ezdxf Documentation
Release 0.17.2

Manfred Moitzi

Mar 03, 2022

CONTENTS

1 Included Extensions 3
2 Website 5
3 Documentation 7
4 Source Code & Feedback 9
5 Questions and Answers 11
6 Contents 13
6.1 Introduction L e e e e e e 13
6.2 Setup & Dependencies e e e e e e e e e e e 14
6.3 Usage for Beginners 0 i e e e e e e e e e e 21
6.4 BasicCONCePLS v v v vt e e e e e e e e e e e e e e e e e 26
6.5 Tutorials e e e e 41
6.6 HOWLO o o e e e 188
6.7 FAQ . . e 196
6.8 Reference L e e e e e 197
6.9 Launcher e e e e e 522
6.10 Rendering e 535
6.11 Add-0nS e e e 553
6.12 DXFInternalS. v o e e e e e e e e e 606
6.13 Developer GUIdES v v v it e e e e e e e e e e e e e e e e e 703
6.14 GlOSSATY i e e e e e e e e e e e e e e e 721
6.15 Indicesandtables e e e e e e 721
Python Module Index 723
Index 725

ezdxf Documentation, Release 0.17.2

ezdxf

Welcome! This is the documentation for ezdxf release 0.17.2, last updated Mar 03, 2022.

* ezdxf is a Python package to create new DXEF files and read/modify/write existing DXF files
* the intended audience are programmers

* requires at least Python 3.7

* OS independent

* additional required packages: pyparsing

* optional Cython implementation of some low level math classes

* MIT-License

* read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018
* additional read support for DXF versions R13/R14 (upgraded to R2000)

* additional read support for older DXF versions than R12 (upgraded to R12)

* read/write support for ASCII DXF and Binary DXF

e preserves third-party DXF content

CONTENTS 1

https://pypi.python.org/pypi/pyparsing/

ezdxf Documentation, Release 0.17.2

2 CONTENTS

CHAPTER
ONE

INCLUDED EXTENSIONS

drawing add-on to visualise and convert DXF files to images which can be saved to various formats such as png,
pdf and svg

geo add-on to support the __geo_interface
rl12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream

iterdxf add-on to iterate over entities of the modelspace of really big (> 5GB) DXF files which do not fit into
memory

importer add-on to import entities, blocks and table entries from another DXF document

dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point for
parametric DXF entity creation

acadctb add-on to read/write Plot Style Files (CTB/STB)
pycsg add-on for Constructive Solid Geometry (CSG) modeling technique
MTextExplode add-on for exploding MTEXT entities into single line TEXT entities

https://gist.github.com/sgillies/2217756

ezdxf Documentation, Release 0.17.2

4 Chapter 1. Included Extensions

CHAPTER
TWO

WEBSITE

https://ezdxf.mozman.at/

https://ezdxf.mozman.at/

ezdxf Documentation, Release 0.17.2

6 Chapter 2. Website

CHAPTER
THREE

DOCUMENTATION

Documentation of development version at https://ezdxf.mozman.at/docs

Documentation of latest release at http://ezdxf.readthedocs.io/

https://ezdxf.mozman.at/docs
http://ezdxf.readthedocs.io/

ezdxf Documentation, Release 0.17.2

8 Chapter 3. Documentation

CHAPTER
FOUR

SOURCE CODE & FEEDBACK

Source Code: http://github.com/mozman/ezdxf.git
Issue Tracker: http://github.com/mozman/ezdxf/issues

Forum: https://github.com/mozman/ezdxf/discussions

http://github.com/mozman/ezdxf.git
http://github.com/mozman/ezdxf/issues
https://github.com/mozman/ezdxf/discussions

ezdxf Documentation, Release 0.17.2

10 Chapter 4. Source Code & Feedback

CHAPTER
FIVE

QUESTIONS AND ANSWERS

Please post questions at the forum or stack overflow to make answers available to other users as well.

11

https://github.com/mozman/ezdxf/discussions
https://stackoverflow.com/

ezdxf Documentation, Release 0.17.2

12 Chapter 5. Questions and Answers

CHAPTER
SIX

CONTENTS

6.1 Introduction

6.1.1 What is ezdxf

ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, ezdxf allows developers
to read and modify existing DXF drawings or create new DXF drawings.

The main objective in the development of ezdxf was to hide complex DXF details from the programmer but still sup-
port most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format is required, also to
understand which tasks and goals are possible to accomplish by using the the DXF format.

Not all DXF features are supported yet, but additional features will be added in the future gradually.

ezdxf is also a replacement for my dxfwrite and my dxfgrabber packages but with different APIs, for more information
see also: What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

6.1.2 What ezdxf can’t do

* ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking for an
appropriate application, try the free ODAFileConverter from the Open Design Alliance, which converts between
different DXF version and also between the DXF and the DWG file format.

* ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as DWG

¢ ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is just an interface
to the DXF file format. If you are looking for a CAD kernel with Python scripting support, look at FreeCAD.

6.1.3 Supported Python Versions

ezdxf requires at least Python 3.7 and will be tested with the latest stable CPython version and the latest stable release of
pypy3 during development.

ezdxf is written in pure Python with optional Cython implementations of some low level math classes and requires only
pyparser and typing_extensions as additional library beside the Python Standard Library. pytest is required to run the
unit and integration tests. Data to run the stress and audit test can not be provided, because I don’t have the rights for
publishing this DXF files.

13

http://www.python.org
http://usa.autodesk.com/
https://pypi.org/project/dxfwrite/
https://pypi.org/project/dxfgrabber/
https://www.opendesign.com/guestfiles/oda_file_converter
https://www.opendesign.com/
http://www.python.org
https://www.freecadweb.org/

ezdxf Documentation, Release 0.17.2

6.1.4 Supported Operating Systems

ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter (>=3.7).

6.1.5 Supported DXF Versions

Version | AutoCAD Release
AC1009 | AutoCAD R12

AC1012 | AutoCAD R13 ->R2000
AC1014 | AutoCAD R14 -> R2000
AC1015 | AutoCAD R2000
AC1018 | AutoCAD R2004
AC1021 | AutoCAD R2007
AC1024 | AutoCAD R2010
AC1027 | AutoCAD R2013
AC1032 | AutoCAD R2018

ezdxf also reads older DXF versions but saves it as DXF R12.

6.1.6 Embedded DXF Information of 3rd Party Applications

The DXF format allows third-party applications to embed application-specific information. ezdxf manages DXF data
in a structure-preserving form, but for the price of large memory requirement. Because of this, processing of DXF
information of third-party applications is possible and will retained on rewriting.

6.1.7 License

ezdxf is licensed under the very liberal MIT-License.

6.2 Setup & Dependencies

The primary goal is to keep the dependencies of the core package as small as possible. The add-ons are not part of the
core package and can therefore use as many packages as needed. The only requirement for these packages is an easy way
to install them on Windows, Linux and macOS, preferably as:

pip3 install ezdxf

The pyparsing package and the typing extensions are the only hard dependency and will be installed automatically by
pip3!

The minimal required Python version is determined by the latest stable version of pypy3 and the Python version deployed
by the Raspberry Pi OS, which is currently Python 3.7 (2021).

14 Chapter 6. Contents

http://opensource.org/licenses/mit-license.php
https://pypi.org/project/pyparsing/
https://pypi.org/project/typing_extensions/
https://www.pypy.org
https://www.raspberrypi.com

ezdxf Documentation, Release 0.17.2

6.2.1 Basic Installation

The most common case is the installation by pip3 including the optional C-extensions from PyPI as binary wheels:

pip3 install ezdxf

6.2.2 Installation with Extras

To use all features of the drawing add-on, add the [draw] tag:

pip3 install ezdxf[draw]

Tag Additional Installed Packages
[draw] Matplotlib, PySide6

[draw5] | Matplotlib, PyQt5 (use only if PySide6 is not available)
[test] geomdl, pytest
[
[
[

dev] setuptools, wheel, Cython + [test]
all] [draw] + [test] + [dev]
all5] [draw5] + [test] + [dev] (use only if PySide6 is not available)

6.2.3 Binary Wheels

Ezdxf includes some C-extensions, which will be deployed automatically at each release to PyPI as binary wheels to PyPI:
* Windows: only amd64 packages
* Linux: manylinux and musllinux packages for x86_64 & aarch64
* macOS: x86_64, arm64 and universal packages

The wheels are created by the continuous integration (CI) service provided by GitHub and the build container cibuildwheel
provided by PyPA the Python Packaging Authority. The workflows are kept short and simple, so my future me will
understand whats going on and they are maybe also helpful for other developers which do not touch CI services every day.

The C-extensions are disabled for pypy3, because the JIT compiled code of pypy is much faster than the compiled C-
extensions for pypy.

6.2.4 Disable C-Extensions

It is possible to disable the C-Extensions by setting the environment variable EZDXF_DISABLE_C_EXT to 1 or true:

set EZDXF_DISABLE_C_EXT=1 ‘

or on Linux:

’export EZDXF_DISABLE_C_EXT=1 ‘

This is has to be done before anything from ezdxf is imported! If you are working in an interactive environment, you
have to restart the interpreter.

6.2. Setup & Dependencies 15

https://pypi.org/project/ezdxf
https://matplotlib.org
https://pypi.org/project/PySide6/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/ezdxf
https://github.com
https://github.com/pypa/cibuildwheel
https://www.pypa.io/en/latest/
https://github.com/mozman/ezdxf/tree/master/.github/workflows
https://www.pypy.org

ezdxf Documentation, Release 0.17.2

6.2.5 Installation from GitHub

Install the latest development version by pip3 from GitHub:

pip3 install git+https://github.com/mozman/ezdxf.git@master

6.2.6 Build and Install from Source

This is only required if you want the compiled C-extensions, the ezdxf installation by pip from the source code package
works without the C-extension but is slower. There are many binary wheels including the compiles C-extensions available
on PyPi.

Windows 10

Make a build directory and a virtual environment:

mkdir build

cd build

py —m venv py310
py310/Scripts/activate.bat

A working C++ compiler setup is required to compile the C-extensions from source code. Windows users need the build
tools from Microsoft: https://visualstudio.microsoft.com/de/downloads/

Download and install the required Visual Studio Installer of the community edition and choose the option: Visual Studio
Build Tools 20..

Install required packages to build and install ezdxf with C-extensions:

’pipS install setuptools wheel cython

Clone the GitHub repository:

’git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 -m ezdxf -V

The ezdxf command should run without a preceding python3 -m, but calling the launcher through the interpreter guarantees
to call the version which was installed in the venv if there exist a global installation of ezdxf like in my case.

The output should look like this:

ezdxf 0.17.2b4 from D:\Source\build\py310\lib\site-packages\ezdxf

Python version: 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64.
—bit (AMD64)]

using C-extensions: yes

using Matplotlib: no

16 Chapter 6. Contents

https://github.com
https://pypi.org/project/ezdxf
https://visualstudio.microsoft.com/de/downloads/
https://github.com

ezdxf Documentation, Release 0.17.2

To install optional packages go to section: /nstall Optional Packages

To run the included tests go to section: Run the Tests

WSL & Ubuntu

I use sometimes the Windows Subsystem for Linux (WSL) with Ubuntu 20.04 LTS for some tests (how to install WSL).

By doing as fresh install on WSL & Ubuntu, I encountered an additional requirement, the build-essential package adds the
required C++ support:

sudo apt install build-essential

The system Python 3 interpreter has the version 3.8, but I will show in a later section how to install an additional newer
Python version from the source code:

cd ~

mkdir build

cd build

python3 -m venv py38
source py38/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

’pipB install cython wheel

Clone the GitHub repository:

’git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 -m ezdxf -V

The output should look like this:

ezdxf 0.17.2b4 from /home/mozman/src/py38/lib/python3.8/site-packages/ezdxf
Python version: 3.8.10 (default, Nov 26 2021, 20:14:08)

[GCC 9.3.0]

using C-extensions: yes

using Matplotlib: no

To install optional packages go to section: /nstall Optional Packages

To run the included tests go to section: Run the Tests

6.2. Setup & Dependencies 17

https://docs.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com

ezdxf Documentation, Release 0.17.2

Raspberry Pi OS

Testing platform is a Raspberry Pi 400 and the OS is the Raspberry Pi OS which runs on 64bit hardware
OS. The system Python 3 interpreter comes in version 3.7, but I will show in a later section how to install
newer Python version from the source code.

Install the build requirements, Matplotlib and the PyQt5 bindings from the distribution repository:

but is a 32bit
an additional

sudo apt install python3-pip python3-matplotlib python3-pygt5

Installing Matplotlib and the PyQt5 bindings by pip from piwheels in the venv worked, but the packages showed errors at

import, seems to be an packaging error in the required numpy package. PySide6 is the preferred Qt bindi
available on Raspberry Pi OS at the time of writing this - PyQt5 is supported as fallback.

ng but wasn’t

Create the venv with access to the system site-packages for using Matplotlib and the Qt bindings from the system instal-

lation:

cd ~

mkdir build

cd build

python3 -m venv --system-site-packages py37
source py37/bin/activate

Install Cython and wheel in the venv to get the C-extensions compiled:

’pip3 install cython wheel

Clone the GitHub repository:

’git clone https://github.com/mozman/ezdxf.git

Build and install ezdxf from source code:

cd ezdxf
pip3 install

Check if the installation was successful:

python3 -m ezdxf -V

The output should look like this:

ezdxf 0.17.2b4 from /home/pi/src/py37/lib/python3.7/site-packages/ezdxf
Python version: 3.7.3 (default, Jan 22 2021, 20:04:44)

[GCC 8.3.0]

using C-extensions: yes

using Matplotlib: yes

To run the included tests go to section: Run the Tests

18 Chapter 6

. Contents

https://www.raspberrypi.com
https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org
https://pypi.org/project/numpy/
https://pypi.org/project/PySide6/
https://www.raspberrypi.com
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://github.com

ezdxf Documentation, Release 0.17.2

Manjaro on Raspberry Pi

Because the (very well working) Raspberry Pi OS is only a 32bit OS, I searched for a 64bit alternative like Ubuntu,
which just switched to version 21.10 and always freezes at the installation process! So I tried Manjaro as rolling release,
which I used prior in a virtual machine and wasn’t really happy, because there is always something to update. Anyway the
distribution looks really nice and has Python 3.9.9 installed.

Install build requirements and optional packages by the system packager pacman:

sudo pacman -S python-pip python-matplotlib python-pygth

Create and activate the venv:

cd ~

mkdir build

cd build

python3 -m venv —--system-site-packages py39
source py39/bin/activate

The rest is the same procedure as for the Raspberry Pi OS:

pip3 install cython wheel

git clone https://github.com/mozman/ezdxf.git
cd ezdxf

pip3 install .

python3 -m ezdxf -V

To run the included tests go to section: Run the Tests

Ubuntu Server 21.10 on Raspberry Pi

I gave the Ubuntu Server 21.10 a chance after the desktop version failed to install by a nasty bug and it worked well. The
distribution comes with Python 3.9.4 and after installing some requirements:

sudo apt install build-essential python3-pip python3.9-venv

The remaining process is like on WSL & Ubuntu except for the newer Python version. Installing Matplotlib by pip works
as expected and is maybe useful even on a headless server OS to create SVG and PNG from DXEF files. PySide6 is not
available by pip and the installation of PyQt5 starts from the source code package which I stopped because this already
didn’t finished on Manjaro, but the installation of the PyQt5 bindings by apt works:

sudo apt install python3-pyqgth

Use the —-system-site-packages option for creating the venv to get access to the PyQt5 package.

6.2.7 Install Optional Packages

Install the optional dependencies by pip only for Windows 10 and WSL & Ubuntu, for Raspberry Pi OS and Manjaro on
Raspberry Pi install these packages by the system packager:

pip3 install matplotlib PySide6

6.2. Setup & Dependencies 19

https://www.raspberrypi.com
https://ubuntu.com
https://www.manjaro.org
https://ubuntu.com
https://matplotlib.org
https://pypi.org/project/PySide6/
https://pypi.org/project/PyQt5/
https://www.manjaro.org
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/

ezdxf Documentation, Release 0.17.2

6.2.8 Run the Tests

This is the same procedure for all systems, assuming you are still in the build directory build/ezdxf and ezdxf is now
installed in the venv.

Install the test dependencies and run the tests:

pip3 install pytest geomdl
python3 -m pytest tests integration_tests

6.2.9 Build Documentation

Assuming you are still in the build directory build/ezdxf of the previous section.

Install Sphinx:

pip3 install Sphinx sphinx-rtd-theme

Build the HTML documentation:

cd docs
make html

The output is located in build/ezdxf/docs/build/html.

6.2.10 Python from Source

Debian based systems have often very outdated software installed and sometimes there is no easy way to install a newer
Python version. This is a brief summery how I installed Python 3.9.9 on the Raspberry Pi OS, for more information go
to the source of the recipe: Real Python

Install build requirements:

sudo apt-get update
sudo apt—-get upgrade

sudo apt-get install -y make build-essential libssl-dev zliblg-dev \
libbz2-dev libreadline-dev libsglite3-dev wget curl 1llvm \
libncurses5-dev libncurseswb-dev xz-utils tk-dev

Make a build directory:

cd ~
mkdir build
cd build

Download and unpack the source code from Python.org, replace 3.9.9 by your desired version:

wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz
tar -xvzf Python-3.9.9.tgz
cd Python-3.9.9/

Configure the build process, use a prefix to the directory where the interpreter should be installed:

./configure --prefix=/opt/python3.9.9 --enable-optimizations

20 Chapter 6. Contents

https://www.raspberrypi.com
https://realpython.com/installing-python/#how-to-build-python-from-source-code
https://www.python.org

ezdxf Documentation, Release 0.17.2

Build & install the Python interpreter. The -j option simply tells make to split the building into parallel steps to speed up
the compilation, my Raspberry Pi 400 has 4 cores so 4 seems to be a good choice:

make —-3j 4
sudo make install

The building time was ~25min and the new Python 3.9.9 interpreter is now installed as /opt/python3.9.9/bin/python3.

At the time there were no system packages for Matplotlib and PyQt5 for this new Python version available, so there is no
benefit of using the option ——system-site-packages for building the venv:

cd ~/build
/opt/python3.9.9/bin/python3 -m venv py39
source py39/bin/activate

I have not tried to build Matplotlib and PyQt5 by myself and the installation by pip from piwheels did not work, in this
case you don’t get Matplotlib support for better font measuring and the drawing add-on will not work.

Proceed with the ezdxf installation from source as shown for the Raspberry Pi OS.

6.3 Usage for Beginners

This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf users, follow the
provided links for more detailed information.

First import the package:

import ezdxf

6.3.1 Loading DXF Files

ezdxf supports loading ASCII and binary DXF files from a file:

’doc = ezdxf.readfile(filename)

or from a zip-file:

’doc = ezdxf.readzip(zipfilename[, filename])

Which loads the DXF file filename from the zip-file zipfilename or the first DXF file in the zip-file if filename is absent.

It is also possible to read a DXF file from a stream by the ezdx . read () function, but this is a more advanced feature,
because this requires detection of the file encoding in advance.

This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdx . recover module.

See also:

Documentation for ezdxf . readfile (), ezdxf.readzip () and ezdxf.read (), for more information about
file management go to the Document Management section. For loading DXF files with structural errors look at the
ezdxf.recover module.

6.3. Usage for Beginners 21

https://www.raspberrypi.com
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://matplotlib.org
https://pypi.org/project/PyQt5/
https://piwheels.org
https://matplotlib.org

ezdxf Documentation, Release 0.17.2

6.3.2 Saving DXF Files

Save the DXF document with a new name:

’doc.saveas("new_name.dxf")

or with the same name as loaded:

’doc.save()

See also:

Documentation for ezdx . document .Drawing. save () and ezdxf.document .Drawing.saveas (), for
more information about file management go to the Document Management section.

6.3.3 Create a New DXF File

Create new file for the latest supported DXF version:

’doc = ezdxf.new()

Create a new DXF file for a specific DXF version, e.g for DXF R12:

’doc = ezdxf.new ("R12")

To setup some basic DXF resources use the setup argument:

’doc = ezdxf.new (setup=True)

See also:

Documentation for ezdx . new (), for more information about file management go to the Document Management sec-
tion.

6.3.4 Layouts and Blocks

Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace labeled as
“Model” in CAD applications which represents the “world” work space. Paperspace layouts represents plottable sheets
which contains often the framing and the tile block of a drawing and VIEWPORT entities as scaled and clipped “windows”
into the modelspace.

The modelspace is always present and can not be deleted. The active paperspace is also always present in a new DXF
document but can be deleted, in that case another paperspace layout gets the new active paperspace, but you can not delete
the last paperspace layout.

Getting the modelspace of a DXF document:

’msp = doc.modelspace ()

Getting a paperspace layout by the name as shown in the tab of a CAD application:

’psp = doc.layout ("Layoutl")

A block is just another kind of entity space, which can be inserted multiple times into other layouts and blocks by the
INSERT entity also called block references, this is a very powerful and important concept of the DXF format.

Getting a block layout by the block name:

22 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

blk = doc.blocks.get ("NAME")

All these layouts have factory functions to create graphical DXF entities for their entity space, for more information about
creating entities see section: Create new DXF Entities

6.3.5 Create New Blocks

The block definitions of a DXF document are managed by the B1ocksSection object:

my_block = doc.blocks.new ("MyBlock™)

See also:

Tutorial for Blocks

6.3.6 Query DXF Entities

As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these layouts can be iterated
and support the index operator e.g. layout [—1] returns the last entity.

The main difference between iteration and index access is, that iteration filters destroyed entities, but the index operator
returns also destroyed entities until these entities are purged by layout .purge () more about this topic in section:
Delete Entities.

There are two advanced query methods: query () and groupby ().

Get all lines of layer "MyLayer":

lines = msp.query ('LINE[layer=="MyLayer"]")

This returns an Ent i t yOQuery container, which also provides the same query () and groupby () methods.

Get all lines categorized by a DXF attribute like color:

all_lines_by_color = msp.query ("LINE") .groupby ("color")
lines_with_color_1 all_lines_by_color.get (1, [1)

The groupby () method returns a regular Python dict with colors as key and a regular Python 1ist of entities as
values (not an Ent it yQuery container).

See also:

For more information go to the Tutorial for getting data from DXF files

6.3.7 Examine DXF Entities

Each DXF entity has a dx £ namespace attribute, which stores the named DXF attributes, some DXF attributes are only
indirect available like the vertices in the LWPOLYLINE entity. More information about the DXF attributes of each entity
can found in the documentation of the ezdxf.ent it ies module.

Get some basic DXF attributes:

layer = entity.dxf.layer # default is "0"
color = entity.dxf.color # default is 256 = BYLAYER

6.3. Usage for Beginners 23

ezdxf Documentation, Release 0.17.2

Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for DXF attributes
without a default value you can check in the attribute really exist:

’entity.dxf.hasattr(“truefcolor")

or use the get () method and a default value:

’entity.dxf.get("truefcolor", 0)

See also:

Common graphical DXF attributes

6.3.8 Create New DXF Entities

The factory methods for creating new graphical DXF entities are located in the BaseLayout class. This means this
factory methods are available for all entity containers:

* Modelspace
* Paperspace
* BlockLayout

The usage is simple:

msp = doc.modelspace ()
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer"})

See also:
Thematic Index of Layout Factory Methods

A few important or required DXF attributes are explicit method arguments, most additional and optional DXF attributes
are gives as a regular Python dict object. The supported DXF attributes can be found in the documentation of the
ezdxf.entities module.

Warning: Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory
function to create new graphical entities, this is the intended way to use ezdxf.

6.3.9 Create Block References

A block reference is just another DXF entity called INSERT, but the term “Block Reference” is a better choice and so
the Tnsert entity is created by the factory function: add_blockref ():

msp.add_blockref ("MyBlock™", (0, 0))

See also:

See Tutorial for Blocks for more advanced features like using At t rib entities.

24 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

6.3.10 Create New Layers

A layer is not an entity container, a layer is just another DXF attribute stored in the entity and this entity can inherit
some properties from this Layer object. Layer objects are stored in the layer table which is available as attribute doc .
layers.

You can create your own layers:

’my_layer = doc.layer.add ("MyLayer") ‘

The layer object also controls the visibility of entities which references this layer, the on/off state of the layer is unfortu-
nately stored as positive or negative color value which make the raw DXF attribute of layers useless, to change the color
of a layer use the property Layer.color

’my_layer.color =1 ‘

To change the state of a layer use the provided methods of the Layer object, like on (), off (), freeze () or
thaw():

’my_layer.off() ‘

See also:

Layer Concept

6.3.11 Delete Entities

The safest way to delete entities is to delete the entity from the layout containing that entity:

line = msp.add_line((0, 0), (1, 0))
msp.delete_entity (line)

This removes the entity immediately from the layout and destroys the entity. The property is_alive returns False
for a destroyed entity and all Python attributes are deleted, so 1ine.dxf.color will raise an AttributeError
exception, because 1ine does not have a dx 1 attribute anymore.

Ezdxf also supports also destruction of entities by calling method destroy () manually:

line.destroy ()

Manually destroyed entities are not removed immediately from entities containers like Mode 1 space orEntityQuery,
but iterating such a container will filter destroyed entities automatically, soa for e in msp: ... loop will never
yield destroyed entities. The index operator and the 1en () function do not filter deleted entities, to avoid getting deleted
entities call the purge () method of the container manually to remove deleted entities.

6.3.12 Further Information

* Reference documentation

¢ Documentation of package internals: Developer Guides.

6.3. Usage for Beginners 25

ezdxf Documentation, Release 0.17.2

6.4 Basic Concepts

The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching the application
of this information or the specific implementation by ezdxf, if you are looking for more information about the ezdxf
internals look at the Reference section or if you want to learn how to use ezdxf go to the Tutorials section and for the
solution of specific problems go to the Howfo section.

6.4.1 What is DXF?

The common assumption is also the cite of Wikipedia:

AutoCAD DXF (Drawing eXchange Format) is a CAD data file format developed by Autodesk for enabling
data interoperability between AutoCAD and other applications.

DXF was originally introduced in December 1982 as part of AutoCAD 1.0, and was intended to provide an
exact representation of the data in the AutoCAD native file format, DWG (Drawing). For many years Au-
todesk did not publish specifications making correct imports of DXF files difficult. Autodesk now publishes
the DXF specifications online.

The more precise cite from the DXF reference itself:

The DXF format is a tagged data representation of all the information contained in an AutoCAD® drawing
file. Tagged data means that each data element in the file is preceded by an integer number that is called a
group code. A group code’s value indicates what type of data element follows. This value also indicates the
meaning of a data element for a given object (or record) type. Virtually all user-specified information in a
drawing file can be represented in DXF format.

No mention of interoperability between AutoCAD and other applications.

In reality the DXF format was designed to ensure AutoCAD cross-platform compatibility in the early days when different
hardware platforms with different binary data formats were used. The name DXF (Drawing eXchange Format) may
suggest an universal exchange format, but it is not. It is based on the infrastructure installed by Autodesk products (fonts)
and the implementation details of AutoCAD (MTEXT) or on licensed third party technologies (embedded ACIS entities).

For more information about the AutoCAD history see the document: The Autodesk File - Bits of History, Words of
Experience by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD.

DXF Reference Quality

The DXF reference is by far no specification nor a standard like the W3C standard for SVG or the ISO standard for PDF.

The reference describes many but not all DXF entities and some basic concepts like the tag structure or the arbitrary axis
algorithm. But the existing documentation (reference) is incomplete and partly misleading or wrong. Also missing from
the reference are some important parts like the complex relationship between the entities to create higher order structures
like block definitions, layouts (model space & paper space) or dynamic blocks to name a few.

26 Chapter 6. Contents

https://en.wikipedia.org/wiki/AutoCAD_DXF
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://www.fourmilab.ch/autofile/
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://www.w3.org/Graphics/SVG/
https://en.wikipedia.org/wiki/PDF

ezdxf Documentation, Release 0.17.2

Reliable CAD Applications

Because of the suboptimal quality of the DXF reference not all DXF viewers, creators or processors are of equal quality.
I consider a CAD application as a reliable CAD application when the application creates valid DXF documents in the
meaning and interpretation of Autodesk and a reliable DXF viewer when the result matches in most parts the result of
the free Trueview viewer provided by Autodesk.

These are some application which do fir the criteria of a reliable CAD application:
e AutoCAD and Trueview

¢ CAD applications based on the OpenDesignAlliance (ODA) SDK, see also ODA on wikipedia, even Autodesk is
a corporate member, see their blog post from 22 Sep 2020 at adsknews but only to use the ODA IFC tools and not
to improve the DWG/DXF compatibility

¢ BricsCAD (ODA based)
¢ GstarCAD (ODA based)
e ZWCAD (ODA based)

Unfortunately, I cannot recommend any open source applications because everyone I know has serious shortcomings, at
least as a DXF viewer, and I don’t trust them as a DXF creator either. To be clear, even ezdxf (which is not a CAD
application) is a reliable library in this sense - it just keeps getting better, but is far from reliable.

BTW: Don’t send bug reports based on LibreCAD or QCAD, I won’t waste my time on them.

6.4.2 AutoCAD Color Index (ACI)

The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application provides a
default color table, but pen table would be the more correct term. Each ACI entry defines the color value, the line weight
and some other attributes to use for the pen. This pen table can be edited by the user or loaded from an C7B or STB file.
Ezdxf provides functions to create (new ()) or modify (ezdxf .acadctb.load ()) plot styles files.

DXF R12 and prior are not good in preserving the layout of a drawing, because of the lack of a standard color table
defined by the DXF reference and missing DXF structures to define these color tables in the DXF file. So if a CAD user
redefined an ACI and do not provide a C7B or STB file, you have no ability to determine which color or lineweight was
used. This is better in later DXF versions by providing additional DXF attributes like 1 i neweight and t rue_color.

See also:

Plot Style Files (CTB/STB) ezdxf.colors

6.4.3 Layer Concept

Every object has a layer as one of its properties. You may be familiar with layers - independent drawing spaces that stack
on top of each other to create an overall image - from using drawing programs. Most CAD programs use layers as the
primary organizing principle for all the objects that you draw. You use layers to organize objects into logical groups of
things that belong together; for example, walls, furniture, and text notes usually belong on three separate layers, for a
couple of reasons:

» Layers give you a way to turn groups of objects on and off - both on the screen and on the plot.
¢ Layers provide the most efficient way of controlling object color and linetype

Create a layer table entry Layer by Drawing.layers.new (), assign the layer properties such as color and linetype.
Then assign those layers to other DXF entities by setting the DXF attribute 1ayer to the layer name as string.

6.4. Basic Concepts 27

https://www.autodesk.com/
https://www.autodesk.com/viewers
https://www.autodesk.com/
https://www.autodesk.com/products/autocad/overview
https://www.autodesk.com/viewers
https://www.opendesign.com/
https://en.wikipedia.org/wiki/Open_Design_Alliance
https://www.autodesk.com/
https://adsknews.autodesk.com/news/open-design-alliance-membership
https://adsknews.autodesk.com/
https://www.bricsys.com/en-intl/
https://www.gstarcad.net/
https://www.zwsoft.com/product/zwcad
https://librecad.org/
https://qcad.org/en/

ezdxf Documentation, Release 0.17.2

It is possible to use layers without a layer definition but not recommend, just use a layer name without a layer definition,
the layer has the default linetype ' Cont inuous' and the default color is 7.

The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using
"BYLAYER' as linetype string and 256 as color, both values are default values for new entities.

See also:

Tutorial for Layers

6.4.4 Linetypes

The 1inet ype defines the pattern of a line. The linetype of an entity can be specified by the DXF attribute 1inetype,
this can be an explicit named linetype or the entity can inherit its line type from the assigned layer by setting 1 inetype
to 'BYLAYER', which is also the default value. CONTINUOUS is the default line type for layers with unspecified line

type.

ezdxf creates several standard linetypes, if the argument sefup is True at calling new (), this simple line types are
supported by all DXF versions:

doc = ezdxf.new('R2007', setup=True)

28 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

CONTINUQUS

CENTER

CENTERXZ

CENTER2

DASHED

DASHEDKZ

DASHED2

PHANTOM
PHANTOMX2

PHANTOM?

DASHDOT

DASHDOTH2

DIVIDE

DIVIDEXZ

DIVIDE2

6.4. Basic Concepts

29

ezdxf Documentation, Release 0.17.2

In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in linetypes. ezdxf v0.8.4 and later
supports complex linetypes.

