX.

DLIBLINKPREFIX
DLIBLINKPREFIX.

DLIBLINKSUFFIX
DLIBLINKSUFFIX.

DLINK
Name of the linker to use for linking systems including D sources. See also $SHDLINK for linking shared objects.

DLINKCOM
The command line to use when linking systems including D sources. See also $SHDLINKCOM for linking shared
objects.

DLINKFLAGPREFIX
DLINKFLAGPREFIX.

DLINKFLAGS
List of linker flags. See also $SHDLINKFLAGS for linking shared objects.

DLINKFLAGSUFFIX
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

114

DOCBOOK_DEFAULT_XSL_HTML
The default XSLT file for the DocbookHtml builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
The default XSLT file for the DocbookHtmlChunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHtmlhelp builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESHTML
The default XSLT file for the DocbookSlidesHtml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESPDF
The default XSLT file for the DocbookSlidesPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer fop or xep, if one of them is installed (fop gets checked first).

DOCBOOK_FOPCOM
The full command-line for the PDF renderer fop or xep.

DOCBOOK_FOPCOMSTR
The string displayed when a renderer like fop or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer fop or xep.

DOCBOOK_XMLLINT
The path to the external executable xmllint, if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no lxml Python binding can be imported in the current system.

DOCBOOK_XMLLINTCOM
The full command-line for the external executable xmllint.

DOCBOOK_XMLLINTCOMSTR
The string displayed when xmllint is used to resolve XIncludes for a given XML file.

DOCBOOK_XMLLINTFLAGS
Additonal command-line flags for the external executable xmllint.

DOCBOOK_XSLTPROC
The path to the external executable xsltproc (or saxon, xalan), if one of them is installed. Note, that this
is only used as last fallback for XSL transformations, if no lxml Python binding can be imported in the current
system.

115

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xsltproc is used to transform an XML file via a given XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsltproc (or saxon, xalan).

DOCBOOK_XSLTPROCPARAMS
Additonal parameters that are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon-xslt, respectively.

DPATH
List of paths to search for import modules.

DRPATHPREFIX
DRPATHPREFIX.

DRPATHSUFFIX
DRPATHSUFFIX.

DSUFFIXES
The list of suffixes of files that will be scanned for imported D package files. The default list is ['.d'].

DVERPREFIX
DVERPREFIX.

DVERSIONS
List of version tags to enable when compiling.

DVERSUFFIX
DVERSUFFIX.

DVIPDF
The TeX DVI file to PDF file converter.

DVIPDFCOM
The command line used to convert TeX DVI files into a PDF file.

DVIPDFCOMSTR
The string displayed when a TeX DVI file is converted into a PDF file. If this is not set, then $DVIPDFCOM (the
command line) is displayed.

DVIPDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVIPS
The TeX DVI file to PostScript converter.

DVIPSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
A dictionary of environment variables to use when invoking commands. When $ENV is used in a command
all list values will be joined using the path separator and any other non-string values will simply be coerced to
a string. Note that, by default, scons does not propagate the environment in effect when you execute scons to

116

the commands used to build target files. This is so that builds will be guaranteed repeatable regardless of the
environment variables set at the time scons is invoked.

If you want to propagate your environment variables to the commands executed to build target files, you must
do so explicitly:

import os
env = Environment(ENV=os.environ.copy())

Note that you can choose only to propagate certain environment variables. A common example is the system
PATH environment variable, so that scons uses the same utilities as the invoking shell (or other process):

import os
env = Environment(ENV={'PATH': os.environ['PATH']})

ESCAPE
A function that will be called to escape shell special characters in command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

F03
The Fortran 03 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

F03COM
The command line used to compile a Fortran 03 source file to an object file. You only need to set $F03COM if you
need to use a specific command line for Fortran 03 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F03COMSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $F03COM
or $FORTRANCOM (the command line) is displayed.

F03FILESUFFIXES
The list of file extensions for which the F03 dialect will be used. By default, this is ['.f03']

F03FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F03PATH. See
$_F03INCFLAGS below, for the variable that expands to those options. You only need to set $F03FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F03INCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F03INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F03PATH.

F03PATH
The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F03FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F03PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only

117

need to set $F03PATH if you need to define a specific include path for Fortran 03 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F03PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F03PATH=include)

The directory list will be added to command lines through the automatically-generated $_F03INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F03PATH. Any command lines you define
that need the F03PATH directory list should include $_F03INCFLAGS:

env = Environment(F03COM="my_compiler $_F03INCFLAGS -c -o $TARGET $SOURCE")

F03PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F03FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F03PPCOM if you need to use a specific C-preprocessor command
line for Fortran 03 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F03PPCOMSTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F03PPCOM or $FORTRANPPCOM (the command line) is displayed.

F03PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F03 dialect will be used. By default,
this is empty.

F08
The Fortran 08 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

F08COM
The command line used to compile a Fortran 08 source file to an object file. You only need to set $F08COM if you
need to use a specific command line for Fortran 08 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F08COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $F08COM
or $FORTRANCOM (the command line) is displayed.

F08FILESUFFIXES
The list of file extensions for which the F08 dialect will be used. By default, this is ['.f08']

F08FLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F08PATH. See

118

$_F08INCFLAGS below, for the variable that expands to those options. You only need to set $F08FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F08INCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F08PATH.

F08PATH
The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F08FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F08PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F08PATH if you need to define a specific include path for Fortran 08 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F08PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F08PATH=include)

The directory list will be added to command lines through the automatically-generated $_F08INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F08PATH. Any command lines you define
that need the F08PATH directory list should include $_F08INCFLAGS:

env = Environment(F08COM="my_compiler $_F08INCFLAGS -c -o $TARGET $SOURCE")

F08PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F08FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F08PPCOM if you need to use a specific C-preprocessor command
line for Fortran 08 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F08PPCOMSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F08PPCOM or $FORTRANPPCOM (the command line) is displayed.

F08PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F08 dialect will be used. By default,
this is empty.

F77
The Fortran 77 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

119

F77COM
The command line used to compile a Fortran 77 source file to an object file. You only need to set $F77COM if you
need to use a specific command line for Fortran 77 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F77COMSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES
The list of file extensions for which the F77 dialect will be used. By default, this is ['.f77']

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F77INCFLAGS below, for the variable that expands to those options. You only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F77INCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F77INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F77PATH.

F77PATH
The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F77PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F77PATH=include)

The directory list will be added to command lines through the automatically-generated $_F77INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F77INCFLAGS:

env = Environment(F77COM="my_compiler $_F77INCFLAGS -c -o $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F77PPCOM if you need to use a specific C-preprocessor command

120

line for Fortran 77 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOMSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOM or $FORTRANPPCOM (the command line) is displayed.

F77PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
this is empty.

F90
The Fortran 90 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

F90COM
The command line used to compile a Fortran 90 source file to an object file. You only need to set $F90COM if you
need to use a specific command line for Fortran 90 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

F90FILESUFFIXES
The list of file extensions for which the F90 dialect will be used. By default, this is ['.f90']

F90FLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F90PATH. See
$_F90INCFLAGS below, for the variable that expands to those options. You only need to set $F90FLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F90PATH.

F90PATH
The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F90FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F90PATH if you need to define a specific include path for Fortran 90 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F90PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')

121

env = Environment(F90PATH=include)

The directory list will be added to command lines through the automatically-generated $_F90INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F90PATH. Any command lines you define
that need the F90PATH directory list should include $_F90INCFLAGS:

env = Environment(F90COM="my_compiler $_F90INCFLAGS -c -o $TARGET $SOURCE")

F90PPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F90PPCOM if you need to use a specific C-preprocessor command
line for Fortran 90 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F90PPCOMSTR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. If not set, then $F90PPCOM or $FORTRANPPCOM (the command line) is displayed.

F90PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
this is empty.

F95
The Fortran 95 compiler. You should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. You only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COM
The command line used to compile a Fortran 95 source file to an object file. You only need to set $F95COM if you
need to use a specific command line for Fortran 95 files. You should normally set the $FORTRANCOM variable,
which specifies the default command line for all Fortran versions.

F95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

F95FILESUFFIXES
The list of file extensions for which the F95 dialect will be used. By default, this is ['.f95']

F95FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain -I (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F95INCFLAGS below, for the variable that expands to those options. You only need to set $F95FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the $FORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95INCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F95INCFLAGS is created by appending
$INCPREFIX and $INCSUFFIX to the beginning and end of each directory in $F95PATH.

F95PATH
The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in

122

$F95FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use #: You only
need to set $F95PATH if you need to define a specific include path for Fortran 95 files. You should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment(F95PATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(F95PATH=include)

The directory list will be added to command lines through the automatically-generated $_F95INCFLAGS
construction variable, which is constructed by appending the values of the $INCPREFIX and $INCSUFFIX
construction variables to the beginning and end of each directory in $F95PATH. Any command lines you define
that need the F95PATH directory list should include $_F95INCFLAGS:

env = Environment(F95COM="my_compiler $_F95INCFLAGS -c -o $TARGET $SOURCE")

F95PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on this command line. You only need to set $F95PPCOM if you need to use a specific C-preprocessor command
line for Fortran 95 files. You should normally set the $FORTRANPPCOM variable, which specifies the default C-
preprocessor command line for all Fortran versions.

F95PPCOMSTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOM or $FORTRANPPCOM (the command line) is displayed.

F95PPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By default,
this is empty.

File
A function that converts a string into a File instance relative to the target being built.

FORTRAN
The default Fortran compiler for all versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANINCFLAGS
construction variables are included on this command line.

FORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFILESUFFIXES
The list of file extensions for which the FORTRAN dialect will be used. By default, this is ['.f', '.for',
'.ftn']

123

FORTRANFLAGS
General user-specified options that are passed to the Fortran compiler. Note that this variable does not contain -
I (or similar) include or module search path options that scons generates automatically from $FORTRANPATH.
See $_FORTRANINCFLAGS and $_FORTRANMODFLAG, below, for the variables that expand those options.

_FORTRANINCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $_FORTRANINCFLAGS is
created by respectively prepending and appending $INCPREFIX and $INCSUFFIX to the beginning and end
of each directory in $FORTRANPATH.

FORTRANMODDIR
Directory location where the Fortran compiler should place any module files it generates. This variable is empty,
by default. Some Fortran compilers will internally append this directory in the search path for module files, as well.

FORTRANMODDIRPREFIX
The prefix used to specify a module directory on the Fortran compiler command line. This will be prepended to the
beginning of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG
variables is automatically generated.

FORTRANMODDIRSUFFIX
The suffix used to specify a module directory on the Fortran compiler command line. This will be appended to the
end of the directory in the $FORTRANMODDIR construction variables when the $_FORTRANMODFLAG variables
is automatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $_FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDIRPREFIX and $FORTRANMODDIRSUFFIX to the beginning and end of the
directory in $FORTRANMODDIR.

FORTRANMODPREFIX
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of module_name.mod. As a result, this variable is left empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of module_name.mod. As a result, this variable is set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
use this variable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH
The list of directories that the Fortran compiler will search for include files and (for some compilers) module files.
The Fortran implicit dependency scanner will search these directories for include files (but not module files since
they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory arguments in FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up relative
to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to
the root of the source tree use #:

env = Environment(FORTRANPATH='#/include')

124

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(FORTRANPATH=include)

The directory list will be added to command lines through the automatically-generated $_FORTRANINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$INCPREFIX and $INCSUFFIX construction variables to the beginning and end of each directory in
$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANINCFLAGS:

env = Environment(FORTRANCOM="my_compiler $_FORTRANINCFLAGS -c -o $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS,
$_FORTRANMODFLAG, and $_FORTRANINCFLAGS construction variables are included on this command line.

FORTRANPPCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file after first running the file through
the C preprocessor. If not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, this is ['.fpp', '.FPP']

FORTRANSUFFIXES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

[".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
".f77", ".F77", ".f90", ".F90", ".f95", ".F95"]

FRAMEWORKPATH
On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEWORKS). For example:

env.AppendUnique(FRAMEWORKPATH='#myframeworkdir')

will add

... -Fmyframeworkdir

to the compiler and linker command lines.

_FRAMEWORKPATH
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAMEWORKPATH.

125

FRAMEWORKPATHPREFIX
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAMEWORKPATH).
The default value is -F.

FRAMEWORKPREFIX
On Mac OS X with gcc, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value
is -framework.

FRAMEWORKS
On Mac OS X with gcc, a list of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env.AppendUnique(FRAMEWORKS=Split('System Cocoa SystemConfiguration'))

_FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAMEWORKPATH,
$FRAMEWORKPATHPREFIX, $FRAMEWORKPREFIX and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCOM
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sOutputFile=$TARGET $SOURCES”.

GSCOMSTR
The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then
$GSCOM (the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default value is “-dNOPAUSE -dBATCH -sDEVICE=pdfwrite”

HOST_ARCH
The name of the host hardware architecture used to create the Environment. If a platform is specified when creating
the Environment, then that Platform's logic will handle setting this value. This value is immutable, and should not
be changed by the user after the Environment is initialized. Currently only set for Win32.

Sets the host architecture for the Visual C++ compiler. If not set, default to the detected host architecture: note that
this may depend on the python you are using. This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect.

Valid values are the same as for $TARGET_ARCH.

This is currently only used on Windows, but in the future it may be used on other OSes as well.

HOST_OS
The name of the host operating system used to create the Environment. If a platform is specified when creating
the Environment, then that Platform's logic will handle setting this value. This value is immutable, and should not
be changed by the user after the Environment is initialized. Currently only set for Win32.

126

IDLSUFFIXES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default list is:

[".idl", ".IDL"]

IMPLIBNOVERSIONSYMLINKS
Used to override $SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS when creating
versioned import library for a shared library/loadable module. If not defined, then
$SHLIBNOVERSIONSYMLINKS/$LDMODULENOVERSIONSYMLINKS is used to determine whether to disable
symlink generation or not.

IMPLIBPREFIX
The prefix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in
pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBPREFIX to 'lib' and
$SHLIBPREFIX to 'cyg'.

IMPLIBSUFFIX
The suffix used for import library names. For example, cygwin uses import libraries (libfoo.dll.a) in
pair with dynamic libraries (cygfoo.dll). The cyglink linker sets $IMPLIBSUFFIX to '.dll.a' and
$SHLIBSUFFIX to '.dll'.

IMPLIBVERSION
Used to override $SHLIBVERSION/$LDMODULEVERSION when generating versioned import library for a
shared library/loadable module. If undefined, the $SHLIBVERSION/$LDMODULEVERSION is used to determine
the version of versioned import library.

IMPLICIT_COMMAND_DEPENDENCIES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SCons will add to each target an implicit dependency on the command represented by the first argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable $IMPLICIT_COMMAND_DEPENDENCIES to a True-like value (“true”, “yes”, or “1” - but not a number
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a
separate “command line”, these are run sequentially until one fails or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $IMPLICIT_COMMAND_DEPENDENCIES is applied
to each segment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to a False-like value (“none”, “false”, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to “2” or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependencies to the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $IMPLICIT_COMMAND_DEPENDENCIES is set to “all”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added as implicit dependencies to the targets

127

built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

env = Environment(IMPLICIT_COMMAND_DEPENDENCIES=False)

INCPREFIX
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INCSUFFIX
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_CPPINCFLAGS and
$_FORTRANINCFLAGS variables are automatically generated.

INSTALL
A function to be called to install a file into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the source file's). The function takes
the following arguments:

def install(dest, source, env):

dest is the path name of the destination file. source is the path name of the source file. env is the construction
environment (a dictionary of construction values) in force for this file installation.

INSTALLSTR
The string displayed when a file is installed into a destination file name. The default is:

Install file: "$SOURCE" as "$TARGET"

INTEL_C_COMPILER_VERSION
Set by the intelc Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDIR
The directory to which the Java archive tool should change (using the -C option).

JARCOM
The command line used to call the Java archive tool.

JARCOMSTR
The string displayed when the Java archive tool is called If this is not set, then $JARCOM (the command line)
is displayed.

env = Environment(JARCOMSTR="JARchiving $SOURCES into $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default this is set to cf to create the necessary jar file.

JARSUFFIX
The suffix for Java archives: .jar by default.

128

JAVABOOTCLASSPATH
Specifies the list of directories that will be added to the javac command line via the -bootclasspath option.
The individual directory names will be separated by the operating system's path separate character (: on UNIX/
Linux/POSIX, ; on Windows).

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java class files.
Any options specified in the $JAVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Java class files. If this
is not set, then $JAVACCOM (the command line) is displayed.

env = Environment(JAVACCOMSTR="Compiling class files $TARGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDIR
The directory in which Java class files may be found. This is stripped from the beginning of any Java .class file
names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the list of directories that will be searched for Java .class file. The directories in this list will be
added to the javac and javah command lines via the -classpath option. The individual directory names will
be separated by the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the -classpath option. SCons does not currently
search the $JAVACLASSPATH directories for dependency .class files.

JAVACLASSSUFFIX
The suffix for Java class files; .class by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$JAVAHCOM (the command line) is displayed.

env = Environment(JAVAHCOMSTR="Generating header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAINCLUDES
Include path for Java header files (such as jni.h)

129

JAVASOURCEPATH
Specifies the list of directories that will be searched for input .java file. The directories in this list will be added
to the javac command line via the -sourcepath option. The individual directory names will be separated by
the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory via the -sourcepath option. SCons does not currently
search the $JAVASOURCEPATH directories for dependency .java files.

JAVASUFFIX
The suffix for Java files; .java by default.

JAVAVERSION
Specifies the Java version being used by the Java builder. This is not currently used to select one version of
the Java compiler vs. another. Instead, you should set this to specify the version of Java supported by your javac
compiler. The default is 1.4.

This is sometimes necessary because Java 1.5 changed the file names that are created for nested anonymous inner
classes, which can cause a mismatch with the files that SCons expects will be generated by the javac compiler.
Setting $JAVAVERSION to 1.5 (or 1.6, as appropriate) can make SCons realize that a Java 1.5 or 1.6 build
is actually up to date.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
$LATEXCOM (the command line) is displayed.

env = Environment(LATEXCOMSTR = "Building $TARGET from LaTeX input $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES
The maximum number of times that LaTeX will be re-run if the .log generated by the $LATEXCOM command
indicates that there are undefined references. The default is to try to resolve undefined references by re-running
LaTeX up to three times.

LATEXSUFFIXES
The list of suffixes of files that will be scanned for LaTeX implicit dependencies (\include or \import files).
The default list is:

[".tex", ".ltx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, this is the same as $SHLINK.

LDMODULECOM
The command line for building loadable modules. On Mac OS X, this uses the $LDMODULE, $LDMODULEFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, this is the same as $SHLINK.

130

LDMODULECOMSTR
If set, the string displayed when building loadable modules. If not set, then $LDMODULECOM (the command line)
is displayed.

LDMODULEEMITTER
Contains the emitter specification for the LoadableModule builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

LDMODULEFLAGS
General user options passed to the linker for building loadable modules.

LDMODULENOVERSIONSYMLINKS
Instructs the LoadableModule builder to not automatically create symlinks for versioned modules. Defaults
to $SHLIBNOVERSIONSYMLINKS

LDMODULEPREFIX
The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLIBPREFIX.

_LDMODULESONAME
A macro that automatically generates loadable module's SONAME based on $TARGET,
$LDMODULEVERSION and $LDMODULESUFFIX. Used by LoadableModule builder when the linker tool
supports SONAME (e.g. gnulink).

LDMODULESUFFIX
The suffix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSION
When this construction variable is defined, a versioned loadable module is created by LoadableModule
builder. This activates the $_LDMODULEVERSIONFLAGS and thus modifies the $LDMODULECOM as required,
adds the version number to the library name, and creates the symlinks that are needed. $LDMODULEVERSION
versions should exist in the same format as $SHLIBVERSION.

_LDMODULEVERSIONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
LoadableModule (that is when $LDMODULEVERSION is set). _LDMODULEVERSIONFLAGS usually
adds $SHLIBVERSIONFLAGS and some extra dynamically generated options (such as -Wl,-soname=
$_LDMODULESONAME). It is unused by plain (unversioned) loadable modules.

LDMODULEVERSIONFLAGS
Extra flags added to $LDMODULECOM when building versioned LoadableModule. These flags are only used
when $LDMODULEVERSION is set.

LEX
The lexical analyzer generator.

LEXCOM
The command line used to call the lexical analyzer generator to generate a source file.

LEXCOMSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM (the command line) is displayed.

env = Environment(LEXCOMSTR = "Lex'ing $TARGET from $SOURCES")

131

LEXFLAGS
General options passed to the lexical analyzer generator.

LEXUNISTD
Used only on windows environments to set a lex flag to prevent 'unistd.h' from being included. The default value
is '--nounistd'.

_LIBDIRFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directories to be searched for library. The value of $_LIBDIRFLAGS is created by respectively prepending and
appending $LIBDIRPREFIX and $LIBDIRSUFFIX to each directory in $LIBPATH.

LIBDIRPREFIX
The prefix used to specify a library directory on the linker command line. This will be prepended to each directory
in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBDIRSUFFIX
The suffix used to specify a library directory on the linker command line. This will be appended to each directory
in the $LIBPATH construction variable when the $_LIBDIRFLAGS variable is automatically generated.

LIBEMITTER
Contains the emitter specification for the StaticLibrary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

_LIBFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_LIBFLAGS is created by respectively prepending
and appending $LIBLINKPREFIX and $LIBLINKSUFFIX to each filename in $LIBS.

LIBLINKPREFIX
The prefix used to specify a library to link on the linker command line. This will be prepended to each library in
the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBLINKSUFFIX
The suffix used to specify a library to link on the linker command line. This will be appended to each library in
the $LIBS construction variable when the $_LIBFLAGS variable is automatically generated.

LIBPATH
The list of directories that will be searched for libraries specified by the $LIBS construction variable. $LIBPATH
should be a list of path strings, or a single string, not a pathname list joined by Python's os.sep. Do not put
library search directives directly into $LINKFLAGS or $SHLINKFLAGS as the result will be non-portable.

Note: directory names in $LIBPATH will be looked-up relative to the directory of the SConscript file when they
are used in a command. To force scons to look-up a directory relative to the root of the source tree use the # prefix:

env = Environment(LIBPATH='#/libs')

The directory look-up can also be forced using the Dir function:

libs = Dir('libs')
env = Environment(LIBPATH=libs)

The directory list will be added to command lines through the automatically-generated $_LIBDIRFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

132

$LIBDIRPREFIX and $LIBDIRSUFFIX construction variables to each directory in $LIBPATH. Any
command lines you define that need the $LIBPATH directory list should include $_LIBDIRFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

LIBPREFIX
The prefix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBPREFIXES
A list of all legal prefixes for library file names. When searching for library dependencies, SCons will look for
files with these prefixes, the base library name, and suffixes from the $LIBSUFFIXES list.

LIBS
A list of one or more libraries that will be added to the link line for linking with any executable program, shared
library, or loadable module created by the construction environment or override.

String-valued library names should include only the library base names, without prefixes such as lib or suffixes
such as .so or .dll. The library list will be added to command lines through the automatically-generated
$_LIBFLAGS construction variable which is constructed by respectively prepending and appending the values of
the $LIBLINKPREFIX and $LIBLINKSUFFIX construction variables to each library name in $LIBS. Library
name strings should not include a path component, instead the compiler will be directed to look for libraries in
the paths specified by $LIBPATH.

Any command lines you define that need the $LIBS library list should include $_LIBFLAGS:

env = Environment(LINKCOM="my_linker $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET $SOURCE")

If you add a File object to the $LIBS list, the name of that file will be added to $_LIBFLAGS, and thus to the
link line, as-is, without $LIBLINKPREFIX or $LIBLINKSUFFIX. For example:

env.Append(LIBS=File('/tmp/mylib.so'))

In all cases, scons will add dependencies from the executable program to all the libraries in this list.

LIBSUFFIX
The suffix used for (static) library file names. A default value is set for each platform (posix, win32, os2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBSUFFIXES
A list of all legal suffixes for library file names. When searching for library dependencies, SCons will look for
files with prefixes from the $LIBPREFIXES list, the base library name, and these suffixes.

LICENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause etc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for a list of license names and SPDX codes.

See the Package builder.

LINESEPARATOR
The separator used by the Substfile and Textfile builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

133

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

LINGUAS_FILE
The $LINGUAS_FILE defines file(s) containing list of additional linguas to be processed by POInit,
POUpdate or MOFiles builders. It also affects Translate builder. If the variable contains a string, it defines
name of the list file. The $LINGUAS_FILE may be a list of file names as well. If $LINGUAS_FILE is set to
True (or non-zero numeric value), the list will be read from default file named LINGUAS.

LINK
The linker. See also $SHLINK for linking shared objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LINKCOM
The command line used to link object files into an executable. See also $SHLINKCOM for linking shared objects.

LINKCOMSTR
If set, the string displayed when object files are linked into an executable. If not set, then $LINKCOM (the command
line) is displayed. See also $SHLINKCOMSTR. for linking shared objects.

env = Environment(LINKCOMSTR = "Linking $TARGET")

LINKFLAGS
General user options passed to the linker. Note that this variable should not contain -l (or similar) options
for linking with the libraries listed in $LIBS, nor -L (or similar) library search path options that scons
generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that expands to library-
link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path options. See also
$SHLINKFLAGS. for linking shared objects.

M4
The M4 macro preprocessor.

M4COM
The command line used to pass files through the M4 macro preprocessor.

M4COMSTR
The string displayed when a file is passed through the M4 macro preprocessor. If this is not set, then $M4COM
(the command line) is displayed.

M4FLAGS
General options passed to the M4 macro preprocessor.

MAKEINDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEINDEXCOMSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If this is not set, then $MAKEINDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

134

MAXLINELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

MIDL
The Microsoft IDL compiler.

MIDLCOM
The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR
The string displayed when the Microsoft IDL compiler is called. If this is not set, then $MIDLCOM (the command
line) is displayed.

MIDLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFIX
Suffix used for MO files (default: '.mo'). See msgfmt tool and MOFiles builder.

MSGFMT
Absolute path to msgfmt(1) binary, found by Detect(). See msgfmt tool and MOFiles builder.

MSGFMTCOM
Complete command line to run msgfmt(1) program. See msgfmt tool and MOFiles builder.

MSGFMTCOMSTR
String to display when msgfmt(1) is invoked (default: '', which means ``print $MSGFMTCOM''). See msgfmt
tool and MOFiles builder.

MSGFMTFLAGS
Additional flags to msgfmt(1). See msgfmt tool and MOFiles builder.

MSGINIT
Path to msginit(1) program (found via Detect()). See msginit tool and POInit builder.

MSGINITCOM
Complete command line to run msginit(1) program. See msginit tool and POInit builder.

MSGINITCOMSTR
String to display when msginit(1) is invoked (default: '', which means ̀ `print $MSGINITCOM''). See msginit
tool and POInit builder.

MSGINITFLAGS
List of additional flags to msginit(1) (default: []). See msginit tool and POInit builder.

_MSGINITLOCALE
Internal ``macro''. Computes locale (language) name based on target filename (default:
'${TARGET.filebase}').

See msginit tool and POInit builder.

MSGMERGE
Absolute path to msgmerge(1) binary as found by Detect(). See msgmerge tool and POUpdate builder.

MSGMERGECOM
Complete command line to run msgmerge(1) command. See msgmerge tool and POUpdate builder.

135

MSGMERGECOMSTR
String to be displayed when msgmerge(1) is invoked (default: '', which means ``print $MSGMERGECOM''). See
msgmerge tool and POUpdate builder.

MSGMERGEFLAGS
Additional flags to msgmerge(1) command. See msgmerge tool and POUpdate builder.

MSSDK_DIR
The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSION
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versions include 6.1, 6.0A, 6.0, 2003R2 and 2003R1.

MSVC_BATCH
When set to any true value, specifies that SCons should batch compilation of object files when calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in a single call to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED_SOURCES construction variable). Any compilations
where the object (target) file base name (minus the .obj) does not match the source file base name will be
compiled separately.

MSVC_USE_SCRIPT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of a Visual Studio .bat file (e.g. vcvars.bat), SCons will run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %INCLUDE%, %LIB%, and %PATH
%) for supplying to the build. This can be useful to force the use of a compiler version that SCons does not detect.

Setting $MSVC_USE_SCRIPT to None bypasses the Visual Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MSVC_USE_SCRIPT overrides $MSVC_VERSION and $TARGET_ARCH.

MSVC_UWP_APP
Build libraries for a Universal Windows Platform (UWP) Application.

If $MSVC_UWP_APP is set, the Visual C++ environment will be set up to point to the Windows Store compatible
libraries and Visual C++ runtimes. In doing so, any libraries that are built will be able to be used in a UWP App
and published to the Windows Store. This flag will only have an effect with Visual Studio 2015 or later. This
variable must be passed as an argument to the Environment() constructor; setting it later has no effect.

Valid values are '1' or '0'

MSVC_VERSION
Sets the preferred version of Microsoft Visual C/C++ to use.

If $MSVC_VERSION is not set, SCons will (by default) select the latest version of Visual C/C++ installed on
your system. If the specified version isn't installed, tool initialization will fail. This variable must be passed as an
argument to the Environment constructor; setting it later has no effect.

Valid values for Windows are 14.2, 14.1, 14.1Exp, 14.0, 14.0Exp, 12.0, 12.0Exp, 11.0, 11.0Exp,
10.0, 10.0Exp, 9.0, 9.0Exp, 8.0, 8.0Exp, 7.1, 7.0, and 6.0. Versions ending in Exp refer to "Express"
or "Express for Desktop" editions.

136

MSVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSVS being used (can be set via $MSVS_VERSION)

VERSIONS
the available versions of MSVS installed

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visual Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted latest to oldest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If a value is not set, it was not available in the registry.

MSVS_ARCH
Sets the architecture for which the generated project(s) should build.

The default value is x86. amd64 is also supported by SCons for most Visual Studio versions. Since Visual Studio
2015 arm is supported, and since Visual Studio 2017 arm64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for a given Visual Studio version will generate an error.

MSVS_PROJECT_GUID
The string placed in a generated Microsoft Visual Studio project file as the value of the ProjectGUID attribute.
There is no default value. If not defined, a new GUID is generated.

MSVS_SCC_AUX_PATH
The path name placed in a generated Microsoft Visual Studio project file as the value of the SccAuxPath
attribute if the MSVS_SCC_PROVIDER construction variable is also set. There is no default value.

MSVS_SCC_CONNECTION_ROOT
The root path of projects in your SCC workspace, i.e the path under which all project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visual Studio project and solution files are computed. The relative project file path is
placed as the value of the SccLocalPath attribute of the project file and as the values of the
SccProjectFilePathRelativizedFromConnection[i] (where [i] ranges from 0 to the number

137

of projects in the solution) attributes of the GlobalSection(SourceCodeControl) section of the
Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
SccLocalPath[i] (where [i] ranges from 0 to the number of projects in the solution) attributes of the
GlobalSection(SourceCodeControl) section of the Microsoft Visual Studio solution file. This is used
only if the MSVS_SCC_PROVIDER construction variable is also set. The default value is the current working
directory.

MSVS_SCC_PROJECT_NAME
The project name placed in a generated Microsoft Visual Studio project file as the value of the
SccProjectName attribute if the MSVS_SCC_PROVIDER construction variable is also set. In this case the
string is also placed in the SccProjectName0 attribute of the GlobalSection(SourceCodeControl)
section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_SCC_PROVIDER
The string placed in a generated Microsoft Visual Studio project file as the value of the SccProvider attribute.
The string is also placed in the SccProvider0 attribute of the GlobalSection(SourceCodeControl)
section of the Microsoft Visual Studio solution file. There is no default value.

MSVS_VERSION
Sets the preferred version of Microsoft Visual Studio to use.

If $MSVS_VERSION is not set, SCons will (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. You can override
this by specifying the MSVS_VERSION variable in the Environment initialization, setting it to the appropriate
version ('6.0' or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

This is obsolete: use $MSVC_VERSION instead. If $MSVS_VERSION is set and $MSVC_VERSION is not,
$MSVC_VERSION will be set automatically to $MSVS_VERSION. If both are set to different values, scons will
raise an error.

MSVSBUILDCOM
The build command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with any specified build targets.

MSVSCLEANCOM
The clean command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING
The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding
Windows-1252.

MSVSPROJECTCOM
The action used to generate Microsoft Visual Studio project files.

MSVSPROJECTSUFFIX
The suffix used for Microsoft Visual Studio project (DSP) files. The default value is .vcproj when using Visual
Studio version 7.x (.NET) or later version, and .dsp when using earlier versions of Visual Studio.

MSVSREBUILDCOM
The rebuild command line placed in a generated Microsoft Visual Studio project file. The default is to have Visual
Studio invoke SCons with any specified rebuild targets.

MSVSSCONS
The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being
used to generate the project file.

138

MSVSSCONSCOM
The default SCons command used in generated Microsoft Visual Studio project files.

MSVSSCONSCRIPT
The sconscript file (that is, SConstruct or SConscript file) that will be invoked by Visual Studio project
files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that contains the call to
MSVSProject to build the project file.

MSVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM
The action used to generate Microsoft Visual Studio solution files.