See also:

Tutorial for Linetypes

Linetype Scaling
Global linetype scaling can be changed by setting the header variable doc.header ['SLTSCALE'] = 2, which
stretches the line pattern by factor 2.

To change the linetype scaling for single entities set scaling factor by DXF attribute 1t scale, which is supported since
DXEF version R2000.

6.4.5 Lineweights

The 1ineweight attribute represents the lineweight as integer value in millimeters * 100, e.g. 0.25mm = 25, inde-
pendently from the unit system used in the DXF document. The 1ineweight attribute is supported by DXF version
R2000 and newer.

Only certain values are valid, they are stored in ezdxf.11dxf.const.VALID_DXF_LINEWEIGHTS:0,5,9, 13,
15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211.

Values < 0 have a special meaning and can be imported as constants from ezdxf.11dxf.const

-1 | LINEWEIGHT _BYLAYER
-2 | LINEWEIGHT_BYBLOCK
-3 | LINEWEIGHT_DEFAULT

The validator function: ezdxf.lldxf.validator.is_valid_lineweight () returns True for valid
lineweight values otherwise False.

Sample file which shows all valid lineweights: valid_lineweights.dxf

You have to enable the option to show lineweights in your CAD application or viewer to see the effect on screen, which
is often disabled by default, the same has to be done in the page setup options for plotting lineweights.

Setting the HEADER variable $SLWDISPLAY to 1 may activate support for showing lineweights on screen and
SLWDISPSCALE may scale the lineweight on screen:

activate on screen lineweight display
doc.header["SLWDISPLAY"] = 1

lineweight scaling factor for on screen display
doc.header ["SLWDISPSCALE"] = 0.55

30 Chapter 6. Contents

https://raw.githubusercontent.com/mozman/ezdxf/master/examples_dxf/valid_lineweights.dxf

ezdxf Documentation, Release 0.17.2

Lineweight: 211

Lineweight: 2.00

Lineweight: .58

Linewelght; 1,40

Linewelght: 1.20

Linewelight: 1.0&

Lineweight: 1.00

Lineweight: D.90

Lineweight: D.BO

Lineweight: 0,70

Lineweight: 060

Lineweight: 053

Linewelght: 0,50

Linewelght: 0.40

Lineweight: 0.35

Lineweight: 0.30

Lineweight: D.25

Lineweight: 0.20

Lineweight: 018

Lineweight: 015

Linewelght: 013

Linewelght; 010

Linewelght: 0.09

Lineweight: 0.05

Lineweight: 0.00

6.4. Basic Concepts 31

ezdxf Documentation, Release 0.17.2

The lineweight value can be overridden by C7B or STB files.

6.4.6 Coordinate Systems

AutoLISP Reference to Coordinate Systems provided by Autodesk.

To brush up you knowledge about vectors, watch the YouTube tutorials of 3BluelBrown about Linear Algebra.

WCS

World coordinate system - the reference coordinate system. All other coordinate systems are defined relative to the WCS,
which never changes. Values measured relative to the WCS are stable across changes to other coordinate systems.

ucs

User coordinate system - the working coordinate system defined by the user to make drawing tasks easier. All points
passed to AutoCAD commands, including those returned from AutoLISP routines and external functions, are points in
the current UCS. As far as I know, all coordinates stored in DXF files are always WCS or OCS never UCS.

User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a converter class UCS
to translate coordinates from UCS into WCS and vice versa, but always remember: store only WCS or OCS coordinates
in DXF files, because there is no method to determine which UCS was active or used to create UCS coordinates.

See also:
¢ Table entry UCS

e ezdxf.math.UCS - converter between WCS and UCS

OCsS

Object coordinate system - coordinates relative to the object itself. These points are usually converted into the WCS,
current UCS, or current DCS, according to the intended use of the object. Conversely, points must be translated into an
OCS before they are written to the database. This is also known as the entity coordinate system.

Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the domain of the
user/application. And further more, the main goal of OCS is to place 2D elements in 3D space, this maybe was useful in
the early years of CAD, I think nowadays this is an not often used feature, but I am not an AutoCAD user.

OCS differ from WCS only if extrusion != (0, 0, 1), convert OCS into WCS:

circle is an DXF entity with extrusion != (0, 0, 1)
ocs = circle.ocs()
wcs_center = ocs.to_wcs (circle.dxf.center)

See also:
* Object Coordinate System (OCS) - deeper insights into OCS

e ezdxf.math.OCS - converter between WCS and OCS

32 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0F0B833D-78ED-4491-9918-9481793ED10B
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

ezdxf Documentation, Release 0.17.2

DCS

Display coordinate system - the coordinate system into which objects are transformed before they are displayed. The
origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its z-axis is the viewing direction.
In other words, a viewport is always a plan view of its DCS. These coordinates can be used to determine where something
will be displayed to the AutoCAD user.

6.4.7 Object Coordinate System (OCS)

* DXF Reference for OCS provided by Autodesk.

The points associated with each entity are expressed in terms of the entity’s own object coordinate system (OCS). The
OCS was referred to as ECS in previous releases of AutoCAD.

With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D vector describing
the z-axis of the OCS (often referenced as extrusion vector), and the elevation value, which is the distance of the entity
xy-plane to the WCS/OCS origin.

For a given z-axis (extrusion) direction, there are an infinite number of coordinate systems, defined by translating the
origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the same z-axis direction, there is
only one OCS. It has the following properties:

* Its origin coincides with the WCS origin.

¢ The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent manner. Au-
toCAD performs this calculation using the arbitrary axis algorithm (see below).

* Because of Arbitrary Axis Algorithm the OCS can only represent a right-handed coordinate system!

The following entities do not lie in a particular plane. All points are expressed in world coordinates. Of these entities,
only lines and points can be extruded. Their extrusion direction can differ from the world z-axis.

e Line

e Point

* 3DFace

e Polyline (3D)
e Vertex (3D)

* Polymesh

e Polyface

* Viewport

These entities are planar in nature. All points are expressed in object coordinates. All of these entities can be extruded.
Their extrusion direction can differ from the world z-axis.

e Circle
e Arc

e Solid
e Trace
e Text

e Attrib

e Attdef

6.4. Basic Concepts 33

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D99F1509-E4E4-47A3-8691-92EA07DC88F5

ezdxf Documentation, Release 0.17.2

* Shape

e Insert

e Polyline (2D)
e Vertex (2D)

* LWwPolyline

* Hatch

e Image

Some of a Dimension’s points are expressed in WCS and some in OCS.

Elevation

Elevation group code 38:

Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each of the entity’s

defining points.

Arbitrary Axis Algorithm

¢ DXF Reference for Arbitrary Axis Algorithm provided by Autodesk.

The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent generation of object

coordinate systems for all entities that use object coordinates.

Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm generates a corre-

sponding x-axis for the coordinate system. The y-axis follows by application of the right-hand rule.

We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will be called Ax and

Ay (using Vec3):

Az = Vec3(entity.dxf.extrusion) .normalize () # normal (extrusion) vector
if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.):

Ax = Vec3(0, 1, 0).cross(Az).normalize() # the cross—-product operator
else:

Ax = Vec3(0, 0, 1).cross(Az).normalize () # the cross-product operator
Ay = Az.cross (Ax) .normalize ()
WCS to OCS

def wcs_to_ocs (point) :
pPx, py, pz = Vec3(point) # point in WCS
X = px * Ax.x + py * Ax.y + pz * Ax.z
y = px * Ay.x + py * Ay.y + pz * Ay.z
z = px * Az.x + py * Az.y + pz * Az.z
return Vec3(x, vy, z)

34 Chapter 6

. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E19E5B42-0CC7-4EBA-B29F-5E1D595149EE

ezdxf Documentation, Release 0.17.2

OCS to WCS

Wx = wcs_to_ocs((1, 0, 0))
Wy = wcs_to_ocs((0, 1, 0))
Wz = wcs_to_ocs((0, 0, 1))

def ocs_to_wcs (point) :
pPx, Py, pz = Vec3(point) # point in OCS
X = px * Wx.x + py * Wx.y + pz * Wx.z
y = px * Wy.x + py * Wy.y + pz * Wy.z
z = px * Wz.x + py * Wz.y + pz * Wz.z
return Vec3(x, vy, z)

6.4.8 DXF Units

The DXF reference has no explicit information how to handle units in DXF, any information in this section is based on
experiments with BricsCAD and may differ in other CAD application, BricsCAD tries to be as compatible with AutoCAD
as possible. Therefore, this information should also apply to AutoCAD.

Please open an issue on github if you have any corrections or additional information about this topic.

Length Units

Any length or coordinate value in DXF is unitless in the first place, there is no unit information attached to the value. The
unit information comes from the context where a DXF entity is used. The document/modelspace get the unit information
from the header variable SINSUNITS, paperspace and block layouts get their unit information form the attribute units.
The modelspace object has also a units property, but this value do not represent the modelspace units, this value is
always set to 0 “unitless”.

Get and set document/modelspace units as enum by the Drawing property units:

import ezdxf
from ezdxf import units

doc = ezdxf.new/()
Set centimeter as document/modelspace units

doc.units = units.CM

which is a shortcut (including validation) for
doc.header['SINSUNITS'] = units.CM

Block Units

As said each block definition can have independent units, but there is no implicit unit conversion applied, not in CAD
applications and not in ezdxf.

When inserting a block reference (INSERT) into the modelspace or another block layout with different units, the scaling
factor between these units must be applied explicit as scaling DXF attributes (xscale, ...) of the ITnsert entity, e.g.
modelspace in meters and block in centimeters, x-, y- and z-scaling has to be 0.01:

doc.units = units.M

my_block = doc.blocks.new('MYBLOCK")
my_block.units = units.CM

block_ref = msp.add_block_ref ('MYBLOCK'")

(continues on next page)

6.4. Basic Concepts 35

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://github.com/mozman/ezdxf/issues

ezdxf Documentation, Release 0.17.2

(continued from previous page)

Set uniform scaling for x-, y- and z-axis
block_ref.set_scale(0.01)

Use helper function conversion_factor () to calculate the scaling factor between units:

factor = units.conversion_factor (doc.units, my_block.units)
factor = 100 for 1m is 100cm
scaling factor = 1 / factor

block_ref.set_scale(1.0/factor)

Hint: It is never a good idea to use different measurement system in one document, ask the NASA about their Mars
Climate Orbiter from 1999. The same applies for units of the same measurement system, just use one unit like meters or
inches.

Angle Units

Angles are always in degrees (360 deg = full circle) and in counter clockwise orientation, unless stated explicit otherwise.

Display Format

How values are shown in the CAD GUI is controlled by the header variables SLUNITS and $AUNITS, but this has no
meaning for values stored in DXF files.

$INSUNITS
The most important setting is the header variable SINSUNITS, this variable defines the drawing units for the modelspace
and therefore for the DXF document if no further settings are applied.

The modelspace LAYOUT entity has a property units as any layout like object, but it seem to have no meaning for the
modelspace, BricsCAD set this property always to 0, which means unitless.

The most common units are 6 for meters and 1 for inches.

Changed in version 0.17.2: added an enumeration ezdxf.enums. InsertUnits

36 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

doc.header['SINSUNITS'] = 6

0 Unitless

1 Inches, units.IN

2 Feet, units.FT

3 Miles, units.MI

4 Millimeters, units .MM

5 Centimeters, units.CM

6 Meters, units.M

7 Kilometers, units.KM

8 Microinches

9 Mils

10 | Yards, units.YD

11 | Angstroms

12 | Nanometers

13 | Microns

14 | Decimeters, units.DM

15 | Decameters

16 | Hectometers

17 | Gigameters

18 | Astronomical units

19 | Light years

20 | Parsecs

21 | US Survey Feet

22 | US Survey Inch

23 | US Survey Yard

24 | US Survey Mile
SMEASUREMENT

The header variable SMEASUREMENT controls whether the current drawing uses imperial or metric hatch pattern and
linetype files, this setting is not applied correct in ezdxf yet, but will be fixed in the future:

This setting is independent from $INSUNITS, it is possible to set the drawing units to inch and use metric linetypes and
hatch pattern.

In BricsCAD the base scaling of the linetypes is only depending from the SMEASUREMENT value, is not relevant if
$INSUNITS is meter, centimeter, millimeter, ... and so on and the same is valid for hatch pattern.

Changed in version 0.17.2: added an enumeration ezdxf . enums . Measurement

doc.header['SMEASUREMENT '] = 1

0 | English
1 | Metric

6.4. Basic Concepts 37

ezdxf Documentation, Release 0.17.2

SLUNITS

The header variable SLUNITS defines how CAD applications show linear values in the GUI and has no meaning for ezdxf:

Changed in version 0.17.2: added an enumeration ezdxf.enums.LengthUnits

doc.header['SLUNITS'] = 2
1 | Scientific
2 | Decimal (default)
3 | Engineering
4 | Architectural
5 | Fractional
$AUNITS

The header variable $AUNITS defines how CAD applications show angular values in the GUI and has no meaning for
ezdxf, DXF angles are always degrees in counter-clockwise orientation, unless stated explicit otherwise:

Changed in version 0.17.2: added an enumeration ezdxf. enums.AngularUnits

doc.header['SAUNITS'] = 0

0 | Decimal degrees
1 | Degrees/minutes/seconds
2 | Grad
3 | Radians
Helper Tools
ezdxf.units.conversion_factor (source_units: ezdxf.enums.InsertUnits, target_units:

) ezdxf.enums.InsertUnits) — float
Returns the conversion factor to represent source_units in target_units.

E.g. millimeter in centimeter conversion_factor (MM, CM) returns 0.1, because | mm = 0.1 cm

ezdxf.units.unit_name (enum: int) — str
Returns the name of the unit enum.

ezdxf.units.angle_unit_name (enum: int) — str
Returns the name of the angle unit enum.

6.4.9 Layout Extents and Limits

The extents and limits of an layout represents borders which can be referenced by the ZOOM command or read from
some header variables from the HeaderSection, if the creator application maintains these values — ezdxf does it not
automatically.

38 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Extents

The extents of an layout are determined by the maximum extents of all DXF entities that are in this layout. The command:

Z00OM extents

sets the current viewport to the extents of the currently selected layout.

A paper space layout in an arbitrary zoom state:

e
=
(]

l: 99,0404, NZ0NTT, 0 Stendard Standand Draftng SHAS GAID CATHO POLA BEHAP STRMK LwT Pdaeveutl DUCS 07 CRMAD BT AR LOOWT Mene - o

The same layout after the ZOOM extents command:

6.4. Basic Concepts 39

ezdxf Documentation, Release 0.17.2

B = © Ol

& w

1454208, 241074, 0 Standard Stanclard Draftng SHAS GAID CATHO POLAR BEHAP STRASK 10T Pdaveutl DUCS O CRMAD BT AR LT Mene -

Limits

Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking or entering
point locations. The default limits for paper space layouts is defined by the paper size.

The layout from above after the ZOOM all command:

ST, IR IS5, 0 Stenderd Stanclad Drafing SHAS GAID CRTHO POLAR ESMAR STRASK LT Pdayoutl DUCS O CUMD BT KK LOOGT Mone -

40 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

See also:

The AutoCAD online reference for the ZOOM and the LIMITS command.

Read Stored Values

The extents of the model space (the tab called “Model”) are stored in the header variable SEXTMIN and $SEXTMAX. The
default values of SEXTMIN is (+1e20, +1e20, +1e20) and SEXTMAX is (-1e20, -1e20, -1e20), which do not describe
real borders. These values are copies of the extents attributes of the Layout object as Layout .dxf.extmin and
Layout .dxf.extmax.

The limits of the modelspace are stored in the header variables SLIMMIN and $LIMMAX and have default values of
(0, 0) and (420, 297), the default paper size of ezdxf in drawing units. These are copies of the Layout attributes
Layout .dxf.extmin and Layout .dxf.extmax.

The extents and the limits of the actual paper space layout, which is the last activated paper space layout tab, stored in
the header variable SPEXTMIN, SPEXTMAX, SPLIMMIN and SPLIMMAX.

Each paper space layout has its own values stored in the Layout attributes Layout .dxf .extmin, Layout .dxf.
extmax, Layout .dxf.limmin and Layout .dxf.limmax.

Setting Extents and Limits

Since v0.16 ezdxf it is sufficient to define the attributes for extents and limits (Layout .dxf .extmax, Layout .dxf.
limmin and Layout .dxf.limmax) of Layout object. The header variables are synchronized when the document
is saved.

The extents of a layout are not calculated automatically by ezdxf, as this can take a long time for large documents and
correct values are not required to create a valid DXF document.

See also:

How to: Calculate Extents for the Modelspace

6.4.10 Font Resources

DXEF relies on the infrastructure installed by AutoCAD like the included SHX files or True Type fonts. There is no simple
way to store additional information about a used fonts beside the plain file system name like "arial.ttf". The CAD
application or viewer which opens the DXF file has to have access to the specified fonts used in your DXF document or
it has to use an appropriate replacement font, which is not that easy in the age of unicode. Later DXF versions can store
font family names in the XDATA of the STYLE entity but not all CAD application use this information.

6.5 Tutorials

6.5.1 Tutorial for getting data from DXF files

In this tutorial I show you how to get data from an existing DXF drawing. If you are a new ezdxf user, read also the
tutorial Usage for Beginners.

Loading the DXF file:

6.5. Tutorials 41

https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-66E7DB72-B2A7-4166-9970-9E19CC06F739-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html?us_oa=akn-us&us_si=e9cbb4f4-03c5-4af9-aa76-b58263233f35&us_st=LIMITS%20(Command)

ezdxf Documentation, Release 0.17.2

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_file.dxf")
except IOError:
print (f"Not a DXF file or a generic I/O error.")
sys.exit (1)
except ezdxf.DXFStructureError:
print (f"Invalid or corrupted DXF file.")
sys.exit (2)

This works well for DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdx £ . recover module.

See also:
e Document Management

e Usage for Beginners

Layouts
I use the term layout as synonym for an arbitrary entity space which can contain DXF entities like LINE, CIRCLE, TEXT
and so on. Every DXF entity can only reside in exact one layout.
There are three different layout types:
e Modelspace: this is the common construction space
e Paperspace: used to to create print layouts
e BlockLayout: reusable elements, every block has its own entity space

A DXF drawing consist of exact one modelspace and at least of one paperspace. DXF R12 has only one unnamed
paperspace the later DXF versions support more than one paperspace and each paperspace has a name.

Getting the modelspace layout

The modelspace contains the “real” world representation of the drawing subjects in real world units. The modelspace has
the fixed name “Model” and the DXF document has a special getter method mode Ispace ().

msp = doc.modelspace ()

Iterate over DXF entities of a layout

Iterate over all DXF entities in modelspace. Although this is a possible way to retrieve DXF entities, I would like to point
out that entity queries are the better way.

helper function
def print_entity(e):

print ("LINE on layer: \n" % e.dxf.layer)
print ("start point: \n" % e.dxf.start)
print ("end point: \n" % e.dxf.end)

iterate over all entities in modelspace

(continues on next page)

42 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

msp = doc.modelspace ()
for e in msp:
if e.dxftype() == "LINE":
print_entity (e)

entity query for all LINE entities in modelspace
for e in msp.query ("LINE") :
print_entity (e)

All layout objects supports the standard Python iterator protocol and the in operator.

Access DXF attributes of an entity

Check the type of an DXF entity by e . dxftype (). The DXF type is always uppercase. All DXF attributes of an
entity are grouped in the namespace attribute dx f:

e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer

See Common graphical DXF attributes

If a DXF attribute is not set (a valid DXF attribute has no value), a DXFValueError will be raised. To avoid this use
the get_dxf_attrib () method with a default value:

If DXF attribute 'paperspace' does not exist, the entity defaults
to modelspace:
p = e.get_dxf_attrib ("paperspace", 0)

An unsupported DXF attribute raises an DXFAttributeError.

Getting a paperspace layout

paperspace = doc.layout ("layout0")

Retrieves the paperspace named layoutO, the usage of the Layout object is the same as of the modelspace
object. DXF R12 provides only one paperspace, therefore the paperspace name in the method call doc.
layout ("layout0") isignored or can be left off. For newer DXF versions you can get a list of the available layout
names by the methods Iayout_names () and layout_names_in_taborder ().

Retrieve entities by query language

ezdxf provides a flexible query language for DXF entities. All layout types have a gquery () method to start an entity
query or use the ezdx . query.new () function.

The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets: "EntityQuery [AttributeQuery]"

The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means all DXF
entities, all other DXF names have to be uppercase. The * search can exclude entity types by adding the entity name with
a presceding ! (e.g. * !LINE, search all entities except lines).

The attribute query is used to select DXF entities by its DXF attributes. The attribute query is an addition to the entity
query and matches only if the entity already match the entity query. The attribute query is a boolean expression, supported
operators: and, or, !.

6.5. Tutorials 43

ezdxf Documentation, Release 0.17.2

See also:
Entity Query String

Get all LINE entities from the modelspace:

msp = doc.modelspace ()
lines = msp.query ("LINE")

The result container Ent it yQuery also provides the query () method, get all LINE entities at layer construc—
tion:

construction_lines = lines.query('*[layer=="construction"]")

The * is a wildcard for all DXF types, in this case you could also use LINE instead of *, * works here because 1ines
just contains entities of DXF type LINE.

All together as one query:

’lines = msp.query ('LINE[layer=="construction"]")

The ENTITIES section also supports the query () method:

’lines_and_circles = doc.entities.query ('LINE CIRCLE[layer=="construction"]")

Get all modelspace entities at layer construction, but excluding entities with linetype DASHED:

’not_dashed_entities = msp.query ('*[layer=="construction" and linetype!="DASHED"]'")

Retrieve entities by groupby() function

Search and group entities by a user defined criteria. As example let’s group all entities from modelspace by layer, the result
will be a dict with layer names as dict-key and a list of all entities from modelspace matching this layer as dict-value. Usage
as dedicated function call:

from ezdxf.groupby import groupby
group = groupby (entities=msp, dxfattrib="layer")

The entities argument can be any container or generator which yields DXFEnt it y or inherited objects. Shorter and sim-
pler to use as method of BaseLayout (modelspace, paperspace layouts, blocks) and query results as EntityQuery
objects:

group = msp.groupby (dxfattrib="layer")

for layer, entities in group.items():
print (f'Layer "
for entity in entities:
print (£" entity /")
print ("-"*40)

layer }" contains following entities:')

The previous example shows how to group entities by a single DXF attribute, but it is also possible to group entities by a
custom key, to do so create a custom key function, which accepts a DXF entity as argument and returns a hashable value
as dict-key or None to exclude the entity. The following example shows how to group entities by layer and color, so each
result entry has a tuple (layer, color) askey and a list of entities with matching DXF attributes as values:

44 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

def layer_and_color_key(entity):
return None to exclude entities from result container
if entity.dxf.layer == "0": # exclude entities from default layer "O0"
return None
else:
return entity.dxf.layer, entity.dxf.color

group = msp.groupby (key=layer_and_color_key)
for key, entities in group.items/() :
print (f'Grouping criteria "<{key}" matches following entities:"')
for entity in entities:
print (£" entity /")
print ("-"*40)

To exclude entities from the result container the key function should return None. The groupby () function catches
DXFAttributeError exceptions while processing entities and excludes this entities from the result container. So
there is no need to worry about DXF entities which do not support certain attributes, they will be excluded automatically.

See also:

groupby () documentation

6.5.2 Tutorial for creating simple DXF drawings

r12writer - create simple DXF R12 drawings with a restricted entities set: LINE, CIRCLE, ARC, TEXT, POINT, SOLID,
3DFACE and POLYLINE. Advantage of the r/2writer is the speed and the low memory footprint, all entities are written
direct to the file/stream without building a drawing data structure in memory.

See also:
r12writer

Create a new DXF drawing with ezdxf. new () to use all available DXF entities:

import ezdxf

Create a new DXF R2010 drawing, official DXF version name: "AC1024"
doc = ezdxf.new('R2010")

Add new entities to the modelspace:
msp = doc.modelspace ()

Add a LINE entity

msp.add_line((0, 0), (10, 0))
doc.saveas ('line.dxf")

New entities are always added to layouts, a layout can be the model space, a paper space layout or a block layout.
See also:

Thematic Index of Layout Factory Methods

6.5. Tutorials 45

ezdxf Documentation, Release 0.17.2

6.5.3 Tutorial for Layers

If you are not familiar with the concept of layers, please read this first: Layer Concept

Create a Layer Definition

import ezdxf

doc = ezdxf.new (setup=True) # setup required line types
msp = doc.modelspace ()
doc.layers.add (name="MyLines", color=7, linetype="DASHED", })

The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit this properties by using
"BYLAYER" as linetype string and 256 as color, both values are default values for new entities so you can leave off these
assignments:

msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})

The new created line will be drawn with color 7 and linetype "DASHED".

Changing Layer State

Get the layer definition object:

my_lines = doc.layers.get ('MyLines"')

Check the state of the layer:

my_lines.is_off () # True if layer is off
my_lines.is_on() # True if layer is on
my_lines.is_locked() # True 1f layer is locked
layer_name = my_lines.dxf.name # get the layer name

Change the state of the layer:

switch layer off, entities at this layer will not shown in CAD applications/viewers
my_lines.off ()

lock layer, entities at this layer are not editable in CAD applications
my_lines.lock ()

Get/set default color of a layer by property Layer . color, because the DXF attribute Layer .dxf . color is misused
for switching the layer on and off, layer is off if the color value is negative.

Changing the default layer values:

my_lines.dxf.linetype = "DOTTED"
my_lines.color = 13 # preserves on/off state of layer
See also:

For all methods and attributes see class Layer.

46 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Check Available Layers

The layers object supports some standard Python protocols:

iteration
for layer in doc.layers:
if layer.dxf.name != "0":
layer.off () # switch all layers off except layer "O0"

check for existing layer definition
if "MyLines" in doc.layers:

layer = doc.layers.get ("MyLines")

layer_count = len(doc.layers) # total count of layer definitions

Deleting a Layer

Delete a layer definition:

doc.layers.remove ("MyLines")

This just deletes the layer definition, all DXF entities with the DXF attribute layer set to "MyLines" are still there, but
if they inherit color and/or linetype from the layer definition they will be drawn now with linetype "Cont inuous" and
color 1.

6.5.4 Tutorial for Blocks
What are Blocks?

Blocks are collections of DXF entities which can be placed multiple times as block references in different layouts and
other block definitions. The block reference (Insert) can be rotated, scaled, placed in 3D space by OCS and arranged
in a grid like manner, each Tnsert entity can have individual attributes (At t rib) attached.

Create a Block

Blocks are managed as BlockLayout objects by the BlocksSect ion object, every drawing has only one blocks
section stored in the attribute: Drawing.blocks.

import ezdxf
import random # needed for random placing points

def get_random_point () :
"""Returns random x, y coordinates."""
x = random.randint (=100, 100)
y = random.randint (=100, 100)
return x, y

Create a new drawing in the DXF format of AutoCAD 2010
doc = ezdxf.new('R2010")

Create a block with the name 'FLAG'

(continues on next page)

6.5. Tutorials 47

ezdxf Documentation, Release 0.17.2

(continued from previous page)

flag = doc.blocks.new(name="'FLAG")

Add DXF entities to the block 'FLAG'.

The default base point (= insertion point) of the block is (0, 0).
flag.add_lwpolyline([(O, 0), (0, 5), (4, 3), (0, 3)1) # the flag symbol as 2D
—polyline

flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a.
—circle

Block References (Insert)

A block reference is a DXF Tnsert entity and can be placed in any layout: Modelspace, any Paperspace or
BlockLayout (which enables nested block references). Every block reference can be placed, scaled and rotated indi-
vidually. Scaling by negative values is mirroring.

Lets insert some random flags into the modelspace:

Get the modelspace of the drawing.
msp = doc.modelspace ()

Get 50 random placing points.
placing_points = [get_random_point () for _ in range (50)]

for point in placing_points:
Every flag has a different scaling and a rotation of -15 deg.
random_scale = 0.5 + random.random() * 2.0
Add a block reference to the block named 'FLAG' at the coordinates 'point'.
msp.add_blockref ('FLAG', point, dxfattribs={

'xscale': random_scale,
'yvscale': random_scale,
'rotation': -15

H)

Save the drawing.
doc.saveas ("blockref_tutorial.dxf™)

Query all block references of block FLAG:

for flag_ref in msp.query ('INSERT [name=="FLAG"]") :
print (str(flag_ref))

When inserting a block reference into the modelspace or another block layout with different units, the scaling factor
between these units should be applied as scaling attributes (xscale, ...) e.g. modelspace in meters and block in cen-
timeters, xscale has to be 0.01.

48 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

What are Attributes?

An attribute (At trib) is a text annotation attached to a block reference with an associated tag. Attributes are often
used to add information to blocks which can be evaluated and exported by CAD programs. An attribute can be visible or
hidden. The simple way to use attributes is just to add an attribute to a block reference by Insert.add_attrib (),
but the attribute is geometrically not related to the block reference, so you have to calculate the insertion point, rotation
and scaling of the attribute by yourself.

Using Attribute Definitions

The second way to use attributes in block references is a two step process, first step is to create an attribute defini-
tion (template) in the block definition, the second step is adding the block reference by Layout . add_blockref ()
and attach and fill attribute automatically by the add_auto_attribs () method to the block reference. The ad-
vantage of this method is that all attributes are placed relative to the block base point with the same rotation and scal-
ing as the block, but has the disadvantage that non uniform scaling is not handled very well. The method Layout.
add_auto_blockref () handles non uniform scaling better by wrapping the block reference and its attributes into
an anonymous block and let the CAD application do the transformation work which will create correct graphical rep-
resentations at least by AutoCAD and BricsCAD. This method has the disadvantage of a more complex evaluation of
attached attributes

Using attribute definitions (At tdef):

Define some attributes for the block 'FLAG', placed relative

to the base point, (0, 0) in this case.

flag.add_attdef ('NAME', (0.5, -0.5), dxfattribs={'height': 0.5, 'color': 3})
flag.add_attdef ('XpPOS', (0.5, -1.0), dxfattribs={'height': 0.25, 'color': 4})
flag.add_attdef ('YPOS', (0.5, -1.5), dxfattribs={'height': 0.25, 'color': 4})

Get another 50 random placing points.
placing_points = [get_random_point () for _ in range (50)]

for number, point in enumerate (placing_points) :
values is a dict with the attribute tag as item—key and
the attribute text content as item-value.

values = {
'"NAME': "P ()" % (number + 1),
'XPOS': "x = " % point[0],
'YPOS': "y = " % point[1]

Every flag has a different scaling and a rotation of +15 deg.

random_scale = 0.5 + random.random() * 2.0
blockref = msp.add_blockref ('FLAG', point, dxfattribs={
'rotation': 15

}) .set_scale (random_scale)
blockref.add_auto_attribs (values)

Save the drawing.
doc.saveas ("auto_blockref tutorial.dxf")

6.5. Tutorials 49

ezdxf Documentation, Release 0.17.2

Get/Set Attributes of Existing Block References

See the howto: Get/Set Block Reference Attributes

Evaluate Wrapped Block References

As mentioned above evaluation of block references wrapped into anonymous blocks is complex:

Collect all anonymous block references starting with '*U'
anonymous_block_refs = modelspace.query (' INSERT [name ? ""*U.+"]")

Collect real references to 'FLAG'
flag_refs = []
for block_ref in anonymous_block_refs:
Get the block layout of the anonymous block
block = doc.blocks.get (block_ref.dxf.name)
Find all block references to 'FLAG' in the anonymous block
flag_refs.extend(block.query (' INSERT [name=="FLAG"] "))

Evaluation example: collect all flag names.
flag_numbers = [

flag.get_attrib_text ("NAME")

for flag in flag_refs

if flag.has_attrib ("NAME")

print (flag_numbers)

Exploding Block References

This is an advanced feature and because ezdxf is still not a CAD application, the results may no be perfect. Non uniform
scaling lead to incorrect results for text entities (TEXT, MTEXT, ATTRIB) and some other entities like HATCH with
arc or ellipse path segments.