MSVSSOLUTIONSUFFIX
The suffix used for Microsoft Visual Studio solution (DSW) files. The default value is .sln when using Visual
Studio version 7.x (.NET), and .dsw when using earlier versions of Visual Studio.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See also
$WINDOWS_EMBED_MANIFEST.

MTEXECOM
The Windows command line used to embed manifests into executables. See also $MTSHLIBCOM.

MTFLAGS
Flags passed to the $MT manifest embedding program (Windows only).

MTSHLIBCOM
The Windows command line used to embed manifests into shared libraries (DLLs). See also $MTEXECOM.

MWCW_VERSION
The version number of the MetroWerks CodeWarrior C compiler to be used.

MWCW_VERSIONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME
Specfies the name of the project to package.

See the Package builder.

NINJA_ALIAS_NAME
Name of the Alias() which is will cause SCons to create the ninja.build file, and then (optionally) run ninja.

NINJA_COMPDB_EXPAND
Boolean value (True|False) to instruct ninja to expand the command line arguments normally put into response
files. This prevents lines in the compilation database like “gcc @rsp_file” and instead yields “gcc -c -o myfile.o
myfile.c -Ia -DXYZ”

Ninja's compdb tool added the “-x” flag in Ninja V1.9.0

NINJA_DIR
This propagates directly into the generated ninja.build file. From Ninja's docs:

builddir A directory for some Ninja output files. ... (You can also store other build output in
this directory.)

139

NINJA_DISABLE_AUTO_RUN
Boolean (True|False). Default: False When True, SCons will not run ninja automatically after
creating the ninja.build file. If not set, this will be set to True if “--disable_execute_ninja” or
SetOption('disable_execute_ninja', True)

NINJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and
the SCons command ENV. It will be compatible with the default shell of the operating system. If not explicitly
specified, SCons will generate this dynamically from the Environment()'s 'ENV' “env['ENV']” where those values
differ from the existing shell..

NINJA_FILE_NAME
The filename for the generated Ninja build file defaults to ninja.build

NINJA_GENERATED_SOURCE_SUFFIXES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixes will be added to the _generated_sources alias in the output ninja.build file. Then all other source
files will be made to depend on this in the ninja.build file, forcing the generated sources to be built first.

NINJA_MSVC_DEPS_PREFIX
This propagates directly into the generated ninja.build file. From Ninja's docs “defines the string which
should be stripped from msvc’s /showIncludes output”

NINJA_POOL
Set the “ninja_pool” for this or all targets in scope for this env var.

NINJA_REGENERATE_DEPS
A generator function used to create a ninja depsfile which includes all the files which would require SCons to be
invoked if they change. Or a list of said files.

_NINJA_REGENERATE_DEPS_FUNC
Internal value used to specify the function to call with argument env to generate the list of files which if changed
would require the ninja file to be regenerated.

NINJA_SYNTAX
Theres also NINJA_SYNTAX which is the path to a custom ninja_syntax.py file which is used in generation.
The tool currently assumes you have ninja installed through pip, and grabs the syntax file from that installation
if none specified.

no_import_lib
When set to non-zero, suppresses creation of a corresponding Windows static import lib by the SharedLibrary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (.exp) file when using Microsoft Visual Studio.

OBJPREFIX
The prefix used for (static) object file names.

OBJSUFFIX
The suffix used for (static) object file names.

PACKAGEROOT
Specifies the directory where all files in resulting archive will be placed if applicable. The default value is “$NAME-
$VERSION”.

See the Package builder.

140

PACKAGETYPE
Selects the package type to build when using the Package builder. May be a string or list of strings. See the
docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the --package-type command line option.

See the Package builder.

PACKAGEVERSION
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

See the Package builder.

PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

env['PCH'] = 'StdAfx.pch'

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR
The string displayed when generating a precompiled header. If this is not set, then $PCHCOM (the command line)
is displayed.

PCHPDBFLAGS
A construction variable that, when expanded, adds the /yD flag to the command line only if the $PDB construction
variable is set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variable is not being used. When this variable is define it must be a string
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env['PCHSTOP'] = 'StdAfx.h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env['PDB'] = 'hello.pdb'

The Visual C++ compiler switch that SCons uses by default to generate PDB information is /Z7. This works
correctly with parallel (-j) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is also the only way to get debug
information embedded into a static library. Using the /Zi instead may yield improved link-time performance,

141

although parallel builds will no longer work. You can generate PDB files with the /Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOMSTR
The string displayed when calling the pdflatex utility. If this is not set, then $PDFLATEXCOM (the command line)
is displayed.

env = Environment(PDFLATEX;COMSTR = "Building $TARGET from LaTeX input $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFIX
The prefix used for PDF file names.

PDFSUFFIX
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOMSTR
The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line)
is displayed.

env = Environment(PDFTEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGINFO) to look for installed
versions of the Sun PRO C++ compiler. The default is /usr/sbin/pgkchk.

PKGINFO
On Solaris systems, the package information program that will be used (along with $PKGCHK) to look for installed
versions of the Sun PRO C++ compiler. The default is pkginfo.

PLATFORM
The name of the platform used to create the Environment. If no platform is specified when the Environment is
created, scons autodetects the platform.

env = Environment(tools = [])
if env['PLATFORM'] == 'cygwin':
 Tool('mingw')(env)

142

else:
 Tool('msvc')(env)

POAUTOINIT
The $POAUTOINIT variable, if set to True (on non-zero numeric value), let the msginit tool to automatically
initialize missing PO files with msginit(1). This applies to both, POInit and POUpdate builders (and others
that use any of them).

POCREATE_ALIAS
Common alias for all PO files created with POInit builder (default: 'po-create'). See msginit tool and
POInit builder.

POSUFFIX
Suffix used for PO files (default: '.po') See msginit tool and POInit builder.

POTDOMAIN
The $POTDOMAIN defines default domain, used to generate POT filename as $POTDOMAIN.pot when no POT
file name is provided by the user. This applies to POTUpdate, POInit and POUpdate builders (and builders,
that use them, e.g. Translate). Normally (if $POTDOMAIN is not defined), the builders use messages.pot
as default POT file name.

POTSUFFIX
Suffix used for PO Template files (default: '.pot'). See xgettext tool and POTUpdate builder.

POTUPDATE_ALIAS
Name of the common phony target for all PO Templates created with POUpdate (default: 'pot-update').
See xgettext tool and POTUpdate builder.

POUPDATE_ALIAS
Common alias for all PO files being defined with POUpdate builder (default: 'po-update'). See msgmerge
tool and POUpdate builder.

PRINT_CMD_LINE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the -q or -s options or their equivalents). The function should take four arguments: s, the command
being executed (a string), target, the target being built (file node, list, or string name(s)), source, the source(s)
used (file node, list, or string name(s)), and env, the environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None, is:

def print_cmd_line(s, target, source, env):
 sys.stdout.write(s + "\n")

Here's an example of a more interesting function:

def print_cmd_line(s, target, source, env):
 sys.stdout.write("Building %s -> %s...\n" %
 (' and '.join([str(x) for x in source]),
 ' and '.join([str(x) for x in target])))
env=Environment(PRINT_CMD_LINE_FUNC=print_cmd_line)
env.Program('foo', 'foo.c')

This just prints "Building targetname from sourcename..." instead of the actual commands. Such a function
could also log the actual commands to a log file, for example.

143

PROGEMITTER
Contains the emitter specification for the Program builder. The manpage section "Builder Objects" contains
general information on specifying emitters.

PROGPREFIX
The prefix used for executable file names.

PROGSUFFIX
The suffix used for executable file names.

PSCOM
The command line used to convert TeX DVI files into a PostScript file.

PSCOMSTR
The string displayed when a TeX DVI file is converted into a PostScript file. If this is not set, then $PSCOM (the
command line) is displayed.

PSPREFIX
The prefix used for PostScript file names.

PSSUFFIX
The prefix used for PostScript file names.

QT_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify files to run moc on.

QT_BINPATH
The path where the qt binaries are installed. The default value is '$QTDIR/bin'.

QT_CPPPATH
The path where the qt header files are installed. The default value is '$QTDIR/include'. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

QT_DEBUG
Prints lots of debugging information while scanning for moc files.

QT_LIB
Default value is 'qt'. You may want to set this to 'qt-mt'. Note: If you set this variable to None, the tool won't
change the $LIBS variable.

QT_LIBPATH
The path where the qt libraries are installed. The default value is '$QTDIR/lib'. Note: If you set this variable to
None, the tool won't change the $LIBPATH construction variable.

QT_MOC
Default value is '$QT_BINPATH/moc'.

QT_MOCCXXPREFIX
Default value is ''. Prefix for moc output files, when source is a cxx file.

QT_MOCCXXSUFFIX
Default value is '.moc'. Suffix for moc output files, when source is a cxx file.

QT_MOCFROMCXXCOM
Command to generate a moc file from a cpp file.

QT_MOCFROMCXXCOMSTR
The string displayed when generating a moc file from a cpp file. If this is not set, then $QT_MOCFROMCXXCOM
(the command line) is displayed.

144

QT_MOCFROMCXXFLAGS
Default value is '-i'. These flags are passed to moc, when moccing a C++ file.

QT_MOCFROMHCOM
Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR
The string displayed when generating a moc file from a cpp file. If this is not set, then $QT_MOCFROMHCOM (the
command line) is displayed.

QT_MOCFROMHFLAGS
Default value is ''. These flags are passed to moc, when moccing a header file.

QT_MOCHPREFIX
Default value is 'moc_'. Prefix for moc output files, when source is a header.

QT_MOCHSUFFIX
Default value is '$CXXFILESUFFIX'. Suffix for moc output files, when source is a header.

QT_UIC
Default value is '$QT_BINPATH/uic'.

QT_UICCOM
Command to generate header files from .ui files.

QT_UICCOMSTR
The string displayed when generating header files from .ui files. If this is not set, then $QT_UICCOM (the
command line) is displayed.

QT_UICDECLFLAGS
Default value is ''. These flags are passed to uic, when creating a a h file from a .ui file.

QT_UICDECLPREFIX
Default value is ''. Prefix for uic generated header files.

QT_UICDECLSUFFIX
Default value is '.h'. Suffix for uic generated header files.

QT_UICIMPLFLAGS
Default value is ''. These flags are passed to uic, when creating a cxx file from a .ui file.

QT_UICIMPLPREFIX
Default value is 'uic_'. Prefix for uic generated implementation files.

QT_UICIMPLSUFFIX
Default value is '$CXXFILESUFFIX'. Suffix for uic generated implementation files.

QT_UISUFFIX
Default value is '.ui'. Suffix of designer input files.

QTDIR
The qt tool tries to take this from os.environ. It also initializes all QT_* construction variables listed below. (Note
that all paths are constructed with python's os.path.join() method, but are listed here with the '/' separator for
easier reading.) In addition, the construction environment variables $CPPPATH, $LIBPATH and $LIBS may
be modified and the variables $PROGEMITTER, $SHLIBEMITTER and $LIBEMITTER are modified. Because
the build-performance is affected when using this tool, you have to explicitly specify it at Environment creation:

145

Environment(tools=['default','qt'])

The qt tool supports the following operations:

Automatic moc file generation from header files. You do not have to specify moc files explicitly, the tool does
it for you. However, there are a few preconditions to do so: Your header file must have the same filebase as your
implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H, .hxx, .hh.
You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding
Moc() builder method.

Automatic moc file generation from cxx files. As stated in the qt documentation, include the moc file at
the end of the cxx file. Note that you have to include the file, which is generated by the transformation
${QT_MOCCXXPREFIX}<basename>${QT_MOCCXXSUFFIX}, by default <basename>.moc. A warning is
generated after building the moc file, if you do not include the correct file. If you are using VariantDir, you may
need to specify duplicate=1. You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0.
See also the corresponding Moc builder method.

Automatic handling of .ui files. The implementation files generated from .ui files are handled much the same as
yacc or lex files. Each .ui file given as a source of Program, Library or SharedLibrary will generate three files, the
declaration file, the implementation file and a moc file. Because there are also generated headers, you may need
to specify duplicate=1 in calls to VariantDir. See also the corresponding Uic builder method.

RANLIB
The archive indexer.

RANLIBCOM
The command line used to index a static library archive.

RANLIBCOMSTR
The string displayed when a static library archive is indexed. If this is not set, then $RANLIBCOM (the command
line) is displayed.

env = Environment(RANLIBCOMSTR = "Indexing $TARGET")

RANLIBFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resource file.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCINCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCINCFLAGS is created by respectively prepending and
appending $RCINCPREFIX and $RCINCSUFFIX to the beginning and end of each directory in $CPPPATH.

146

RCINCPREFIX
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCINCFLAGS
variable is expanded.

RCINCSUFFIX
The suffix used to specify an include directory on the resource compiler command line. This will be appended to
the end of each directory in the $CPPPATH construction variable when the $RCINCFLAGS variable is expanded.

RDirs
A function that converts a string into a list of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the SharedLibrary
builder is passed a keyword argument of register=True.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
SharedLibrary builder is passed a keyword argument of register=True.

REGSVRCOMSTR
The string displayed when registering a newly-built DLL file. If this is not set, then $REGSVRCOM (the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when a newly-built DLL library is registered.
By default, this includes the /s that prevents dialog boxes from popping up and requiring user attention.

RMIC
The Java RMI stub compiler.

RMICCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the $RMICFLAGS construction variable are included on this command
line.

RMICCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If this is not set, then $RMICCOM (the command line) is displayed.

env = Environment(RMICCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOURCES")

RMICFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFIX and
appending $RPATHSUFFIX to the beginning and end of each directory in $RPATH.

147

RPATHPREFIX
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_RPATH variable
is automatically generated.

RPATHSUFFIX
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLIENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects" and "Scanner Objects" for more information.

SCONS_HOME
The (optional) path to the SCons library directory, initialized from the external environment. If set, this is used to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visual Studio project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOM for compiling to static objects.

SHCCCOMSTR
If set, the string displayed when a C source file is compiled to a shared object file. If not set, then $SHCCCOM (the
command line) is displayed. See also $CCCOMSTR for compiling to static objects.

env = Environment(SHCCCOMSTR = "Compiling shared object $TARGET")

148

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See also $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CXXCOM
for compiling to static objects.

SHCXXCOMSTR
If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOMSTR for compiling to static objects.

env = Environment(SHCXXCOMSTR = "Compiling shared object $TARGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

SHDC
The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOM for compiling to
static objects.

SHDCOMSTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLIBVERSIONFLAGS
Extra flags added to $SHDLINKCOM when building versioned SharedLibrary. These flags are only used
when $SHLIBVERSION is set.

SHDLINK
The linker to use when creating shared objects for code bases include D sources. See also $DLINK for linking
static objects.

SHDLINKCOM
The command line to use when generating shared objects. See also $DLINKCOM for linking static objects.

SHDLINKFLAGS
The list of flags to use when generating a shared object. See also $DLINKFLAGS for linking static objects.

SHELL
A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction
variable for more information.

149

SHF03
The Fortran 03 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHF03COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHF03COM if you need to use a specific command line for Fortran 03 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF03COMSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHF03COM or $SHFORTRANCOM (the command line) is displayed.

SHF03FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHF03FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF03PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF03FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF03PPCOM if you need to use a specific
C-preprocessor command line for Fortran 03 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF03PPCOMSTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF03PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF08
The Fortran 08 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHF08COM if you need to use a specific command line for Fortran 08 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF08COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHF08COM or $SHFORTRANCOM (the command line) is displayed.

SHF08FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHF08FLAGS if you need to define specific user options for Fortran 08 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF08PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF08FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF08PPCOM if you need to use a specific

150

C-preprocessor command line for Fortran 08 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF08PPCOMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF08PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COM if you need to use a specific command line for Fortran 77 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF77COMSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COM or $SHFORTRANCOM (the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF77PPCOM if you need to use a specific
C-preprocessor command line for Fortran 77 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF77PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COM if you need to use a specific command line for Fortran 90 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHF90COM or $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHF90FLAGS if you need to define specific user options for Fortran 90 files. You should normally set the

151

$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF90FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF90PPCOM if you need to use a specific
C-preprocessor command line for Fortran 90 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF90PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. You should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COM if you need to use a specific command line for Fortran 95 files. You should normally set the
$SHFORTRANCOM variable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHF95COM or $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHF95FLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF95FLAGS and $CPPFLAGS construction
variables are included on this command line. You only need to set $SHF95PPCOM if you need to use a specific
C-preprocessor command line for Fortran 95 files. You should normally set the $SHFORTRANPPCOM variable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHF95PPCOM or $SHFORTRANPPCOM (the command line)
is displayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file.

SHFORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

152

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the file
through the C preprocessor. Any options specified in the $SHFORTRANFLAGS and $CPPFLAGS construction
variables are included on this command line.

SHFORTRANPPCOMSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLIBEMITTER
Contains the emitter specification for the SharedLibrary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

SHLIBNOVERSIONSYMLINKS
Instructs the SharedLibrary builder to not create symlinks for versioned shared libraries.

SHLIBPREFIX
The prefix used for shared library file names.

_SHLIBSONAME
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by SharedLibrary builder when the linker tool supports SONAME (e.g. gnulink).

SHLIBSUFFIX
The suffix used for shared library file names.

SHLIBVERSION
When this construction variable is defined, a versioned shared library is created by the SharedLibrary
builder. This activates the $_SHLIBVERSIONFLAGS and thus modifies the $SHLINKCOM as required, adds the
version number to the library name, and creates the symlinks that are needed. $SHLIBVERSION versions should
exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLIBVERSION values include '1', '1.2.3', and '1.2.gitaa412c8b'.

_SHLIBVERSIONFLAGS
This macro automatically introduces extra flags to $SHLINKCOM when building versioned SharedLibrary
(that is when $SHLIBVERSION is set). _SHLIBVERSIONFLAGS usually adds $SHLIBVERSIONFLAGS
and some extra dynamically generated options (such as -Wl,-soname=$_SHLIBSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLIBVERSIONFLAGS
Extra flags added to $SHLINKCOM when building versioned SharedLibrary. These flags are only used when
$SHLIBVERSION is set.

SHLINK
The linker for programs that use shared libraries. See also $LINK for linking static objects.

On POSIX systems (those using the link tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects a compiler driver matching the type of source files in use. So for example, if you
set $SHCXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLINKCOM
The command line used to link programs using shared libraries. See also $LINKCOM for linking static objects.

153

SHLINKCOMSTR
The string displayed when programs using shared libraries are linked. If this is not set, then $SHLINKCOM (the
command line) is displayed. See also $LINKCOMSTR for linking static objects.

env = Environment(SHLINKCOMSTR = "Linking shared $TARGET")

SHLINKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain -l (or similar) options for linking with the libraries listed in $LIBS, nor -L (or similar) include search
path options that scons generates automatically from $LIBPATH. See $_LIBFLAGS above, for the variable that
expands to library-link options, and $_LIBDIRFLAGS above, for the variable that expands to library search path
options. See also $LINKFLAGS for linking static objects.

SHOBJPREFIX
The prefix used for shared object file names.

SHOBJSUFFIX
The suffix used for shared object file names.

SONAME
Variable used to hard-code SONAME for versioned shared library/loadable module.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SONAME='libtest.so.2')

The variable is used, for example, by gnulink linker tool.

SOURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. This is used to fill in the Source:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSION
This will construct the SONAME using on the base library name (test in the example below) and use specified
SOVERSION to create SONAME.

env.SharedLibrary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSION='2')

The variable is used, for example, by gnulink linker tool.

In the example above SONAME would be libtest.so.2 which would be a symlink and point to
libtest.so.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must expect
the following arguments:

154

def spawn(shell, escape, cmd, args, env):

sh is a string naming the shell program to use. escape is a function that can be called to escape shell special
characters in the command line. cmd is the path to the command to be executed. args is the arguments to the
command. env is a dictionary of the environment variables in which the command should be executed.

STATIC_AND_SHARED_OBJECTS_ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objects into a shared library.

SUBST_DICT
The dictionary used by the Substfile or Textfile builders for substitution values. It can be anything
acceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFILEPREFIX
The prefix used for Substfile file names, an empty string by default.

SUBSTFILESUFFIX
The suffix used for Substfile file names, an empty string by default.

SUMMARY
A short summary of what the project is about. This is used to fill in the Summary: field in the controlling
information for Ipkg and RPM packages, and as the Description: field in MSI packages.

See the Package builder.

SWIG
The scripting language wrapper and interface generator.

SWIGCFILESUFFIX
The suffix that will be used for intermediate C source files generated by the scripting language wrapper and
interface generator. The default value is _wrap$CFILESUFFIX. By default, this value is used whenever the -
c++ option is not specified as part of the $SWIGFLAGS construction variable.

SWIGCOM
The command line used to call the scripting language wrapper and interface generator.

SWIGCOMSTR
The string displayed when calling the scripting language wrapper and interface generator. If this is not set, then
$SWIGCOM (the command line) is displayed.

SWIGCXXFILESUFFIX
The suffix that will be used for intermediate C++ source files generated by the scripting language wrapper and
interface generator. The default value is _wrap$CFILESUFFIX. By default, this value is used whenever the -
c++ option is specified as part of the $SWIGFLAGS construction variable.

SWIGDIRECTORSUFFIX
The suffix that will be used for intermediate C++ header files generated by the scripting language wrapper and
interface generator. These are only generated for C++ code when the SWIG 'directors' feature is turned on. The
default value is _wrap.h.

SWIGFLAGS
General options passed to the scripting language wrapper and interface generator. This is where you should set -
python, -perl5, -tcl, or whatever other options you want to specify to SWIG. If you set the -c++ option
in this variable, scons will, by default, generate a C++ intermediate source file with the extension that is specified
as the $CXXFILESUFFIX variable.

155

_SWIGINCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $_SWIGINCFLAGS is created by respectively
prepending and appending $SWIGINCPREFIX and $SWIGINCSUFFIX to the beginning and end of each
directory in $SWIGPATH.

SWIGINCPREFIX
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is
automatically generated.

SWIGINCSUFFIX
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SWIGPATH construction variable when the $_SWIGINCFLAGS variable is automatically
generated.

SWIGOUTDIR
Specifies the output directory in which the scripting language wrapper and interface generator should place
generated language-specific files. This will be used by SCons to identify the files that will be generated by the
swig call, and translated into the swig -outdir option on the command line.

SWIGPATH
The list of directories that the scripting language wrapper and interface generate will search for included files. The
SWIG implicit dependency scanner will search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in SWIGFLAGS; the result will be non-portable and the
directories will not be searched by the dependency scanner. Note: directory names in SWIGPATH will be looked-
up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environment(SWIGPATH='#/include')

The directory look-up can also be forced using the Dir() function:

include = Dir('include')
env = Environment(SWIGPATH=include)

The directory list will be added to command lines through the automatically-generated $_SWIGINCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SWIGINCPREFIX and $SWIGINCSUFFIX construction variables to the beginning and end of each directory
in $SWIGPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SWIGINCFLAGS:

env = Environment(SWIGCOM="my_swig -o $TARGET $_SWIGINCFLAGS $SOURCES")

SWIGVERSION
The version number of the SWIG tool.

TAR
The tar archiver.

TARCOM
The command line used to call the tar archiver.

156

TARCOMSTR
The string displayed when archiving files using the tar archiver. If this is not set, then $TARCOM (the command
line) is displayed.

env = Environment(TARCOMSTR = "Archiving $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARGET_ARCH
The name of the target hardware architecture for the compiled objects created by this Environment. This defaults
to the value of HOST_ARCH, and the user can override it. Currently only set for Win32.

Sets the target architecture for the Visual C++ compiler (i.e. the arch of the binaries generated by the compiler).
If not set, default to $HOST_ARCH, or, if that is unset, to the architecture of the running machine's OS (note that
the python build or architecture has no effect). This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect. This is currently only used on Windows, but in the future it will be used
on other OSes as well. If this is set and $MSVC_VERSION is not set, this will search for all installed MSVC's that
support the $TARGET_ARCH, selecting the latest version for use.

On Windows, valid target values are x86, arm, i386 for 32-bit targets and amd64, arm64, em64t, x86_64
and ia64 (Itanium) for 64-bit targets. Note that not all target architectures are supported for all Visual Studio /
MSVC versions. Check the relevant Microsoft documentation.

For example, if you want to compile 64-bit binaries, you would set TARGET_ARCH='x86_64' in your SCons
environment.

TARGET_OS
The name of the target operating system for the compiled objects created by this Environment. This defaults to
the value of HOST_OS, and the user can override it. Currently only set for Win32.

TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFIX
The suffix used for tar file names.

TEMPFILEARGESCFUNC
A default argument escape function is ``SCons.Subst.quote_spaces``. If you need to apply extra operations on
a command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
`TEMPFILEARGESCFUNC` variable to a custom function. Example::

import sys
import re
from SCons.Subst import quote_spaces

WINPATHSEP_RE = re.compile(r"\\([^\"'\\]|$)")

def tempfile_arg_esc_func(arg):
 arg = quote_spaces(arg)

157

 if sys.platform != "win32":
 return arg
 # GCC requires double Windows slashes, let's use UNIX separator
 return WINPATHSEP_RE.sub(r"/\1", arg)

env["TEMPFILEARGESCFUNC"] = tempfile_arg_esc_func

TEMPFILEARGJOIN
The string (or character) to be used to join the arguments passed to TEMPFILE when command line exceeds the
limit set by $MAXLINELENGTH. The default value is a space. However for MSVC, MSLINK the default is a line
seperator characters as defined by os.linesep. Note this value is used literally and not expanded by the subst logic.

TEMPFILEDIR
The directory to create the tempfile in.

TEMPFILEPREFIX
The prefix for a temporary file used to store lines lines longer than $MAXLINELENGTH as operations which call
out to a shell will fail if the line is too long, which particularly impacts linking. The default is '@', which works
for the Microsoft and GNU toolchains on Windows. Set this appropriately for other toolchains, for example '-@'
for the diab compiler or '-via' for ARM toolchain.

TEMPFILESUFFIX
The suffix used for the temporary file name used for long command lines. The name should include the dot ('.')
if one is wanted as it will not be added automatically. The default is '.lnk'.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOMSTR
The string displayed when calling the TeX formatter and typesetter. If this is not set, then $TEXCOM (the command
line) is displayed.

env = Environment(TEXCOMSTR = "Building $TARGET from TeX input $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXINPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFILEPREFIX
The prefix used for Textfile file names, an empty string by default.

TEXTFILESUFFIX
The suffix used for Textfile file names; .txt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

158

UNCHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor: field in the
controlling information for RPM packages, and the Manufacturer: field in the controlling information for
MSI packages.

See the Package builder.

VERSION
The version of the project, specified as a string.

See the Package builder.

VSWHERE
Specify the location of vswhere.exe.

The vswhere.exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017
edition, but is also available standalone. It provides full information about installations of 2017 and later editions.
With the -legacy argument, vswhere.exe can detect installations of the 2010 through 2015 editions with
limited data returned. If VSWHERE is set, SCons will use that location.

Otherwise SCons will look in the following locations and set VSWHERE to the path of the first vswhere.exe
located.

• %ProgramFiles(x86)%\Microsoft Visual Studio\Installer

• %ProgramFiles%\Microsoft Visual Studio\Installer

• %ChocolateyInstall%\bin

Note that VSWHERE must be set at the same time or prior to any of msvc, msvs , and/or mslink Tool being
initialized. Either set it as follows

env = Environment(VSWHERE='c:/my/path/to/vswhere')

or if your construction environment is created specifying an empty tools list (or a list of tools which omits all of
default, msvs, msvc, and mslink), and also before env.Tool is called to ininitialize any of those tools:

 env = Environment(tools=[])
 env['VSWHERE'] = r'c:/my/vswhere/install/location/vswhere.exe'
 env.Tool('msvc')
 env.Tool('mslink')
 env.Tool('msvs')

WINDOWS_EMBED_MANIFEST
Set to True to embed the compiler-generated manifest (normally ${TARGET}.manifest) into all Windows
executables and DLLs built with this environment, as a resource during their link step. This is done using $MT
and $MTEXECOM and $MTSHLIBCOM. See also $WINDOWS_INSERT_MANIFEST.

WINDOWS_INSERT_DEF
If set to true, a library build of a Windows shared library (.dll file) will include a reference to the corresponding
module-definition file at the same time, if a module-definition file is not already listed as a build target. The name

159

of the module-definition file will be constructed from the base name of the library and the construction variables
$WINDOWSDEFSUFFIX and $WINDOWSDEFPREFIX. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the developer.

WINDOWS_INSERT_MANIFEST
If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $WINDOWSPROGMANIFESTSUFFIX and $WINDOWSPROGMANIFESTPREFIX. In the case
of a shared library, the manifest file name is constructed using $WINDOWSSHLIBMANIFESTSUFFIX and
$WINDOWSSHLIBMANIFESTPREFIX. See also $WINDOWS_EMBED_MANIFEST.

WINDOWSDEFPREFIX
The prefix used for a Windows linker module-definition file name. Defaults to empty.

WINDOWSDEFSUFFIX
The suffix used for a Windows linker module-definition file name. Defaults to .def.

WINDOWSEXPPREFIX
The prefix used for Windows linker exports file names. Defaults to empty.

WINDOWSEXPSUFFIX
The suffix used for Windows linker exports file names. Defaults to .exp.

WINDOWSPROGMANIFESTPREFIX
The prefix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to empty.

WINDOWSPROGMANIFESTSUFFIX
The suffix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to
.manifest.

WINDOWSSHLIBMANIFESTPREFIX
The prefix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to empty.

WINDOWSSHLIBMANIFESTSUFFIX
The suffix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to .manifest.

X_IPK_DEPENDS
This is used to fill in the Depends: field in the controlling information for Ipkg packages.

See the Package builder.

X_IPK_DESCRIPTION
This is used to fill in the Description: field in the controlling information for Ipkg packages. The default
value is “$SUMMARY\n$DESCRIPTION”

X_IPK_MAINTAINER
This is used to fill in the Maintainer: field in the controlling information for Ipkg packages.

X_IPK_PRIORITY
This is used to fill in the Priority: field in the controlling information for Ipkg packages.

X_IPK_SECTION
This is used to fill in the Section: field in the controlling information for Ipkg packages.

X_MSI_LANGUAGE
This is used to fill in the Language: attribute in the controlling information for MSI packages.

160

See the Package builder.

X_MSI_LICENSE_TEXT
The text of the software license in RTF format. Carriage return characters will be replaced with the RTF equivalent
\\par.

See the Package builder.

X_MSI_UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
This is used to fill in the AutoReqProv: field in the RPM .spec file.

See the Package builder.

X_RPM_BUILD
internal, but overridable

X_RPM_BUILDREQUIRES
This is used to fill in the BuildRequires: field in the RPM .spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM_BUILDROOT
internal, but overridable

X_RPM_CLEAN
internal, but overridable

X_RPM_CONFLICTS
This is used to fill in the Conflicts: field in the RPM .spec file.

X_RPM_DEFATTR
This value is used as the default attributes for the files in the RPM package. The default value is “(-,root,root)”.

X_RPM_DISTRIBUTION
This is used to fill in the Distribution: field in the RPM .spec file.

X_RPM_EPOCH
This is used to fill in the Epoch: field in the RPM .spec file.

X_RPM_EXCLUDEARCH
This is used to fill in the ExcludeArch: field in the RPM .spec file.

X_RPM_EXLUSIVEARCH
This is used to fill in the ExclusiveArch: field in the RPM .spec file.

X_RPM_EXTRADEFS
A list used to supply extra defintions or flags to be added to the RPM .spec file. Each item is added as-is
with a carriage return appended. This is useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Note if this variable is omitted, SCons will by default supply the value '%global
debug_package %{nil}' to disable debug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line. Added in version 3.1.

env.Package(
 NAME="foo",

161

 ...
 X_RPM_EXTRADEFS=[
 "%define _unpackaged_files_terminate_build 0"
 "%define _missing_doc_files_terminate_build 0"
],
 ...
)

X_RPM_GROUP
This is used to fill in the Group: field in the RPM .spec file.

X_RPM_GROUP_lang
This is used to fill in the Group(lang): field in the RPM .spec file. Note that lang is not literal and should
be replaced by the appropriate language code.

X_RPM_ICON
This is used to fill in the Icon: field in the RPM .spec file.

X_RPM_INSTALL
internal, but overridable

X_RPM_PACKAGER
This is used to fill in the Packager: field in the RPM .spec file.

X_RPM_POSTINSTALL
This is used to fill in the %post: section in the RPM .spec file.

X_RPM_POSTUNINSTALL
This is used to fill in the %postun: section in the RPM .spec file.

X_RPM_PREFIX
This is used to fill in the Prefix: field in the RPM .spec file.

X_RPM_PREINSTALL
This is used to fill in the %pre: section in the RPM .spec file.

X_RPM_PREP
internal, but overridable

X_RPM_PREUNINSTALL
This is used to fill in the %preun: section in the RPM .spec file.

X_RPM_PROVIDES
This is used to fill in the Provides: field in the RPM .spec file.

X_RPM_REQUIRES
This is used to fill in the Requires: field in the RPM .spec file.