By default the “exploded” entities are added to the same layout as the block reference is located.

for flag_ref in msp.query ('INSERT [name=="FLAG"]"'):
flag_ref.explode ()

Examine Entities of Block References

If you just want to examine the entities of a block reference use the virtual entities () method. This methods
yields “virtual” entities with attributes identical to “exploded” entities but they are not stored in the entity database, have
no handle and are not assigned to any layout.

for flag_ref in msp.query ('INSERT [name=="FLAG"]'):
for entity in flag_ref.virtual_entities():
if entity.dxftype() == "LWPOLYLINE":
print (f"Found {str(entity) /.")

50 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

6.5.5 Tutorial for LWPolyline

The LwPolyline is defined as a single graphic entity, which differs from the old-style Poly11ine entity, which is
defined as a group of sub-entities. LWPo 1y 1 ine display faster (in AutoCAD) and consume less disk space, it is a planar
element, therefore all points in OCS as (x, y) tuples (LWPolyline.dxf.elevation isthe z-axis value).

Create a simple polyline:

import ezdxf

doc ezdxf.new ("R2000")
msp = doc.modelspace ()

points = [(0, 0), (3, 0), (6, 3), (6, 6)]
msp.add_lwpolyline (points)

doc.saveas ("lwpolylinel.dxf™")

Append multiple points to a polyline:

doc = ezdxf.readfile("lwpolylinel.dxf")
msp = doc.modelspace ()

line = msp.query ("LWPOLYLINE") .first
if line is not None:

line.append_points ([(8, 7), (10, 7)1)

doc.saveas ("lwpolyline2.dxf")

The LWPOLYLINE entity always returns polyline points as 5-tuple (X, y, start_width, end_width, bulge), the start_width,
end_width and bulge values are 0 if not present:

first_point = linel0]
X, y, start_width, end_width, bulge = first_point

Use the method points () as context manager to edit polyline points, this method was introduced because accessing
single points was very slow in early versions of ezdxf, but now direct access by the index operator [] is very fast and using
the context manager is not required anymore. The advantage of the context manager is the ability to use a user defined
point format:

doc = ezdxf.readfile("lwpolyline2.dxf")
msp doc.modelspace ()

line = msp.query ("LWPOLYLINE") .first

with line.points("xyseb") as points:

points is a standard Python 1list

existing points are 5-tuples, but new points can be

set as (x, y, [start_width, [end_width, [bulge]]]) tuple

set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).

W O¥ W W%

delete last 2 points

del points[-2:]

adding two points
points.extend ([(4, 7), (0, 7)1)

doc.saveas ("lwpolyline3.dxf")

6.5. Tutorials 51

ezdxf Documentation, Release 0.17.2

Each line segment can have a different start- and end-width, if omitted start- and end-width is 0:

doc = ezdxf.new ("R2000")
msp = doc.modelspace ()

points = [(0, O, .1, .15), (3, O, .2, .25), (6, 3, .3, .35, (6, 6)]
msp.add_lwpolyline (points)

doc.saveas ("lwpolylined .dxf™)

The first point carries the start- and end-width of the first segment, the second point of the second segment and so on, the
start- and end-width value of the last point is used for the closing segment if the polyline is closed else these values are
ignored. Start- and end-width only works if the DXF attribute dxf . const_width is unset, to be sure delete it:

no exception will be raised if const_width is already unset:

del line.dxf.const_width

LWPolyline can also have curved elements, they are defined by the Bulge value:

doc = ezdxf.new ("R2000")

msp = doc.modelspace ()

poin /1)

set 0, bulge).
points = [(0O, O, O, .05), (3, O, .1, .2, -.5), (6, 0, .1, .05), (9, 0)]

msp.add_lwpolyline (points)

doc.saveas ("lwpolylineb.dxf")

The curved segment is drawn from the point which defines the bulge value to the following point, the curved segment is
always an arc. The bulge value defines the ratio of the arc sagitta (segment height /) to half line segment length (point
distance), a bulge value of 1 defines a semicircle. The curve is on the right side of the line for a bulge value > 0, and on
the left side of the line for a bulge value < 0.

The user defined point format, default is xy seb:
¢ x =X coordinate
e y =y coordinate
e s = start width

¢ e =end width

52 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* b = bulge value

* v=(X,Y) as tuple

msp.add_lwpolyline([(0O, O, 0O), (10, 0O, 1), (20, 0, 0)1, format="xyb")
msp.add_lwpolyline([(O, 10, 0), (10, 10, .5), (20, 10, 0)], format="xyb")

bulge = 0.5 h=2.5

R6.25

bulge = 1.0 & ‘

R5.0

6.5.6 Tutorial for Text

Add a simple one line text entity by factory function add_text ().

import ezdxf

TEXT is a basic entity and 1is supported by every DXF version.

Argument setup=True for adding standard linetypes and text styles.
doc = ezdxf.new('R12', setup=True)

msp = doc.modelspace ()

use set_pos() for proper TEXT alignment:

The relations between DXF attributes 'halign', 'valign’,

'insert' and 'align_point' are tricky.

msp.add_text ("A Simple Text").set_pos((2, 3), align='MIDDLE_RIGHT'")

(continues on next page)

6.5. Tutorials 53

ezdxf Documentation, Release 0.17.2

(continued from previous page)

Using a text style
msp.add_text ("Text Style Example: Liberation Serif",
dxfattribs={
'style': 'LiberationSerif',
'height': 0.35}
) .set_pos((2, 6), align="LEFT')

doc.saveas ("simple_text.dxf")

Valid text alignments for argument align in Text . set_pos ():

Vert/Horiz | Left Center Right

Top TOP_LEFT TOP_CENTER TOP_RIGHT
Middle MIDDLE_LEFT | MIDDLE_CENTER | MIDDLE_RIGHT
Bottom BOTTOM_LEFT | BOTTOM_CENTER | BOTTOM_RIGHT
Baseline LEFT CENTER RIGHT

Special alignments are ALIGNED and FIT, they require a second alignment point, the text is justified with the vertical
alignment Baseline on the virtual line between these two points.

Align- Description
ment
ALIGNED Text is stretched or compressed to fit exactly between pl and p2 and the text height is also adjusted to
preserve height/width ratio.

FIT Text is stretched or compressed to fit exactly between p/ and p2 but only the text width is adjusted, the text
height is fixed by the height attribute.

MID- also a special adjustment, but the result is the same as for MIDDLE_CENTER.

DLE

Standard Text Styles

Setup some standard text styles and linetypes by argument setup=True:

doc = ezdxf.new('R12', setup=True)

Replaced all proprietary font declarations in setup_styles () (ARIAL, ARIAL_NARROW, ISOCPEUR and
TIMES) by open source fonts, this is also the style name (e.g. {'style': 'OpenSans-Italic'}):

54 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

LiberationMono-Italic
LiberationMono-BoldItalic
LiberationMono-Bold
LiberationMono
LiberationSerif-Italic
LiberationSerif-BoldlItalic
LiberationSerif-Bold
LiberationSerif
LiberationSans-Italic
LiberationSans-BoldItalic
LiberationSans-Bold
LiberationSans
OpenSansCondensed-ltalic
OpenSansCondensed-Light
OpenSansCondensed-Bold
OpenSans-ExtraBolditalic
OpenSans-ExtraBold
OpenSans-BoldIitalic
OpenSans-Bold
OpenSans-SemiBoldltalic
OpenSans-SemiBold
OpenSans-Italic

OpenSans
OpenSans-Light-Italic
OpenSans-Light
STANDARD

6.5. Tutorials 55

ezdxf Documentation, Release 0.17.2

New Text Style

Creating a new text style is simple:

doc.styles.new('myStandard', dxfattribs={'font' : 'OpenSans—-Regular.ttf'})

But getting the correct font name is often not that simple, especially on Windows. This shows the required steps to get
the font name for Open Sans:

* open font folder c:\windows\fonts

* select and open the font-family Open Sans

* right-click on Open Sans Standard and select Properties

* on top of the first tab you see the font name: 'OpenSans-Regular.ttf'

The style name has to be unique in the DXF document, else ezdxf will raise an DXFTableEntryError exception. To
replace an existing entry, delete the existing entry by doc . styles.remove (name), and add the replacement entry.

3D Text

It is possible to place the 2D Text entity into 3D space by using the OCS, for further information see: Tutorial for
OCS/UCS Usage.

6.5.7 Tutorial for MText and MTextEditor

The MText entity is a multi line entity with extended formatting possibilities and requires at least DXF version R2000,
to use all features (e.g. background fill) DXF R2007 is required.

Prolog code:

import ezdxf

doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace ()

lorem_ipsum = """

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

nun

56 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Adding a MText entity

The MText entity can be added to any layout (modelspace, paperspace or block) by the add_mtext () function.

store MText entity for additional manipulations
mtext = msp.add_mtext (lorem_ipsum, dxfattribs={"style": "OpenSans"})

This adds a MText entity with text style “OpenSans”. The MText content can be accessed by the text attribute, this
attribute can be edited like any Python string:

mtext.text += "Append additional text to the MText entity."
even shorter with __iadd__ () support:
mtext += "Append additional text to the MText entity."

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna
aligua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Append additional text to the MText entity.

Important: Line endings “\n” will be replaced by the MTEXT line endings “\P” at DXF export, but not vice versa “\P”
by “\n” at DXF file loading.

Text placement

The location of the MText entity is defined by the MText.dxf.insert and the MText.dxf.
attachment_point attributes. The attachment_point defines the text alignment relative to the insert
location, default value is 1.

Attachment point constants defined in ezdxf. 11dxf.const:

MText.dxf.attachment_point | Value
MTEXT_TOP_LEFT
MTEXT_TOP_CENTER
MTEXT_TOP_RIGHT
MTEXT_MIDDLE_LEFT
MTEXT_MIDDLE_CENTER
MTEXT_MIDDLE_RIGHT
MTEXT_BOTTOM_LEFT
MTEXT_BOTTOM_CENTER
MTEXT_BOTTOM_RIGHT

O 00 Q| | | K| W —

The MText entity has a method for setting insert, attachment_point and rotation attributes by one call:
set_location ()

6.5. Tutorials 57

ezdxf Documentation, Release 0.17.2

Character height

The character height is defined by the DXF attribute MText .dxf.char_height in drawing units, which has also
consequences for the line spacing of the MText entity:

mtext.dxf.char_height = 0.5

The character height can be changed inline, see also MText formatting and MText Inline Codes.

Text rotation (direction)

The MText .dxf.rotation attribute defines the text rotation as angle between the x-axis and the horizontal direction
of the text in degrees. The MText .dxf.text_direction attribute defines the horizontal direction of MText as
vector in WCS or OCS, if an OCS is defined. Both attributes can be present at the same entity, in this case the MText .
dxf.text_direction attribute has the higher priority.

The MText entity has two methods to get/set rotation: get_rotation () returns the rotation angle in degrees inde-
pendent from definition as angle or direction, and set_rotation () set the rotation attribute and removes the
text_direction attribute if present.

Defining a wrapping border

The wrapping border limits the text width and forces a line break for text beyond this border. Without attribute dxf .
width (or setting 0) the lines are wrapped only at the regular line endings ” \P” or “\n”, setting the reference column
width forces additional line wrappings at the given width. The text height can not be limited, the text always occupies as
much space as needed.

mtext.dxf.width = 60

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut
labore et dolore magna

aliqua. Ut enim ad minim veniam,
quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea
commodo consequat.

Duis aute irure dolor in
reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint

occaecat cupidatat non proident,
sunt in culpa qui officia

deserunt mollit anim id est laborum.
Append additional text to the MText

entity.

58 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

MText formatting

MText supports inline formatting by special codes: MText Inline Codes

’mtext.text = "{\\C1l;red text} - {\\C3;green text} — {\\C5;blue text}"

red text - - blue text

See also new section for the new support class MTextEditor in ezdxf v0.17.

Stacked text

MText also supports stacked text:

[

the space in front of 'Lower' and the ';' behind 'Lower' are necessary

combined with vertical center alignment
mtext.text = "\\A1l;\\SUpper” Lower; - \\SUpper/ Lower;} - \\SUpper# Lower;"

Upper _ Upper _Upper
Lower Lower PP /Lower

See also new section for the new support class MTextEditor in ezdxf v0.17.

Background color (filling)

The MText entity can have a background filling:
e AutoCAD Color Index (ACI)
e true color value as (r, g, b) tuple
* color name as string, use special name 'canvas' to use the canvas background color

Because of the complex dependencies ezdxf provides a method to set all required DXF attributes at once:

mtext.set_bg_color (2, scale=1.5)

The parameter scale determines how much border there is around the text, the value is based on the text height, and should
be in the range of 1 - 5, where 1 fits exact the MText entity.

6.5. Tutorials 59

ezdxf Documentation, Release 0.17.2

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut
labore et dolore magna

aliqua. Ut enim ad minim veniam,
quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea
commodo consequat.,

Duis aute irure dolor in
reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint

occaecat cupidatat non proident,
sunt in culpa qui officia

deserunt mollit anim id est laborum.

MTextEditor

New in version 0.17.

Warning: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the target
CAD application, ezdxf has no influence to that result.

Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across different
CAD applications and keep the formatting in a logic manner like, do not change paragraph properties in the middle
of a paragraph.

There is no official documentation for the inline codes!

The MTextEditor class provides a floating interface to build MText content in an easy way.

This example only shows the connection between MText and the MTextEditor, and shows no additional features to
the first example of this tutorial:

60 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Init Editor

import ezdxf
from ezdxf.tools.text import MTextEditor

doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace ()

lorem_ipsum = """

Lorem ipsum dolor sit amet, consectetur adipiscing elit, ... see prolog code
mmw

create a new editor object with an initial text:
editor = MTextEditor (lorem_ipsum)

get the MTEXT content string from the editor by the str() function:
mtext = msp.add_mtext (str(editor), dxfattribs={"style": "OpenSans"})

Tutorial Prolog:

use constants defined in MTextEditor:
NP = MTextEditor.NEW_PARAGRAPH

ATTRIBS = {
"char_height": 0.7,
"style": "OpenSans",
"width": 10,
3
editor = MTextEditor ("using colors:" + NP)

Set Text Color

There are three ways to change the color inline:
* by color name “red”, “green”, “blue”, “yellow”, “cyan”, “magenta”,
* by AutoCAD Color Index (ACI)

* by RGB values

white”

RED: set color by name - red, green, blue, yellow, cyan, magenta, white
editor.color ("red") .append ("RED" + NP)

RED: the color stays the same until the next change

editor.append("also RED" + NP)

GREEN: change color by ACI (AutoCAD Color Index)
editor.aci(3) .append("GREEN" + NP)

BLUE: change color by RGB tuples
editor.rgb ((0, 0, 255)).append("BLUE" + NP)

add the MTEXT entity to the model space:
msp.add_mtext (str (editor), attribs)

6.5. Tutorials 61

ezdxf Documentation, Release 0.17.2

using colors:

GREEN

Changing Text Height

The MtextEditor.height () method set the text height as absolute value in drawing units (text height = cap height):

attribs = dict (ATTRIBS)
attribs["width"] = 40.0
editor = MTextEditor ("changing text height absolute: default height is 0.7" + NP)

ght = 1.4

doubling the default heil

editor.height (1.4)

editor.append("text height: 1.4" + NP)
editor.height (3.5) .append ("text height: 3.5" + NP)
editor.height (0.7) .append("back to default height: 0.7" + NP)
msp.add_mtext (str (editor), attribs)

changing text height absolute: default height is 0.7

text height: 1.4

text height: 3.5

back to default height: 0.7

The MtextEditor.scale_height () method set the text height by a relative factor, the MtextEditor object
does not keep track of current text height, you have to do this by yourself. The initial text height is MText .dxf.
char_height:

62 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

attribs = dict (ATTRIBS)

attribs["width"] = 40.0

editor = MTextEditor ("changing text height relative: default height is 0.7" + NP)
this is the default text height in the beginning:

current_height = attribs["char_height"]

The text height can only be changed by a factor:

editor.scale_height (2) # scale by 2 = 1.4

keep track of the actual height:

current_height *= 2

editor.append("text height: 1.4" + NP)

to set an absolute height, calculate the required factor:

desired_height = 3.5

factor = desired_height / current_height
editor.scale_height (factor) .append("text height: 3.5" + NP)

current_height = desired_height

and back to 0.7

editor.scale_height (0.7 / current_height) .append("back to default height: 0.7" + NP)
msp.add_mtext (str (editor), attribs) .set_location(insert=location)

Changing Font

The font name for changing MText fonts inline is the font family name! The font family name is the name shown in font
selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”. The font has to be installed
at the target system, else then CAD default font will be used, in AutoCAD/BricsCAD is this the font defined for the text
style “Standard”.

Important: The DXF/DWG format is not optimal for preserving text layouts across multiple systems, and it’s getting
really bad across different CAD applications.

attribs = dict (ATTRIBS)

attribs["width"] = 15.0

editor = MTextEditor ("changing fonts:" + NP)
editor.append("Default: Hello World!"™ + NP)

editor.append ("SimSun: ")

change font in a group to revert back to the default font at the end:
simsun_editor = MTextEditor () .font ("SimSun") .append ("FA2R22" + NP)
reverts the font back at the end of the group:
editor.group (str (simsun_editor))

back to default font OpenSans:

editor.append ("Times New Roman: ")

change font outside of a group until next font change:

editor.font ("Times New Roman") .append ("lpuser mup!" + NP)
If the font does not exist, a replacement font will be used:
editor.font ("Does not exist") .append("This is the replacement font!")

msp.add_mtext (str (editor), attribs)

6.5. Tutorials 63

ezdxf Documentation, Release 0.17.2

changing fonts:
Default: Hello World!

SimSun: {REF, 5

Tlmes New Roman: HpnBeT Mup!

Set Paragraph Properties

The paragraph properties are set by the paragraph () method and a ParagraphProperties object, which bun-
dles all paragraph properties in a named tuple.

Each paragraph can have its own properties for:
* indentation arguments:
— indent is the left indentation of the first line
— left is the left side indentation of the paragraph
— right is the right side indentation of the paragraph

e text adjustment: align, by enum MTextParagraphAlignment

MTextParagraphAlignment. LEFT

MTextParagraphAlignment. RIGHT

MTextParagraphAlignment. CENTER

MTextParagraphAlignment. JUSTIFIED

MTextParagraphAlignment. DISTRIBUTED
* tabulator stops: tab_stops, a tuple of tabulator stops

Indentation and tabulator stops are multiples of the default MText text height stored in MText . dxf.char_height.
Calculate the drawing units for indentation and tabulator stops, by multiplying the the indentation value by the
char_height value.

Mtext paragraphs are separated by new paragraph “\P” characters.

impor ipport clas

from ezdxf tools.text 1mport ParagraphProperties, MTextParagraphAlignment

attribs = dict (ATTRIBS)

(continues on next page)

64 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor ("Indent the first line:" + NP)
props = ParagraphProperties (
indent=1, # indent first line = 1x0.25 drawin
align=MTextParagraphAlignment .JUSTIFIED
)
editor.paragraph (props)
editor.append (lorem_ipsum)
msp.add_mtext (str(editor), attribs)

Indent the first line;
em i r sit
diam

Usam ¢
Stet clita k
sanctus armet.
Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dol
aliguyam erat, sed diam voluptua. At vero
et accusam et Justo duo dolores et ea rebum.
tet clita kasd guber 1, NO s takimata

st Lorem ipsum sit amet,

The first line indentation “indent” is relative to the “left” indentation.

port support classes:

from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment

attribs = dict (ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5

editor = MTextEditor ("Indent left paragraph side:" + NP)
indent = 0.7 # 0.7 * 0.25 = 0.175 drawing units
this reverses the

left indentation:
indent=-indent, # first
indent left paragraph side:
left=indent,
align=MTextParagraphAlignment .JUSTIFIED

)

editor.paragraph (props)

editor.append (" ".Jjoin(lorem_ipsum(100)))
msp.add_mtext (str (editor), attribs) .set_location(insert=location)

6.5. Tutorials 65

ezdxf Documentation, Release 0.17.2

Indent left par e
em ipsum C - st amet
ipsCi d diam
Ut

. =

amet, consete
diam nonumy eirn tempor
ut labore et d e magna

aliquyam erat, s : C
eos et accusam et justo duc
rebum, Stet clita kasd guber
takimata sanctus est Lorem if
sit amet.

Bullet List

There are no special commands to build bullet list, the list is build of indentation and a tabulator stop. Each list item needs
a marker as an arbitrary string. For more information about paragraph indentation and tabulator stops see also chapter
Set Paragraph Properties.

attribs = dict (ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
bullet =
editor = MTextEditor ("Bullet List:" + NP)
editor.bullet_1list (
indent=1,
bullets=[bullet] * 3, # each list item needs a marker
content=[

"o # alt + numpad 7

"First item",
"Second item",
" ". Join(lorem_ipsum(30)),
1)
msp.add_mtext (str (editor), attribs)

66 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Bullet List:
First item
Second item

sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et
dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et

Numbered List

There are no special commands to build numbered list, the list is build of indentation and a tabulator stop. There is no
automatic numbering, but therefore the absolute freedom for using any string as list marker. For more information about
paragraph indentation and tabulator stops see also chapter Ser Paragraph Properties.

attribs = dict (ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor ("Numbered List:" + NP)
editor.bullet_list (
indent=1,
bullets=["1.", "2.", "3."],
content=[
"First item",
"Second item",
" " Join (lorem_ipsum(30)),
1)
msp.add_mtext (str(editor), attribs)

Numbered List:
1. Firstitem
Second item

sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et
dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et

6.5. Tutorials 67

ezdxf Documentation, Release 0.17.2

Stacked Text

MText supports stacked text (fractions) as a single inline code, which means it is not possible to change any property
inside the fraction. This example shows a fraction with scaled down text height, placed in a group to revert the text height
afterwards:

editor = MTextEditor ("Stacked text:" + NP)

stack = MTextEditor () .scale_height (0.6) .stack("1", "2", "~™")
editor.append("over: ") .group(str(stack)) .append (NP)

stack = MTextEditor () .scale_height (0.6) .stack("1", "2", "/")
editor.append("fraction: ") .group (str(stack)) .append (NP)

stack = MTextEditor () .scale_height (0.6) .stack("1", "2", "#")

editor.append("slanted: ") .group(str (stack)) .append (NP)

Addi 10t supported
by stacked text
to red does not work:

numerator = MTextEditor () .color ("red") .append("1")

stack = MTextEditor () .scale_height (0.6) .stack(str (numerator), "2", "#")
editor.append("color red: ").group(str(stack)) .append (NP)

msp.add_mtext (str(editor), attribs)

Stacked text:
over: »

. 1
fraction: 2

slanted: >

color red: C11#2:

See also:
e MTextEditor example code on github.

e Documentation of MTextEditor

68 Chapter 6. Contents

https://github.com/mozman/ezdxf/blob/master/examples/entities/mtext_editor.py

ezdxf Documentation, Release 0.17.2

6.5.8 Tutorial for Spline

Background information about B-spline at Wikipedia.

Splines from fit points

Splines can be defined by fit points only, this means the curve goes through all given fit points. AutoCAD and BricsCAD
generates required control points and knot values by itself, if only fit points are present.

Create a simple spline:

doc = ezdxf.new('R2000")

fit_points = [(0, O, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]
msp = doc.modelspace ()
spline = msp.add_spline (fit_points)

Append a fit point to a spline:

fit_points, control_points, knots and weights are list-like containers:
spline.fit_points.append((2250, 2500, 0))

6.5. Tutorials 69

https://en.wikipedia.org/wiki/B-spline

ezdxf Documentation, Release 0.17.2

You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they will be ignored and
don’t mess around with knot values.

Solve problems of incorrect values after editing a spline generated by AutoCAD:

doc = ezdxf.readfile ("AutoCAD_generated.dxf")

msp = doc.modelspace ()
spline = msp.query ('SPLINE') .first

fit_points, control_points, knots and weights are list-like objects:
spline.fit_points.append((2250, 2500, 0))

As far as I have tested, this approach works without complaints from AutoCAD, but for the case of problems remove
invalid data:

current control points do not match spline defined by fit points
spline.control_points = []

count of knots 1is not correct:
count of knots
spline.knots = []

count of control points + degree + 1

same for weights,

count of weights == count of control points
spline.weights = []

70 Chapter 6. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 0.17.2

Splines by control points

To create splines from fit points is the easiest way to create splines, but this method is also the least accurate, because a
spline is defined by control points and knot values, which are generated for the case of a definition by fit points, and the
worst fact is that for every given set of fit points exist an infinite number of possible splines as solution.

AutoCAD (and BricsCAD also) uses an proprietary algorithm to generate control points and knot values from fit points,
which differs from the well documented Global Curve Interpolation. Therefore splines generated from fit points by ezdxf
do not match splines generated by AutoCAD (BricsCAD).

To ensure the same spline geometry for all CAD applications, the spline has to be defined by control
points. The method add_spline_control_frame () adds a spline trough fit points by calculating the con-
trol points by the Global Curve Interpolation algorithm. There is also a low level function ezdxf.math.
global_bspline_interpolation () which calculates the control points from fit points.

msp.add_spline_control_frame (fit_points, method='uniform', dxfattribs={'color': 1})

msp.add_spline_control_frame (fit_points, method='chord', dxfattribs={'color': 3})

msp.add_spline_control_frame (fit_points, method='centripetal', dxfattribs={'color': 5}
—)

* black curve: AutoCAD/BricsCAD spline generated from fit points
* red curve: spline curve interpolation, “uniform” method
 green curve: spline curve interpolation, “chord” method

* blue curve: spline curve interpolation, “centripetal” method

6.5. Tutorials 71

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html

ezdxf Documentation, Release 0.17.2

Open Spline

Add and open (clamped) spline defined by control points with the method add_open_spline (). If no knot values
are given, an open uniform knot vector will be generated. A clamped B-spline starts at the first control point and ends at

the last control point.

control_points = [(0, O, 0), (1250, 1560, 0), (3130, 610, 0), (2250, 1250, 0)]
msp.add_open_spline (control_points)

Rational Spline

Rational B-splines have a weight for every control point, which can raise or lower the influence of the control point, default
weight = 1, to lower the influence set a weight < 1 to raise the influence set a weight > 1. The count of weights has to be
always equal to the count of control points.

Example to raise the influence of the first control point:

msp.add_closed_rational_spline (control_points, weights=[3, 1, 1, 11)

72 Chapter 6. Contents

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node5.html

ezdxf Documentation, Release 0.17.2

Spline properties

Check if spline is a closed curve or close/open spline, for a closed spline the last point is connected to the first point:

if spline.closed:
this spline is closed
pass

close spline
spline.closed = True

open spline
spline.closed = False

Set start- and end tangent for splines defined by fit points:

spline.dxf.start_tangent = (0, 1, 0) # in y-axis
spline.dxf.end_tangent = (1, 0, 0) # in x—-axis

Get data count as stored in DXF file:

count = spline.dxf.n_fit_points
count = spline.dxf.n_control_points
count = spline.dxf.n_knots

Get data count of real existing data:

count = spline.fit_point_count
count = spline.control_point_count
count = spline.knot_count

6.5. Tutorials 73

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html

ezdxf Documentation, Release 0.17.2

6.5.9 Tutorial for Polyface

coming soon ...

6.5.10 Tutorial for Mesh

Create a cube mesh by direct access to base data structures:

import ezdxf

8 corner vertices
cube_vertices = [
0, 0),

, 0)y

r 0)y

r 0)y

1)/

1),

1),

1)/

~

~

~
~

~
~

(
(
(
(
(
(
(
(

oCrrooRrEPoO
~ ~

=P O OoORr P o
N

~
~

6 cube faces
cube_faces = [

[o, 1, 2, 31,
[4, 5, 6, 71,
[0, 1, 5, 471,
[+, 2, 6, 51,
[3, 2, 6, 71,
[0, 3, 7, 4]

MESH requires DXF R2000 or later
doc = ezdxf.new ("R2000")

msp = doc.modelspace ()

mesh = msp.add_mesh ()

do not subdivide cube, 0 is the default value

mesh.dxf.subdivision_levels = 0

with mesh.edit_data () as mesh_data:
mesh_data.vertices = cube_vertices
mesh_data.faces = cube_faces

doc.saveas ("cube_mesh_1.dxf")

Create a cube mesh by assembling single faces and the edit_data () context manager of the Mesh class, using the

helper class MeshDat a:

import ezdxf

8 corner vertices

p =1
(0, 0, 0y,
(1, 0, 0y,
(1, 1, 0y,
(continues on next page)
74 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

(0, 1, 0),
(0, 0, 1),
(1, o0, 1),
(r, 1, 1),
(0, 1, 1y,

MESH requires DXF R2000 or later
doc = ezdxf.new ("R2000")

msp doc.modelspace ()

mesh = msp.add_mesh ()

with mesh.edit_data () as mesh_data:

optional call op (): minimizes the vertex count

mesh_data.optimize

mesh_data.add_face ([p[0], pll], p[2], p[31])
mesh_data.add_face ([pl[4], p[5]1, pl6l, p[711])
mesh_data.add_face ([p[0], pl[l], p[5], p[4]1])
mesh_data.add_face ([p[1], pl[2], pl6]l, p[5]11])
mesh_data.add_face ([p[3], pl[2], pl6]l, p[711])
mesh_data.add_face ([p[0], p[3], pl[7], p[4]1])

timize

()

doc.saveas ("cube_mesh_2.dxf")

6.5.11 Tutorial for Hatch

Create hatches with one boundary path

The simplest form of the Hat ch entity has one polyline path with only straight lines as boundary path:

import ezdxf

hatch requires DXF R2000 or later
doc = ezdxf.new ("R2000")
msp = doc.modelspace ()

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element
vertex format for the polyline path is: (x, y[, bulge])
there are no bulge values in this example
hatch.paths.add_polyline_path (

[¢o, 0), (10, 0), (10, 10), (0, 10)1, is_closed=True

doc.saveas ("solid_hatch_polyline path.dxf")

But like all polyline entities the polyline path can also have bulge values:

import ezdxf

hatch requires the DXF R2000 or later
doc = ezdxf.new ("R2000")

(continues on next page)

6.5. Tutorials 75

ezdxf Documentation, Release 0.17.2

(continued from previous page)

msp = doc.modelspace ()

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element

vertex format for the polyline path is: (x, y[, bulge])

bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge value)
bulge value > 0 ... arc is right of line

bulge value < 0 ... arc 1is left of line

hatch.paths.add_polyline_path (
[, o, 1), (10, 0), (10, 10, -0.5), (0, 10)1, is_closed=True

doc.saveas ("solid_hatch_polyline_path_with_bulge.dxf")

The most flexible way to define a boundary path is the edge path. An edge path can have multiple edges and each edge
can be one of the following elements:

e line EdgePath.add_line ()

e arc EdgePath.add_arc()

¢ ellipse EdgePath.add_ellipse ()
* gpline EdgePath.add_spline ()

Create a solid hatch with an edge path (ellipse) as boundary path:

import ezdxf

hatch requires the DXF R2000 or later
doc = ezdxf.new ("R2000")
msp = doc.modelspace ()

important: major axis >= minor axis (ratio <= 1.)
minor axis length = major axis length * ratio
msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)

every boundary path is a 2D element

edge_path = hatch.paths.add_edge_path ()

each edge path can contain line, arc, ellipse and spline elements
important: major axis >= minor axis (ratio <= 1.)
edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)

doc.saveas ("solid_hatch_ellipse.dxf")

76 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Create hatches with multiple boundary paths (islands)

The DXF attribute hat ch_style defines the island detection style:

nested - altering filled and unfilled areas
outer - area between external and outermost path is filled
ignore - external path is filled

N — O

hatch = msp.add_hatch (

color=1,

dxfattribs={
"hatch_style": ezdxf.const.HATCH_STYLE_NESTED,
0 = nested: ezdxf.const.HATCH _STYLE_NESTED
1 = outer: ezdxf.const.HATCH STYLE_ OUTERMOST
2 = ignore: ezdxf.const.HATCH_STYLE_ IGNORE

}I

The first path has to set flag: 1 = external
flag const.BOUNDARY_PATH _POLYLINE is added (OR) automatically
hatch.paths.add_polyline_path (

[(o, oy, (w0, 0), (10, 10), (0, 10)1,

is_closed=True,

flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,

This is also the result for all 4 paths and hatch_style setto 2 (ignore).

The second path has to set flag: 16 = outermost
hatch.paths.add_polyline_path (
[, 1, 9, 1)y, (9, 9, (1, 91,
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST,

This is also the result for all 4 paths and hatch_style setto 1 (outer).