X_RPM_SERIAL
This is used to fill in the Serial: field in the RPM .spec file.

X_RPM_URL
This is used to fill in the Url: field in the RPM .spec file.

XGETTEXT
Path to xgettext(1) program (found via Detect()). See xgettext tool and POTUpdate builder.

162

XGETTEXTCOM
Complete xgettext command line. See xgettext tool and POTUpdate builder.

XGETTEXTCOMSTR
A string that is shown when xgettext(1) command is invoked (default: '', which means "print
$XGETTEXTCOM"). See xgettext tool and POTUpdate builder.

_XGETTEXTDOMAIN
Internal "macro". Generates xgettext domain name form source and target (default:
'${TARGET.filebase}').

XGETTEXTFLAGS
Additional flags to xgettext(1). See xgettext tool and POTUpdate builder.

XGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFILES.in so they
will in most cases set XGETTEXTFROM="POTFILES.in" here. The $XGETTEXTFROM files have same syntax
and semantics as the well known GNU POTFILES.in. See xgettext tool and POTUpdate builder.

_XGETTEXTFROMFLAGS
Internal "macro". Genrates list of -D<dir> flags from the $XGETTEXTPATH list.

XGETTEXTFROMPREFIX
This flag is used to add single $XGETTEXTFROM file to xgettext(1)'s commandline (default: '-f').

XGETTEXTFROMSUFFIX
(default: '')

XGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
See also xgettext tool and POTUpdate builder.

_XGETTEXTPATHFLAGS
Internal "macro". Generates list of -f<file> flags from $XGETTEXTFROM.

XGETTEXTPATHPREFIX
This flag is used to add single search path to xgettext(1)'s commandline (default: '-D').

XGETTEXTPATHSUFFIX
(default: '')

YACC
The parser generator.

YACCCOM
The command line used to call the parser generator to generate a source file.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If this is not set, then $YACCCOM
(the command line) is displayed.

env = Environment(YACCCOMSTR = "Yacc'ing $TARGET from $SOURCES")

163

YACCFLAGS
General options passed to the parser generator. If $YACCFLAGS contains a -d option, SCons assumes that the
call will also create a .h file (if the yacc source file ends in a .y suffix) or a .hpp file (if the yacc source file ends
in a .yy suffix)

YACCHFILESUFFIX
The suffix of the C header file generated by the parser generator when the -d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default value is .h.

YACCHXXFILESUFFIX
The suffix of the C++ header file generated by the parser generator when the -d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to
allow you to specify what suffix the parser generator will use of its own accord. The default value is .hpp, except
on Mac OS X, where the default is ${TARGET.suffix}.h. because the default bison parser generator just
appends .h to the name of the generated C++ file.

YACCVCGFILESUFFIX
The suffix of the file containing the VCG grammar automaton definition when the --graph= option is used.
Note that setting this variable does not cause the parser generator to generate a VCG file with the specified suffix,
it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value
is .vcg.

ZIP
The zip compression and file packaging utility.

ZIP_OVERRIDE_TIMESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
This is a tuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZIPCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

ZIPCOMPRESSION
The compression flag from the Python zipfile module used by the internal Python function to control
whether the zip archive is compressed or not. The default value is zipfile.ZIP_DEFLATED, which creates a
compressed zip archive. This value has no effect if the zipfile module is unavailable.

ZIPCOMSTR
The string displayed when archiving files using the zip utility. If this is not set, then $ZIPCOM (the command
line or internal Python function) is displayed.

env = Environment(ZIPCOMSTR = "Zipping $TARGET")

ZIPFLAGS
General options passed to the zip utility.

ZIPROOT
An optional zip root directory (default empty). The filenames stored in the zip file will be relative to this directory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environment()
env.Zip('foo.zip', 'subdir1/subdir2/file1', ZIPROOT='subdir1')

164

will produce a zip file foo.zip containing a file with the name subdir2/file1 rather than subdir1/
subdir2/file1.

ZIPSUFFIX
The suffix used for zip file names.

Configure Contexts

SCons supports a configure context, an integrated mechanism similar to the various AC_CHECK macros in GNU
Autoconf for testing the existence of external items needed for the build, such as C header files, libraries, etc. The
mechanism is portable across platforms.

scons does not maintain an explicit cache of the tested values (this is different than Autoconf), but uses its normal
dependency tracking to keep the checked values up to date. However, users may override this behaviour with the --
config command line option.

Configure(env, [custom_tests, conf_dir, log_file, config_h, clean, help])
env.Configure([custom_tests, conf_dir, log_file, config_h, clean, help])

Create a configure context, which tracks information discovered while running tests. The context includes a local
construction environment (available as context.env) which is used when running the tests and which can be
updated with the check results. Only one context may be active at a time (since 4.0, scons will raise an exception
on an attempt to create a new context when there is an active context), but a new context can be created after the
active one is completed. For the global function form, the required env describes the initial values for the context's
local construction environment; for the construction environment method form the instance provides the values.

custom_tests specifies a dictionary containing custom tests (see the section on custom tests below). The
default value is None, meaning no custom tests are added to the configure context.

conf_dir specifies a directory where the test cases are built. This directory is not used for building normal
targets. The default value is “#/.sconf_temp”.

log_file specifies a file which collects the output from commands that are executed to check for the existence
of header files, libraries, etc. The default is “#/config.log”. If you are using the VariantDir function, you
may want to specify a subdirectory under your variant directory.

config_h specifies a C header file where the results of tests will be written. The results will consist of lines like
#define HAVE_STDIO_H, #define HAVE_LIBM, etc. Customarily, the name chosen is “config.h”.
The default is to not write a config_h file. You can specify the same config_h file in multiple calls to
Configure, in which case SCons will concatenate all results in the specified file. Note that SCons uses its
normal dependency checking to decide if it's necessary to rebuild the specified config_h file. This means that
the file is not necessarily re-built each time scons is run, but is only rebuilt if its contents will have changed and
some target that depends on the config_h file is being built.

The clean and help arguments can be used to suppress execution of the configuration tests when the -c/--
clean or -H/-h/--help options are used, respectively. The default behavior is always to execute configure
context tests, since the results of the tests may affect the list of targets to be cleaned or the help text. If the configure
tests do not affect these, then you may add the clean=False or help=False arguments (or both) to avoid
unnecessary test execution.

SConf.Finish(context)
context.Finish()

This method must be called after configuration is done. Though required, this is not enforced except if
Configure is called again while there is still an active context, in which case an exception is raised. Finish
returns the environment as modified during the course of running the configuration checks. After this method
is called, no further checks can be performed with this configuration context. However, you can create a new
configure context to perform additional checks.

165

Example of a typical Configure usage:

env = Environment()
conf = Configure(env)
if not conf.CheckCHeader("math.h"):
 print("We really need math.h!")
 Exit(1)
if conf.CheckLibWithHeader("qt", "qapp.h", "c++", "QApplication qapp(0,0);"):
 # do stuff for qt - usage, e.g.
 conf.env.Append(CPPDEFINES="WITH_QT")
env = conf.Finish()

A configure context has the following predefined methods which can be used to perform checks. Where language
is a required or optional parameter, the choice can currently be C or C++. The spellings accepted for C are “C” or “c”;
for C++ the value can be “CXX”, “cxx”, “C++” or “c++”.

SConf.CheckHeader(context, header, [include_quotes, language])
context.CheckHeader(header, [include_quotes, language])

Checks if header is usable in the specified language. header may be a list, in which case the last item in the
list is the header file to be checked, and the previous list items are header files whose #include lines should
precede the header line being checked for. The optional argument include_quotes must be a two character
string, where the first character denotes the opening quote and the second character denotes the closing quote. By
default, both characters are " (double quote). The optional argument language should be either C or C++ and
selects the compiler to be used for the check. Returns a boolean indicating success or failure.

SConf.CheckCHeader(context, header, [include_quotes])
context.CheckCHeader(header, [include_quotes])

This is a wrapper around SConf.CheckHeader which checks if header is usable in the C language. header
may be a list, in which case the last item in the list is the header file to be checked, and the previous list items
are header files whose #include lines should precede the header line being checked for. The optional argument
include_quotes must be a two character string, where the first character denotes the opening quote and the
second character denotes the closing quote. By default, both characters are " (double quote). Returns a boolean
indicating success or failure.

SConf.CheckCXXHeader(context, header, [include_quotes])
context.CheckCXXHeader(header, [include_quotes])

This is a wrapper around SConf.CheckHeader which checks if header is usable in the C++ language.
header may be a list, in which case the last item in the list is the header file to be checked, and the previous
list items are header files whose #include lines should precede the header line being checked for. The optional
argument include_quotes must be a two character string, where the first character denotes the opening quote
and the second character denotes the closing quote. By default, both characters are " (double quote). Returns a
boolean indicating success or failure.

SConf.CheckFunc(context, function_name, [header, language])
context.CheckFunc(function_name, [header, language])

Checks if the specified C or C++ library function is available based on the context's local environment settings
(that is, using the values of CFLAGS, CPPFLAGS, LIBS or other relevant construction variables).

function_name is the name of the function to check for. The optional header argument is a string that will
be placed at the top of the test file that will be compiled to check if the function exists; the default is:

#ifdef __cplusplus
extern "C"

166

#endif
char function_name();

Returns an empty string on success, a string containing an error message on failure.

SConf.CheckLib(context, [library, symbol, header, language, autoadd=True])
context.CheckLib([library, symbol, header, language, autoadd=True])

Checks if library provides symbol. If autoadd is true (the default) and the library provides the specified
symbol, appends the library to the LIBS construction variable library may also be None (the default), in
which case symbol is checked with the current LIBS variable, or a list of library names, in which case each
library in the list will be checked for symbol. If symbol is not set or is None, then SConf.CheckLib just
checks if you can link against the specified library. Note though it is legal syntax, it would not be very useful
to call this method with library and symbol both omitted or None. Returns a boolean indicating success
or failure.

SConf.CheckLibWithHeader(context, library, header, language, [call,
autoadd=True])
context.CheckLibWithHeader(library, header, language, [call, autoadd=True])

Provides a more sophisticated way to check against libraries then the SConf.CheckLib call. library
specifies the library or a list of libraries to check. header specifies a header to check for. header may be a
list, in which case the last item in the list is the header file to be checked, and the previous list items are header
files whose #include lines should precede the header line being checked for. call can be any valid expression
(with a trailing ';'). If call is not set, the default simply checks that you can link against the specified library.
autoadd (default true) specifies whether to add the library to the environment if the check succeeds. Returns
a boolean indicating success or failure.

SConf.CheckType(context, type_name, [includes, language])
context.CheckType(type_name, [includes, language])

Checks for the existence of a type defined by typedef. type_name specifies the typedef name to check for.
includes is a string containing one or more #include lines that will be inserted into the program that will
be run to test for the existence of the type. Example:

sconf.CheckType('foo_type', '#include "my_types.h"', 'C++')

Returns an empty string on success, a string containing an error message on failure.

SConf.CheckCC(context)
context.CheckCC()

Checks whether the C compiler (as defined by the CC construction variable) works by trying to compile a small
source file. Returns a boolean indicating success or failure.

By default, SCons only detects if there is a program with the correct name, not if it is a functioning compiler.

This uses the exact same command as the one used by the object builder for C source files, so it can be used to
detect if a particular compiler flag works or not.

SConf.CheckCXX(context)
context.CheckCXX()

Checks whether the C++ compiler (as defined by the CXX construction variable) works by trying to compile a small
source file. By default, SCons only detects if there is a program with the correct name, not if it is a functioning
compiler. Returns a boolean indicating success or failure.

This uses the exact same command as the one used by the object builder for C++ source files, so it can be used
to detect if a particular compiler flag works or not.

167

SConf.CheckSHCC(context)
context.CheckSHCC()

Checks whether the shared-object C compiler (as defined by the SHCC construction variable) works by trying to
compile a small source file. By default, SCons only detects if there is a program with the correct name, not if it
is a functioning compiler. Returns a boolean indicating success or failure.

This uses the exact same command as the one used by the object builder for C source file, so it can be used to
detect if a particular compiler flag works or not. This does not check whether the object code can be used to build
a shared library, only that the compilation (not link) succeeds.

SConf.CheckSHCXX(context)
context.CheckSHCXX()

Checks whether the shared-object C++ compiler (as defined by the SHCXX construction variable) works by trying
to compile a small source file. By default, SCons only detects if there is a program with the correct name, not if
it is a functioning compiler. Returns a boolean indicating success or failure.

This uses the exact same command as the one used by the object builder for C++ source files, so it can be used
to detect if a particular compiler flag works or not. This does not check whether the object code can be used to
build a shared library, only that the compilation (not link) succeeds.

SConf.CheckTypeSize(context, type_name, [header, language, expect])
context.CheckTypeSize(type_name, [header, language, expect])

Checks for the size of a type defined by typedef. type_name specifies the typedef name to check for. The
optional header argument is a string that will be placed at the top of the test file that will be compiled to
check if the type exists; the default is empty. If the optional expect, is supplied, it should be an integer size;
CheckTypeSize will fail unless type_name is actually that size. Returns the size in bytes, or zero if the type
was not found (or if the size did not match expect).

For example,

CheckTypeSize('short', expect=2)

will return the size 2 only if short is actually two bytes.

SConf.CheckDeclaration(context, symbol, [includes, language])
context.CheckDeclaration(symbol, [includes, language])

Checks if the specified symbol is declared. includes is a string containing one or more #include lines
that will be inserted into the program that will be run to test for the existence of the symbol. Returns a boolean
indicating success or failure.

SConf.Define(context, symbol, [value, comment])
context.Define(symbol, [value, comment])

This function does not check for anything, but defines a preprocessor symbol that will be added to the configuration
header file. It is the equivalent of AC_DEFINE, and defines the symbol name with the optional value and the
optional comment comment.

Define Examples:

env = Environment()
conf = Configure(env)

Puts the following line in the config header file:
#define A_SYMBOL
conf.Define("A_SYMBOL")

168

Puts the following line in the config header file:
#define A_SYMBOL 1
conf.Define("A_SYMBOL", 1)

Be careful about quoting string values, though:

env = Environment()
conf = Configure(env)

Puts the following line in the config header file:
#define A_SYMBOL YA
conf.Define("A_SYMBOL", "YA")

Puts the following line in the config header file:
#define A_SYMBOL "YA"
conf.Define("A_SYMBOL", '"YA"')

For comment:

env = Environment()
conf = Configure(env)

Puts the following lines in the config header file:
/* Set to 1 if you have a symbol */
#define A_SYMBOL 1
conf.Define("A_SYMBOL", 1, "Set to 1 if you have a symbol")

You can define your own custom checks in addition to the predefined checks. You pass a dictionary of these to the
Configure function as the custom_tests argument. This dictionary maps the names of the checks to the user
defined Python callables (either Python functions or class instances implementing a __call__ method). Each custom
check will be called with a first argument of a CheckContext, instance followed by the arguments, which must be
supplied by the user of the check. A CheckContext instance defines the following methods:

context.Message(text)
Displays a message, as an indicator of progess. text will be displayed, e.g. Checking for library X....
Usually called before the check is started.

context.Result(res)
Displays a “result” message, as an indicator of progress. res can be either an integer or a string. If an integer,
displays yes (if res evaluates True) or no (if res evaluates False). If a string, it is displayed as-is. Usually
called after the check has completed.

context.TryCompile(text, extension='')
Checks if a file with the specified extension (e.g. '.c') containing text can be compiled using the
environment's Object builder. Returns a boolean indicating success or failure.

context.TryLink(text, extension='')
Checks, if a file with the specified extension (e.g. '.c') containing text can be compiled using the
environment's Program builder. Returns a boolean indicating success or failure.

context.TryRun(text, extension='')
Checks if a file with the specified extension (e.g. '.c') containing text can be compiled using the
environment's Program builder. On success, the program is run. If the program executes successfully (that is,

169

its return status is 0), a tuple (1, outputStr) is returned, where outputStr is the standard output of the program.
If the program fails execution (its return status is non-zero), then (0, '') is returned.

context.TryAction(action, [text, extension=''])
Checks if the specified action with an optional source file (contents text, extension extension) can be
executed. action may be anything which can be converted to a scons Action. On success, (1, outputStr) is
returned, where outputStr is the content of the target file. On failure (0, '') is returned.

context.TryBuild(builder[, text, extension=''])
Low level implementation for testing specific builds; the methods above are based on this method. Given the
Builder instance builder and the optional text of a source file with optional extension, returns a boolean
indicating success or failure. In addition, context.lastTarget is set to the build target node if the build
was successful.