6.5. Tutorials 77

ezdxf Documentation, Release 0.17.2

The third path has to set flag: 0 = default
hatch.paths.add_polyline_path (
(2, 23, (8, 23, (8, 8), (2, 8)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,

The forth path has to set flag: 0 = default, and so on
hatch.paths.add_polyline_path (
(3, 3y, (7, 3), (7, 7Y,y (3, 7)1,
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,

doc.saveas (OUTDIR / "solid_hatch_islands_04.dxf")

78

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

The expected result of combinations of various hatch_style values and paths flags, or the handling of overlapping
paths is not documented by the DXF reference, so don’t ask me, ask Autodesk or just try it by yourself and post your
experience in the forum.

Example for Edge Path Boundary

hatch = msp.add_hatch(color=1)

1. polyline path
hatch.paths.add_polyline_path/(
[
(240, 210, 0),
(0, 210, 0),
(0, 0, 0.0),
(240, 0, 0),
] ’
is_closed=1,
flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,
)
2. edge path
edge_path = hatch.paths.add_edge_path(flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST)
edge_path.add_spline (
control_points=[
(126.658105895725, 177.0823706957212),
(141.5497003747484, 187.8907860433995),
(205.8997365206943, 154.7946313459515),
(113.0168862297068, 117.8189380884978)
(202.9816918983783, 63.17222935389572)
(157.363511042264, 26.4621294342132),
(144.8204003260554, 28.4383294369643),

I4

’

1,
knot_values=]|
4

14

’

o o o o]
o o o o

’
55.20174685732758,
98.33239645153571,
175.1126541251052,
213.2061566683142,
213.2061566683142,
213.2061566683142,
213.2061566683142,
]I
)
edge_path.add_arc(
center=(152.6378550678883, 128.3209356351659),
radius=100.1880612627354,
start_angle=94.4752130054052,
end_angle=177.1345242028005,
)
edge_path.add_line(
(52.57506282464041, 123.3124200796114),
(126.658105895725, 177.0823706957212),

6.5. Tutorials 79

ezdxf Documentation, Release 0.17.2

Associative Boundary Paths

A HATCH entity can be associative to a base geometry, which means if the base geometry is edited in a CAD application
the HATCH get the same modification. Because ezdxf is not a CAD application, this association is not maintained nor
verified by ezdxf, so if you modify the base geometry afterwards the geometry of the boundary path is not updated and
no verification is done to check if the associated geometry matches the boundary path, this opens many possibilities to

create invalid DXF files: USE WITH CARE.
This example associates a LWPOLYLINE entity to the hatch created from the LWPOLYLINE vertices:

Create base geometry

lwpolyline = msp.add_lwpolyline (
r¢c, o, oy, (o, o, 0.5, (10, 10, 0), (0, 10, 0)1,
format="xyb",
close=True,

hatch = msp.add_hatch(color=1)

path = hatch.paths.add_polyline_path/
get path vertices from associated LWPOLYLINE entity
lwpolyline.get_points (format="xyb"),
get closed state also from associated LWPOLYLINE entity
is_closed=lwpolyline.closed,

Set association between boundary path and LWPOLYLINE
hatch.associate (path, [lwpolyline])

An EdgePath needs associations to all geometry entities forming the boundary path.

80 Chapter 6

. Contents

ezdxf Documentation, Release 0.17.2

Predefined Hatch Pattern

Use predefined hatch pattern by name:

hatch.set_pattern_£fill ("ANSI31", scale=0.5)

6.5. Tutorials 81

ezdxf Documentation, Release 0.17.2

K
ANSI31 ANSI34 A s
ANSI38 ACAD_ISO02WI00 | ACAD_ISO03W100 |ACAD_ISOOSW100 |ACAD_ISOOSW100 [ACAD_ISO06W100 | ACAD_ISOO7WI00
ACAD_15008W100 | ACAD_ISO09W100 | ACAD_ISO10W100 | ACAD_ISOTTW100 | ACAD_ISO12W100 ~| ACAD_ISO13W100 | ACAD_ISO14W100 |
——— —{ CLLCLCLCLY : T . T
[
—LLLLerr
N
NN
[SUPRUN I .
ACAD_ISO15W100 | ANGLE | L L_ | AR-8816 AR-BBI6C =] AR-823] T{ARBRELM [| ARBRSTD
A \ — |
4 O O
SN y 0 H o
ARCONC 2 . | AR-HBONE AR-PARQ AR-RROOF AR-RSHKE | | ARSAND * - BOX
““““““ T T 7 —— e I G T
T 1 —— T
——————————— T 1T 1 — — ——
----------- T 1 e e
——————————— i —— — + +
BRASS Somee BRICK T~ | BRSTONE CLAY s (ORK S CROSS +_ + :
e’ e “ o [I
Z e
— e
DOLMIT ESCHER | AE — — ~— GOST GLASS ,
= . - o O LSS e T
SOt oY o
O O O o
W o _0
05990
- \y /__\O__\)-} D
GOST_GROUND _{GRASS GRATE GRAVEL HeCY O
—————— T B :
..... — :l
- e
- = e
LINE MUDST . . |nem I NeT e B PLASTI
- e |EpEpEpEpEpE] v v v o
-,'_,unuununu:ZICKECZ[CIZy ———————— VTVVv vy
~Jaoooooon 277777 [sl Vv vVvVvv
“#{0oooooog ECZ E\Ar_ 7/ B apfp - - - - - - VY VYV VY
“4oooooood 77777777 I sttt
-.._1-nnunnnnn;$$$5 -------- vvvVvvwy
T EEEE B 77V VY
; SQUHRE ioooo STARS Va0 SWAMP TRANS = = = = = TRIANG YVvVY

-

IGUG jﬁ

82

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Create hatches with gradient fill

TODO

6.5.12 Tutorial for Hatch Pattern Definition

TODO

6.5.13 Tutorial for Image and ImageDef

Insert a raster image into a DXF document, the raster image is NOT embedded in the DXF file:

import ezdxf

The IMAGE entity requires the DXF R2000 format or later.
doc = ezdxf.new("R2000")

The IMAGEDEF entity is like a block definition, it just defines the image.
my_image_def = doc.add_image_def (
filename="mycat.jpg", size_in_pixel=(640, 360)

msp = doc.modelspace ()
The IMAGE entity is like the INSERT entity, it's just an image reference,
and there can be multiple references to the same picture in a DXF document.

1st image reference

msp.add_image (
insert=(2, 1),
size_in_units=(6.4, 3.6),
image_def=my_image_def,
rotation=0

)

2nd image reference

msp.add_image (
insert=(4, 5),
size_in_units=(3.2, 1.8),
image_def=my_image_def,
rotation=30

Get existing image definitions from the OBJECTS section:
image_defs = doc.objects.query ("IMAGEDEF")

doc.saveas ("dxf with_ cat.dxf")

6.5. Tutorials 83

ezdxf Documentation, Release 0.17.2

6.5.14 Tutorial for Underlay and UnderlayDefinition

Insert a PDF, DWF, DWFx or DGN file as drawing underlay, the underlay file is NOT embedded into the DXF file:

import ezdxf

doc = ezdxf.new('AC1015") # underlay requires the DXF R2000 format or later
my_underlay_def = doc.add_underlay_def (filename="my_underlay.pdf', name='1")

The (PDF)DEFINITION entity is like a block definition, it just defines the underlay
'name' is misleading, because it defines the page/sheet to be displayed

PDF: name is the page number to display

DGN: name='default' 2?7?

DWF: 2227

msp = doc.modelspace ()

add first underlay

msp.add_underlay (my_underlay_def, insert=(2, 1, 0), scale=0.05)

The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay.
—~reference,

and there can be multiple references to the same underlay in a drawing.

msp.add_underlay (my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30)
get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects.

—section
pdf_defs = doc.objects.query ('PDFDEFINITION") # get all pdf underlay defs in drawing

doc.saveas ("dxf_with_underlay.dxf")

6.5.15 Tutorial for Linetypes

Simple line type example:

You can define your own linetypes. A linetype definition has a name, a description and line pattern elements:

elements = [total_pattern_length, eleml, elem2, ...]

total_pattern_length Sum of all linetype elements (absolute values)
elem if elem > 0 it is a line, if elem < O it is gap, if elem == 0.0 it is a dot

Create a new linetype definition:

import ezdxf
from ezdxf.tools.standards import linetypes # some predefined linetypes

doc ezdxf.new ()
msp = doc.modelspace ()

my_line_types = [
(
"DOTTED",
"Dottedy,

(continues on next page)

84 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

(0.2, 0.0, -0.27,

"DOTTEDX2",
"Dotted (2x)o,
[0.4, 0.0, -0.4],

"DOTTED2",
"Dotted (.5) . o v v e e e e e e e e,
(0.1, 0.0, -0.171,
) s
]
for name, desc, pattern in my_line_types:
if name not in doc.linetypes:
doc.linetypes.add (
name=name,
pattern=pattern,
description=desc,

Setup some predefined linetypes:

for name, desc, pattern in linetypes():
if name not in doc.linetypes:
doc.linetypes.add (
name=name,
pattern= pattern,
description=desc,

Check Available Linetypes

The linetypes object supports some standard Python protocols:

iteration
print ("available linetypes:")
for 1t in doc.linetypes:
print (£" {1t .dxf.name}: lt.dxf.description/")

check for existing linetype
if "DOTTED" in doc.linetypes:

pass

count = len(doc.linetypes) # total count of linetypes

6.5. Tutorials 85

ezdxf Documentation, Release 0.17.2

Removing Linetypes

Warning: Ezdxf does not check if a linetype is still in use and deleting a linetype which is still in use generates an
invalid DXF file. The audit process audit () of the DXF document removes 1inetype attributes referencing
non existing linetypes.

You can delete a linetype:

doc.layers.remove ("DASHED")

This just removes the linetype definition, the 1inetype attribute of DXF entities may still refer the reoved linetype
definition “DASHED” and AutoCAD will not open DXF files including undefined linetypes.

6.5.16 Tutorial for Complex Linetypes

In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in line types.

Complex linetype example with text:

GAS

GAS

GAS

GAS

GAS

GAS

GAS

GAS

GAS —

Complex line type example with shapes:

_D 1 1 1 1 1 1
L= [o J J J

For easy usage the pattern string for complex line types is mostly the same string as the pattern definition strings in
AutoCAD “lin” files.

Example for complex line type TEXT:

doc = ezdxf.new("R2018") # DXF R13 or later is required

doc.linetypes.add(
name="GASLEITUNG2",
linetype definition string from acad.lin:
pattern='A,.5,-.2, ["GAS", STANDARD, S=.1,U=0.0,X=-0.1,Y=-.05],-.25",
description= "Gasleitung2 ----GAS----GAS----GAS—----GAS----GAS—-—---",
length=1, # required for complex line types

})

The pattern always starts with an “A”, the following float values have the same meaning as for simple linetypes, a value >
0 is a line, a value < 0 is a gap, and a O is a point, the opening square bracket “[” starts the complex part of the linetype
pattern.

The text after the “[” defines the complex linetype:
¢ A text in quotes (e.g. “GAS”) defines a complex TEXT linetype and represents the pattern text itself.

e A text without quotes is a SHAPE name (in “.lin” files) and defines a complex SHAPE linetype. Ezdxf can not
translate this SHAPE name from the “lin” file into the required shape file index, so *YOU have to translate this
SHAPE name into the shape file index, e.g. saving the file with AutoCAD as DXF and searching for the DXF
linetype definition, see example below and the DXF Internals: LTYPE Table.

For complex TEXT linetypes the second parameter is the text style, for complex SHAPE linetypes the second parameter
is the shape file name, the shape file has to be in the same directory as the DXF file or in one of the CAD application
support paths.

86 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

The meaning of the following comple linetype parameters are shown in the table below:

S scaling factor, always > 0, if S=0 the TEXT or SHAPE is not visible
R or U | rotation relative to the line direction

X x-direction offset (along the line)

Y y-direction offset (perpendicular to the line)

These parameters are case insensitive and the closing square bracket “]” ends the complex part of the linetype pattern.

The fine tuning of this parameters is a try an error process, for complex TEXT linetypes the scaling factor (e.g. the
STANDARD text style) sets the text height (e.g. “S=0.1" sets the text height to 0.1 units), by shifting in y-direction by
half of the scaling factor, the text is vertically centered to the line. For the x-direction it seems to be a good practice to
place a gap in front of the text and after the text, find x shifting value and gap sizes by try and error. The overall length is
at least the sum of all line and gap definitions (absolute values).

Example for complex line type SHAPE:

doc.linetypes.add ("GRENZE2",
linetype definition in acad.lin:
A,.25,-.1, [BOX, ltypeshp.shx,x=-.1,s=.1],-.1,1
replacing BOX by shape index 132 (got index from an AutoCAD file),
ezdxf can't get shape index from ltypeshp.shx
pattern="A, .25,-.1,[132, ltypeshp.shx,x=-.1,s=.1],-.1,1",
description="Grenze eckig ————[]-———— [1-——=[]-—-———- [1--——11--",
length= 1.45, # required for complex line types

})

Complex line types with shapes only work if the associated shape file (e. g. ltypeshp.shx) and the DXF file are in the
same directory or the shape file is placed in one of the CAD application support folders.

6.5.17 Tutorial for OCS/UCS Usage

For OCS/UCS usage is a basic understanding of vectors required, for a brush up, watch the YouTube tutorials of
3BluelBrown about Linear Algebra.

Second read the Coordinate Systems introduction please.
See also:

The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector
math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers.

For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing unit can have any
real world unit you want. Autodesk added some mechanism to define a scale for dimension and text entities, but because
I am not an AutoCAD user, I am not familiar with it, and further more I think this is more an AutoCAD topic than a
DXEF topic.

6.5. Tutorials 87

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://gamemath.com/

ezdxf Documentation, Release 0.17.2

Object Coordinate System (OCS)

The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same plane, this is also
true if the plane is located in 3D space by an OCS. There are three basic DXF attributes that gives a 2D entity its spatial
form.

Extrusion

The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This base plane is always
located in the origin of the WCS. But there are some entities like £111pse, which have an extrusion vector, but do
not establish an OCS. For this entities the extrusion vector defines only the extrusion direction and thickness defines the
extrusion distance, but all other points in WCS.

Elevation

The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and defines the distance
of the entity plane from the base plane.

This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code 38). In DXF
R12 and later, the elevation value is supplied as z-axis value of each point. But as always in DXF, this simple rule does
not apply to all entities: LiwPolyline and Hatch have an DXF attribute elevat ion, where the z-axis of this point
is the elevation height and the x-axis = y-axis = 0.

Thickness

Defines the extrusion distance for an entity.

Note: There is a new edition of this tutorial using UCS based transformation, which are available in ezdxf v0.11 and
later: Tutorial for UCS Based Transformations

This edition shows the hard way to accomplish the transformations by low level operations.

Placing 2D Circle in 3D Space

The colors for axis follow the AutoCAD standard:
e red is x-axis
* green is y-axis

e blue is z-axis

import ezdxf
from ezdxf.math import OCS

doc = ezdxf.new('R2010")
msp = doc.modelspace ()

For this example the OCS is rotated around x-axis about 45 degree
OCS z-axis: x=0, y=1, z=1
extrusion vector must not normalized here

(continues on next page)

88 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

ocs = OCS((0, 1, 1))
msp.add_circle (
You can place the 2D circle in 3D space
but you have to convert WCS into OCS
center=ocs.from_wcs ((0, 2, 2)),
center in OCS: (0.0, 0.0, 2.82842712474619)
radius=1,
dxfattribs={
here the extrusion vector should be normalized,
which is granted by using the ocs.uz
'extrusion': ocs.uz,
'color': 1,
})
mark center point of circle in WCS
msp.add_point ((0, 2, 2), dxfattribs={'color': 1})

The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows the OCS
z-axis (extrusion direction), elevation is the distance from the origin to the center of the circle in this case 2.828, and you
see that the x- and y-axis of OCS and WCS are not aligned.

6.5. Tutorials 89

ezdxf Documentation, Release 0.17.2

Placing LWPolyline in 3D Space

For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space.

The center of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about 45 degree, to accomplish this I use an
UCS with z-axis (0, 1, 1) and an x—-axis parallel to WCS x-axis.
ucs = UCS(

origin=(0, 2, 2), # center of pentagon

ux=(1, 0, 0), # x—-axis parallel to WCS x-axis

uz=(0, 1, 1), # z-axis
)

calculating corner points in local (UCS) coordinates

points = [Vec3.from_deg_angle((360 / 5) * n) for n in range(5)]
converting UCS into OCS coordinates
ocs_points = list (ucs.points_to_ocs (points))

LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation.
All points have the same z-axis (elevation) in OCS!
elevation = ocs_points[0].z

msp.add_lwpolyline (
points=ocs_points,
format="'xy', # ignore z-axis
close=True,
dxfattribs={

'elevation': elevation,
'extrusion': ucs.uz,
'color': 1,

H)

The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three lines from
the center of the pentagon show the UCS, the three colored lines in the origin show the OCS the white lines in the origin
show the WCS.

The z-axis of the UCS and the OCS show the same direction (extrusion direction), and the x-axis of the UCS and the

90 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

WCS show the same direction. The elevation is the distance from the origin to the center of the pentagon and all points
of the pentagon have the same elevation, and you see that the y- axis of UCS, OCS and WCS are not aligned.

Using UCS to Place 3D Polyline

It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this example and all
kind of 3D operations.

Using an UCS simplifies 3D operations, but UCS definition can happen later

calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians (360 / 5)

corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]

let's do some transformations

(continues on next page)

6.5. Tutorials 91

ezdxf Documentation, Release 0.17.2

(continued from previous page)

tmatrix = Matrix44.chain(# creating a transformation matrix
Matrix44.z_rotate (math.radians (15)), # 1. rotation around z—-axis
Matrix44.translate (0, .333, .333), # 2. translation

)

transformed_corners_ucs = tmatrix.transform_vertices (corners_ucs)

transform UCS into WCS

ucs = UCS(
origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x—-axis parallel to WCS x—-axis
uz=(0, 1, 1), # z—axis

)

corners_wcs = list (ucs.points_to_wcs (transformed_corners_ucs))
msp.add_polyline3d(

points=corners_wcs,
close=True,

add lines from center to corners

center_wcs = ucs.to_wcs((0, .333, .333))
for corner in corners_wcs:
msp.add_line (center_wcs, corner, dxfattribs={'color': 1})

ucs.render_axis (msp)

92 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Placing 2D Text in 3D Space
The problem by placing text in 3D space is the text rotation, which is always counter clockwise around the OCS z-axis,
and 0 degree is in direction of the positive OCS x-axis, and the OCS x-axis is calculated by the Arbitrary Axis Algorithm.

Calculate the OCS rotation angle by converting the TEXT rotation angle (in UCS or WCS) into a vector or begin with text
direction as vector, transform this direction vector into OCS and convert the OCS vector back into an angle in the OCS xy-
plane (see example), this procedure is available as UCS. to_ocs_angle_deg () orUCS.to_ocs_angle_rad().

AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.

Thickness for text works only with shx fonts not with true type fonts
doc.styles.new ('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))

calculation of text direction as angle in OCS:

convert text rotation in degree into a vector in UCS
text_direction = Vec3.from_deg_angle (-45)

transform vector into OCS and get angle of vector in xy-plane
rotation = ucs.to_ocs (text_direction) .angle_deg

text = msp.add_text (
text="TEXT",
dxfattribs={
text rotation angle in degrees in OCS
'"rotation': rotation,
'extrusion': ucs.uz,
'thickness': .333,
'color': 1,
'style': '"TIXT',
)
set text position in OCS
text.set_pos(ucs.to_ocs((0, 0, 0)), align="MIDDLE_CENTER")

o
<+

6.5. Tutorials 93

ezdxf Documentation, Release 0.17.2

Hint: For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed parallel to
the xy-plane of the UCS.

Placing 2D Arc in 3D Space

Here we have the same problem as for placing text, you need the start and end angle of the arc in degrees in OCS, and
this example also shows a shortcut for calculating the OCS angles.

ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
msp.add_arc (
center=ucs.to_ocs ((0, 0)),
radius=1,
start_angle=ucs.to_ocs_angle_deg(45),
end_angle=ucs.to_ocs_angle_deg(270),
dxfattribs={
'extrusion': ucs.uz,
'color': 1,
H)
center = ucs.to_wcs((0, 0))
msp.add_line(
start=center,
end=ucs.to_wcs (Vec3.from_deg_angle (45)),
dxfattribs={'color': 1},

msp.add_line(
start=center,
end=ucs.to_wcs (Vec3.from_deg_angle(270)),
dxfattribs={'color': 1},

94 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Placing Block References in 3D Space

Despite the fact that block references (Insert) can contain true 3D entities like Line or Mesh, the Insert entity
uses the same placing principe as Text or Arc shown in the previous chapters.

Simple placing by OCS and rotation about the z-axis, can be achieved the same way as for generic 2D entity types. The
DXEF attribute Insert.dxf.rotation rotates a block reference around the block z-axis, which is located in the
Block.dxf.base_point. To rotate the block reference around the WCS x-axis, a transformation of the block z-
axis into the WCS x-axis is required by rotating the block z-axis 90 degree counter clockwise around y-axis by using an
UCS:

This is just an excerpt of the important parts, see the whole code of insert.py at github.

6.5. Tutorials 95

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/ocs/insert.py

ezdxf Documentation, Release 0.17.2

rotate UCS around an arbitrary axis:

def ucs_rotation(ucs: UCS, axis: Vec3, angle: float):
new in ezdxf v0.11: UCS.rotate (axis, angle)

t = Matrix44.axis_rotate(axis, math.radians (angle))

ux, uy, uz = t.transform_vertices([ucs.ux, ucs.uy,

return UCS (origin=ucs.origin, ux=ux, uy=uy,

doc = ezdxf.new('R2010', setup=True)
blk = doc.blocks.new('CSYS")
setup_csys (blk)

msp = doc.modelspace ()

ucs = ucs_rotation(UCS(), axis=Y_AXIS, angle=90)
transform insert location to OCS
insert = ucs.to_ocs((0, 0, 0))
rotation angle about the z-axis (= WCS x-axis)
rotation = ucs.to_ocs_angle_deg(15)
msp.add_blockref ('CSYS', insert, dxfattribs={
'extrusion': ucs.uz,
'"rotation': rotation,

H)

uz=uz)

ucs.uzl)

96

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

To rotate a block reference around another axis than the block z-axis, you have to find the rotated z-axis (extrusion vector)
of the rotated block reference, following example rotates the block reference around the block x-axis by 15 degrees:

t is a transformation matrix to rotate 15 degree around the x-axis

t = Matrix44.axis_rotate (axis=X_AXIS, angle=math.radians(15))

transform block z-axis into new UCS z—-axis (= extrusion vector)

uz = Vec3(t.transform(Z_AXIS))

create new UCS at the insertion point, because we are rotating around the x-axis,
ux 1s the same as the WCS x—-axis and uz 1is the rotated z—-axis.

ucs = UCS(origin=(1, 2, 0), ux=X_AXIS, uz=uz)

transform insert location to 0CS, block base_point=(0, 0, O0)

insert = ucs.to_ocs((0, 0, 0))

for this case a rotation around the z-axis 1s not required

rotation = 0

blockref = msp.add_blockref ('CSYS', insert, dxfattribs={
'extrusion': ucs.uz,
'rotation': rotation,

)

6.5. Tutorials 97

ezdxf Documentation, Release 0.17.2

The next example shows how to translate a block references with an already established OCS

= Vec3 (-3, -1, 1)
get established OCS
ocs =

translate a block references with an established OCS
translation

blockref.ocs ()

get insert location in WCS
actual_wcs_location
translate location

new_wcs_location

ocs.to_wcs (blockref.dxf.insert)

actual_wcs_location + translation
convert WCS location to OCS location
blockref.dxf.insert

ocs.from_wcs (new_wcs_location)

Setting a new insert location is the same procedure without adding a translation vector, just transform the new insert
location into the OCS.

98

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle
is -90 degrees. First transform block y-axis (rotation axis) and block z-axis (extrusion vector) from OCS into WCS:

rotate a block references with an established OCS around the block y-axis about 90.
—degree

ocs = blockref.ocs ()

convert block y-axis (= rotation axis) into WCS vector
rotation_axis = ocs.to_wcs((0, 1, 0))

convert local z—-axis (=extrusion vector) into WCS vector
local_z_axis = ocs.to_wecs((0, 0, 1))

Build transformation matrix and transform extrusion vector and build new UCS:

build transformation matrix

t = Matrix44.axis_rotate (axis=rotation_axis, angle=math.radians(-90))

(continues on next page)

6.5. Tutorials 99

ezdxf Documentation, Release 0.17.2

(continued from previous page)

uz = t.transform(local_z_axis)

uy = rotation_axis

the block reference origin stays at the same location, no rotation needed
wcs_insert = ocs.to_wcs (blockref.dxf.insert)

build new UCS to convert WCS locations and angles into OCS

ucs = UCS(origin=wcs_insert, uy=uy, uz=uz)

Set new OCS attributes, we also have to set the rotation attribute even though we do not rotate the block reference around
the local z-axis, the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted:

set new OCS

blockref.dxf.extrusion = ucs.uz

set new insert

blockref.dxf.insert = ucs.to_ocs((0, 0, 0))

set new rotation: we do not rotate the block reference around the local z-axis,
but the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted
blockref.dxf.rotation = ucs.to_ocs_angle_deg(0)

100 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

And here is the point, where my math knowledge ends, for more advanced CAD operation you have to look elsewhere.

6.5.18 Tutorial for UCS Based Transformations

With ezdxf v0.11 a new feature for entity transformation was introduced, which makes working with OCS/UCS much
easier, this is a new edition of the older Tutorial for OCS/UCS Usage. For the basic information read the old tutorial
please. In ezdxf v0.13 the transform_to_wcs () interface was replaced by the general transformation interface:
transform().

For this tutorial we don’t have to worry about the OCS and the extrusion vector, this is done automatically by the t rans—
form () method of each DXF entity.

Placing 2D Circle in 3D Space

To recreate the situation of the old tutorial instantiate a new UCS and rotate it around the local x-axis. Use UCS coordinates
to place the 2D CIRCLE in 3D space, and transform the UCS coordinates to the WCS.

import math
import ezdxf
from ezdxf.math import UCS

doc ezdxf.new ('R2010")
msp = doc.modelspace ()

ucs = UCS () # New default UCS
All rotation angles in radians, and rotation
methods always return a new UCS.
ucs = ucs.rotate_local_x(math.radians (-45))
circle = msp.add_circle(
Use UCS coordinates to place the 2d circle in 3d space
center=(0, 0, 2),
radius=1,
dxfattribs={'"'color': 1}

(continues on next page)

6.5. Tutorials 101

ezdxf Documentation, Release 0.17.2

(continued from previous page)

circle.transform(ucs.matrix)

mark center point of circle in WCS
msp.add_point ((0, 0, 2), dxfattribs={'color': 1}).transform(ucs.matrix)

102 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Placing LWPolyline in 3D Space

Simplified LWPOLYLINE example:

The center of the pentagon should be (0, 2, 2), and the shape is
rotated around x-axis about -45 degree
ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians (-45))

msp.add_lwpolyline (
calculating corner points in UCS coordinates
points=(Vec3.from_deg_angle((360 / 5) * n) for n in range(5)),
format='xy', # ignore z-axis
close=True,
dxfattribs={
'color': 1,

The 2D pentagon in 3D space in BricsCAD Left and Front view.

6.5. Tutorials

103

ezdxf Documentation, Release 0.17.2

W

Using UCS to Place 3D Polyline

Simplified POLYLINE example: Using a first UCS to transform the POLYLINE and a second UCS to place the POLY-
LINE in 3D space.

using an UCS simplifies 3D operations, but UCS definition can happen later

calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians (360 / 5)

corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]

let's do some transformations by UCS

transformation_ucs = UCS() .rotate_local_z (math.radians (15)) # 1. rotation around z-
—axis

transformation_ucs.shift ((0, .333, .333)) # 2. translation (inplace)

corners_ucs = list (transformation_ucs.points_to_wcs (corners_ucs))

location_ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))

msp.add_polyline3d(
points=corners_ucs,
close=True,
dxfattribs={
'color': 1,
}

) .transform(location_ucs.matrix)

Add lines from the center of the POLYLINE to the corners
center_ucs = transformation_ucs.to_wcs((0, 0, 0))
for corner in corners_ucs:
msp.add_line (
center_ucs, corner, dxfattribs={'color': 1}
) .transform(location_ucs.matrix)

104 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

—
|
|
|
- \-‘

Placing 2D Text in 3D Space
The problem with the text rotation in the old tutorial disappears (or better it is hidden in t ransform ()) with the new

UCS based transformation method:
AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.

thickness for text works only with shx fonts not with true type fonts
doc.styles.new ('TXT', dxfattribs={'font': 'romans.shx'})

ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians (-45))
text = msp.add_text (
text="TEXT",

dxfattribs={
text rotation angle in degrees in UCS

'rotation': -45,
'thickness': .333,
'color': 1,
'style': '"TXT',

)
set text position in UCS
text.set_pos((0, 0, 0), align="MIDDLE_ CENTER")

text.transform(ucs.matrix)

105

6.5. Tutorials

ezdxf Documentation, Release 0.17.2

Placing 2D Arc in 3D Space

Same as for the text example, OCS angle transformation can be ignored:

ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians (-45))

CENTER = (0, 0)
START_ANGLE = 45
END_ANGLE = 270

msp.add_arc (
center=CENTER,
radius=1,
start_angle=START_ANGLE,
end_angle=END_ANGLE,
dxfattribs={'color': 6},
) .transform(ucs.matrix)

(continues on next page)

106 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

msp.add_line (
start=CENTER,
end=Vec3.from_deg_angle (START_ANGLE),
dxfattribs={'color': 6},

) .transform(ucs.matrix)

msp.add_line (
start=CENTER,
end=Vec3.from_deg_angle (END_ANGLE) ,
dxfattribs={'color': 6},

) .transform(ucs.matrix)

Il'v'l'l."l

6.5. Tutorials 107

ezdxf Documentation, Release 0.17.2

Placing Block References in 3D Space
Despite the fact that block references (INSERT) can contain true 3D entities like LINE or MESH, the INSERT entity
uses the same placing principe as TEXT or ARC shown in the previous chapters.

To rotate the block reference 15 degrees around the WCS x-axis, we place the block reference in the origin of the UCS,
and rotate the UCS 90 degrees around its local y-axis, to align the UCS z-axis with the WCS x-axis:

This is just an excerpt of the important parts, see the whole code of insert.py at github.

doc = ezdxf.new('R2010', setup=True)

blk = doc.blocks.new('CSYS'")
setup_csys (blk)
msp = doc.modelspace ()
ucs = UCS() .rotate_local_y (angle=math.radians (90))
msp.add_blockref (
'Csys’',

insert=(0, 0),
rotation around the block z-axis (= WCS x—axis)
dxfattribs={'rotation': 15},

) .transform(ucs.matrix)

108 Chapter 6. Contents

https://github.com/mozman/ezdxf/blob/master/docs/source/tutorials/src/ucs/insert.py

ezdxf Documentation, Release 0.17.2

A more simple approach is to ignore the rotate attribute at all and just rotate the UCS. To rotate a block reference
around any axis rather than the block z-axis, rotate the UCS into the desired position. Following example rotates the
block reference around the block x-axis by 15 degrees:

ucs = UCS(origin=(1, 2, 0)).rotate_local_x(math.radians (15))
blockref = msp.add_blockref('CSYS', insert=(0, 0, 0))
blockref.transform(ucs.matrix)

|

1

6.5. Tutorials 109

ezdxf Documentation, Release 0.17.2

,,--'—"-H_FF

n-"'-'-'-'‘-'-

NZ

The next example shows how to translate a block references with an already established OCS:

New UCS at the translated location,
ucs = UCS((-3, -1, 1))

Transform an already placed block reference,
the transformation of the established OCS.
blockref.transform(ucs.matrix)

axis aligned to the WCS

including

110 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

NT

W

The next operation is to rotate a block reference with an established OCS, rotation axis is the block y-axis, rotation angle
is -90 degrees. The idea is to create an UCS in the origin of the already placed block reference, UCS axis aligned to the
block axis and resetting the block reference parameters for a new WCS transformation.