Example of implementing and using custom tests:

def CheckQt(context, qtdir):
 context.Message('Checking for qt ...')
 lastLIBS = context.env['LIBS']
 lastLIBPATH = context.env['LIBPATH']
 lastCPPPATH= context.env['CPPPATH']
 context.env.Append(LIBS='qt', LIBPATH=qtdir + '/lib', CPPPATH=qtdir + '/include')
 ret = context.TryLink("""
#include <qapp.h>
int main(int argc, char **argv) {
 QApplication qapp(argc, argv);
 return 0;
}
""")
 if not ret:
 context.env.Replace(LIBS=lastLIBS, LIBPATH=lastLIBPATH, CPPPATH=lastCPPPATH)
 context.Result(ret)
 return ret

env = Environment()
conf = Configure(env, custom_tests={'CheckQt': CheckQt})
if not conf.CheckQt('/usr/lib/qt'):
 print('We really need qt!')
 Exit(1)
env = conf.Finish()

Command-Line Construction Variables

Often when building software, some variables need to be specified at build time. For example, libraries needed for
the build may be in non-standard locations, or site-specific compiler options may need to be passed to the compiler.
SCons provides a Variables object to support overriding construction variables with values obtained from various
sources, often from the command line:

scons VARIABLE=foo

The variable values can also be specified in a configuration file or an SConscript file.

To obtain the object for manipulating values, call the Variables function:

170

Variables([files, [args]])
If files is a file or list of files, those are executed as Python scripts, and the values of (global) Python variables
set in those files are added as construction variables in the Default Environment. If no files are specified, or the
files argument is None, then no files will be read (supplying None is necessary if there are no files but you
want to specify args as a positional argument).

The following example file contents could be used to set an alternative C compiler:

CC = 'my_cc'

If args is specified, it is a dictionary of values that will override anything read from files. This is primarily
intended to pass the ARGUMENTS dictionary that holds variables specified on the command line. Example:

vars = Variables('custom.py')
vars = Variables('overrides.py', ARGUMENTS)
vars = Variables(None, {FOO:'expansion', BAR:7})

Calling Variables with no arguments is equivalent to:

vars = Variables(files=None, args=ARGUMENTS)

Note that since the variables are eventually added as construction variables, you should choose variable names
which do not unintentionally change pre-defined construction variables that your project will make use of (see
the section called “Construction Variables”).

Variables objects have the following methods:

vars.Add(key, [help, default, validator, converter])
Add a customizable construction variable to the Variables object. key is the name of the variable. help is the
help text for the variable. default is the default value of the variable; if the default value is None and there
is no explicit value specified, the construction variable will not be added to the construction environment. If
set, validator is called to validate the value of the variable. A function supplied as a validator shall accept
arguments: key, value, and env. The recommended way to handle an invalid value is to raise an exception
(see example below). If set, converter is called to convert the value before putting it in the environment, and
should take either a value, or the value and environment, as parameters. The converter function must return a
value, which will be converted into a string before being validated by the validator (if any) and then added
to the construction environment.

Examples:

vars.Add('CC', help='The C compiler')

def valid_color(key, val, env):
 if not val in ['red', 'blue', 'yellow']:
 raise Exception("Invalid color value '%s'" % val)

vars.Add('COLOR', validator=valid_color)

vars.AddVariables(args)
A convenience method that adds multiple customizable construction variables to a Variables object in one call;
equivalent to calling Add multiple times. The args are tuples (or lists) that contain the arguments for an individual

171

call to the Add method. Since tuples are not Python mappings, the arguments cannot use the keyword form, but
rather are positional arguments as documented for Add: a required name, the rest optional but must be in the
specified in order if used.

opt.AddVariables(
 ("debug", "", 0),
 ("CC", "The C compiler"),
 ("VALIDATE", "An option for testing validation", "notset", validator, None),
)

vars.Update(env, [args])
Update a construction environment env with the customized construction variables . Any specified variables that
are not configured for the Variables object will be saved and may be retrieved using the UnknownVariables
method, below.

Normally this method is not called directly, but rather invoked indirectly by passing the Variables object to the
Environment function:

env = Environment(variables=vars)

vars.UnknownVariables()
Returns a dictionary containing any variables that were specified either in the files or the dictionary with which
the Variables object was initialized, but for which the Variables object was not configured.

env = Environment(variables=vars)
for key, value in vars.UnknownVariables():
 print("unknown variable: %s=%s" % (key, value))

vars.Save(filename, env)
Save the currently set variables into a script file named by filename that can be used on the next invocation to
automatically load the current settings. This method combined with the Variables method can be used to support
caching of variables between runs.

env = Environment()
vars = Variables(['variables.cache', 'custom.py'])
vars.Add(...)
vars.Update(env)
vars.Save('variables.cache', env)

vars.GenerateHelpText(env, [sort])
Generate help text documenting the customizable construction variables, suitable for passing in to the Help
function. env is the construction environment that will be used to get the actual values of the customizable
variables. If the (optional) value of sort is callable, it is used as a comparison function to determine how to sort
the added variables. This function must accept two arguments, compare them, and return a negative integer if the
first is less-than the second, zero for equality, or a positive integer for greater-than. Optionally a Boolean value
of True for sort will cause a standard alphabetical sort to be performed.

Help(vars.GenerateHelpText(env))

def cmp(a, b):

172

 return (a > b) - (a < b)

Help(vars.GenerateHelpText(env, sort=cmp))

vars.FormatVariableHelpText(env, opt, help, default, actual)
Returns a formatted string containing the printable help text for one option. It is normally not called directly, but
is called by the GenerateHelpText method to create the returned help text. It may be overridden with your
own function that takes the arguments specified above and returns a string of help text formatted to your liking.
Note that GenerateHelpText will not put any blank lines or extra characters in between the entries, so you
must add those characters to the returned string if you want the entries separated.

def my_format(env, opt, help, default, actual):
 fmt = "\n%s: default=%s actual=%s (%s)\n"
 return fmt % (opt, default, actual, help)
vars.FormatVariableHelpText = my_format

To make it more convenient to work with customizable Variables, scons provides a number of functions that make it
easy to set up various types of Variables. Each of these return a tuple ready to be passed to the Add or AddVariables
method:

BoolVariable(key, help, default)
Returns a tuple of arguments to set up a Boolean option. The option will use the specified name key, have a
default value of default, and help will form the descriptive part of the help text. The option will interpret the
values y, yes, t, true, 1, on and all as true, and the values n, no, f, false, 0, off and none as false.

EnumVariable(key, help, default, allowed_values, [map, ignorecase])
Returns a tuple of arguments to set up an option whose value may be one of a specified list of legal enumerated
values. The option will use the specified name key, have a default value of default, and help will form the
descriptive part of the help text. The option will only support those values in the allowed_values list. The
optional map argument is a dictionary that can be used to convert input values into specific legal values in the
allowed_values list. If the value of ignore_case is 0 (the default), then the values are case-sensitive. If
the value of ignore_case is 1, then values will be matched case-insensitively. If the value of ignore_case
is 2, then values will be matched case-insensitively, and all input values will be converted to lower case.

ListVariable(key, help, default, names, [map])
Returns a tuple of arguments to set up an option whose value may be one or more of a specified list of legal
enumerated values. The option will use the specified name key, have a default value of default, and help
will form the descriptive part of the help text. The option will only accept the values “all”, “none”, or the values
in the names list. More than one value may be specified, separated by commas. The default may be a string of
comma-separated default values, or a list of the default values. The optional map argument is a dictionary that
can be used to convert input values into specific legal values in the names list. (Note that the additional values
accepted through the use of a map are not reflected in the generated help message).

PackageVariable(key, help, default)
Returns a tuple of arguments to set up an option whose value is a path name of a package that may be enabled,
disabled or given an explicit path name. The option will use the specified name key, have a default value of
default, and help will form the descriptive part of the help text. The option will support the values yes,
true, on, enable or search, in which case the specified default will be used, or the option may be set to
an arbitrary string (typically the path name to a package that is being enabled). The option will also support the
values no, false, off or disable to disable use of the specified option.

PathVariable(key, help, default, [validator])
Returns a tuple of arguments to set up an option whose value is expected to be a path name. The option will use
the specified name key, have a default value of default, and help will form the descriptive part of the help

173

text. An additional validator may be specified that will be called to verify that the specified path is acceptable.
SCons supplies the following ready-made validators:

PathVariable.PathExists
Verify that the specified path exists (this the default behavior if no validator is supplied).

PathVariable.PathIsFile
Verify that the specified path exists and is a regular file.

PathVariable.PathIsDir
Verify that the specified path exists and is a directory.

PathVariable.PathIsDirCreate
Verify that the specified path exists and is a directory; if it does not exist, create the directory.

PathVariable.PathAccept
Accept the specific path name argument without validation, suitable for when you want your users to be able
to specify a directory path that will be created as part of the build process, for example.

You may supply your own validator function, which must accept three arguments (key, the name of the variable
to be set; val, the specified value being checked; and env, the construction environment) and should raise an
exception if the specified value is not acceptable.

These functions make it convenient to create a number of variables with consistent behavior in a single call to the
AddVariables method:

vars.AddVariables(
 BoolVariable(
 "warnings",
 help="compilation with -Wall and similar",
 default=1,
),
 EnumVariable(
 "debug",
 help="debug output and symbols",
 default="no",
 allowed_values=("yes", "no", "full"),
 map={},
 ignorecase=0, # case sensitive
),
 ListVariable(
 "shared",
 help="libraries to build as shared libraries",
 default="all",
 names=list_of_libs,
),
 PackageVariable(
 "x11",
 help="use X11 installed here (yes = search some places)",
 default="yes",
),
 PathVariable(
 "qtdir",
 help="where the root of Qt is installed",
 default=qtdir),

174

 PathVariable(
 "foopath",
 help="where the foo library is installed",
 default=foopath,
 validator=PathVariable.PathIsDir,
),
)

File and Directory Nodes

The File and Dir functions/methods return File and Directory Nodes, respectively. Such nodes are Python objects
with several user-visible attributes and methods that are often useful to access in SConscript files:

n.path
The build path of the given file or directory. This path is relative to the top-level directory (where the
SConstruct file is found). The build path is the same as the source path if variant_dir is not being used.

n.abspath
The absolute build path of the given file or directory.

n.relpath
The build path of the given file or directory relative to the root SConstruct file's directory.

n.srcnode()
The srcnode method returns another File or Directory Node representing the source path of the given File or
Directory Node.

For example:

Get the current build dir's path, relative to top.
Dir('.').path
Current dir's absolute path
Dir('.').abspath
Current dir's path relative to the root SConstruct file's directory
Dir('.').relpath
Next line is always '.', because it is the top dir's path relative to itself.
Dir('#.').path
File('foo.c').srcnode().path # source path of the given source file.

Builders also return File objects:
foo = env.Program('foo.c')
print("foo will be built in", foo.path)

File and Directory Node objects have methods to create File and Directory Nodes relative to the original Node.

If the object is a Directory Node, these methods will place the the new Node within the directory the Node represents:

d.Dir(name)
Returns a directory Node for a subdirectory of d named name.

d.File(name)
Returns a file Node for a file within d named name.

d.Entry(name)
Returns an unresolved Node within d named name.

175

If the object is a File Node, these methods will place the the new Node in the same directory as the one the Node
represents:

f.Dir(name)
Returns a directory named name within the parent directory of f.

f.File(name)
Returns a file named name within the parent directory of f.

f.Entry(name)
Returns an unresolved Node named name within the parent directory of f.

For example:

Get a Node for a file within a directory
incl = Dir('include')
f = incl.File('header.h')

Get a Node for a subdirectory within a directory
dist = Dir('project-3.2.1')
src = dist.Dir('src')

Get a Node for a file in the same directory
cfile = File('sample.c')
hfile = cfile.File('sample.h')

Combined example
docs = Dir('docs')
html = docs.Dir('html')
index = html.File('index.html')
css = index.File('app.css')

EXTENDING SCONS

Builder Objects

scons can be extended to build different types of targets by adding new Builder objects to a construction environment.
In general, you should only need to add a new Builder object when you want to build a new type of file or other external
target. For output file types scons already knows about, you can usually modify the behavior of premade Builders
such as Program, Object or Library by changing the construction variables they use ($CC, $LINK, etc.). In this
manner you can, for example, change the compiler to use, which is simpler and less error-prone than writing a new
builder. The documentation for each Builder lists which construction variables it uses.

Builder objects are created using the Builder factory function. Once created, a builder is added to an environment
by entering it in the $BUILDERS dictionary in that environment (some of the examples in this section illustrate that).

The Builder function accepts the following keyword arguments:

action
The command used to build the target from the source. action may be a string representing a template command
line to execute, a list of strings representing the command to execute with its arguments (suitable for enclosing
white space in an argument), a dictionary mapping source file name suffixes to any combination of command line
strings (if the builder should accept multiple source file extensions), a Python function, an Action object (see the
section called “Action Objects”) or a list of any of the above.

176

An action function must accept three arguments: source, target and env. source is a list of source nodes;
target is a list of target nodes; env is the construction environment to use for context.

The action and generator arguments must not both be used for the same Builder.

prefix
The prefix to prepend to the target file name. prefix may be a string, a function (or other callable) that takes two
arguments (a construction environment and a list of sources) and returns a prefix string, or a dictionary specifying
a mapping from a specific source suffix (of the first source specified) to a corresponding target prefix string. For
the dictionary form, both the source suffix (key) and target prefix (value) specifications may use environment
variable substitution, and the target prefix may also be a callable object. The default target prefix may be indicated
by a dictionary entry with a key of None.

b = Builder("build_it < $SOURCE > $TARGET",
 prefix="file-")

def gen_prefix(env, sources):
 return "file-" + env['PLATFORM'] + '-'

b = Builder("build_it < $SOURCE > $TARGET",
 prefix=gen_prefix)

b = Builder("build_it < $SOURCE > $TARGET",
 suffix={None: "file-", "$SRC_SFX_A": gen_prefix})

suffix
The suffix to append to the target file name. Specified in the same manner as for prefix above. If the suffix is a
string, then scons prepends a '.' to the suffix if it's not already there. The string returned by the callable object
or obtained from the dictionary is untouched and you need to manually prepend a '.' if one is required.

b = Builder("build_it < $SOURCE > $TARGET"
 suffix="-file")

def gen_suffix(env, sources):
 return "." + env['PLATFORM'] + "-file"

b = Builder("build_it < $SOURCE > $TARGET",
 suffix=gen_suffix)

b = Builder("build_it < $SOURCE > $TARGET",
 suffix={None: ".sfx1", "$SRC_SFX_A": gen_suffix})

ensure_suffix
If set to a true value, ensures that targets will end in suffix. Thus, the suffix will also be added to any target
strings that have a suffix that is not already suffix. The default behavior (also indicated by a false value) is to
leave unchanged any target string that looks like it already has a suffix.

b1 = Builder("build_it < $SOURCE > $TARGET"
 suffix = ".out")
b2 = Builder("build_it < $SOURCE > $TARGET"
 suffix = ".out",
 ensure_suffix=True)

177

env = Environment()
env['BUILDERS']['B1'] = b1
env['BUILDERS']['B2'] = b2

Builds "foo.txt" because ensure_suffix is not set.
env.B1('foo.txt', 'foo.in')

Builds "bar.txt.out" because ensure_suffix is set.
env.B2('bar.txt', 'bar.in')

src_suffix
The expected source file name suffix. src_suffix may be a string or a list of strings.

target_scanner
A Scanner object that will be invoked to find implicit dependencies for this target file. This keyword argument
should be used for Scanner objects that find implicit dependencies based only on the target file and the construction
environment, not for implicit dependencies based on source files. See the section called “Scanner Objects” for
information about creating Scanner objects.

source_scanner
A Scanner object that will be invoked to find implicit dependencies in any source files used to build this target
file. This is where you would specify a scanner to find things like #include lines in source files. The pre-
built DirScanner Scanner object may be used to indicate that this Builder should scan directory trees for on-
disk changes to files that scons does not know about from other Builder or function calls. See the section called
“Scanner Objects” for information about creating your own Scanner objects.

target_factory
A factory function that the Builder will use to turn any targets specified as strings into SCons Nodes. By default,
SCons assumes that all targets are files. Other useful target_factory values include Dir, for when a Builder creates
a directory target, and Entry, for when a Builder can create either a file or directory target.

Example:

MakeDirectoryBuilder = Builder(action=my_mkdir, target_factory=Dir)
env = Environment()
env.Append(BUILDERS={'MakeDirectory': MakeDirectoryBuilder})
env.MakeDirectory('new_directory', [])

Note that the call to this MakeDirectory Builder needs to specify an empty source list to make the string
represent the builder's target; without that, it would assume the argument is the source, and would try to deduce
the target name from it, which in the absence of an automatically-added prefix or suffix would lead to a matching
target and source name and a circular dependency.

source_factory
A factory function that the Builder will use to turn any sources specified as strings into SCons Nodes. By default,
SCons assumes that all source are files. Other useful source_factory values include Dir, for when a Builder uses
a directory as a source, and Entry, for when a Builder can use files or directories (or both) as sources.