Get UCS at the block reference insert location, UCS axis aligned
to the block axis.

ucs = blockref.ucs()

Rotate UCS around the local y-axis.

ucs = ucs.rotate_local_y (math.radians (-90))

Reset block reference parameters, this places the block reference in the UCS origin and aligns the block axis to the UCS
axis, now we do a new transformation from UCS to WCS:

Reset block reference parameters to place block reference in
UCS origin, without any rotation and OCS.
blockref.reset_transformation ()

Transform block reference from UCS to WCS
blockref.transform(ucs.matrix)

6.5. Tutorials 111

ezdxf Documentation, Release 0.17.2

6.5.19 Tutorial for Linear Dimensions

The Dimension entity is the generic entity for all dimension types, but unfortunately AutoCAD is not willing to show
a dimension line defined only by this dimension entity, it also needs an anonymous block which contains the dimension
line shape constructed by basic DXF entities like LINE and TEXT entities, this representation is called the dimension line
rendering in this documentation, beside the fact this is not a real graphical rendering. BricsCAD is a much more friendly
CAD application, which do show the dimension entity without the graphical rendering as block, which was very useful
for testing, because there is no documentation how to apply all the dimension style variables (more than 80). This seems
to be the reason why dimension lines are rendered so differently by many CAD application.

Don’t expect to get the same rendering results by ezdxf as you get from AutoCAD, ezdxf tries to be as close to the results
rendered by BricsCAD, but it is not possible to implement all the various combinations of dimension style parameters,
which often affect one another.

112 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Text rendering is another problem, because ezdxf has no real rendering engine. Some font properties, like the real text
width, which is only available to ezdxf if the Matplotlib package is installed and may also vary slightly for different CAD
applications. Without access to the Matplotlib package the text properties in ezdxf are based on an abstract monospaced
font and are bigger than required by true type fonts.

Not all DIMENSION and DIMSTYLE features are supported by all DXF versions, especially DXF R12 does not support
many features, but in this case the required rendering of dimension lines is an advantage, because if the application just
shows the rendered block, all features which can be used in DXF R12 are displayed like linetypes, but this features will
disappear if the dimension line will be edited in the CAD application. Ezdxf writes only the supported DIMVARS of the
used DXF version to avoid invalid DXF files. So it is not that critical to know all the supported features of a DXF version,
except for limits and tolerances, ezdxf uses the advanced features of the MTEXT entity to create limits and tolerances
and therefore they are not supported (displayed) in DXF R12 files.

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_linear.py shows examples for linear dimensions.

Horizontal Dimension

import ezdxf

Create a DXF R2010 document:
Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new("R2010", setup=True)

Add new dimension entities to the modelspace:
msp = doc.modelspace ()

Add a LINE entity for visualization, not required to create the DIMENSION
entity:
msp.add_line ((0, 0), (3, 0))

Add a horizontal linear DIMENSION entity:

dim = msp.add_linear_dim(
base=(3, 2), # location of the dimension line
pl=(0, 0), # lst measurement point
r2=(3, 0), # 2nd measurement point
dimstyle="EZDXF", # default dimension style

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

dim.render ()

doc.saveas ("dim_ linear_ _horiz.dxf")

6.5. Tutorials 113

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_linear.py

ezdxf Documentation, Release 0.17.2

gdimension ling / W /

’/ extension ling

The example above creates a horizontal Dimension entity. The default dimension style “EZDXF” is defined as:
* 1 drawing unit = 1m
» measurement text height = 0.25 (drawing scale = 1:100)
* the length factor dimlfac = 100, which creates a measurement text in cm.
e arrow is “ARCHTICK?”, arrow size dimasz = 0.175

Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save ()
or saveas () (e.g. dimension style setup was not initiated).

The base point defines the location of the dimension line, ezdxf accepts any point on the dimension line, the point p/
defines the start point of the first extension line, which also defines the first measurement point and the point p2 defines
the start point of the second extension line, which also defines the second measurement point.

The return value dim is not a dimension entity, instead a DimSt yleOverride object is returned, the dimension entity
is stored as attribute dim.dimension.

114 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Vertical and Rotated Dimension

Argument angle defines the angle of the dimension line in relation to the x-axis of the WCS or UCS, measurement is the
distance between first and second measurement point in direction of angle.

assignment to dim is not necessary, if no additional processing happens
msp.add_linear_dim(base=(3, 2), pl=(0, 0), p2=(3, 0), angle=-30) .render ()
doc.saveas ("dim_linear rotated.dxf™)

For a vertical dimension set argument angle to 90 degree, but in this example the vertical distance would be 0.

Aligned Dimension

An aligned dimension line is parallel to the line defined by the definition points p/ and p2. The placement of the dimension
line is defined by the argument distance, which is the distance between the definition line and the dimension line. The
distance of the dimension line is orthogonal to the base line in counter clockwise orientation.

msp.add_line ((0, 2), (3, 0))
dim = msp.add_aligned_dim(pl=(0, 2), p2=(3, 0), distance=1l)
doc.saveas ("dim_linear_aligned.dxf")

6.5. Tutorials 115

ezdxf Documentation, Release 0.17.2

Dimension Style Override

Many dimension styling options are defined by the associated DimSt y1e entity. But often you wanna change just a few
settings without creating a new dimension style, therefore the DXF format has a protocol to store this changed settings
in the dimension entity itself. This protocol is supported by ezdxf and every factory function which creates dimension

entities supports the override argument. This override argument is a simple Python dictionary (e.g. override =
{"dimtad": 4}, place measurement text below dimension line).

The overriding protocol is managed by the DimStyleOverride object, which is returned by the most dimension
factory functions.

116 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Placing Measurement Text

The default location of the measurement text depends on various DimSt y1e parameters and is applied if no user defined
text location is defined.

Default Text Locations

“Horizontal direction” means in direction of the dimension line and “vertical direction” means perpendicular to the di-
mension line direction.

The ““horizontal’ location of the measurement text is defined by dimjust:

Center of dimension line

Left side of the dimension line, near first extension line
Right side of the dimension line, near second extension line
Over first extension line

Over second extension line

BRI —=| O

msp.add_linear_dim(
base=(3, 2), pl=(0, 0), p2=(3, 0), override={"dimjust": 1}
) .render ()

1 300 | L3 1L W | 1

dimjust=0 dimjust=1 dimjust=2 dimjust=3 dimjust=4

’n
*

The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:

Center, it is possible to adjust the vertical location by dimtvp
Above

Outside, handled like Above by ezdxf

JIS, handled like Above by ezdxf

Below

AW —=|O

msp.add_linear_dim(
base=(3, 2), pl=(0, 0), p2=(3, 0), override={"dimtad": 4}
) .render ()

300

300

300

dimtad=0 dimtad=1, 2, 3 dimtad=4

6.5. Tutorials 117

ezdxf Documentation, Release 0.17.2

The distance between text and dimension line is defined by dimgap.

The DimStyleOverride object has a method set_text_align () tosetthe default text location in an easy way,
this is also the reason for the 2 step creation process of dimension entities:

dim = msp.add_linear_dim(base=(3, 2), pl=(0, 0), p2=(3, 0))
dim.set_text_align(halign="1left", valign="center")
dim.render ()

9«

halign | “left”, “right”, “center”, “abovel”, “above2”

”

valign | “above”, “center”, “below”

Run function example_for_all_text_placings_R2007 () inthe example script dimension_linear.py to cre-
ate a DXF file with all text placings supported by ezdxf.

User Defined Text Locations

Beside the default location, it is possible to locate the measurement text freely.

Location Relative to Origin

The user defined text location can be set by the argument location in most dimension factory functions and always refer-
ences the midpoint of the measurement text:

msp.add_linear_dim(
base=(3, 2), pl=(3, 0), p2=(6, 0), location=(4, 4)
) .render ()

118 Chapter 6. Contents

https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_linear.py

ezdxf Documentation, Release 0.17.2

2
I\

W

The location is relative to origin of the active coordinate system or WCS if no UCS is defined in the render () method,
the user defined location can also be set by user_location_override ().

Location Relative to Center of Dimension Line

The method set_location () has additional features for linear dimensions. Argument leader = True adds a simple
leader from the measurement text to the center of the dimension line and argument relative = True places the measure-
ment text relative to the center of the dimension line.

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_location(location=(-1, 1), leader=True, relative=True)
dim.render ()

6.5. Tutorials 119

ezdxf Documentation, Release 0.17.2

location

center of dimension line /

i)

Location Relative to Default Location

The method shift_text () shifts the measurement text away from the default text location. The shifting directions
are aligned to the text direction, which is the direction of the dimension line in most cases, dh (for delta horizontal) shifts
the text parallel to the text direction, dv (for delta vertical) shifts the text perpendicular to the text direction. This method
does not support leaders.

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.shift_text (dh=1, dv=1)
dim.render ()

Cw
BN

Vi A

defoult focation

120 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Overriding Text Rotation

All factory methods supporting the argument fext_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

Measurement Text Formatting and Styling

Text Properties

DIMVAR Description
dimtxsty | Specifies the text style of the dimension as Text sty le name.

dimtxt Text height in drawing units.
dimclrt Measurement text color as AutoCAD Color Index (ACI).

msp.add_linear_dim(
base= (3, 2),

pl=(3, 0),
p2=(6, 0),
override={
"dimtxsty": "Standard",

"dimtxt": 0.35,
"dimclrt": 1,

}

) .render ()

dimixt \JL
st /

U

e aimtxsty & dimelrt

L}

Background Filling

Background fillings are supported since DXF R2007, and ezdxf uses the MTEXT entity to implement this feature, so
setting background filling in DXF R12 has no effect. The DIMVAR dimt £i11 defines the kind of background filling
and the DIMVAR dimt £fillclr defines the fill color.

DIMVAR Description
dimtfill Enables background filling if bigger than 0
dimtfillclr | Fill color as AutoCAD Color Index (ACI), if dimt£i11 is?2

6.5. Tutorials 121

ezdxf Documentation, Release 0.17.2

dimtfill | Description

0 disabled

1 canvas color

2 color defined by dimt fillclr

msp.add_linear_dim(

base= (3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimtfill": 2,
"dimtfillclr": 1,

3

) .render ()

/

Text Formatting

¢ decimal places: dimdec defines the number of decimal places displayed for the primary units of a dimension.
(DXF R2000)

 decimal point character: dimdsep defines the decimal point as ASCII code, get the ASCII code by ord (' . ")

e rounding: dimrnd, rounds all dimensioning distances to the specified value, for instance, if dimrnd is set to
0.25, all distances round to the nearest 0.25 unit. If dimrnd is set to 1.0, all distances round to the nearest integer.
For more information look at the documentation of the ezdxf.math.xround () function.

* zero trimming: dimzin, ezdxf supports only a subset of values:
— 4 to suppress leading zeros
— 8 to suppress trailing zeros
— 12 as the combination of both

* measurement factor: scale measurement by factor diml fac, e.g. to get the dimensioning text in cm for a DXF
file where 1 drawing unit represents Im, set dimlfac to 100.

* text template: dimpost, “<>" represents the measurement text, e.g. “~<>cm” produces “~300cm” for measure-
ment in previous example.

To set this values the ezdxf.entities.DimStyle.set_text_format () and ezdxf.entities.
DimStyleOverride.set_text_format () methods are very recommended.

122 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Overriding Measurement Text

This feature allows overriding the real measurement text by a custom measurement text, the text is stored as string in
the Dimension entity as attribute text. Special values of the text attribute are: one space ” ” to suppress the
measurement text at all, an empty string “” or “<>” to display the real measurement.

All factory functions have an explicit fext argument, which always replaces the fext value in the dxfatribs dict.

msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0), text=">1Im").render ()

>Tm
/ 7

Dimension Line Properties

The dimension line color is defined by the DIMVAR dimc1rd as AutoCAD Color Index (ACI), dimc1rd and also defines
the color of the arrows. The linetype is defined by dimltype and requires DXF R2007. The lineweight is defined by
dimlwd and requires DXF R2000, see also the 1 ineweight reference for valid values. The dimd1le is the extension
of the dimension line beyond the extension lines, this dimension line extension is not supported for all arrows.

DIMVAR Description

dimclrd dimension line and arrows color as AutoCAD Color Index (ACI)
dimltype | linetype of dimension line

dimlwd line weight of dimension line

dimdle extension of dimension line in drawing units

msp.add_linear_dim(
base=(3, 2),
pl=(3, 0),
p2=(6, 0),
override={
"dimclrd": 1, # red
"dimdle": 0.25,
"dimltype": "DASHED2",
"dimlwd": 35, # 0.35mm line weight
}

) .render ()

6.5. Tutorials 123

ezdxf Documentation, Release 0.17.2

(=1

=1

)
s

DimStyleOverride () method:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_dimline_format (
color=1, linetype="DASHED2", lineweight=35, extension=0.25

dim.render ()

Extension Line Properties

The extension line color is defined by the DIMVAR dimclre as AutoCAD Color Index (ACI). The linetype for the first
and the second extension line is defined by dimltex1 and dimltex2 and requires DXF R2007. The lineweight is
defined by dimlwe and required DXF R2000, see also the 1 i neweight reference for valid values.

The dimexe is the extension of the extension line beyond the dimension line, and dimexo defines the offset of the
extension line from the measurement point.

DIMVAR Description

dimclre extension line color as AutoCAD Color Index (ACI)
dimltexl | linetype of first extension line

dimltex2 | linetype of second extension line

dimlwe line weight of extension line

dimexe extension beyond dimension line in drawing units
dimexo offset of extension line from measurement point
dimfxlon | setto I to enable fixed length extension line
dimfxl length of fixed length extension line in drawing units
dimsel suppress first extension line if 1

dimse2 suppress second extension line if 1

msp.add_linear_dim(

base=(3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimclre": 1, # red
"dimltex1": "DASHED2",
"dimltex2": "CENTER2",

(continues on next page)

124 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

"dimlwe": 35,

"dimexe": 0.3,

"dimexo": 0.1,
3

) .render ()

0.35mm line weight
length above dimension line
offset from measurement point

0.3

adimexe

T

N

dimclre & dimiwe

anmiex|

I
dimftex? \I
I

0.1

DimStyleOverride () methods:

dim = msp.add_linear_dim(base=(3,
dim.set_extline_format (color=1,
dim.set_extlinel (linetype="DASHED2")
dim.set_extline2 (linetype="CENTER2")

dim.render ()

2)

lineweight=35, extension=0.3,

offset=0.1)

Fixed length extension lines are supported in DXF R2007, set dimfxlon to 1 and dimfx1 defines the length of the
extension line starting at the dimension line.

msp.add_linear_dim(
base= (3, 2),

pl=(3, 0),

p2=(6, 0),

override={
"dimfxlon": 1,
"dimexe": 0.2,

fixed length extension lines
length above dimension line

(continues on next page)

6.5. Tutorials

125

ezdxf Documentation, Release 0.17.2

(continued from previous page)

"dimfx1": 0.4, # length below dimension line

}

) .render ()

0.2

aimexe

i 300)

0.4

DimStyleOverride () method:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_extline_format (extension=0.2, fixed_length=0.4)
dim.render ()

To suppress extension lines set dimsel to 1 to suppress the first extension line and dimse?2 to 1 to suppress the second
extension line.

msp.add_linear_dim(
base=(3, 2),

pl=(3, 0),
p2=(6, 0),
override={
"dimsel": 1, # suppress first extension line
"dimse2": 1, # suppress second extension line
"dimblk": ezdxf.ARROWS.closed_filled, # arrows just looks better
}
) .render ()

300

DimStyleOverride () methods:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_arrows (blk=ezdxf.ARROWS.closed_filled)

(continues on next page)

126 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

dim.set_extlinel (disable=True)
dim.set_extline2 (disable=True)
dim.render ()

Arrows

“Arrows” mark then beginning and the end of a dimension line, and most of them do not look like arrows.
DXF distinguish between the simple tick (a slanted line) and arrows as blocks.

To use a simple tick as “arrow” set dimt sz to a value greater than 0, this also disables arrow blocks as side effect:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_tick(size=0.25)
dim.render ()

Ezdxf uses the “ARCHTICK” block at double size to render the tick (AutoCAD and BricsCad just draw a simple line),
so there is no advantage of using the tick instead of an arrow.

Using arrows:

dim = msp.add_linear_dim(base=(3, 2), pl=(3, 0), p2=(6, 0))
dim.set_arrow (blk="OPEN_30", size=0.25)
dim.render ()

DIMVAR | Description

dimtsz tick size in drawing units, set to 0 to use arrows
dimblk set both arrow block names at once

dimblk1 | first arrow block name

dimblk2 | second arrow block name

dimasz arrow size in drawing units
msp.add_linear_dim(
base=(3, 2),
pl=(3, 0),
p2=(6, 0),
override={
"dimtsz": O, # set tick size to 0 to enable arrow usage
"dimasz": 0.25, # arrow size in drawing units
"dimblk": "OPEN_30", # arrow block name
}
) .render ()

The dimension line extension (dimdle) works only for a few arrow blocks and the simple tick:

* “ARCHTICK”

* “OBLIQUE”

* “NONE”

* “SMALL”

* “DOTSMALL”
* “INTEGRAL”

6.5. Tutorials 127

ezdxf Documentation, Release 0.17.2

Arrow Shapes

SMALL EZ_ARROW

@ @ t
ORIGINZ __/; 1\; DOTEMALL
C“\ /]) C\ (])
ORIGIM __/; 1\; DOTBLANK _../ .\L
OPENSD DOT
OPENZD DATUMFILLED
OPEN DATUMBLANEK : :
— 1
OELIQUE CLOSEDBLANK
— e
NOMNE CLOSED

~ -~
INTEGRAL -1 -1 BOXFILLED

B - B [
EZ_ARROW FILLED BOXBLANK || L
e —
EZ_ARROW _BLAME ARCHTICK
EZ_ARROW ** = clased filled

Arrow Names

The arrow names are stored as attributes in the ezdx £ . ARROWS object.

128 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

closed_filled “” (empty string)
dot “DOT”

dot_small “DOTSMALL”
dot_blank “DOTBLANK”
origin_indicator “ORIGIN”
origin_indicator_2 “ORIGIN2”

open “OPEN”
right_angle “OPEN90”

open_30 “OPEN30”

closed “CLOSED”
dot_smallblank “SMALL”

none “NONE”

oblique “OBLIQUE”
box_filled “BOXFILLED”

box “BOXBLANK”
closed_blank “CLOSEDBLANK?”
datum_triangle_filled | “DATUMFILLED”
datum_triangle “DATUMBLANK”
integral “INTEGRAL”
architectural_tick “ARCHTICK”
€Z_arrow “EZ_ARROW”
ez_arrow_blank “EZ_ARROW_BLANK”
ez_arrow_filled “EZ_ARROW_FILLED”

Tolerances and Limits

The tolerances and limits features are implemented by using inline codes for the MText entity, therefore DXF R2000 is
required. It is not possible to use both tolerances and limits at the same time.

Tolerances

Geometrical tolerances are shown as additional text appended to the measurement text. It is recommend to use
set_tolerance () methodin DimStyleOverrideor DimStyle.

The attribute dimt p defines the upper tolerance value, d imtm defines the lower tolerance value if present, else the lower
tolerance value is the same as the upper tolerance value. Tolerance values are shown as given!

Same upper and lower tolerance value:

dim = msp.add_linear_dim(base=(0, 3), pl=(3, 0), p2=(6.5, 0))
dim.set_tolerance (.1, hfactor=.4, align="top", dec=2)
dim.render ()

6.5. Tutorials 129

ezdxf Documentation, Release 0.17.2

Ve

Different upper and lower tolerance values:

dim = msp.add_linear_dim(base=(0, 3), pl=(3, 0), p2=(6.5, 0))
dim.set_tolerance (upper=.1, lower=.15, hfactor=.4, align="middle",
dim.render ()

dec=2)

3501?12

— lnwer inleronre

) PN

The attribute dimt fac specifies a scale factor for the text height of limits and tolerance values relative to the dimension
text height, as set by dimtxt. For example, if dimt fac is set to 1.0, the text height of fractions and tolerances is the
same height as the dimension text. If dimtxt is set to 0.75, the text height of limits and tolerances is three-quarters the

size of dimension text.

Vertical justification for tolerances is specified by dimtol7:

dimtolj | Description

0 Align with bottom line of dimension text
1 Align vertical centered to dimension text
2 Align with top line of dimension text

130

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

DIM- Description
VAR
dim- set to 1 to enable tolerances
tol
dimtp | setthe maximum (or upper) tolerance limit for dimension text

dimtm | set the minimum (or lower) tolerance limit for dimension text

dimt- | specifies a scale factor for the text height of limits and tolerance values relative to the dimension text height,
fac as set by dimtxt.

dimtzin 4 to suppress leading zeros, 8 to suppress trailing zeros or 12 to suppress both, like dimz in for dimension
text, see also Text Formatting

dim- set the vertical justification for tolerance values relative to the nominal dimension text.
tolj
dimt- | setthe number of decimal places to display in tolerance values
dec
Limits

The geometrical limits are shown as upper and lower measurement limit and replaces the usual measurement text. It is
recommend to use set_limits () methodin DimStyleOverride or DimStyle.

For limits the tolerance values are drawing units scaled by measurement factor diml fac, the upper limit is scaled
measurement value + dimtp and the lower limit is scaled measurement value - dimtm.

The attributes dimt fac, dimtzin and dimtdec have the same meaning for limits as for tolerances.

dim = msp.add_linear_dim(base=(0, 3), pl=(3, 0), p2=(6.5, 0))
dim.set_limits (upper=.1, lower=.15, hfactor=.4, dec=2)
dim.render ()

Ve
350.1
349.8

(W}

DIMVAR | Description
dimlim | setto 1 to enable limits

6.5. Tutorials 131

ezdxf Documentation, Release 0.17.2

Alternative Units

Alternative units are not supported.

6.5.20 Tutorial for Radius Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

import ezdxf

DXF R2010 drawing, official DXF version name: 'AC1024',
setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)

msp = doc.modelspace () # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
add default radius dimension, measurement text is located outside
dim = msp.add_radius_dim(

center=(0, 0), radius=3, angle=45, dimstyle="EZ_RADIUS"
)
necessary second step, to create the BLOCK entity with the dimension geometry.
dim.render ()
doc.saveas ("radius_dimension.dxf")

The example above creates a 45 degrees slanted radius Dimension entity, the default dimension style “EZ_RADIUS”
is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100, which creates a measurement text
in cm, the default location for the measurement text is outside of the circle.

The center point defines the the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle
radius, which is also the measurement, and angle defines the slope of the dimension line, it is also possible to define the
circle by a measurement point mpoint on the circle.

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

Placing Measurement Text

There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:

* 1 drawing unit = Im

e scale 1:100

¢ the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the
radial dimension there are less features implemented than for the linear dimension because of the lack of good documen-
tation.

132 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_radius.py shows examples for radius dimensions.

Default Text Locations Outside

Advanced “EZ_RADIUS” settings for placing the text outside of the circle:

tmove 1 =add aleader when dimension text is moved, this is the best setting for text outside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dim- | 1 = place the text vertical above the dimension line

tad

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ RADIUS"

)

dim.render () # always required, but not shown in the following examples
o %
A o)
: ¥ S
~o
| '
| w
Center |
dimtad=1 : \ dimtad=0 dimtad=4

To force text outside horizontal set dimtoh to 1:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,

angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

6.5. Tutorials 133

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_radius.py

ezdxf Documentation, Release 0.17.2

R250 - :
: R250

Z R250

dimtad=1 / ! dimtad=0 | \ dimtad=4

Default Text Locations Inside

DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location.
The basic DIMSTYLE “EZ_RADIUS_INSIDE” settings are:

* 1 drawing unit = Im

* scale 1:100, length_factor is 100 which creates

¢ the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:

tmove 0 = moves the dimension line with dimension text, this is the best setting for text inside to preserve the appear-
ance of the DIMENSION entity, if editing afterwards in a CAD application.

dimtix 1 = force text inside

di- | 0= force text inside, required by BricsCAD and AutoCAD

mat-
fit
dim-| O = center text vertical, BricsCAD and AutoCAD always create a vertical centered text, ezdxf let you choose
tad | the vertical placement (above, below, center), but editing the DIMENSION in BricsCAD or AutoCAD will
reset text to center placement.

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_ RADIUS_INSIDE"

134 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

I 1)
| I
! dimtad=1 dimtad=0
dimtmove=0 dimtmove=0
& &
\ dimtad=1 i | dimtad=0

dimtmave=1 dimtmove=1

To force text inside horizontal set dimtihto 1:

&

dimtad=4
dimtmove=0

dimtad=4
dimtmove=1

dim = msp.add_radius_dim/(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}

6.5. Tutorials

135

ezdxf Documentation, Release 0.17.2

R250 R250

dimtad=0 | dimtad=0
dimtmove=0 dimtmove=1

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location. This location
also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not
necessary to force text inside (dimt ix=1), because the location of the text is explicit given, therefore the DIMSTYLE
“EZ_RADIUS” can be used for all this examples.

User defined location outside of the circle:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_ RADIUS"

5N :
g\ §f$ S
— — e <

dimtad=1 dimtad=0 dimtad=4

User defined location outside of the circle and forced horizontal text:

136 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dim = msp.add_radius_dim/(
center=(0, 0),
radius=2.5,
location= (4, 4),
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}

R250
A

dimtad=1

User defined location inside of the circle:

RS0 o e

dimtad=4

dim = msp.add_radius_dim/(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ RADIUS"

dimtad=1
| dimtmove=0

dimtad=4
dimtmaove=0

6.5. Tutorials

137

ezdxf Documentation, Release 0.17.2

S

/ & \ & o\
Qe
| | |
1 N . | |
dimtad=1 | dimtad=0 J dimtad=4 |
dimtmove=2) | dimtmaove=2 ' | dimtmove=2

User defined location inside of the circle and forced horizontal text:

dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_ RADIUS",

override={"dimtih": 1},
)
RS0 | —_— . .
\ I | R250
|

dimtad=1 | dimtad=0 | dimtad=4

Center Mark/Lines

Center mark/lines are controlled by dimcen, default value is O for predefined dimstyles “EZ_RADIUS” and
“EZ_RADIUS_INSIDE”:

0 Center mark is off
>0 | Create center mark of given size
<0 | Create center lines

dim = msp.add_radius_dim(
center=(0, 0),

(continues on next page)

138 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

radius=2.5,

angle=45,
dimstyle="EZ_ RADIUS",
override={"dimcen": 0.25},
)
S ﬁ} — §§¥ J— ﬁf%
| | 1 n | [dimeen =-0.25

dimeen =0 / | dimcen=0.25

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

6.5.21 Tutorial for Diameter Dimensions

Please read the Tutorial for Radius Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

This is a repetition of the radius tutorial, just with diameter dimensions.

import ezdxf

setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)

msp = doc.modelspace () # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
add default diameter dimension, measurement text is located outside
dim = msp.add_diameter_dim(

center=(0, 0),

radius=3,

angle=45,

(continues on next page)

6.5. Tutorials 139

ezdxf Documentation, Release 0.17.2

(continued from previous page)

dimstyle="EZ RADIUS"
)
dim.render ()
doc.saveas ("diameter dimension.dxf"™)

The example above creates a 45 degrees slanted diameter D i men s 1 on entity, the default dimension style “EZ_RADIUS”
(same as for radius dimensions) is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100,
which creates a measurement text in cm, the default location for the measurement text is outside of the circle.

The center point defines the the center of the circle but there doesn’t have to exist a circle entity, radius defines the circle
radius and angle defines the slope of the dimension line, it is also possible to define the circle by a measurement point
mpoint on the circle.

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

Placing Measurement Text

There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:

* 1 drawing unit = Im

* scale 1:100

* the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for
the diameter dimension there are less features implemented than for the linear dimension because of the lack of good
documentation.

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

* The Script dimension_diameter.py shows examples for radius dimensions.

Default Text Locations Outside

“EZ_RADIUS” default settings for to place text outside:

tmove 1=add aleader when dimension text is moved, this is the best setting for text outside to preserve the appearance
of the DIMENSION entity, if editing afterwards in a CAD application.

dim- | 1 = place the text vertical above the dimension line

tad

140 Chapter 6. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_diameter.py

ezdxf Documentation, Release 0.17.2

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"

)

dim.render () # always required, but not shown in the following examples

dimtad=1 dimtad=0 [dimtad=4

D
§

To force text outside horizontal set dimtohto 1:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,

angle=45,
dimstyle="EZ_ RADIUS",
override={"dimtoh": 1}
)

II .'I | ..'I II
| dimtad=1 | | dimtad=0 , dimtad=4
| | \ | 1
\ / | /

G500 e

- S - @00 —

_---.. .".___ _---..’ 9500 .

6.5. Tutorials 141

ezdxf Documentation, Release 0.17.2

Default Text Locations Inside

DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default location.

The basic DIMSTYLE settings are:

* 1 drawing unit = 1m

e scale 1:100, length_factor is 100 which creates

¢ the length factor diml fac = 100, which creates a measurement text in cm.

¢ uses a closed filled arrow, arrow size dimasz = 0.25

Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:

tmove 0 = moves the dimension line with dimension text, this is the best setting for text inside to preserve the appear-
ance of the DIMENSION entity, if editing afterwards in a CAD application.

dimtix 1 = force text inside

mat-
fit

di- | 0=force text inside, required by BricsCAD and AutoCAD

reset text to center placement.

dim-| O = center text vertical, BricsCAD and AutoCAD always create a vertical centered text, ezdxf let you choose
tad | the vertical placement (above, below, center), but editing the DIMENSION in BricsCAD or AutoCAD will

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE"

| @@

dimtad=1

To force text inside horizontal set dimtihto 1:

dimtad=0

&

dimtad=4

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,

angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}

142

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location. This location
also determines the angle of the dimension line and overrides the argument angle. For user defined locations it is not
necessary to force text inside (dimt ix=1), because the location of the text is explicit given, therefore the DIMSTYLE
“EZ_RADIUS” can be used for all this examples.

User defined location outside of the circle:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ RADIUS"

6.5. Tutorials 143

ezdxf Documentation, Release 0.17.2

£

&
s

User defined location outside of the circle and forced horizontal text:

=
%

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_ RADIUS",
override={"dimtoh": 1}

User defined location inside of the circle:

dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS"

144

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

0\
A3) .
Gl @ é%@
dimtad=1 / N dimtad=0 dimtad=4
User defined location inside of the circle and forced horizontal text:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS",
override={"dimtih": 1},
)
@500 -
¥ i
/ @500 . 750
| | I
| |
dimtad=1 / A dimtad=0 dimtad=4

Center Mark/Lines

See Radius Dimension Tutorial: Center Mark/Lines

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

6.5. Tutorials

145

ezdxf Documentation, Release 0.17.2

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

6.5.22 Tutorial for Angular Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Dimension Style “EZ_CURVED”
All factory methods to create angular dimensions uses the dimension style “EZ_CURVED” for curved dimension lines
which is defined as:

* angle unit is decimal degrees, dimaunit =0

* measurement text height = 0.25 (drawing scale = 1:100)

* measurement text location is above the dimension line

¢ closed filled arrow and arrow size dimasz = 0.25

e dimazin =2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)

This DIMENSION style only exist if the argument setup is True for creating a new DXF document by ezdxf . new ().
Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF export by save ()
or saveas () (e.g. dimension style setup was not initiated).

Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:

import ezdxf
from ezdxf.tools.standards import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing (doc, topics="all")

Factory Methods to Create Angular Dimensions

Defined by Center, Radius and Angles

The first example shows an angular dimension defined by the center point, radius, start- and end angles:

import ezdxf
Create a DXF R2010 document:
Use argument setup=True to setup the default dimension styles.

doc = ezdxf.new ("R2010", setup=True)

Add new entities to the modelspace:
msp = doc.modelspace ()

Add an angular DIMENSION defined by the center point, start- and end angles,

(continues on next page)

146 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

the measurement text is placed at the default location above the dimension

line:

dim = msp.add_angular_dim_cra (
center=(5, 5), # center point of the angle
radius= 7, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=3, # distance from start of the extension lines to the dimension line
dimstyle="EZ_ CURVED", # default angular dimension style

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

dim.render ()

doc.saveas ("angular_dimension_cra.dxf")

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

60°

end_angfe\
120°

start_angle

6.5. Tutorials 147

ezdxf Documentation, Release 0.17.2

Angle by 2 Lines

The next example shows an angular dimension for an angle defined by two lines:

import ezdxf

doc = ezdxf.new (setup=True)
msp doc.modelspace ()

Setup the geometric parameters for the DIMENSION entity:
base = (5.8833, —-6.3408) # location of the dimension line

pl = (2.0101, -7.5156) # start point of 1st leg
p2 = (2.7865, -10.4133) # end point of 1st leg
p3 = (6.7054, -7.5156) # start point of 2nd leg
pd4 = (5.9289, -10.4133) # end point of 2nd leg

Draw the lines for visualization, not required to create the
DIMENSION entity:
msp.add_line(pl, p2)
msp.add_line (p3, p4)

Add an angular DIMENSION defined by two lines, the measurement text 1is
placed at the default location above the dimension line:
dim = msp.add_angular_dim_21 (

base=base, # defines the location of the dimension line

linel=(pl, p2), # start leg of the angle

line2=(p3, p4), # end leg of the angle

dimstyle="EZ_CURVED", # default angular dimension style

Necessary second step to create the dimension line geometry:
dim.render ()
doc.saveas ("angular_dimension_21.dxf")

The example above creates an angular Dimension entity to measures the angle between two lines (linel and line2).

The base point defines the location of the dimension line (arc), any point on the dimension line is valid. The points p/ and
p2 define the first leg of the angle, pI also defines the start point of the first extension line. The points p3 and p4 define
the second leg of the angle and point p3 also defines the start point of the second extension line.

The measurement of the DIMENSION entity is the angle enclosed by the first and the second leg and where the dimension
line passes the base point.

148 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

30°

linel.pl

v

linel.p2

P

Angle by 3 Points

base

lineZ.pT

4
h

line2.pZ

N

The next example shows an angular dimension defined by three points, a center point and the two end points of the angle

legs:

import ezdxf

doc = ezdxf.new (setup=True)
msp = doc.modelspace ()
msp.add_angular_dim_3p (
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
pl=(-3, 5), # end point of 1st leg = start angle
p2=(3, 5), # end point of 2nd leg = end angle
) .render ()
6.5. Tutorials 149

ezdxf Documentation, Release 0.17.2

62°

base

center

Angle from ConstructionArc

The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.

Add an angular dimension to an ARC entity:

import ezdxf

doc
msp

ezdxf.new (setup=True)
doc.modelspace ()

arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,

(continues on next page)

150 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

end_angle = 120,
)
msp.add_angular_dim_arc(
arc.construction_tool(),
distance=2,
) .render ()

60°

distance

Placing Measurement Text

The default location of the measurement text depends on various DimSt y 1e parameters and is applied if no user defined

text location is defined.

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for
the angular dimension there are less features implemented than for the linear dimension because of the lack of good

documentation.

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_angular.py shows examples for angular dimensions.

6.5. Tutorials 151

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_angular.py

ezdxf Documentation, Release 0.17.2

Default Text Locations

The DIMSTYLE “EZ_CURVED?” places the measurement text in the center of the angle above the dimension line. The
first examples above show the measurement text at the default text location.

The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this
angle is manually overridden.

The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:

Center, it is possible to adjust the vertical location by dimtvp
Above

Outside, handled like Above by ezdxf

JIS, handled like Above by ezdxf

Below

BRI =IO

msp.add_angular_dim_cra (
center= (3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={
"dimtad": 1, # O=center; l=above; 4=below;
}I
) .render ()

152 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

60° 300°

<Y

dimtad=1
60°
60° 300°
Y
dimtad=0
60°
60° 300°
dimtad=4
60°

Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t
sufficient. This overrides the dimtad value by 1 (“above”). Ezdxf follows its own rules, ignores the dimat £1i t attribute
and works similar to dimat £it = 1, move arrows first, then text:

6.5. Tutorials 153

ezdxf Documentation, Release 0.17.2

. R T

Shift Text From Default Location

The method shift_text () shifts the measurement text away from the default location. The shifting direction is
aligned to the text rotation of the default measurement text.

dim = msp.add_angular_dim_cra (
center= (3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
)
shift text from default text location:
dim.shift_text (0.5, 1.0)
dim.render ()

shifted fofmfon\

60°
default Komn'on\ ’ﬂ

{

@

This is just a rendering effect, editing the dimension line in a CAD application resets the text to the default location.

154 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location.

The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the WCS.

Absolute User Location

Absolute placing of the measurement text means relative to the origin of the render UCS. The user location is stored in
the DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location.
This location also determines the rotation of the measurement text.

dim = msp.add_angular_dim_cra (

center=(3, 3),

radius=3,

distance=1,

start_angle=60,

end_angle=120,

location=(5, 8), # user defined measurement text location
)

dim.render ()

6.5. Tutorials 155

ezdxf Documentation, Release 0.17.2

640
user location

Relative User Location

Relative placing of the measurement text means relative to the middle of the dimension line. This is only possible by
calling the set_location () method, and the argument relative has to be True. The user location is stored in the
DIMENSION entity, which means editing the dimension line in a CAD application does not alter the text location. This
location also determines the rotation of the measurement text.

dim = msp.add_angular_dim_cra (
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
)
dim.set_location((1, 2), relative=True)
dim.render ()

156 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

60°

600

Adding a Leader

The method set_location () has the option to add a leader line to the measurement text. This also aligns the text
rotation to the render UCS x-axis, this means in the default case the measurement text is horizontal. The leader line can
be “below” the text or start at the “left” or “right” center of the text, this location is defined by the dimtad attribute, O
means “center” and any value != 0 means “below”.

for dimtad, x in [(0, 0), (4, 6)]:
dim = msp.add_angular_dim_cra (
center=(3 + x, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={"dimtad": dimtad} # "center" == 0; "below" != 0;
)
dim.set_location((1, 2), relative=True, leader=True)
dim.render ()

6.5. Tutorials 157

ezdxf Documentation, Release 0.17.2

60° 60°

Advanced version which calculates the relative text location: The user location vector has a length 2 and the orientation
is defined by center_angle pointing away from the center of the angle.

import ezdxf
from ezdxf.math import Vec3

doc = ezdxf.new(setup=True)
msp = doc.modelspace ()
for dimtad, vy, leader in [
[0, 0, False],
[0, 7, True],
[4, 14, Truel,

for x, center_angle in |
(0, 0), (7, 45), (14, 90), (21, 135), (26, 225), (29, 270)

dim = msp.add_angular_dim_cra (

center=(x, V),

radius=3.0,

distance=1.0,

start_angle=center_angle - 15.0,

end_angle=center_angle + 15.0,

override={"dimtad": dimtad},
)
The user location is relative to the center of the dimension line:
usr_location = Vec3.from_deg_angle (angle=center_angle, length=2.0)
dim.set_location (usr_location, leader=leader, relative=True)
dim.render ()

158 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

30¢

Overriding Text Rotation

All factory methods supporting the argument fext_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

This example uses a relative text location without a leader and forces the text rotation to 90 degrees:

for x, center_angle in [(7, 45), (14, 90), (21, 135)]:
dim = msp.add_angular_dim_cra (

center=(x, 0),
radius=3.0,
distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
text_rotation=90, # vertical text

(continues on next page)

6.5. Tutorials 159

ezdxf Documentation, Release 0.17.2

(continued from previous page)

usr_location = Vec3.from_deg_angle (angle=center_angle, length=1.0)
dim.set_location(usr_location, leader=False, relative=True)

dim.render ()

30°

30°

Angular Units

Angular units are set by dimaunit:

30°

Decimal degrees

Degrees/Minutes/Seconds, dimadec controls the shown
precision

e dimadec=0: 30°

¢ dimadec=2: 30°35’

¢ dimadec=4: 30°35°25”

e dimadec=7: 30°35°25.15”

Grad

Radians

dl = 15
d2 = 15.59031944
for x, (dimaunit, dimadec) in enumerate (

[

w N = O

~ 0~ 0~

SO 9
~

~

dim = msp.add_angular_dim_cra(
center=(x * 4.0, 0.0),
radius=3.0,
distance=1.0,
start_angle=90.0 - di,

(continues on next page)

160

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

end_angle=90.0 + d2,
override={
"dimaunit": dimaunit,
"dimadec": dimadec,
}I
)

dim.render ()

30°35'25.15"

30.5903° 33.9892¢ 0.5339r

dimaunit =0 dimaunit =1 dimaunit =2 dimaunit =3

Degree DMS Grad Radians
30°35'25" 30°35'25.15"
30° 30°35'
dimadec=0 dimadec=2 dimadec=4 dimadec=7

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Measurement Text

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

6.5.23 Tutorial for Arc Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t. This is a repetition of the Tutorial for Angular
Dimensions, because ezdxf reuses the angular dimension to render arc dimensions. This approach is very different to
CAD applications, but also much less work.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE variables,
so the rendering results are very different from CAD applications.

6.5. Tutorials 161

ezdxf Documentation, Release 0.17.2

Dimension Style “EZ_CURVED”

All factory methods to create arc dimensions uses the dimension style “EZ_CURVED” for curved dimension lines which
is defined as:

angle unit is decimal degrees, dimaunit =0

measurement text height = 0.25 (drawing scale = 1:100)
measurement text location is above the dimension line

closed filled arrow and arrow size dimasz = 0.25

dimzin =2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)

dimarcsym = 2, disables the arc symbol, O renders only an open round bracket “(” in front of the text and 1 for
arc symbol above the text is not supported, renders like disabled

For more information go to: Dimension Style “EZ_CURVED”

Factory Methods to Create Arc Dimensions

Defined by Center, Radius and Angles

The first example shows an arc dimension defined by the center point, radius, start- and end angles:

import ezdxf

Use argument setup=True to setup the default dimension styles.

doc

= ezdxf.new(setup=True)

Add new entities to the modelspace:

msp

= doc.modelspace ()

Add an arc DIMENSION defined by the center point, start- and end angles,
the measurement text is placed at the default location above the dimension
line:

dim

= msp.add_arc_dim_cra (

center=(5, 5), # center point of the angle

radius=5, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees

end_angle=120, # end angle in degrees

distance=2, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

dim.render ()

doc.saveas ("arc_dimension_cra.dxf™)

The return value dim is not a dimension entity, instead a DimSt y1eOverride object is returned, the dimension entity
is stored as dim.dimension.

162

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

523.6

end_ang/e\
120°

start_angle

Arc by 3 Points

The next example shows an angular dimension defined by three points, a center point and the two end points of the angle
legs, the first point defines the radius, the second point defines only the end angle, the distance from the center point is
not relevant:

import ezdxf

doc = ezdxf.new (setup=True)
msp = doc.modelspace ()

msp.add_arc_dim_3p(
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
pl=(2.5, 4.330127018922193), # 1st point of arc defines start angle and radius
p2=(-2.5, 4.330127018922194), # 2nd point defines the end angle
) .render ()

6.5. Tutorials 163

ezdxf Documentation, Release 0.17.2

523.6

base

center

Angle from ConstructionArc

The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.

Add an angular dimension to an ARC entity:

import ezdxf

doc ezdxf.new (setup=True)

msp = doc.modelspace ()

arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,
end_angle 120,

(continues on next page)

164 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

)

msp.add_arc_dim_arc(
arc.construction_tool (),
distance=2,

) .render ()

Placing Measurement Text

The default location of the measurement text depends on various DimSt y Ie parameters and is applied if no user defined
text location is defined.

Note: Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially for the arc
dimension there are less features implemented than for the linear dimension because of the lack of good documentation.
If the arc symbol is enabled (dimarcsym = 0) only an open round bracket “(” is rendered in front of the measurement
text!

See also:
* Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
* Source code file standards.py shows how to create your own DIMSTYLES.

¢ The Script dimension_arc.py shows examples for angular dimensions.

Default Text Locations

The DIMSTYLE “EZ_CURVED?” places the measurement text in the center of the angle above the dimension line. The
first examples above show the measurement text at the default text location.

The text direction angle is always perpendicular to the line from the text center to the center point of the angle unless this
angle is manually overridden.

Arrows and measurement text are placed “outside” automatically if the available space between the extension lines isn’t
sufficient.

For more information go to: Default Text Locations

Shift Text From Default Location

The method shift_text () shifts the measurement text away from the default location. The shifting direction is
aligned to the text rotation of the default measurement text.

For more information go to: Shift Text From Default Location

6.5. Tutorials 165

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py
https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_arc.py

ezdxf Documentation, Release 0.17.2

User Defined Text Locations

Beside the default location it is always possible to override the text location by a user defined location.
The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the WCS.

For more information go to: User Defined Text Locations

Absolute User Location

Absolute placing of the measurement text means relative to the origin of the render UCS.

For more information go to: User Defined Text Locations

Relative User Location

Relative placing of the measurement text means relative to the middle of the dimension line.

For more information go to: User Defined Text Locations

Adding a Leader

Add a leader line to the measurement text and set the text rotation to “horizontal”.
For more information go to: User Defined Text Locations
Overriding Text Rotation

All factory methods supporting the argument fext_rotation can override the measurement text rotation. The user defined
rotation is relative to the render UCS x-axis (default is WCS).

For more information go to: User Defined Text Locations

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Text Rotation

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

166 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

6.5.24 Tutorial for Ordinate Dimensions

Please read the Tutorial for Linear Dimensions before, if you haven’t.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD applications.

Local Coordinate System

Ordinate dimensioning is used when the x- and the y-coordinates from a location (feature), are the only dimensions
necessary. The dimensions to each feature, originate from one datum location, called “origin” in this tutorial.

The local coordinate system (LCS) in which the measurement is done, is defined by the origin and the rotation angle
around the z-axis in the rendering UCS, which is the WCS by default.

Factory Methods to Create Ordinate Dimensions
All factory methods for creating ordinate dimensions expect global coordinates to define the feature location.
Global Feature Location

The first example shows ordinate dimensions defined in the render UCS, in this example the WCS, this is how the DI-
MENSION entity expects the coordinates of the feature location:

import ezdxf
from ezdxf.math import Vec3
from ezdxf.render import forms

Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new(setup=True)

Add new entities to the modelspace:
msp = doc.modelspace ()
Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3)
origin = Vec3 (2, 3)
msp.add_lwpolyline (
forms.translate (forms.box (4, 2.5), origin),
close=True

Add an x-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_x_dim(
lower left corner
feature_location=origin + (0, 0), # feature location in the WCS
offset=(0, -2), # end of leader, relative to the feature location
origin=origin,
) .render ()
msp.add_ordinate_x_dim(

(continues on next page)

6.5. Tutorials 167

ezdxf Documentation, Release 0.17.2

(continued from previous page)

lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(0, -2),
origin=origin,
) .render ()

Add an y-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_y_dim(
lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(2, 0),
origin=origin,
) .render ()
msp.add_ordinate_y_dim(
upper right corner
feature_location=origin + (4, 2.5), # feature location in the WCS
offset=(2, 0),
origin=origin,
) .render ()

Necessary second step to create the BLOCK entity with the dimension geometry.
Additional processing of the DIMENSION entity could happen between adding

the entity and the rendering call.

doc.saveas ("ord_global_ features.dxf")

The return value dim is not a dimension entity, instead a DimSt yleOverride object is returned, the dimension entity
is stored as dim.dimension.

400 200 |
" . / J-type ordinate dimension

\ offset

LG origin 0 / J-lype ordinate dimension
\oﬁsef
= offset offset
e o
WCS origin S
T)L/ 200 X-ype ordinate dimension AN x-type ordinate dimension

1

168 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Local Feature Location

The previous examples shows that the calculation of the global feature location is cumbersome and it gets even more
complicated for a rotated LCS.

This example shows how to use a render UCS for using locale coordinates to define the feature locations:

import ezdxf
from ezdxf.math import Vec3, UCS
from ezdxf.render import forms

doc = ezdxf.new (setup=True)
msp = doc.modelspace ()

Create a special DIMSTYLE for "vertical" centered measurement text:
dimstyle = doc.dimstyles.duplicate_entry ("EZDXEF", "ORD_CENTER")
dimstyle.dxf.dimtad = 0 # "vertical" centered measurement text

Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3),
rotated about 30 degrees:
origin = Vec3 (2, 3)
msp.add_lwpolyline (
forms.translate (forms.rotate (forms.box (4, 2.5), 30), origin),
close=True

-

Define the rotated local render UCS.

The origin is the lower-left corner of the rectangle and the axis are
aligned to the rectangle edges:

The y-axis "uy" is calculated automatically by the right-hand rule.
ucs = UCS(origin, ux=Vec3.from_deg_angle(30), uz=(0, 0, 1))

#
#
#
#

Add a x-type ordinate DIMENSION with local feature locations:
the origin is now the origin of the UCS, which is (0, 0) the default value of
"origin" and the feature coordinates are located in the UCS:
msp.add_ordinate_x_dim(

lower left corner

feature_location=(0, 0), # feature location in the UCS

offset=(0.25, -2), # # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!

msp.add_ordinate_x_dim(
lower right corner
feature_location=(4, 0), # feature location in the UCS

offset=(0.25, -2), # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!

Add a y-type ordinate DIMENSION with local feature coordinates:
msp.add_ordinate_y_dim(
lower right corner
feature_location= (4, 0), # feature location in the UCS
offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!
msp.add_ordinate_y_dim(
upper right corner
feature_location=(4, 2.5), # feature location in the UCS

(continues on next page)

6.5. Tutorials 169

ezdxf Documentation, Release 0.17.2

(continued from previous page)

offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",
) .render (ucs=ucs) # Important when using a render UCS!

doc.saveas ("ord_local features.dxf")

N

&

)

UCS origin

Placing Measurement Text

The ezdxf ordinate DIMENSION renderer places the measurement text always at the default location, because the location
of the leader end point is given by the argument offset in the factory methods, which provides a flexible way to place the
measurement text, overriding the text location by an explicit user location is not supported, also the user text rotation is
not supported, the text is always aligned to the local coordinate system x- and y-axis.

See also:
¢ Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table

* Source code file standards.py shows how to create your own DIMSTYLES.

170 Chapter 6. Contents

https://github.com/mozman/ezdxf/blob/master/src/ezdxf/tools/standards.py

ezdxf Documentation, Release 0.17.2

¢ The Script dimension_ordinate.py shows examples for angular dimensions.

Overriding Measurement Text

See Linear Dimension Tutorial: Overriding Text Rotation

Measurement Text Formatting and Styling

See Linear Dimension Tutorial: Measurement Text Formatting and Styling

Tolerances and Limits

See Linear Dimension Tutorial: Tolerances and Limits

6.5.25 Tutorial for the Geo Add-on

This tutorial shows how to load a GPS track into a geo located DXF file and also the inverse operation, exporting geo
located DXF entities as GeoJSON files.

Please read the section Intended Usage in the documentation of the ezdxf . addons . geo module first.

Warning: TO ALL BEGINNERS!

If you are just learning to work with geospatial data, using DXF files is not the way to go! DXF is not the first choice
for storing data for spatial data analysts. If you run into problems I cannot help you as I am just learning myself.

The complete source code and test data for this tutorial are available in the github repository:
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo

Setup Geo Location Reference

The first step is setting up the geo location reference, which is not doable with ezdxf yet - this feature may come in
the future - but for now you have to use a CAD application to do this. If the DXF file has no geo location reference

the projected 2D coordinates are most likely far away from the WCS origin (0, 0), use the CAD command “ZOOM
EXTENDS” to find the data.

Load GPX Data

The GPX format stores GPS data in a XML format, use the Element Tree class to load the data:

def load_gpx_track(p: Path) —-> Iterable[Tuple[float, float]]:
"""TIoad all track points from all track segments at once.'"""
gpx = ET.parse (p)
root = gpx.getroot ()
for track_point in root.findall(".//gpx:trkpt", GPX_NS):
data = track_point.attrib
Elevation is not supported by the geo add-on.
yield float (data["lon"]), float(datal["lat"])

6.5. Tutorials 171

https://github.com/mozman/ezdxf/blob/master/examples/render/dimension_ordinate.py
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo

ezdxf Documentation, Release 0.17.2

The loaded GPS data has a WSG84 EPSG:4326 projection as longitude and latitude in decimal degrees. The next step is
to create a GeoProxy object from this data, the GeoProxy.parse () method accepts a __geo_interface_
mapping or a Python object witha __geo_interface_ attribute/property. In this case as simple “LineString” object
for all GPS points is sufficient:

def add_gpx_track (msp, track_data, layer: str):
geo_mapping = {

"type": "LineString",
"coordinates": track_data,
}
geo_track = geo.GeoProxy.parse (geo_mapping)

Transform the data from the polar representation EPSG:4326 into a 2D cartesian map representation EPSG:3395 called
“World Mercator”, this is the only projection supported by the add-on, without the need to write a custom transformation
function:

geo_track.globe_to_map ()

The data is now transformed into 2D cartesian coordinates in meters and most likely far away from origin (0, 0), the data
stored in the GEODATA entity helps to transform the data into the DXF WCS in modelspace units, if the DXF file has
no geo location reference you have to stick with the large coordinates:

Load geo data information from the DXF file:
geo_data = msp.get_geodata()
if geo_data:
Get the transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation ()
else:
Identity matrix for DXF files without a geo location reference:
m = Matrix44 ()
epsg = 3395
Check for compatible projection:
if epsg == 3395:
Transform CRS coordinates into DXF WCS:
geo_track.crs_to_wcs (m)
Create DXF entities (LWPOLYLINE)
for entity in geo_track.to_dxf_entities (dxfattribs={"layer": layer}):
Add entity to the modelspace:
msp.add_entity(entity)
else:
print (f"Incompatible CRS EPSG: {epsg/")

We are ready to save the final DXF file:

doc.saveas (str (out_path))

In BricsCAD the result looks like this, the underlying images were added by the BricsCAD command MAPCONNECT
and such a feature is not planned for the add-on:

172 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Export DXF Entities as GeoJSON

This will only work with a proper geo location reference, the code shown accepts also WCS data from DXF files without
a GEODATA object, but the result is just unusable - but in valid GeoJSON notation.

First get epsg code and the CRS transformation matrix:

Get the geo location information from the DXF file:
geo_data = msp.get_geodata ()
if geo_data:
Get transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation ()
else:
Identity matrix for DXF files without geo reference data:
m = Matrix44 ()

Query the DXF entities to export:

for track in msp.query ("LWPOLYLINE") :
export_geojson (track, m)

6.5. Tutorials 173

ezdxf Documentation, Release 0.17.2

Create a GeoProxy object from the DXF entity:

def export_geojson(entity, m):
Convert DXF entity into a GeoProxy object:
geo_proxy = geo.proxy (entity)

Transform DXF WCS coordinates in modelspace units into the CRS coordinate system by the transformation matrix m:

Transform DXF WCS coordinates into CRS coordinates:
geo_proxy.wcs_to_crs (m)

The next step assumes a EPSG:3395 projection, everything else needs a custom transformation function:

Transform 2D map projection EPSG:3395 into globe (polar)
representation EPSG:4326
geo_proxy.map_to_globe ()

Use the json module from the Python standard library to write the GeoJSON data, provided by the GeoProxy.
__geo_interface__ property:

Export GeoJSON data:

name = entity.dxf.layer + ".geojson"

with open (TRACK_DATA / name, "wt", encoding="utf8") as fp:
json.dump (geo_proxy.__geo_interface__ , fp, indent=2)

The content of the GeoJSON file looks like this:

"type": "LineString",
"coordinates": [
[
15.430999,
47.06503
]I
[
15.431039,
47.064797
]I
[
15.431206,
47.064582
]I
[
15.431283,

47.064342
1,

174 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Custom Transformation Function

This sections shows how to use the GDAL package to write a custom transformation function. The example reimplements
the builtin transformation from unprojected WGS84 coordinates to 2D map coordinates EPSG:3395 “World Mercator”:

from osgeo import osr
from ezdxf.math import Vec3

GPS track in WGS84, load_gpx_track() code see above
gpx_points = list (load_gpx_track('trackl.gpx'))

Create source coordinate system:
src_datum = osr.SpatialReference ()
src_datum. SetWellKnownGeoCS ('WGS84 ")

Create target coordinate system:
target_datum = osr.SpatialReference ()
target_datum. SetWellKnownGeoCS ('EPSG:3395")

Create transformation object:
ct = osr.CoordinateTransform(src_datum, target_datum)

Create GeoProxy () object:
geo_proxy = GeoProxy.parse ({
'type': 'LineString',

'coordinates': gpx_points

H)

Apply a custom transformation function to all coordinates:
geo_proxy.apply (lambda v: Vec3(ct.TransformPoint (v.x, v.y)))

The same example with the pyproj package:

from pyproj import Transformer
from ezdxf.math import Vec3

GPS track in WGS84, load _gpx_track() code see above
gpx_points = list (load_gpx_track('trackl.gpx'))

Create transformation object:
ct = Transformer.from_crs ('EPSG:4326"', 'EPSG:3395)

Create GeoProxy () object:
geo_proxy = GeoProxy.parse ({
'type': 'LineString',

'coordinates': gpx_points

b

Apply a custom transformation function to all coordinates:
geo_proxy.apply (lambda v: Vec3(ct.transform(v.x, v.y)))

6.5. Tutorials 175

ezdxf Documentation, Release 0.17.2

Polygon Validation by Shapely

Ezdxf tries to avoid to create invalid polygons from HATCH entities like a hole in another hole, but not all problems are
detected by ezdxf, especially overlapping polygons. For a reliable and robust result use the Shapely package to check for
valid polygons:

import ezdxf
from ezdxf.addons import geo
from shapley.geometry import shape

Load DXF document including HATCH entities.
doc = ezdxf.readfile('hatch.dxf")
msp = doc.modelspace ()

Test a single entity
Get the first DXF hatch entity:
hatch_entity = msp.query ('HATCH') .first

Create GeoProxy () object:
hatch_proxy = geo.proxy (hatch_entity)

Shapely supports the __geo_interface
shapley_polygon = shape (hatch_proxy)

if shapely_polygon.is_valid:

else:
print (£f'Invalid Polygon from {str (hatch_entity) /.")

Remove invalid entities by a filter function
def validate (geo_proxy: geo.GeoProxy) -> bool:
Multi-entities are divided into single entities:
e.g. MultiPolygon is verified as multiple single Polygon entities.
if geo_proxy.geotype == 'Polygon':
return shape (geo_proxy) .is_valid
return True

The gfilter () function let only pass compatible DXF entities
msp_proxy = geo.GeoProxy.from_dxf_entities(geo.gfilter (msp))

remove all mappings for which validate () returns False
msp_proxy.filter (validate)

Interface to GDAL/OGR

The GDAL/OGR package has no direct support for the __geo_interface
SON format:

, but has builtin support for the Geol-

from osgeo import ogr

from ezdxf.addons import geo

from ezdxf.render import random_2d_path
import json

p = geo.GeoProxy ({'type': 'LineString', 'coordinates': list (random_2d_path(20))})
Create a GeoJSON string from the __geo_interface__ object by the json
module and feed the result into ogr:

(continues on next page)

176 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

line_string = ogr.CreateGeometryFromJson (json.dumps (p.__geo_interface_))

Parse the GeoJSON string from ogr by the json module and feed the result
into a GeoProxy () object:
p2 = geo.GeoProxy.parse (json.loads (line_string.ExportToJdson()))

6.5.26 Storing Custom Data in DXF Files

This tutorial describes how to store custom data in DXF files using standard DXF features.

Saving data in comments is not covered in this section, because comments are not a reliable way to store information in
DXEF files and ezdxf does not support adding comments to DXF files. Comments are also ignored by ezdxf and many
other DXF libraries when loading DXF files, but there is a ezdxf. comment s module to load comments from DXF
files.

The DXF data format is a very versatile and flexible data format and supports various ways to store custom data. This
starts by setting special header variables, storing XData, AppData and extension dictionaries in DXF entities and objects,
storing XRecords in the OBJECTS section and ends by using proxy entities or even extending the DXF format by user
defined entities and objects.

This is the common prolog for all Python code examples shown in this tutorial:

import ezdxf

doc = ezdxf.new()
msp doc.modelspace ()

Retrieving User Data

Retrieving the is a simple task by ezdxf, but often not possible in CAD applications without using the scripting features
(AutoLISP) or even the SDK.

AutoLISP Resources

¢ Autodesk Developer Documentation
e AfralISP

* Lee Mac Programming

Warning: I have no experience with AutoLISP so far and I created this scripts for AutoLISP while writing this
tutorial. There may be better ways to accomplish these tasks, and feedback on this is very welcome. Everything is
tested with BricsCAD and should also work with the full version of AutoCAD.

6.5. Tutorials 177

http://help.autodesk.com/view/OARX/2018/ENU/
https://www.afralisp.net/index.php
http://www.lee-mac.com

ezdxf Documentation, Release 0.17.2

Header Section

The HEADER section has tow ways to store custom data.

Predefined User Variables

There are ten predefined user variables, five 16-bit integer variables called SUSERI1 up to SUSERIS5 and five floating
point variables (reals) called SUSERR1 up to SUSERRS. This is very limited and the data maybe will be overwritten by
the next application which opens and saves the DXF file. Advantage of this methods is, it works for all supported DXF
versions starting at R12.

Settings the data:
doc.header["SUSERI1I"] = 4711
doc.header["SUSERR1I"] = 3.141592

Getting the data by ezdxf:

il = doc.header["SUSERI1"]
rl = doc.header["SUSERR1"]

Getting the data in BricsCAD at the command line:

USERI1
New current value for USERI1 (-32768 to 32767) <4711>:

Getting the data by AutoLISP:

(getvar 'USERII1)
4711

Setting the value by AutoLISP:

(setvar 'USERI1 1234)
1234

Custom Document Properties

This method defines custom document properties, but requires at least DXF R2004. The custom document properties are
stored in a CustomVars instance in the cust om_vars attribute of the HeaderSect i on object and supports only
string values.

Settings the data:

’doc.header.custom_vars.append("MyFirstVar", "First Value")

Getting the data by ezdxf"

’my_first_var = doc.header.custom_vars.get ("MyFirstvar", "Default Value")

The document property MyFirstVar is available in BricsCAD as FIELD variable:

178 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

B Fi:ld

Field names:

CustomDP . MyFirstVar:

-- Date & Time
= Document
- Buthor

- Comments

| First Value |

Format:

(one) |

UPPERCASE

- Filename
lowercase

... Filesi
I ES‘ZF'? First capital
- HyperlinkBase Title Case

- Keywords

- LastSavedBy

- MyFirstVar

- RevisionMumber
- Subject

... Title

[=- Linked

Hyperlink

= Objects

‘- BlockPlaceholder
Formula

f#l- Plot
- Varia bles
i i-DieselExpression b

Field expression:

%o <\AcVar CustomDP.MyFirstVar =%

0K Cancel

AutoLISP script for getting the custom document properties:

(defun C:CUSTOMDOCPROPS (/ Info Num Index Custom)
(vl-load-com)
(setq acadObject (vlax—get—acad-object))
(setq acadDocument (vla-get-ActiveDocument acadObject))

;;Get the SummaryInfo
setq Info (vlax—get-Property acadDocument 'SummaryInfo))
setqg Num (vla-NumCustomInfo Info))
setqg Index 0)
repeat Num
(vla—getCustomByIndex Info Index 'ID 'Value)
(setq Custom (cons (cons ID Value) Custom))
(setq Index (1+ Index))
) ; repeat

(
(
(
(

(if Custom (reverse Custom))

Running the script in BricsCAD:

6.5. Tutorials 179

ezdxf Documentation, Release 0.17.2

(load "customdocprops.lsp")
C:CUSTOMDOCPROPS
: CUSTOMDOCPROPS
(("MyFirstvar" . "First Value"))

Meta Data

Starting with version v0.16.4 ezdxf stores some meta data in the DXF file and the AppID EZDXF will be created. Two
entries will be added to the MetaDat a instance, the CREATED_BY_EZDXF for DXF documents created by ezdxf and
the entry WRITTEN_BY_EZDXF if the DXF document will be saved by ezdxf. The marker string looks like this "0 .
17b0 @ 2021-09-18T05:14:37.921826+00:00" and contains the ezdxf version and an UTC timestamp in
ISO format.

You can add your own data to the Met aDat a instance as a string with a maximum of 254 characters and choose a good
name which may never be used by ezdxf in the future.

metadata = doc.ezdxf_metadata ()
metadata["MY_UNIQUE_KEY"] = "my additional meta data"

print (metadata.get ("CREATED_BY_ EZDXE™))
print (metadata.get ("MY_UNIQUE_KEY"))

The data is stored as XDATA in then BLOCK entity of the model space for DXF R12 and for DXF R2000 and later as
a DXF Dictionary in the root dictionary by the key EZDXF_META. See following chapters for accessing such data
by AutoLISP.