Example:

CollectBuilder = Builder(action=my_mkdir, source_factory=Entry)
env = Environment()
env.Append(BUILDERS={'Collect': CollectBuilder})
env.Collect('archive', ['directory_name', 'file_name'])

178

emitter
A function or list of functions to manipulate the target and source lists before dependencies are established and
the target(s) are actually built. emitter can also be a string containing a construction variable to expand to an
emitter function or list of functions, or a dictionary mapping source file suffixes to emitter functions. (Only the
suffix of the first source file is used to select the actual emitter function from an emitter dictionary.)

A function passed as emitter must accept three arguments: source, target and env. source is a list of
source nodes, target is a list of target nodes, env is the construction environment to use for context.

An emitter must return a tuple containing two lists, the list of targets to be built by this builder, and the list of
sources for this builder.

Example:

def e(target, source, env):
 return (target + ['foo.foo'], source + ['foo.src'])

Simple association of an emitter function with a Builder.
b = Builder("my_build < $TARGET > $SOURCE",
 emitter = e)

def e2(target, source, env):
 return (target + ['bar.foo'], source + ['bar.src'])

Simple association of a list of emitter functions with a Builder.
b = Builder("my_build < $TARGET > $SOURCE",
 emitter = [e, e2])

Calling an emitter function through a construction variable.
env = Environment(MY_EMITTER=e)
b = Builder("my_build < $TARGET > $SOURCE",
 emitter='$MY_EMITTER')

Calling a list of emitter functions through a construction variable.
env = Environment(EMITTER_LIST=[e, e2])
b = Builder("my_build < $TARGET > $SOURCE",
 emitter='$EMITTER_LIST')

Associating multiple emitters with different file
suffixes using a dictionary.
def e_suf1(target, source, env):
 return (target + ['another_target_file'], source)
def e_suf2(target, source, env):
 return (target, source + ['another_source_file'])
b = Builder("my_build < $TARGET > $SOURCE",
 emitter={'.suf1' : e_suf1,
 '.suf2' : e_suf2})

multi
Specifies whether this builder is allowed to be called multiple times for the same target file(s). The default is
False, which means the builder can not be called multiple times for the same target file(s). Calling a builder
multiple times for the same target simply adds additional source files to the target; it is not allowed to change the
environment associated with the target, specify additional environment overrides, or associate a different builder
with the target.

179

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file.)

generator
A function that returns a list of actions that will be executed to build the target(s) from the source(s). The returned
action(s) may be an Action object, or anything that can be converted into an Action object (see the next section).

A function passed as generator must accept four arguments: source, target, env and for_signature.
source is a list of source nodes, target is a list of target nodes, env is the construction environment to use for
context, for_signature is a Boolean value that specifies whether the generator is being called for generating
a build signature (as opposed to actually executing the command).

Example:

def g(source, target, env, for_signature):
 return [["gcc", "-c", "-o"] + target + source]

b = Builder(generator=g)

The generator and action arguments must not both be used for the same Builder.

src_builder
Specifies a builder to use when a source file name suffix does not match any of the suffixes of the builder. Using
this argument produces a multi-stage builder.

single_source
Specifies that this builder expects exactly one source file per call. Giving more than one source file without target
files results in implicitly calling the builder multiple times (once for each source given). Giving multiple source
files together with target files results in a UserError exception.

source_ext_match
When the specified action argument is a dictionary, the default behavior when a builder is passed multiple
source files is to make sure that the extensions of all the source files match. If it is legal for this builder to be called
with a list of source files with different extensions, this check can be suppressed by setting source_ext_match
to False or some other non-true value. In this case, scons will use the suffix of the first specified source file to
select the appropriate action from the action dictionary.

In the following example, the setting of source_ext_match prevents scons from exiting with an error due to
the mismatched suffixes of foo.in and foo.extra.

b = Builder(action={'.in' : 'build $SOURCES > $TARGET'},
 source_ext_match=False)

env = Environment(BUILDERS={'MyBuild':b})
env.MyBuild('foo.out', ['foo.in', 'foo.extra'])

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file.)

180

b = Builder(action="build < $SOURCE > $TARGET")
env = Environment(BUILDERS={'MyBuild' : b})
env.MyBuild('foo.out', 'foo.in', my_arg='xyzzy')

chdir
A directory from which scons will execute the action(s) specified for this Builder. If the chdir argument is a
string or a directory Node, scons will change to the specified directory. If the chdir is not a string or Node and
is non-zero, then scons will change to the target file's directory.

Note that scons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdir keyword argument--that is, the expanded file names will still be relative
to the top-level directory containing the SConstruct file, and consequently incorrect relative to the chdir
directory. Builders created using chdir keyword argument, will need to use construction variable expansions
like ${TARGET.file} and ${SOURCE.file} to use just the filename portion of the targets and source.

b = Builder(action="build < ${SOURCE.file} > ${TARGET.file}",
 chdir=1)
env = Environment(BUILDERS={'MyBuild' : b})
env.MyBuild('sub/dir/foo.out', 'sub/dir/foo.in')

Warning

Python only keeps one current directory location even if there are multiple threads. This means that use
of the chdir argument will not work with the SCons -j option, because individual worker threads
spawned by SCons interfere with each other when they start changing directory.

Any additional keyword arguments supplied when a Builder object is created (that is, when the Builder function is
called) will be set in the executing construction environment when the Builder object is called. The canonical example
here would be to set a construction variable to the repository of a source code system.

Any additional keyword arguments supplied when a Builder object is called will only be associated with the target
created by that particular Builder call (and any other files built as a result of the call).

These extra keyword arguments are passed to the following functions: command generator functions, function Actions,
and emitter functions.

Action Objects

The Builder factory function will turn its action keyword argument into an appropriate internal Action object, as
will the Command function. You can also explicitly create Action objects for passing to Builder, or other functions
that take actions as arguments, by calling the Action factory function. This may more efficient when multiple Builder
objects need to do the same thing rather than letting each of those Builder objects create a separate Action object. It
also allows more flexible configuration of an Action object. For example, to control the message printed when the
action is taken you need to create the action object using Action.

The Action factory function returns an appropriate object for the action represented by the type of the action
argument (the first positional parmeter):

• If action is already an Action object, the object is simply returned.

• If action is a string, a command-line Action is returned. If such a string begins with @, the command line is
not printed. If the string begins with hyphen (-), the exit status from the specified command is ignored, allowing
execution to continue even if the command reports failure:

181

Action('$CC -c -o $TARGET $SOURCES')

Doesn't print the line being executed.
Action('@build $TARGET $SOURCES')

Ignores return value
Action('-build $TARGET $SOURCES')

• If action is a list, then a list of Action objects is returned. An Action object is created as necessary for each element
in the list. If an element within the list is itself a list, the embedded list is taken as the command and arguments to
be executed via the command line. This allows white space to be enclosed in an argument rather than taken as a
separator by defining a command in a list within a list:

Action([['cc', '-c', '-DWHITE SPACE', '-o', '$TARGET', '$SOURCES']])

• If action is a callable object, a Function Action is returned. The callable must accept three keyword arguments:
target, source and env. target is a Node object representing the target file, source is a Node object
representing the source file and env is the construction environment used for building the target file.

The target and source arguments may be lists of Node objects if there is more than one target file or source
file. The actual target and source file name(s) may be retrieved from their Node objects via the built-in Python str
function:

target_file_name = str(target)
source_file_names = [str(x) for x in source]

The function should return 0 or None to indicate a successful build of the target file(s). The function may raise an
exception or return a non-zero exit status to indicate an unsuccessful build.

def build_it(target=None, source=None, env=None):
 # build the target from the source
 return 0

a = Action(build_it)

• If action is not one of the above types, no action object is generated and Action returns None.

The environment method form env.Action will expand construction variables in any argument strings, including
action, at the time it is called, using the construction variables in the construction environment through which it was
called. The global function form Action delays variable expansion until the Action object is actually used.

The optional second argument to Action is used to control the output which is printed when the Action is actually
performed. If this parameter is omitted, or if the value is an empty string, a default output depending on the type of
the action is used. For example, a command-line action will print the executed command. The following argument
types are accepted:

• If output is a string, substitution is performed on the string before it is printed. The string typically contains
variables, notably $TARGET(S) and $SOURCE(S), or consists of just a single variable, which is optionally
defined somewhere else. SCons itself heavily uses the latter variant.

• If output is a function, the function will be called to obtain a string describing the action being executed. The
function must accept three keyword arguments: target, source and env, with the same interpretation as for
a callable action argument above.

182

• If outputis None, output is suppressed entirely.

Instead of using a positional argument, the cmdstr keyword argument may be used to specify the output string, or
the strfunction keyword argument may be used to specify a function to return the output string. cmdstr=None
suppresses output entirely.

Examples:

def build_it(target, source, env):
 # build the target from the source
 return 0

def string_it(target, source, env):
 return "building '%s' from '%s'" % (target[0], source[0])

Use a positional argument.
f = Action(build_it, string_it)
s = Action(build_it, "building '$TARGET' from '$SOURCE'")

Alternatively, use a keyword argument.
f = Action(build_it, strfunction=string_it)
s = Action(build_it, cmdstr="building '$TARGET' from '$SOURCE'")

You can provide a configurable variable.
l = Action(build_it, '$STRINGIT')

Any additional positional arguments, if present, may either be construction variables or lists of construction variables
whose values will be included in the signature of the Action when deciding whether a target should be rebuilt because
the action changed. Such variables may also be specified using the varlist keyword parameter; both positional and
keyword forms may be present, and will be combined. This is necessary whenever you want a target to be rebuilt when
a specific construction variable changes. This is not often needed for a string action, as the expanded variables will
normally be part of the command line, but may be needed if a Python function action uses the value of a construction
variable when generating the command line.

def build_it(target, source, env):
 # build the target from the 'XXX' construction variable
 with open(target[0], 'w') as f:
 f.write(env['XXX'])
 return 0

Use positional arguments.
a = Action(build_it, '$STRINGIT', ['XXX'])

Alternatively, use a keyword argument.
a = Action(build_it, varlist=['XXX'])

The Action factory function can be passed the following optional keyword arguments to modify the Action object's
behavior:

chdir
If chdir is true (the default is False), SCons will change directories before executing the action. If the value
of chdir is a string or a directory Node, SCons will change to the specified directory. Otherwise, if chdir
evaluates true, SCons will change to the target file's directory.

183

Note that SCons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdir parameter - that is, the expanded file names will still be relative to the top-
level directory containing the SConstruct file, and consequently incorrect relative to the chdir directory.
Builders created using chdir keyword argument, will need to use construction variable expansions like
${TARGET.file} and ${SOURCE.file} to use just the filename portion of the targets and source. Example:

a = Action("build < ${SOURCE.file} > ${TARGET.file}", chdir=True)

exitstatfunc
If provided, must be a callable which accepts a single parameter, the exit status (or return value) from the specified
action, and which returns an arbitrary or modified value. This can be used, for example, to specify that an Action
object's return value should be ignored under special conditions and SCons should, therefore, consider that the
action always succeeds. Example:

def always_succeed(s):
 # Always return 0, which indicates success.
 return 0

a = Action("build < ${SOURCE.file} > ${TARGET.file}",
 exitstatfunc=always_succeed)

batch_key
If provided, indicates that the Action can create multiple target files by processing multiple independent source
files simultaneously. (The canonical example is "batch compilation" of multiple object files by passing multiple
source files to a single invocation of a compiler such as Microsoft's Visual C / C++ compiler.) If the batch_key
argument evaluates True and is not a callable object, the configured Action object will cause scons to collect
all targets built with the Action object and configured with the same construction environment into single
invocations of the Action object's command line or function. Command lines will typically want to use the
$CHANGED_SOURCES construction variable (and possibly $CHANGED_TARGETS as well) to only pass to the
command line those sources that have actually changed since their targets were built. Example:

a = Action('build $CHANGED_SOURCES', batch_key=True)

The batch_key argument may also be a callable function that returns a key that will be used to identify different
"batches" of target files to be collected for batch building. A batch_key function must accept four parameters:
action, env, target and source. The first parameter, action, is the active action object. The second
parameter, env, is the construction environment configured for the target. The target and source parameters
are the lists of targets and sources for the configured action.

The returned key should typically be a tuple of values derived from the arguments, using any appropriate logic to
decide how multiple invocations should be batched. For example, a batch_key function may decide to return
the value of a specific construction variable from env which will cause scons to batch-build targets with matching
values of that construction variable, or perhaps return the Python id() of the entire construction environment,
in which case scons will batch-build all targets configured with the same construction environment. Returning
None indicates that the particular target should not be part of any batched build, but instead will be built by a
separate invocation of action's command or function. Example:

def batch_key(action, env, target, source):
 tdir = target[0].dir
 if tdir.name == 'special':
 # Don't batch-build any target

184

 # in the special/ subdirectory.
 return None
 return (id(action), id(env), tdir)
a = Action('build $CHANGED_SOURCES', batch_key=batch_key)

Miscellaneous Action Functions

SCons supplies Action functions that arrange for various common file and directory manipulations to be performed.
These are similar in concept to "tasks" in the Ant build tool, although the implementation is slightly different. These
functions do not actually perform the specified action at the time the function is called, but rather are factory functions
which return an Action object that can be executed at the appropriate time.

There are two natural ways that these Action Functions are intended to be used.

First, if you need to perform the action at the time the SConscript file is being read, you can use the Execute global
function:

Execute(Touch('file'))

Second, you can use these functions to supply Actions in a list for use by the env.Command method. This can
allow you to perform more complicated sequences of file manipulation without relying on platform-specific external
commands:

env = Environment(TMPBUILD='/tmp/builddir')
env.Command(
 target='foo.out',
 source='foo.in',
 action=[
 Mkdir('$TMPBUILD'),
 Copy('$TMPBUILD', '${SOURCE.dir}'),
 "cd $TMPBUILD && make",
 Delete('$TMPBUILD'),
],
)

Chmod(dest, mode)
Returns an Action object that changes the permissions on the specified dest file or directory to the specified
mode which can be octal or string, similar to the bash command. Examples:

Execute(Chmod('file', 0o755))

env.Command('foo.out', 'foo.in',
 [Copy('$TARGET', '$SOURCE'),
 Chmod('$TARGET', 0o755)])

Execute(Chmod('file', "ugo+w"))

env.Command('foo.out', 'foo.in',
 [Copy('$TARGET', '$SOURCE'),
 Chmod('$TARGET', "ugo+w")])

The behavior of Chmod is limited on Windows, see the notes in the Python documentation for os.chmod, which
is the underlying function.

185

Copy(dest, src)
Returns an Action object that will copy the src source file or directory to the dest destination file or directory.
Examples:

Execute(Copy('foo.output', 'foo.input'))

env.Command('bar.out', 'bar.in', Copy('$TARGET', '$SOURCE'))

Delete(entry, [must_exist])
Returns an Action that deletes the specified entry, which may be a file or a directory tree. If a directory is
specified, the entire directory tree will be removed. If the must_exist flag is set to a true value, then a Python
error will be raised if the specified entry does not exist; the default is false, that is, the Action will silently do
nothing if the entry does not exist. Examples:

Execute(Delete('/tmp/buildroot'))

env.Command(
 'foo.out',
 'foo.in',
 action=[
 Delete('${TARGET.dir}'),
 MyBuildAction,
],
)

Execute(Delete('file_that_must_exist', must_exist=True))

Mkdir(name)
Returns an Action that creates the directory name and all needed intermediate directories. name may also be a
list of directories to create. Examples:

Execute(Mkdir('/tmp/outputdir'))

env.Command(
 'foo.out',
 'foo.in',
 action=[
 Mkdir('/tmp/builddir'),
 Copy('/tmp/builddir/foo.in', '$SOURCE'),
 "cd /tmp/builddir && make",
 Copy('$TARGET', '/tmp/builddir/foo.out'),
],
)

Move(dest, src)
Returns an Action that moves the specified src file or directory to the specified dest file or directory. Examples:

Execute(Move('file.destination', 'file.source'))

env.Command(
 'output_file',

186

 'input_file',
 action=[MyBuildAction, Move('$TARGET', 'file_created_by_MyBuildAction')],
)

Touch(file)
Returns an Action that updates the modification time on the specified file. Examples:

Execute(Touch('file_to_be_touched'))

env.Command('marker', 'input_file', action=[MyBuildAction, Touch('$TARGET')])

Variable Substitution

Before executing a command, scons performs variable substitution on the string that makes up the action part of
the builder. Variables to be interpolated are indicated in the string with a leading $, to distinguish them from plain
text which is not to be substituted. The name may be surrounded by curly braces (${}) to separate the name from
surrounding characters if necessary. Curly braces are required when you use Python list subscripting/slicing notation
on a variable to select one or more items from a list, or access a variable's special attributes, or use Python expression
substitution.