XDATA

Extended Data (XDATA) is a way to attach arbitrary data to DXF entities. Each application needs a unique AppID
registered in the AppID table to add XDATA to an entity. The AppID ACAD is reserved and by using ezdxf the AppID
EZDXF is also registered automatically. The total size of XDATA for a single DXF entity is limited to 16kB for AutoCAD.
XDATA is supported by all DXF versions and is accessible by AutoLISP.

The valid group codes for extended data are limited to the following values, see also the internals of Extended Data:

Group Code | Description

1000 Strings up to 255 bytes long

1001 (fixed) Registered application name up to 31 bytes long

1002 (fixed) An extended data control string ' { "' or '} '

1004 Binary data

1005 Database Handle of entities in the drawing database

1010 3D point, in the order X, Y, Z that will not be modified at any transformation of the entity
1011 A WCS point that is moved, scaled, rotated and mirrored along with the entity

1012 A WCS displacement that is scaled, rotated and mirrored along with the entity, but not moved
1013 A WCS direction that is rotated and mirrored along with the entity but not moved and scaled.
1040 A real value

1041 Distance, a real value that is scaled along with the entity

1042 Scale Factor, a real value that is scaled along with the entity

1070 A 16-bit integer (signed or unsigned)

1071 A 32-bit signed (long) integer

Group codes are not unique in the XDATA section and can be repeated, therefore tag order matters.

180 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add (APPID)

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

setting the data
line.set_xdata (APPID, [

basic types

1000, "custom text"),
1040, 3.141592),

1070, 4711), # 1lé6bit
1071, 1_048_576), # 32bit
points and vectors

1010, (10, 20, 30)),

1011, (11, 21, 31)),
1012, (12, 22, 32)),
1013, (13, 23, 33)),
scaled distances and factors
(1041, 10),

(1042, 10),

#
(
(
(
(
#
(
(
(
(

1

getting the data
if line.has_xdata (APPID) :
tags = line.get_xdata (APPID)
print (f"{str(line) } has {len(tags)) tags of XDATA for AppID {APPID/r}")
for tag in tags:
print (tag)

AutoLISP script for getting XDATA for AppID YOUR_UNIQUE_ID:

(defun C:SHOWXDATA (/ entity_list xdata_list)
(setq entity_list (entget (car (entsel)) ' ("YOUR_UNIQUE_ID")))
(setq xdata_list (assoc -3 entity_ list))
(car (cdr xdata_ list))

Script output:

SHOWXDATA
Select entity: ("YOUR_UNIQUE_ID" (1000 . "custom text") (1040 . 3.141592)

See also:
¢ AfralLISP XDATA tutorial
e FExtended Data (XDATA) Reference

6.5. Tutorials 181

https://www.afralisp.net/autolisp/tutorials/extended-entity-data-part-1.php

ezdxf Documentation, Release 0.17.2

XDATA Helper Classes

The XDataUserList and XDataUserDict are helper classes to manage XDATA content in a simple way.

Both classes store the Python types int, float and str and the ezdxf type Vec3. As the names suggests has the
XDataUserList a list-like interface and the XDataUserDict a dict-like interface. This classes can not contain
additional container types, but multiple lists and/or dicts can be stored in the same XDATA section for the same ApplID.

These helper classes uses a fixed group code for each data type:

1001 | strings (max. 255 chars)
1040 | floats

1071 | 32-bit ints

1010 | Vec3

Additional required imports for these examples:

from ezdxf.math import Vec3
from ezdxf.entities.xdata import XDataUserDict, XDataUserList

Example for XDataUserDict:

Each XDataUserDict has a unique name, the default name is “DefaultDict” and the default AppID is EZDXF. If you
use your own ApplD, don’t forget to create the requited AppID table entry like doc.appids.new ("MyAppID"),
otherwise AutoCAD will not open the DXF file.

doc = ezdxf.new/()
msp = doc.modelspace ()
line = msp.add_line((0, 0), (1, 0))

with XDataUserDict.entity(line) as user_dict:

user_dict ["CreatedBy"] = "mozman"
user_dict["Float"] = 3.1415
user_dict["Int"] = 4711
user_dict["Point"] = Vec3 (1, 2, 3)

If you modify the content of without using the context manager entity (), you have to call commit () by yourself,
to transfer the modified data back into the XDATA section.

Getting the data back from an entity:

with XDataUserDict.entity(line) as user_dict:
print (user_dict)
acts like any other dict ()
storage = dict (user_dict)

Example for XDataUserList:

This example stores the data in a XDataUserList named “AppendedPoints”, the default name is “DefaultList” and
the default ApplD is EZDXF.

with XDataUserList.entity(line, name="AppendedPoints") as user_list:
user_list.append(Vec3 (1, 0, 0))
user_list.append(Vec3(0, 1, 0))
user_list.append(Vec3(0, 0, 1))

Now the content of both classes are stored in the same XDATA section for AppID EZDXF. The XDataUserDict is
stored by the name “DefaultDict” and the XDataUserList is stored by the name “AppendedPoints”.

182 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Getting the data back from an entity:

with XDataUserList.entity(line, name="AppendedPoints") as user_list:
print (user_list)
storage = list (user_list)

print (f"Copy of XDataUserList: {storage}")

See also:
e XDataUserList class

e XDataUserDict class

Extension Dictionaries
Extension dictionaries are another way to attach custom data to any DXF entity. This method requires DXF R13/14 or
later. I will use the short term XDICT for extension dictionaries in this tutorial.

The Extension Dictionary is a regular DXF Dict i onary which can store (key, value) pairs where the key is a string and
the value is a DXF object from the OBJECTS section but not graphical DXF entities. The usual objects to store custom
data are DictionaryVar to store simple strings and XRecord to store complex data.

Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity!

This example shows how to manage the XDICT and to store simple strings as Dict ionaryVar objects in the XDICT,
to store more complex data go to the next section XRecord.

1. Get or create the XDICT for an entity:

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

if line.has_extension_dict:
get the extension dictionary
xdict = line.get_extension_dict ()
else:
create a new extension dictionary
xdict = line.new_extension_dict ()

2. Add strings as DictionaryVar objects to the XDICT. No AppIDs required, but existing keys will be overridden,
so be careful by choosing your keys:

xdict.add_dictionary_var ("DATA1", "Your custom data string 1")
xdict.add_dictionary_var ("DATA2", "Your custom data string 2")

3. Retrieve the strings from the XDICT as DictionaryVar objects:

print (£"DATALl is '{xdict['DATA1l'].value/'")
print (£"DATA2 is '{xdict['DATA2'].value}'")

The AutoLISP access to DICTIONARIES is possible, but it gets complex and I'm only referring to the Afral.ISP Dic-
tionaries and XRecords tutorial.

See also:
¢ AfralLISP Dictionaries and XRecords Tutorial

e Extension Dictionary Reference

6.5. Tutorials 183

https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php

ezdxf Documentation, Release 0.17.2

e DXF Dictionary Reference

e DictionaryVar Reference

XRecord

The XRecord object can store arbitrary data like the XDATA section, but is not limited by size and can use all group
codes in the range from 1 to 369 for DXF Tags. The XRecord can be referenced by any DXF Dictionary, other
XRecord objects (tricky ownership!), the XDATA section (store handle by group code 1005) or any other DXF object
by adding the XRecord object to the Extension Dictionary of the DXF entity.

It is recommend to follow the DXF reference to assign appropriate group codes to DXF Tags. My recommendation is
shown in the table below, but all group codes from 1 to 369 are valid. I advice against using the group codes 100 and 102
(structure tags) to avoid confusing generic tag loaders. Unfortunately, Autodesk doesn’t like general rules and uses DXF

format exceptions everywhere.

1

strings (max. 2049 chars)

2

structure tags as strings like "{" and " }"

10

points and vectors

40 floats

90 | integers

330 | handles

Group codes are not unique in XRecord and can be repeated, therefore tag order matters.

This example shows how to attach a XRecord object to a LINE entity by Extension Dictionary:

line = msp.add_line ((0,)
line2 = msp.add_line((0, 2), (1, 2))

if line.has_extension_dict:

xdict = line.get_extension_dict ()
else:

xdict = line.new_extension_dict ()

xrecord = xdict.add_xrecord("DATAL")
xrecord.reset ([
(1, "text1M), # string
(40, 3.141592), # float
(90, 256), # 32-bit int
(10, (1, 2, 0)), # points and vectors
(330, line2.dxf.handle) # handles
1)

print (xrecord.tags)

Script output:

[DXFTag (1, 'textl'),

DXFTag (40, 3.141592),

DXFTag (90, 256),

DXFVertex (10, (1.0, 2.0, 0.0)),
DXFTag (330, '30'")]

184

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF entity! To
react to entity modifications by a CAD applications it is possible to write event handlers by AutoLISP, see the AfralLISP
Reactors Tutorial for more information. This very advanced stuff!

See also:
¢ AfralLISP Dictionaries and XRecords Tutorial
* AfraLLISP Reactors Tutorial
* XRecord Reference

* helper functions: ezdxf.lldxf.types.dxftag() and ezdxf.l1lldxf.types.
tuples_to_tags()

XRecord Helper Classes

The UserRecord and BinaryRecord are helper classes to manage XRECORD content in a simple way. The
UserRecord manages the data as plain Python types: dict, 1ist, int, float, str and the ezdxf types Vec2
and Vec3. The top level type for the UserRecord.data attribute has to be a 1ist. The BinaryRecord stores
arbitrary binary data as BLOB. These helper classes uses fixed group codes to manage the data in XRECORD, you have
no choice to change them.

Additional required imports for these examples:

from pprint import pprint

import ezdxf

from ezdxf.math import Vec3

from ezdxf.urecord import UserRecord, BinaryRecord
from ezdxf.entities import XRecord

import zlib

Example 1: Store entity specific data in the Extension Dictionary:

line = msp.add_line((0, 0), (1, 0))
xdict = line.new_extension_dict ()
xrecord = xdict.add_xrecord("MyData")

with UserRecord(xrecord) as user_record:
user_record.data [# top level has to be a list!
"MyString",

4711,

3.1415,

vec3 (1, 2, 3),

{
"MyIntList": [1, 2, 3],
"MyFloatList": [4.5, 5.6, 7.81,

}I

Example 1: Get entity specific data back from the Extension Dictionary:

if line.has_extension_dict:
xdict = line.get_extension_dict ()
xrecord = xdict.get ("MyData")
if isinstance (xrecord, XRecord):
user_record = UserRecord(xrecord)
pprint (user_record.data)

6.5. Tutorials 185

https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://www.afralisp.net/autolisp/tutorials/dictionaries-and-xrecords.php
https://www.afralisp.net/visual-lisp/tutorials/reactors-part-1.php
https://en.wikipedia.org/wiki/Binary_large_object

ezdxf Documentation, Release 0.17.2

If you modify the content of UserRecord.data without using the context manager, you have to call commit () by
yourself, to store the modified data back into the XRECORD.

Example 2: Store arbitrary data in DICTIONARY objects. The XRECORD is stored in the named DICTIONARY,
called rootdict in ezdxf. This DICTIONARY is the root entity for the tree-like data structure stored in the OBJECTS
section, see also the documentation of the ezdxf. sections.objects module.

Get the existing DICTIONARY object or create a new DICTIONARY object:
my_dict = doc.objects.rootdict.get_required_dict ("MyDict™)

Create a new XRECORD object, the DICTIONARY object is the owner of this
new XRECORD:

xrecord = my_dict.add_xrecord("MyData™)

This example creates the user record without the context manager.
user_record = UserRecord(xrecord)

Store user data:

user_record.data = [
"Just another user record",
4711,
3.1415,

1
Store user data in associated XRECORD:

user_record.commit ()

Example 2: Get user data back from the DICTIONARY object

my_dict = doc.rootdict.get_required_dict ("MyDict")
entity = my_dict["MyData"]
if isinstance (entity, XRecord):

user_record = UserRecord(entity)

pprint (user_record.data)

Example 3: Store arbitrary binary data

my_dict = doc.rootdict.get_required_dict ("MyDict")
xrecord = my_dict.add_xrecord("MyBinaryData™)
with BinaryRecord(xrecord) as binary_record:
The content is stored as hex strings (e.g. ABBAFEFE...) 1in one or more
group code 310 tags.
A preceding group code 160 tag stores the data size in bytes.
data = b"Store any binary data, even line breaks\r\n" * 20
compress data if required
binary_record.data = zlib.compress (data, level=9)

Example 3: Get binary data back from the DICTIONARY object

entity = my_dict["MyBinaryData"]

if isinstance(entity, XRecord):
binary_record = BinaryRecord(entity)
print("\ncompressed data:")
pprint (binary_record.data)

print ("\nuncompressed data:")
pprint (zlib.decompress (binary_record.data))

Hint: Don’t be fooled, the ability to save any binary data such as images, office documents, etc. in the DXF file doesn’t

186 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

impress AutoCAD, it simply ignores this data, this data only has a meaning for your application!

See also:
e urecord module
e UserRecord class

* BinaryRecord class

AppData

Application-Defined Data (AppData) was introduced in DXF R13/14 and is used by AutoCAD internally to store the
handle to the Extension Dictionary and the Reactors in DXF entities. Ezdxf supports these kind of data storage for any
AppID and the data is preserved by AutoCAD and BricsCAD, but I haven’t found a way to access this data by AutoLISP

or even the SDK. So I don’t recommend this feature to store application defined data, because Extended Data (XDATA)
and the Extension Dictionary are well documented and safe ways to attach custom data to entities.

register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add (APPID)

create a DXF entity
line = msp.add_line((0, 0), (1, 0))

setting the data
line.set_app_data (APPID, [(300, "custom text"), (370, 4711), (460,

getting the data
if line.has_app_data (APPID) :
tags = line.get_app_data (APPID)
print (f"{str(line) } has {len(tags)} tags of AppData for AppID
for tag in tags:
print (tag)

3.141592)1)

APPID

H)

Printed output:

LINE (#30) has 3 tags of AppData for AppID 'YOUR_UNIQUE_ID'
(300, 'custom text')

(370, 4711)

(460, 3.141592)

6.5.27 Tutorial for MultiLeader

TODO ...

6.5. Tutorials

187

ezdxf Documentation, Release 0.17.2

6.6 Howto

The Howto section show how to accomplish specific tasks with ezdxf in a straight forward way without teaching basics or
internals, if you are looking for more information about the ezdxf internals look at the Reference section or if you want
to learn how to use ezdxf go to the Tutorials section or to the Basic Concepts section.

6.6.1 General Document

General preconditions:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_dxf_file.dxf")

except IOError:
print (f'Not a DXF file or a generic I/0 error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

msp = doc.modelspace ()

This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with minor or
major flaws look at the ezdx . recover module.

Load DXF Files with Structure Errors

If you know the files you will process have most likely minor or major flaws, use the ezdxf. recover module:

import sys
from ezdxf import recover

try: # low level structure repair:
doc, auditor = recover.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}."')
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:
print (£ 'Found unrecoverable errors in DXF file: {name}/.'")
auditor.print_error_report ()

For more loading scenarios follow the link: ezdxf. recover

188 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Set/Get Header Variables

ezdxf has an interface to get and set HEADER variables:

doc.header ['VarName'] = value
value = doc.header['VarName']
See also:

HeaderSection and online documentation from Autodesk for available header variables.

Set DXF Drawing Units

The header variable SINSUNITS defines the drawing units for the modelspace and therefore for the DXF document if no
further settings are applied. The most common units are 6 for meters and 1 for inches.

Use this HEADER variables to setup the default units for CAD applications opening the DXF file. This setting is not
relevant for ezdxf API calls, which are unitless for length values and coordinates and decimal degrees for angles (in most
cases).

Sets drawing units:

doc.header['SINSUNITS'] = 6

For more information see section DXF' Units.

Create More Readable DXF Files (DXF Pretty Printer)

DXF files are plain text files, you can open this files with every text editor which handles bigger files. But it is not really
easy to get quick the information you want.

Create a more readable HTML file (DXF Pretty Printer):

Call as executable script from the command line:
ezdxf pp FILE [FILE ...]
Call as module on Windows:

py —m ezdxf pp FILE [FILE ...]

Call as module on Linux/Mac
python3 -m ezdxf pp FILE [FILE ...]

This creates a HTML file with a nicer layout than a plain text file, and handles are links between DXF entities, this
simplifies the navigation between the DXF entities.

Changed in version 0.16: The dxfpp command was replaced by a sub-command of the ezdxf launcher.

usage: ezdxf pp [-h] [-o] [-r] [-x] [-1] FILE [FILE ...]

positional arguments:
FILE DXF files pretty print

optional arguments:

-h, —--help show this help message and exit
-0, ——open open generated HTML file with the default web browser
-r, —-raw raw mode - just print tags, no DXF structure interpretation

(continues on next page)

6.6. Howto 189

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 0.17.2

(continued from previous page)

-x, ——nocompile don't compile points coordinates into single tags (only in
raw mode)
-1, —--legacy legacy mode - reorders DXF point coordinates

Important: This does not render the graphical content of the DXF file to a HTML canvas element.

Calculate Extents for the Modelspace

Since ezdxf v0.16 exist a ezdx . bbox module to calculate bounding boxes for DXF entities. This module makes the
extents calculation very easy, but read the documentation for the bbox module to understand its limitations.

import ezdxf
from ezdxf import bbox

doc ezdxf.readfile ("your.dxf")

msp = doc.modelspace ()

extents

bbox.extents (msp)

The returned extents is a ezdxf.math.BoundingBox object.

Set Initial View/Zoom for the Modelspace

To show an arbitrary location of the modelspace centered in the CAD application window, setthe ' *Active' VPORT to
this location. The DXF attribute dxf . center defines the location in the modelspace, and the dxf . height specifies
the area of the modelspace to view. Shortcut function:

doc.set_modelspace_vport (height=10, center=(10, 10))

New in version 0.16.
The new ezdxf . zoom module of ezdxf v0.16, makes this task much easier.

Setting the initial view to the extents of all entities in the modelspace:

import ezdxf
from ezdxf import zoom

doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace ()
zoom.extents (msp)

Setting the initial view to the extents of just some entities:

lines = msp.query ("LINES")
zoom.objects (lines)

The zoom module also works for paperspace layouts.

Important: The zoom module uses the hbox module to calculate the bounding boxes for DXF entities. Read the
documentation for the bbox module to understand its limitations and the bounding box calculation for large documents

190 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

can take a while!

Add ezdxf Resources to Existing DXF Document

Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:

import ezdxf
from ezdxf.tools.standards import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing (doc, topics="all")

6.6.2 DXF Viewer
A360 Viewer Problems

AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps to use the
latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this lines (2018).

DXF Entities Are Not Displayed in the Viewer

ezdxf does not automatically locate the main viewport of the modelspace at the entities, you have to perform the “Zoom
to Extends” command, here in TrueView 2020:

6.6. Howto 191

https://a360.autodesk.com/viewer/

ezdxf Documentation, Release 0.17.2

And here in the Autodesk Online Viewer:

& B\ + O Q g o

Start Anpassen Zoom Messen Markierung

Add this line to your code to relocate the main viewport, adjust the center (in modelspace coordinates) and the height (in
drawing units) arguments to your needs:

doc.set_modelspace_vport (height=10, center=(0, 0))

192 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Show IMAGES/XREFS on Loading in AutoCAD

If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in AutoCAD
immediately, change the HEADER variable SPROJECTNAME="" to (not really) solve this problem. The ezdxf templates
for DXF R2004 and later have SPROJECTNAME="" as default value.

Thanks to David Booth:

If the filename in the IMAGEDEF contains the full path (absolute in AutoCAD) then it shows on loading,
otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager.

A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save it as
a DWG.

So far - no solution for showing IMAGES with relative paths on loading.

Set Initial View/Zoom for the Modelspace

See section “General Document”: Set Initial View/Zoom for the Modelspace

6.6.3 DXF Content

General preconditions:

import sys
import ezdxf

try:
doc = ezdxf.readfile("your_ dxf_ file.dxf")

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

msp = doc.modelspace ()

Get/Set Entity Color

The entity color is stored as ACI/ (AutoCAD Color Index):

aci = entity.dxf.color

Default value is 256 which means BYLAYER:

layer = doc.layers.get (entity.dxf.layer)
aci = layer.get_color ()

The special get_color () method is required, because the color attribute Layer .dxf.color is misused as layer
on/off flag, a negative color value means the layer is off.

ACI value 0 means BYBLOCK, which means the color from the block reference (INSERT entity).

Set color as ACI value as int in range [0, 256]:

6.6. Howto 193

https://github.com/worlds6440

ezdxf Documentation, Release 0.17.2

entity.dxf.color = 1

The ACI value 7 has a special meaning, it is white on dark backgrounds and white on light backgrounds.

Get/Set Entity RGB Color

RGB true color values are supported since DXF R13 (AC1012), the 24-bit RGB value is stored as integer in the DXF
attribute t rue_color:

24 bit binary value: ObRRRRRRRRGGGGGGGGBBBBBBBB or hex value: 0xRRGGBB
set true color value to red
entity.dxf.true_color = O0xFF0000

Use the helper functions from the ezdx . colors module for RGB integer value handling:

from ezdxf import colors

entity.dxf.true_color = colors.rgb2int ((0xFF, 0, 0))
r, g, b = colors.int2rgb(entity.dxf.true_color)

The RGB values of the AutoCAD default colors are not officially documented, but an accurate translation table is included
in ezdxf:

Warning: ACI value 256 (BYLAYER) raises an IndexError!
rgb24 = colors.DXF_DEFAULT_COLORS[aci]

print (f"RGB Hex Value: #{rgb24:06X}")

r, g, b = colors.int2rgb (rgb24)

print (f"RGB Channel Values: R={r:02X} G={g:02X} b={b:02X}")

If color and true_color values are set, BricsCAD and AutoCAD use the t rue_color value as display color for
the entity.

Get/Set True Color as RGB-Tuple

Get/Set the true color value as (1, g, b)-tuple by the rgb property of the DXFGraphi c entity:

set true color value to red
entity.rgb = (0xFF, 0, 0)

get true color values
r, g, b = entity.rgb

Get/Set Block Reference Attributes

Block references (Insert) can have attached attributes (At t r1b), these are simple text annotations with an associated
tag appended to the block reference.

Iterate over all appended attributes:

get all INSERT entities with entity.dxf.name == "Partl2"
blockrefs = msp.query ('INSERT [name=="Partl2"]")
if len(blockrefs):

entity = blockrefs[0] # process first entity found

(continues on next page)

194 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

for attrib in entity.attribs:

if attrib.dxf.tag == "diameter": # identify attribute by tag
attrib.dxf.text = "17mm" # change attribute content
Get attribute by tag:

diameter = entity.get_attrib('diameter')
if diameter is not None:
diameter.dxf.text = "17mm"

Adding XDATA to Entities

Adding XDATA as list of tuples (group code, value) by set_xdata (), overwrites data if already present:

doc.appids.new ('YOUR_APPID") # IMPORTANT: create an APP ID entry

circle = msp.add_circle((10, 10), 100)
circle.set_xdata (

'YOUR_APPID',

[
(1000, 'your_web_link.org'),
(1002, '{"),
(1000, 'some text'),
(1002, '{"),
(
(
(

1071, 1),
1002, "}+"),
1002, '}")

1)

For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid group codes
are in the range 1000 - 1071.

Method get_xdata () returns the extended data for an entity as Tags object.
See also:

Tutorial: Storing Custom Data in DXF Files

Get Overridden DIMSTYLE Values from DIMENSION

In general the Dimension styling and config attributes are stored in the Dimstyle entity, but every attribute can be
overridden for each DIMENSION entity individually, get overwritten values by the DimstyleOverride object as
shown in the following example:

for dimension in msp.query ('DIMENSION') :

dimstyle_override = dimension.override () # requires v0.12
dimtol = dimstyle_override['dimtol"']
if dimtol:

print (f'{str(dimension) has tolerance values:')

dimtp = dimstyle_override['dimtp']
dimtm = dimstyle_override['dimtm']
print (f'Upper tolerance: {dimtp}')

)

print (f'Lower tolerance: {dimtm

6.6. Howto 195

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3F0380A5-1C15-464D-BC66-2C5F094BCFB9

ezdxf Documentation, Release 0.17.2

The DimstyleOverride object returns the value of the underlying DIMSTYLE objects if the value in DIMENSION
was not overwritten, or None if the value was neither defined in DIMSTYLE nor in DIMENSION.

Override DIMSTYLE Values for DIMENSION

Same as above, the DimstyleOverride object supports also overriding DIMSTYLE values. But just overriding this
values have no effect on the graphical representation of the DIMENSION entity, because CAD applications just show
the associated anonymous block which contains the graphical representation on the DIMENSION entity as simple DXF
entities. Call the render method of the DimstyleOverride object to recreate this graphical representation by
ezdxf, but ezdxf does not support all DIMENSION types and DIMVARS yet, and results will differ from AutoCAD or
BricsCAD renderings.

dimstyle_override = dimension.override ()
dimstyle_override.set_tolerance(0.1)

delete associated geometry block
del doc.blocks[dimension.dxf.geometry]

recreate geometry block
dimstyle_override.render ()

6.7 FAQ

6.7.1 What is the Relationship between ezdxf, dxfwrite and dxfgrabber?

In 2010 I started my first Python package for creating DXF documents called dxfwrite, this package can’t read DXF files
and writes only the DXF R12 (AC1009) version. While dxfwrite works fine, I wanted a more versatile package, that can
read and write DXF files and maybe also supports newer DXF formats than DXF R12.

This was the start of the ezdxf package in 2011, but the progress was so slow, that I created a spin off in 2012 called
dxfgrabber, which implements only the reading part of ezdxf, which I needed for my work and I wasn’t sure if ezdxf will
ever be usable. Luckily in 2014 the first usable version of ezdxf could be released. The ezdxf package has all the features
of dxfwrite and dxfgrabber and much more, but with a different API. So ezdxf is not a drop-in replacement for dxfgrabber
or dxfwrite.

Since ezdxf can do all the things that dxfwrite and dxfgrabber can do, I focused on the development of ezdxf, dxfwrite and
dxfgrabber are in maintenance mode only and will not get any new features, just bugfixes.

There are no advantages of dxfwrite over ezdxf, dxfwrite has the smaller memory footprint, but the r12writer add-on
does the same job as dxfwrite without any in memory structures by writing direct to a stream or file and there is also no
advantage of dxfgrabber over ezdxf for normal DXF files the smaller memory footprint of dxfgrabber is not noticeable
and for really big files the iterdxf add-on does a better job.

196 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

6.7.2 Imported ezdxf package has no content. (readfile, new)

1. AttributeError: partially initialized module ‘ezdxf” has no attribute ‘readfile’ (most likely due to a circular import)

Did you name your file/script “ezdxf.py”? This causes problems with circular imports. Renaming your file/script
should solve this issue.

2. AttributeError: module ‘ezdxf’ has no attribute ‘readfile’

This could be a hidden permission error, for more information about this issue read Petr Zemeks article: https:
//blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/

6.7.3 How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?

The BODY, 3DSOLID, SURFACE, REGION and so on, are stored as ACIS data embedded in the DXF file. The
ACIS data is stored as SAT (text) format in the entity itself for DXF R2000-R2010 and as SAB (binary) format in the
ACDSDATA section for DXF R2013+. Ezdxf can read SAT and SAB data, but only write SAT data.

The ACIS data is a proprietary format from Spatial Inc., and there exist no free available documentation or open source
libraries to create or edit SAT or SAB data, and also ezdxf provides no functionality for creating or editing ACIS data.

The ACIS support provided by ezdxf is only useful for users have to have access to the ACIS SDK from Spatial Inc..

6.7.4 Are OLE/OLEZ2 entities supported?

TLDR; NO!

The Wikipedia definition of OLE: Object Linking & Embedding (OLE) is a proprietary technology developed by Mi-
crosoft that allows embedding and linking to documents and other objects. For developers, it brought OLE Control
Extension (OCX), a way to develop and use custom user interface elements. On a technical level, an OLE object is any
object that implements the IO01eObject interface, possibly along with a wide range of other interfaces, depending on
the object’s needs.

Therefore ezdxf does not support this entities in any way, this only work on Windows and with the required editing
application installed. The binary data stored in the OLE objects cannot be used without the editing application.

In my opinion, using OLE objects in a CAD drawing is a very bad design decision that can and will cause problems opening
these files in the future, even in AutoCAD on Windows when the required editing application is no longer available or the
underlying technology is no longer supported.

All of this is unacceptable for a data storage format that should be accessed for many years or decades (e.g. construction
drawings for buildings or bridges).

6.8 Reference

The DXF Reference is online available at Autodesk.
Quoted from the original DXF 12 Reference which is not available on the web:

Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes significantly as
new features are added to AutoCAD, we do not document its format and do not recommend that you attempt
to write programs to read it directly. To assist in interchanging drawings between AutoCAD and other
programs, a Drawing Interchange file format (DXF) has been defined. All implementations of AutoCAD
accept this format and are able to convert it to and from their internal drawing file representation.

6.8. Reference 197

https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
https://www.spatial.com/products/3d-acis-modeling
https://www.spatial.com/products/3d-acis-modeling
https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://docs.autodesk.com/ACD/2014/ENU/index.html?url=files/GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3.htm,topicNumber=d30e652301
http://usa.autodesk.com/

ezdxf Documentation, Release 0.17.2

6.8.1 DXF Document

Document Management

Create New Drawings

ezdxf .new (dxfversion='ACI1027', setup=False, units=6) — Drawing
Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name or “R12”
the AutoCAD release name.

new () can create drawings for following DXF versions:

Version | AutoCAD Release
AC1009 | AutoCAD R12
ACI1015 | AutoCAD R2000
AC1018 | AutoCAD R2004
AC1021 | AutoCAD R2007
AC1024 | AutoCAD R2010
ACI1027 | AutoCAD R2013
AC1032 | AutoCAD R2018

The units argument defines th document and modelspace units. The header variable SMEASUREMENT will be set
according to the given units, O for inch, feet, miles, ... and 1 for metric units. For more information go to module
ezdxf.units

Parameters
* dxfversion — DXF version specifier as string, default is “AC1027” respectively “R2013”

* setup — setup default styles, False for no setup, True to setup everything or a list of topics

G«

as strings, e.g. [“linetypes”, “styles”] to setup only some topics:

Topic Description

linetypes setup line types

styles setup text styles

dimstyles setup default ezdxf dimension styles
visualstyles | setup 25 standard visual styles

* units — document and modelspace units, default is 6 for meters

Open Drawings

Open DXF drawings from file system or text stream, byte stream usage is not supported.

DXEF files prior to R2007 requires file encoding defined by header variable SDWGCODEPAGE, DXF R2007 and later
requires an UTF-8 encoding.

ezdxf supports reading of files for following DXF versions:

198 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Version Release | Encoding Remarks

< AC1009 $DWGCODEPAGE | pre AutoCAD R12 upgraded to AC1009
AC1009 R12 $DWGCODEPAGE | AutoCAD R12

ACI1012 R13 $DWGCODEPAGE | AutoCAD R13 upgraded to AC1015
AC1014 R14 $DWGCODEPAGE | AutoCAD R14 upgraded to AC1015

ACI1015 R2000 $DWGCODEPAGE | AutoCAD R2000
AC1018 R2004 $DWGCODEPAGE | AutoCAD R2004

AC1021 R2007 UTF-8 AutoCAD R2007
AC1024 R2010 UTF-8 AutoCAD R2010
AC1027 R2013 UTF-8 AutoCAD R2013
AC1032 R2018 UTF-8 AutoCAD R2018

ezdxf.readfile (filename: str, encoding: str = None, errors: str = 'surrogateescape') — Drawing
Read the DXF document filename from the file-system.

This is the preferred method to load existing ASCII or Binary DXF files, the required text encoding will be detected
automatically and decoding errors will be ignored.

Override encoding detection by setting argument encoding to the estimated encoding. (use Python encoding names
like in the open () function).

If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover.readfile () function to load this corrupt DXF document.