Besides regular construction variables, scons provides the following special variables for use in expanding commands:

$CHANGED_SOURCES
The file names of all sources of the build command that have changed since the target was last built.

$CHANGED_TARGETS
The file names of all targets that would be built from sources that have changed since the target was last built.

$SOURCE
The file name of the source of the build command, or the file name of the first source if multiple sources are
being built.

$SOURCES
The file names of the sources of the build command.

$TARGET
The file name of the target being built, or the file name of the first target if multiple targets are being built.

$TARGETS
The file names of all targets being built.

$UNCHANGED_SOURCES
The file names of all sources of the build command that have not changed since the target was last built.

$UNCHANGED_TARGETS
The file names of all targets that would be built from sources that have not changed since the target was last built.

These names are reserved and may not be assigned to or used as construction variables.

For example, the following builder call:

env = Environment(CC='cc')
env.Command(
 target=['foo'],
 source=['foo.c', 'bar.c'],
 action='@echo $CC -c -o $TARGET $SOURCES'

187

)

would produce the following output:

cc -c -o foo foo.c bar.c

In the previous example, a string ${SOURCES[1]} would expand to: bar.c.

A variable name may have the following modifiers appended within the enclosing curly braces to access properties of
the interpolated string. These are known as special attributes.

base - The base path of the file name, including the directory path but excluding any suffix.
dir - The name of the directory in which the file exists.
file - The file name, minus any directory portion.
filebase - Like file but minus its suffix.
suffix - Just the file suffix.
abspath - The absolute path name of the file.
relpath - The path name of the file relative to the root SConstruct file's directory.
posix - The path with directories separated by forward slashes (/). Sometimes necessary on Windows systems when
a path references a file on other (POSIX) systems.
windows - The path with directories separated by backslashes (\\). Sometimes necessary on POSIX-style systems
when a path references a file on other (Windows) systems. win32 is a (deprecated) synonym for windows.
srcpath - The directory and file name to the source file linked to this file through VariantDir(). If this file isn't
linked, it just returns the directory and filename unchanged.
srcdir - The directory containing the source file linked to this file through VariantDir(). If this file isn't linked,
it just returns the directory part of the filename.
rsrcpath - The directory and file name to the source file linked to this file through VariantDir(). If the file does
not exist locally but exists in a Repository, the path in the Repository is returned. If this file isn't linked, it just returns
the directory and filename unchanged.
rsrcdir - The Repository directory containing the source file linked to this file through VariantDir(). If this file
isn't linked, it just returns the directory part of the filename.

For example, the specified target will expand as follows for the corresponding modifiers:

$TARGET => sub/dir/file.x
${TARGET.base} => sub/dir/file
${TARGET.dir} => sub/dir
${TARGET.file} => file.x
${TARGET.filebase} => file
${TARGET.suffix} => .x
${TARGET.abspath} => /top/dir/sub/dir/file.x
${TARGET.relpath} => sub/dir/file.x

$TARGET => ../dir2/file.x
${TARGET.abspath} => /top/dir2/file.x
${TARGET.relpath} => ../dir2/file.x

SConscript('src/SConscript', variant_dir='sub/dir')
$SOURCE => sub/dir/file.x
${SOURCE.srcpath} => src/file.x
${SOURCE.srcdir} => src

Repository('/usr/repository')

188

$SOURCE => sub/dir/file.x
${SOURCE.rsrcpath} => /usr/repository/src/file.x
${SOURCE.rsrcdir} => /usr/repository/src

Some modifiers can be combined, like ${TARGET.srcpath.base), ${TARGET.file.suffix}, etc.

The curly brace notation may also be used to enclose a Python expression to be evaluated. See the section called
“Python Code Substitution” below for a description.

A variable name may also be a Python function associated with a construction variable in the environment. The function
should accept four arguments:

target - a list of target nodes
source - a list of source nodes
env - the construction environment
for_signature - a Boolean value that specifies whether the function is being called for generating a build signature.

SCons will insert whatever the called function returns into the expanded string:

def foo(target, source, env, for_signature):
 return "bar"

Will expand $BAR to "bar baz"
env=Environment(FOO=foo, BAR="$FOO baz")

As a reminder, this evaluation happens when $BAR is actually used in a builder action. The value of env['BAR']
will be exactly as it was set: "$FOO baz".

You can use this feature to pass arguments to a Python function by creating a callable class that stores one or more
arguments in an object, and then uses them when the __call__() method is called. Note that in this case, the entire
variable expansion must be enclosed by curly braces so that the arguments will be associated with the instantiation
of the class:

class foo:
 def __init__(self, arg):
 self.arg = arg

 def __call__(self, target, source, env, for_signature):
 return self.arg + " bar"

Will expand $BAR to "my argument bar baz"
env=Environment(FOO=foo, BAR="${FOO('my argument')} baz")

The special pseudo-variables $(and $) may be used to surround parts of a command line that may change without
causing a rebuild--that is, which are not included in the signature of target files built with this command. All text
between $(and $) will be removed from the command line before it is added to file signatures, and the $(and $) will
be removed before the command is executed. For example, the command line:

echo Last build occurred $($TODAY $). > $TARGET

would execute the command:

echo Last build occurred $TODAY. > $TARGET

189

but the command signature added to any target files would be:

echo Last build occurred . > $TARGET

Python Code Substitution

If a substitutable expression using the notation ${something} does not appear to match one of the other substitution
patterns, it is evaluated as a Python expression. This uses Python's eval function, with the globals parameter set
to the current environment's set of construction variables, and the result substituted in. So in the following case:

env.Command(
 'foo.out', 'foo.in', "echo ${COND==1 and 'FOO' or 'BAR'} > $TARGET"
)

the command executed will be either

echo FOO > foo.out

or

echo BAR > foo.out

according to the current value of env['COND'] when the command is executed. The evaluation takes place when the
target is being built, not when the SConscript is being read. So if env['COND'] is changed later in the SConscript,
the final value will be used.

Here's a more complete example. Note that all of COND, FOO, and BAR are construction variables, and their values are
substituted into the final command. FOO is a list, so its elements are interpolated separated by spaces.

env=Environment()
env['COND'] = 1
env['FOO'] = ['foo1', 'foo2']
env['BAR'] = 'barbar'
env.Command(
 'foo.out', 'foo.in', "echo ${COND==1 and FOO or BAR} > $TARGET"
)

will execute:

echo foo1 foo2 > foo.out

In point of fact, Python expression evaluation is how the special attributes are substituted: they are simply attributes of
the Python objects that represent $TARGET, $SOURCES, etc., which SCons passes to eval which returns the value.

SCons uses the following rules when converting construction variables into command lines:

string
When the value is a string it is interpreted as a space delimited list of command line arguments.

list
When the value is a list it is interpreted as a list of command line arguments. Each element of the list is converted
to a string.

190

other
Anything that is not a list or string is converted to a string and interpreted as a single command line argument.

newline
Newline characters (\n) delimit lines. The newline parsing is done after all other parsing, so it is not possible for
arguments (e.g. file names) to contain embedded newline characters.

Note

Use of the Python eval function is considered to have security implications, since, depending on input
sources, arbitrary unchecked strings of code can be executed by the Python interpreter. Although SCons makes
use of it in a somewhat restricted context, you should be aware of this issue when using the ${python-
expression-for-subst} form.

Scanner Objects

You can use the Scanner function to define objects to scan new file types for implicit dependencies. The Scanner
function accepts the following arguments:

function
This can be either:

• a Python function that will process the Node (file) and return a list of File Nodes representing the implicit
dependencies (file names) found in the contents.

• a dictionary that maps keys (typically the file suffix, but see below for more discussion) to other Scanners that
should be called.

If the argument is a Python function, the function must accept three required arguments and an optional fourth:

node - The internal SCons node representing the file. Use str(node) to fetch the name of the file, and
node.get_contents() to fetch the contents of the file as bytes or node.get_text_contents() to fetch
the contents as text. Note that the file is not guaranteed to exist before the scanner is called, so the scanner function
should check that if there's any chance that the scanned file might not exist (for example, if it's built from other
files).
env - The construction environment for the scan.
path - A tuple (or list) of directories that can be searched for files. This will usually be the tuple returned by the
path_function argument (see below).
arg - The argument supplied when the scanner was created, if any (default None.

name
The name of the Scanner. This is mainly used to identify the Scanner internally. The default value is "NONE".

argument
An optional argument that, if specified, will be passed to the scanner function (described above) and the path
function (specified below).

skeys
An optional list that can be used to determine which scanner should be used for a given Node. In the usual case of
scanning for file names, this argument will be a list of suffixes for the different file types that this Scanner knows
how to scan. If the argument is a string, then it will be expanded into a list by the current environment.

path_function
A Python function that takes four or five arguments: a construction environment, a Node for the directory
containing the SConscript file in which the first target was defined, a list of target nodes, a list of source nodes, and
an optional argument supplied when the scanner was created. The path_function returns a tuple of directories
that can be searched for files to be returned by this Scanner object. (Note that the FindPathDirs function can

191

be used to return a ready-made path_function for a given construction variable name, instead of having to
write your own function from scratch.)

node_class
The class of Node that should be returned by this Scanner object. Any strings or other objects returned by the
scanner function that are not of this class will be run through the function supplied by the node_factory
argument.

node_factory
A Python function that will take a string or other object and turn it into the appropriate class of Node to be returned
by this Scanner object.

scan_check
An optional Python function that takes two arguments, a Node (file) and a construction environment, and returns
whether the Node should, in fact, be scanned for dependencies. This check can be used to eliminate unnecessary
calls to the scanner function when, for example, the underlying file represented by a Node does not yet exist.

recursive
An optional flag that specifies whether this scanner should be re-invoked on the dependency files returned by the
scanner. When this flag is not set, the Node subsystem will only invoke the scanner on the file being scanned, and
not (for example) also on the files specified by the #include lines in the file being scanned. recursive may be a
callable function, in which case it will be called with a list of Nodes found and should return a list of Nodes that
should be scanned recursively; this can be used to select a specific subset of Nodes for additional scanning.

Note that scons has a global SourceFileScanner object that is used by the Object, SharedObject and
StaticObject builders to decide which scanner should be used for different file extensions. You can use the
SourceFileScanner.add_scanner() method to add your own Scanner object to the SCons infrastructure
that builds target programs or libraries from a list of source files of different types:

def xyz_scan(node, env, path):
 contents = node.get_text_contents()
 # Scan the contents and return the included files.

XYZScanner = Scanner(xyz_scan)

SourceFileScanner.add_scanner('.xyz', XYZScanner)

env.Program('my_prog', ['file1.c', 'file2.f', 'file3.xyz'])

SYSTEM-SPECIFIC BEHAVIOR
scons and its configuration files are very portable, due largely to its implementation in Python. There are, however,
a few portability issues waiting to trap the unwary.

.C file suffix

scons handles the upper-case .C file suffix differently, depending on the capabilities of the underlying system. On
a case-sensitive system such as Linux or UNIX, scons treats a file with a .C suffix as a C++ source file. On a case-
insensitive system such as Windows, scons treats a file with a .C suffix as a C source file.

Fortran file suffixes

scons handles upper-case Fortran file suffixes differently depending on the capabilities of the underlying system. On
a case-sensitive system such as Linux or UNIX, scons treats a file with a .F as a Fortran source file that is to be

192

first run through the standard C preprocessor, while the lower-case version is not. This matches the convention of
gfortran, which may also be followed by other Fortran compilers. This also applies to other naming variants, .FOR,
.FTN, .F90, .F95, .F03 and .F08; files suffixed with .FPP and .fpp are both run through the preprocessor, as
indicated by the pp part of the name. On a case-insensitive system such as Windows, scons treats a file with a .F
suffix as a Fortran source file that should not be run through the C preprocessor.

Run through the C preprocessor here means that a different set of construction variables will be applied in
constructed commands, for example $FORTRANPPCOM and $FORTRANPPCOMSTR instead of $FORTRANCOM and
$FORTRANCOMSTR. See the Fortran-related construction variables for more details.

Windows: Cygwin Tools and Cygwin Python vs. Windows Pythons

Cygwin supplies a set of tools and utilities that let users work on a Windows system using a more POSIX-like
environment. The Cygwin tools, including Cygwin Python, do this, in part, by sharing an ability to interpret UNIX-
like path names. For example, the Cygwin tools will internally translate a Cygwin path name like /cygdrive/c/
mydir to an equivalent Windows pathname of C:/mydir (equivalent to C:\mydir).

Versions of Python that are built for native Windows execution, such as the python.org and ActiveState versions, do not
have the Cygwin path name semantics. This means that using a native Windows version of Python to build compiled
programs using Cygwin tools (such as gcc, bison and flex) may yield unpredictable results. "Mixing and matching" in
this way can be made to work, but it requires careful attention to the use of path names in your SConscript files.

In practice, users can sidestep the issue by adopting the following rules: When using gcc, use the Cygwin-supplied
Python interpreter to run scons; when using Microsoft Visual C/C++ (or some other Windows compiler) use the
python.org or Microsoft Store or ActiveState version of Python to run scons.

Windows: scons.bat file

On Windows systems, scons is executed via a wrapper scons.bat file. This has (at least) two ramifications:

First, Windows command-line users that want to use variable assignment on the command line may have to put double
quotes around the assignments:

scons "FOO=BAR" "BAZ=BLEH"

Second, the Cygwin shell does not recognize this file as being the same as an scons command issued at the command-
line prompt. You can work around this either by executing scons.bat from the Cygwin command line, or by creating
a wrapper shell script named scons.

MinGW

The MinGW bin directory must be in your PATH environment variable or the ['ENV']['PATH'] construction
variable for scons to detect and use the MinGW tools. When running under the native Windows Python interpreter,
scons will prefer the MinGW tools over the Cygwin tools, if they are both installed, regardless of the order of the bin
directories in the PATH variable. If you have both MSVC and MinGW installed and you want to use MinGW instead
of MSVC, then you must explicitly tell scons to use MinGW by passing tools=['mingw'] to the Environment
function, because scons will prefer the MSVC tools over the MinGW tools.

ENVIRONMENT
In general, scons is not controlled by environment variables set in the shell used to invoke it, leaving it up to the
SConscript file author to import those if desired. However the following variables are imported by scons itself if set:

193

SCONS_LIB_DIR
Specifies the directory that contains the scons Python module directory. Normally scons can deduce this, but in
some circumstances, such as working with a source release, it may be necessary to specify (for example, /home/
aroach/scons-src-0.01/src/engine).

SCONSFLAGS
A string containing options that will be used by scons in addition to those passed on the command line. Can be
used to reduce frequent retyping of common options. The contents of SCONSFLAGS are considered before any
passed command line options, so the command line can be used to override SCONSFLAGS options if necessary.

SCONS_CACHE_MSVC_CONFIG
(Windows only). If set, save the shell environment variables generated when setting up the Microsoft Visual
C++ compiler (and/or Build Tools) to a cache file, to give these settings, which are relatively expensive to
generate, persistence across scons invocations. Use of this option is primarily intended to aid performance in
tightly controlled Continuous Integration setups.

If set to a True-like value ("1", "true" or "True") will cache to a file named .scons_msvc_cache in the
user's home directory. If set to a pathname, will use that pathname for the cache.

Note: use this cache with caution as it might be somewhat fragile: while each major toolset version (e.g. Visual
Studio 2017 vs 2019) and architecture pair will get separate cache entries, if toolset updates cause a change to
settings within a given release series, scons will not detect the change and will reuse old settings. Remove the
cache file in case of problems with this. scons will ignore failures reading or writing the file and will silently
revert to non-cached behavior in such cases.

Available since scons 3.1 (experimental).

SEE ALSO
The SCons User Guide at https://scons.org/doc/production/HTML/scons-user.html
The SCons Design Document (old)
The SCons Cookbook at https://scons-cookbook.readthedocs.io for examples of how to solve various problems with
SCons.
SCons source code on GitHub [https://github.com/SCons/scons]
The SCons API Reference https://scons.org/doc/production/HTML/scons-api/index.html (for internal details)

AUTHORS
Originally: Steven Knight <knight@baldmt.com> and Anthony Roach
<aroach@electriceyeball.com>.

Since 2010: The SCons Development Team <scons-dev@scons.org>.

194

https://scons.org/doc/production/HTML/scons-user.html
https://scons-cookbook.readthedocs.io
https://github.com/SCons/scons
https://github.com/SCons/scons
https://scons.org/doc/production/HTML/scons-api/index.html