Parameters
* filename - filename of the ASCII- or Binary DXF document

* encoding — use None for auto detect (default), or set a specific encoding like “utf-8”, ar-
gument is ignored for Binary DXF files

» errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* IOError —not a DXF file or file does not exist
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.read (stream: TextlO) — Drawing
Read a DXF document from a text-stream. Open stream in text mode (mode="rt ') and set correct text encoding,
the stream requires at least a readline () method.

Since DXF version R2007 (AC1021) file encoding is always “utf-8”, wuse the helper function
dxf_stream_info () to detect the required text encoding for prior DXF versions. To preserve possi-
ble binary data in use errors="'surrogateescape"' as error handler for the import stream.

If this function struggles to load the DXF document and raises a DXFStructureError exception, try the
ezdxf.recover. read () function to load this corrupt DXF document.

Parameters stream - input text stream opened with correct encoding

Raises DXFStructureError — for invalid or corrupted DXF structures

6.8. Reference 199

ezdxf Documentation, Release 0.17.2

ezdxf .readzip (zipfile: str, filename: str = None, errors: str = 'surrogateescape') — Drawing
Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF document in
the zip archive.

Parameters
* zipfile — name of the zip archive

* filename - filename of DXF file, or None to load the first DXF document from the zip
archive.

* errors — specify decoding error handler
— 7surrogateescape” to preserve possible binary data (default)
— ignore” to use the replacement char U+FFFD “€” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* IOError - not a DXF file or file does not exist or if filename is None - no DXF file found
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

ezdxf .decode_base64 (data: bytes, errors: str = ‘surrogateescape’) — Drawing
Load a DXF document from base64 encoded binary data, like uploaded data to web applications.

Parameters
* data — DXF document base64 encoded binary data
* errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

Hint: This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with
minor or major flaws look at the ezdxf . recover module.

Save Drawings

Save the DXF document to the file system by Drawing methods save () or saveas (). Write the DXF document
to a text stream with write (), the text stream requires at least a write () method. Get required output encoding for
text streams by property Drawing.output_encoding

200 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Drawing Settings

The HeaderSection stores meta data like modelspace extensions, user name or saving time and current application
settings, like actual layer, text style or dimension style settings. These settings are not necessary to process DXF data and
therefore many of this settings are not maintained by ezdxf automatically.

Header variables set at new

$ACADVER DXEF version
$TDCREATE date/time at creating the drawing
$FINGERPRINTGUID | every drawing gets a GUID

Header variables updated at saving

$TDUPDATE actual date/time at saving
$HANDSEED next available handle as hex string
$DWGCODEPAGE | encoding setting

$VERSIONGUID every saved version gets a new GUID

See also:
e Howto: Set/Get Header Variables

* Howto: Set DXF Drawing Units

Ezdxf Metadata

New in version 0.17.

Store internal metadata like ezdxf version and creation time for a new created document as metadata in the DXF file.
Only standard DXF features are used to store meta data and this meta data is preserved by Autodesk products, BricsCAD
and of course ezdxf. Other 3rd party DXF libraries may remove this meta data.

For DXF R12 the meta data is stored as XDATA by AppID EZDXF in the model space BLOCK entity in the BLOCKS
section.

For DXF R2000+ the meta data is stored in the “root” DICTIONARY in the OBJECTS section as a DICTIONARY
object by the key EZDXF_META.

The MetaData object has a dict-like interface and can also store custom metadata:

metadata = doc.ezdxf_metadata ()

set data
metadata ["MY_CUSTOM_META_DATA"] = "a string with max. length of 254"

get data, raises a KeyError () if key not exist
value = metadata["MY_ CUSTOM _META_DATA"]

get data, returns an empty string if key not exist
value = metadata.get ("MY_CUSTOM_META_DATA")

(continues on next page)

6.8. Reference 201

ezdxf Documentation, Release 0.17.2

(continued from previous page)

delete entry, raises a KeyError () if key not exist
del metadata["MY CUSTOM_META DATA"]

discard entry, does not raise a KeyError() 1f key not exist
metadata.discard ("MY_CUSTOM_META_DATA")

Keys and values are limited to strings with a max. length of 254 characters and line ending \n will be replaced by \P.
Keys used by ezdxf:

* WRITTEN_BY_EZDXF: ezdxf version and UTC time in ISO format

* CREATED_BY_EZDXF: ezdxf version and UTC time in ISO format
Example of the ezdxf marker string: 0.16.4b1 @ 2021-06-12T07:35:34.898808+00:00

class ezdxf.document .MetaData

abstract MetaData.__contains__ (key: str) — bool
Returns key in self.

abstract MetaData.__getitem__ (key: str) — str
Returns the value for self[key].

Raises KeyError — key does not exist

MetaData.get (key: str, default: str = ") — str
Returns the value for key. Returns default if key not exist.

abstract MetaData.__setitem__ (key: str, value: str) — None
Set self[key] to value.

abstract MetaData._ delitem__ (key: str) — None
Delete self[key].

Raises KeyError — key does not exist

MetaData.discard (key: str) — None
Remove key, does not raise an exception if key not exist.

Drawing Object
class ezdxf.document.Drawing
The Drawing class manages all entities and tables related to a DXF drawing.

dxfversion
Actual DXF version like 'AC1009"',setby ezdxf.new () or ezdxf.readfile ().

For supported DXF versions see Document Management

acad_release
The AutoCAD release name like 'R12 "' or 'R2000 ' for actual dxfversion.

encoding
Text encoding of Drawing, the default encoding for new drawingsis ' cp1252 '. Starting with DXF R2007
(AC1021), DXF files are written as UTF-8 encoded text files, regardless of the attribute encoding. The
text encoding can be changed to encodings listed below.

see also: DXF File Encoding

202 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

supported | encodings

'cp874" Thai

'cp932! Japanese
"gbk' UnifiedChinese
'cp949’ Korean
'cp950" TradChinese

'cpl1250"' | CentralEurope
'cpl251" | Cyrillic
'cpl252"' | WesternEurope
'cpl1253" | Greek
"cpl254" | Turkish
'cpl1255"' | Hebrew
'cpl256' | Arabic
"cp1257' | Baltic
'cpl258" | Vietnam

output_encoding
Returns required output encoding for saving to filesystem or encoding to binary data.

filename
Drawing filename, if loaded by ezdxf. readfile () else None.

rootdict
Reference to the root dictionary of the OBJECTS section.

header
Reference to the HeaderSection, get/set drawing settings as header variables.

entities
Reference to the EntitySection of the drawing, where all graphical entities are stored, but only from
modelspace and the active paperspace layout. Just for your information: Entities of other paperspace layouts
are stored as Bl ockLayout inthe BlocksSection.

objects
Reference to the objects section, see also ObjectsSection.

blocks
Reference to the blocks section, see also BlocksSection.

tables
Reference to the tables section, see also TablesSection.

classes
Reference to the classes section, see also ClassesSection.

layouts
Reference to the layout manager, see also Layouts.

groups
Collection of all groups, see also GroupCollection.

requires DXF R13 or later

layers
Shortcut for Drawing.tables.layers

Reference to the layers table, where you can create, get and remove layers, see also Table and Layer

6.8. Reference 203

ezdxf Documentation, Release 0.17.2

styles
Shortcut for Drawing.tables.styles

Reference to the styles table, see also Style.

dimstyles
Shortcut for Drawing.tables.dimstyles

Reference to the dimstyles table, see also DimStyle.

linetypes
Shortcut for Drawing.tables.linetypes

Reference to the linetypes table, see also Linetype.

views
Shortcut for Drawing.tables.views

Reference to the views table, see also View.

viewports
Shortcut for Drawing.tables.viewports

Reference to the viewports table, see also Viewport.

ucs
Shortcut for Drawing.tables.ucs

Reference to the ucs table, see also UCS.

appids
Shortcut for Drawing.tables.appids

Reference to the appids table, see also AppID.

materials
MaterialCollection of allMaterial objects.

mline_styles
MLineStyleCollection of all MLineStyle objects.

mleader_styles
MLeaderStyleCollection of all MLeaderStyle objects.

units
Get and set the document/modelspace base units as enum, for more information read this: DXF Units.

save (encoding: Optional[str] = None, fmt: str = ‘asc’) — None
Write drawing to file-system by using the i 1ename attribute as filename. Override file encoding by argu-
ment encoding, handle with care, but this option allows you to create DXF files for applications that handles
file encoding different than AutoCAD.

Parameters
* encoding - override default encoding as Python encoding string like 'ut -8
e fmt — 'asc' for ASCII DXF (default) or 'bin"' for Binary DXF

saveas (filename: Union[str, Path], encoding: str = None, fmt: str = ‘asc') — None
Set Drawing attribute £ilename to filename and write drawing to the file system. Override file encoding
by argument encoding, handle with care, but this option allows you to create DXF files for applications that
handles file encoding different than AutoCAD.

Parameters

¢ filename - file name as string

204 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* encoding - override default encoding as Python encoding string like 'ut £-8"
e fmt — "asc' for ASCII DXF (default) or 'bin"' for Binary DXF

write (stream: Union[TextlO, BinarylO], fmt: str = 'asc') — None
Write drawing as ASCII DXF to a text stream or as Binary DXF to a binary stream. For DXF
R2004 (AC1018) and prior open stream with drawing encoding and mode="wt '. For DXF R2007
(AC1021) and later use encoding="utf-8", or better use the later added Drawing property out —
put_encoding which returns the correct encoding automatically. The correct and required error handler
iserrors='dxfreplace'!

If writingtoa St ringIO stream, use Drawing.encode () toencode the result string from St ringIO.
get_value():

binary = doc.encode (stream.get_value())

Parameters
¢ stream - output text stream or binary stream
e fmt — 'asc' for ASCII DXF (default) or 'bin"' for binary DXF
encode_base64 () — bytes
Returns DXF document as base64 encoded binary data.

encode (s: str) — bytes
Encode string s with correct encoding and error handler.

query (query: str = '*') — ezdxf.query. EntityQuery
Entity query over all layouts and blocks, excluding the OBJECTS section.

Parameters query — query string
See also:
Entity Query String and Retrieve entities by query language

groupby (dxfattrib=", key=None) — dict
Groups DXF entities of all layouts and blocks (excluding the OBJECTS section) by a DXF attribute or a key

function.
Parameters
e dxfattrib - grouping DXF attribute like ' Layer'
* key - key function, which accepts a DXFEnt ity as argument and returns a hashable group-
ing key or None to ignore this entity.
See also:

groupby () documentation

modelspace () — ezdxf.layouts.layout.Modelspace
Returns the modelspace layout, displayed as 'Model' tab in CAD applications, defined by block record
named ' *Model_Space'.

layout (name: str = None) — Layout
Returns paperspace layout name or returns first layout in tab order if name is None.

active_layout () — Layout
Returns the active paperspace layout, defined by block record name ' *Paper_Space'.

layout_names () — Iterable[str]
Returns all layout names (modelspace 'Model' included) in arbitrary order.

6.8.

Reference 205

ezdxf Documentation, Release 0.17.2

layout_names_in_taborder () — Iterable[str]
Returns all layout names in tab order, layout “Model” (model space) is always the first name.

new_layout (name, dxfattribs=None) — Layout
Create a new paperspace layout name. Returns a Layout object. DXF R12 (AC1009) supports only one
paperspace layout, only the active paperspace layout is saved, other layouts are dismissed.

Parameters

* name — unique layout name

* dxfattribs — additional DXF attributes for the DXFLayout entity
Raises DXFValueError — Layout name already exist

delete_layout (name: str) — None
Delete paper space layout name and all entities owned by this layout. Available only for DXF R2000 or later,
DXF R12 supports only one paperspace and it can’t be deleted.

add_image_def (filename: str, size_in_pixel: Tuple[int, int], name=None)
Add an image definition to the objects section.

Add an ImageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (X, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.

Absolute image paths works best for AutoCAD but not really good, you have to update external references
manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also
have touse: set_ raster variables /().

Parameters
¢ filename - image file name (absolute path works best for AutoCAD)
* size_in_pixel - image size in pixel as (X, y) tuple
* name - image name for internal use, None for using filename as name (best for AutoCAD)
See also:
Tutorial for Image and ImageDef

set_raster_variables (frame: int = 0, quality: int = 1, units: str = 'm’)
Set raster variables.

Parameters
e frame — 0 = do not show image frame; 1 = show image frame
* quality — 0 =draft; 1 = high

* units — units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm | Millimeter

cm | Centimeter

m Meter (ezdxf default)
km | Kilometer

in Inch
ft Foot
yd Yard
mi Mile

206 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

set_wipeout_variables (frame=0)
Set wipeout variables.

Parameters frame — 0 = do not show image frame; 1 = show image frame

add_underlay_def (filename: str, fmt: str = 'ext', name: Optional(str] = None)
Add an UnderlayDef entity to the drawing (OBJECTS section). filename is the underlay file name as
relative or absolute path and fimr as string (pdf, dwf, dgn). The underlay definition is required to create an
underlay reference.

Parameters
¢ filename — underlay file name

e fmt —file format as string 'pdf' | 'dwf' | 'dgn' or 'ext' for getting file format from
filename extension

* name — pdf format = page number to display; dgn format = 'default'; dwf: 77?7
See also:
Tutorial for Underlay and UnderlayDefinition

add_xref_ def (filename: str, name: str, flags: int = 20)
Add an external reference (xref) definition to the blocks section.

Parameters
» filename - external reference filename
* name — name of the xref block
e flags - block flags

layouts_and_blocks () — Iterator[GenericLayoutType]
Iterate over all layouts (modelspace and paperspace) and all block definitions.

chain_layouts_and_blocks () — Iterator[DXFEntity]
Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all layouts and blocks.

reset_fingerprint_guid()
Reset fingerprint GUID.

reset_version_guid()
Reset version GUID.

set_modelspace_vport (height, center=(0, 0), *, dxfattribs=None) — VPort
Set initial view/zoom location for the modelspace, this replaces the current “* Active” viewport configuration
(VPort).

Parameters
* height — modelspace area to view
¢ center — modelspace location to view in the center of the CAD application window.
e dxfattribs — additional DXF attributes for the VPORT entity
Changed in version 0.17.2: added argument dxfattribs to pass additional DXF attributes to the VPORT entity

audit () — ezdxf.audit.Auditor
Checks document integrity and fixes all fixable problems, not fixable problems are stored in Auditor.

errors.

If you are messing around with internal structures, call this method before saving to be sure to export valid
DXF documents, but be aware this is a long running task.

6.8.

Reference 207

ezdxf Documentation, Release 0.17.2

validate (print_report=True) — bool
Simple way to run an audit process. Fixes all fixable problems, return False if not fixable errors occurs, to
get more information about not fixable errors use audit () method instead.

Parameters print_report — print report to stdout
Returns: True if no errors occurred

ezdxf_metadata () — MetaData
Returns the ezdxf ezdxf.document . MetaData object, which manages ezdxf and custom metadata in
DXF files. For more information see: Ezdxf Metadata.

New in version 0.17.

Recover

New in version v0.14.

This module provides functions to “recover” ASCII DXF documents with structural flaws, which prevents the regular
ezdxf.read() and ezdxf.readfile () functions to load the document.

The read () and readfile () functions will repair as much flaws as possible and run the required audit process
automatically afterwards and return the result of this audit process:

import sys
import ezdxf
from ezdxf import recover

try:
doc, auditor = recover.readfile("messy.dxf")
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file.')
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe just
a problem when saving the recovered DXF file.
if auditor.has_errors:

auditor.print_error_report ()

This efforts cost some time, loading the DXF document with ezdxf. read () or ezdxf.readfile () will be faster.

Warning: This module will load DXF files which have decoding errors, most likely binary data stored in XRECORD
entities, these errors are logged as unrecoverable AuditError.DECODE_ERRORS in the Auditor.errors
attribute, but no DXFStructureError exception will be raised, because for many use cases this errors can be
ignored.

Writing such files back with ezdxf may create invalid DXF files, or at least some information will be lost - handle
with care!

To avoid this problem use recover.readfile (filename, errors='strict') which raises an Uni-
codeDecodeError exception for such binary data. Catch the exception and handle this DXF files as unrecover-
able.

208 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Loading Scenarios
1. It will work

Mostly DXF files from AutoCAD or BricsCAD (e.g. for In-house solutions):

try:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

2. DXF file with minor flaws

DXF files have only minor flaws, like undefined resources:

try:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

auditor = doc.audit ()
if auditor.has_errors:
auditor.print_error_report ()

3. Try Hard

From trusted and untrusted sources but with good hopes, the worst case works like a cache miss, you pay for the first try
and pay the extra fee for the recover mode:

try: # Fast path:
doc = ezdxf.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

Catch all DXF errors:

except ezdxf.DXFError:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile (name)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.")

sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:

(continues on next page)

6.8. Reference 209

ezdxf Documentation, Release 0.17.2

(continued from previous page)

print (f'Found unrecoverable errors in DXF file: {name}/.")
auditor.print_error_report ()

4. Just use the slow recover module

Untrusted sources and expecting many invalid or corrupted DXF files, you always pay an extra fee for the recover mode:

try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile (name)

except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)

except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)

DXF file can still have unrecoverable errors, but this is maybe
just a problem when saving the recovered DXF file.
if auditor.has_errors:
print (f'Found unrecoverable errors in DXF file: {name}.')
auditor.print_error_report ()

5. Unrecoverable Decoding Errors

If files contain binary data which can not be decoded by the document encoding, it is maybe the best to ignore this files,
this works in normal and recover mode:

try:
doc, auditor = recover.readfile (name, errors='strict')
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.')
sys.exit (2)
except UnicodeDecodeError:
print (f'Decoding error in DXF file: name /. ")
sys.exit (3)

6. Ignore/Locate Decoding Errors

Sometimes ignoring decoding errors can recover DXF files or at least you can detect where the decoding errors occur:

try:
doc, auditor = recover.readfile(name, errors='ignore')
except IOError:
print (f'Not a DXF file or a generic I/O error.')
sys.exit (1)
except ezdxf.DXFStructureError:
print (f'Invalid or corrupted DXF file: {name}.")
sys.exit (2)

(continues on next page)

210 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

if auditor.has_errors:
auditor.print_report ()

The error messages with code AuditError . DECODING_ERROR shows the approximate line number of the decoding
error: “Fixed unicode decoding error near line: xxx.”

Hint: This functions can handle only ASCII DXF files!

ezdxf.recover.readfile (filename: Union[str, pathlib.Path], errors: str = 'surrogateescape') — Tu-
ple[Drawing, Auditor]
Read a DXF document from file system similar to ezdxf. readfile (), but this function will repair as much
flaws as possible, runs the required audit process automatically the DXF document and the Auditor.

Parameters
* filename —file-system name of the DXF document to load
* errors - specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— Yignore” to use the replacement char U+FFFD “€” for invalid data
— ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.recover.read (stream: BinarylO, errors: str = 'surrogateescape’) — Tuple[Drawing, Auditor]
Read a DXF document from a binary-stream similar to ezdxf. read (), but this function will detect the text
encoding automatically and repair as much flaws as possible, runs the required audit process afterwards and returns
the DXF document and the Auditor.

Parameters
* stream - data stream to load in binary read mode
* errors — specify decoding error handler
— 7surrogateescape” to preserve possible binary data (default)
— “ignore” to use the replacement char U+FFFD “€” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures
* UnicodeDecodeError — if errors is “strict” and a decoding error occurs

ezdxf.recover.explore (filename: Union[str, pathlib.Path], errors: str = 'ignore’') — Tuple[Drawing, Au-

ditor]
Read a DXF document from file system similar to readfile (), but this function will use a special tag loader,

which synchronise the tag stream if invalid tags occur. This function is intended to load corrupted DXF files and
should only be used to explore such files, data loss is very likely.

Parameters

* filename - file-system name of the DXF document to load

6.8. Reference 211

ezdxf Documentation, Release 0.17.2

» errors — specify decoding error handler
— ”surrogateescape” to preserve possible binary data (default)
— ”ignore” to use the replacement char U+FFFD “@” for invalid data
— 7strict” to raise an UnicodeDecodeError exception for invalid data
Raises
* DXFStructureError — for invalid or corrupted DXF structures

* UnicodeDecodeError —if errors is “strict” and a decoding error occurs

6.8.2 DXF Structures

Sections

Header Section

The drawing settings are stored in the HEADER section, which is accessible by the header attribute of the Drawing
object. See the online documentation from Autodesk for available header variables.

See also:
DXF Internals: HEADER Section

class ezdxf.sections.header.HeaderSection

custom_vars
Stores the custom drawing properties in a CustomVars object.

len () —int
Returns count of header variables.

__contains___ (key) — bool
Returns True if header variable key exist.

varnames () — KeysView
Returns an iterable of all header variable names.

get (key: str, default: Optional[Any] = None) — Any
Returns value of header variable key if exist, else the default value.

__getitem__ (key: str) — Any
Get header variable key by index operator like: drawing.header['$ACADVER']

__setitem__ (key: str, value: Any) — None
Set header variable key to value by index operator like: drawing.header ['$ANGDIR'] = 1

__delitem__ (key: str) — None
Delete header variable key by index operator like: del drawing.header['S$ANGDIR']

class ezdxf.sections.header.CustomVars
Stores custom properties in the DXF header as SCUSTOMPROPERTYTAG and $CUSTOMPROPERTY values.
Custom properties are just supported by DXF R2004 (AC1018) or later. ezdxf can create custom properties at
older DXF versions, but AutoCAD will not show this properties.

properties
List of custom drawing properties, stored as string tuples (tag, value). Multiple occurrence of the same

212 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A85E8E67-27CD-4C59-BE61-4DC9FADBE74A

ezdxf Documentation, Release 0.17.2

custom tag is allowed, but not well supported by the interface. This is a standard python list and it is save to
change this list as long you store just tuples of strings in the format (tag, value).

len__ () —int
Count of custom properties.

__iter_ () — Iterable[Tuple[str, str]]
Iterate over all custom properties as (tag, value) tuples.

clear () — None
Remove all custom properties.

get (tag: str, default: Optional[str] = None)
Returns the value of the first custom property tag.

has_tag (tag: str) — bool
Returns True if custom property tag exist.

append (tag: str, value: str) — None
Add custom property as (tag, value) tuple.

replace (fag: str, value: str) — None
Replaces the value of the first custom property fag by a new value.

Raises DXFValueError if fag does not exist.

remove (tag: str, all: bool = False) — None
Removes the first occurrence of custom property tag, removes all occurrences if all is True.

Raises :class:"DXFValueError if tag does not exist.

Classes Section

The CLASSES section in DXF files holds the information for application-defined classes whose instances appear in Lay —
out objects. As usual package user there is no need to bother about CLASSES.

See also:
DXF Internals: CLASSES Section

class ezdxf.sections.classes.ClassesSection

classes
Storage of all DXF'C1ass objects, they are not stored in the entities database, because CLASS has no handle
attribute.

register (classes: Iterablel DXFClass])

add_class (name: str)
Register a known class by name.

get (name: str) — DXFClass
Returns the first class matching name.

Storage key is the (name, cpp_class_name) tuple, because there are some classes with the same
name but different cpp_class_names.

add_required_classes (name: str) — DXFClass
Add all required CLASS definitions for dxfversion.

update_instance_counters () — None
Update CLASS instance counter for all registered classes, requires DXF R2004+.

6.8. Reference 213

ezdxf Documentation, Release 0.17.2

class ezdxf.entities.DXFClass
Information about application-defined classes.

dxf .name
Class DXF record name.

dxf.cpp_class_name
C++ class name. Used to bind with software that defines object class behavior.

dxf.app_name
Application name. Posted in Alert box when a class definition listed in this section is not currently loaded.

dxf.flags
Proxy capabilities flag

0 No operations allowed (0)
1 Erase allowed (0x1)
2 Transform allowed (0x2)
4 Color change allowed (0x4)
8 Layer change allowed (0x8)
16 Linetype change allowed (0x10)
32 Linetype scale change allowed (0x20)
64 Visibility change allowed (0x40)

128 Cloning allowed (0x80)

256 Lineweight change allowed (0x100)

512 Plot Style Name change allowed (0x200)

895 All operations except cloning allowed (0x37F)
1023 All operations allowed (0x3FF)

1024 Disables proxy warning dialog (0x400)

32768 | R13 format proxy (0x8000)

dxf.instance_count
Instance count for a custom class.

dxf.was_a_proxy
Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise.

dxf.is_an_entity
Set to 1 if class was derived from the DXFGraphic class and can reside in layouts. If 0, instances may
appear only in the OBJECTS section.

key
Unique name as (name, cpp_class_name) tuple.

Tables Section

The TABLES section is the home of all TABLE objects of a DXF document.
See also:
DXEF Internals: TABLES Section

class ezdxf.sections.tables.TablesSection

layers
LayerTable object for Layer objects

214 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

linetypes
LineTypesTable object for Linet ype objects

styles
TextstyleTable object for Textstyle objects

dimstyles
DimStyleTable object for DimStyle objects

appids
AppIDTable object for AppID objects

ucs
UCSTable object for UCSTable objects

views
ViewTable object for View objects

viewports
Viewport Table object for VPort objects

block_records
BlockRecordTable object for BlockRecord objects

Blocks Section

The BLOCKS section is the home all block definitions (Bl ockLayout) of a DXF document.

See also:
DXEF Internals: BLOCKS Section and Block Management Structures

class ezdxf.sections.blocks.BlocksSection

__iter__ () — Iterable[BlockLayout]
Iterable of all BIockLayout objects.

__contains__ (name: str) — bool
Returns True if BlockLayout name exist.

__getitem__ (name: str) — BlockLayout
Returns Bl ockLayout name, raises DXFKeyError if name not exist.

__delitem___ (name: str) — None
Deletes Bl ockLayout name and all of its content, raises DXFKeyError if name not exist.

get (self, name: str, default=None) — BlockLayout
Returns Bl ockLayout name, returns default if name not exist.

new (name: str, base_point: Vertex = (0, 0, 0), dxfattribs: dict = None) — BlockLayout
Create and add a new BlockLayout, name is the BLOCK name, base_point is the insertion point of the
BLOCK.

new_anonymous_block (type_char: str = 'U’, base_point: Vertex = (0, 0, 0)) — BlockLayout
Create and add a new anonymous Bl ockLayout, type_char is the BLOCK type, base_point is the insertion
point of the BLOCK.

6.8. Reference 215

ezdxf Documentation, Release 0.17.2

type_char | Anonymous Block Type

'y’ ' *U##4#' anonymous BLOCK

'E! ' *E##+# ' anonymous non-uniformly scaled BLOCK
X! " *X### ' anonymous HATCH graphic

'D! ' *D### ' anonymous DIMENSION graphic

A’ ' *A##4# ' anonymous GROUP

'T! ' *T##4# ' anonymous block for ACAD_TABLE content

rename_block (old_name: str, new_name: str) — None
Rename BlockLayout old_name to new_name

delete_block (name: str, safe: bool = True) — None
Delete block. If save is True, check if block is still referenced.

Parameters
¢ name — block name (case insensitive)

» safe — check if block is still referenced or special block without explicit references

Raises
* DXFKeyError — if block not exists

e DXFBlockInUseError —if block is still referenced, and save is True

delete_all_blocks ()

Delete all blocks without references except modelspace- or paperspace layout blocks, special arrow- and
anonymous blocks (DIMENSION, ACAD_TABLE).

Warning: There could exist undiscovered references to blocks which are not documented in the DXF

reference, hidden in extended data sections or application defined data, which could produce invalid DXF
documents if such referenced blocks will be deleted.

Changed in version 0.14: removed unsafe mode
Entities Section

The ENTITIES section is the home of all Mode 1 space and active Paperspace layout entities. This is a real section
in the DXF file, for ezdxf the Ent it ySect ionis just a proxy for modelspace and the active paperspace linked together.

See also:
DXF Internals: ENTITIES Section

class ezdxf.sections.entities.EntitySection

__iter_ () — Iterable[DXFEntity]
Iterable for all entities of modelspace and active paperspace.

len__ () —int
Returns count of all entities of modelspace and active paperspace.

216 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Objects Section

The OBJECTS section is the home of all none graphical objects of a DXF document. The OBJECTS section is accessible
by Drawing.objects.

Convenience methods of the Drawing object to create required structures in the OBJECTS section:
e IMAGEDEF: add_image_def ()
e UNDERLAYDEF: add_underlay_ def ()
* RASTERVARIABLES: set_raster_variables ()
e WIPEOUTVARIABLES: set_wipeout_variables ()
See also:
DXF Internals: OBJECTS Section

class ezdxf.sections.objects.ObjectsSection

rootdict
Returns the root DICTIONARY, or as AutoCAD calls it: the named DICTIONARY.

len__ () —int
Returns count of DXF objects.

__iter__ ()
Returns iterable of all DXF objects in the OBJECTS section.

__getitem__ (index) — DXFObject
Get entity at index.

The underlying data structure for storing DXF objects is organized like a standard Python list, therefore index
can be any valid list indexing or slicing term, like a single index objects [-1] to get the last entity, or an
index slice objects[:10] to get the first 10 or less objects as List [DXFObject].

__contains___ (entity)
Returns True if entity stored in OBJECTS section.

Parameters entity — DXFObject or handle as hex string

query (query: str = '*') — ezdxf.query.EntityQuery
Get all DXF objects matching the Entity Query String.

add_dictionary (owner: str = '0', hard_owned: bool = True) — ezdxf entities.dictionary.Dictionary
Add new Dictionary object.

Parameters
e owner — handle to owner as hex string.
* hard_owned — True to treat entries as hard owned.

add_dictionary with_default (owner="'0', default="0', hard_owned: bool = True) — Dictio-
naryWithDefault
Add new DictionaryWithDefault object.

Parameters
¢ owner — handle to owner as hex string.
e default - handle to default entry.

¢ hard_owned — True to treat entries as hard owned.

6.8. Reference 217

ezdxf Documentation, Release 0.17.2

add_dictionary_var (owner: str = ‘0, value: str = ") — DictionaryVar
Add anew DictionaryVar object.

Parameters
¢ owner - handle to owner as hex string.
¢ value - value as string

add_geodata (owner: str = '0', dxfattribs: dict = None) — GeoData
Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OBJECTS
section and NOT in the layout entity space and it is linked to the layout by an extension dictionary located in
BLOCK_RECORD of the layout.

The GEODATA entity requires DXF version R2010+. The DXF Reference does not document if other
layouts than model space supports geo referencing, so getting/setting geo data may only make sense for the
model space layout, but it is also available in paper space layouts.

Parameters
* owner - handle to owner as hex string
e dxfattribs — DXF attributes for GeoDat a entity

add_image_def (filename: str, size_in_pixel: Tuple[int, int], name=None) — ImageDef
Add an image definition to the objects section.

Add an TmageDef entity to the drawing (objects section). filename is the image file name as relative or
absolute path and size_in_pixel is the image size in pixel as (X, y) tuple. To avoid dependencies to external
packages, ezdxf can not determine the image size by itself. Returns a ImageDef entity which is needed to
create an image reference. name is the internal image name, if set to None, name is auto-generated.

Absolute image paths works best for AutoCAD but not really good, you have to update external references
manually in AutoCAD, which is not possible in TrueView. If the drawing units differ from 1 meter, you also
have to use: set_raster variables ().

Parameters
¢ filename — image file name (absolute path works best for AutoCAD)
* size_in_pixel - image size in pixel as (X, y) tuple
* name — image name for internal use, None for using filename as name (best for AutoCAD)

add_placeholder (owner: str = '0') — Placeholder
Add anew Placeholder object.

Parameters owner — handle to owner as hex string.

add_underlay_def (filename: str, fmt: str = 'pdf', name: str = None) — UnderlayDefinition
Add an UnderlayDefinition entity to the drawing (OBJECTS section). filename is the underlay file
name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay definition is required to
create an underlay reference.

Parameters
* filename — underlay file name
e fmt - file format as string 'pdf' | 'dwf' | 'dgn’
* name — pdf format = page number to display; dgn format = 'default'; dwf: 77?7

add_xrecord (owner: str = '0') — XRecord
Add a new XRecord object.

Parameters owner — handle to owner as hex string.

218 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

set_raster_variables (frame: int = 0, quality: int = 1, units: str = 'm') — None
Set raster variables.

Parameters
¢ frame — 0 = do not show image frame; 1 = show image frame
e quality — 0 =draft; 1 = high

* units — units for inserting images. This defines the real world unit for one drawing unit for
the purpose of inserting and scaling images with an associated resolution.

mm | Millimeter

cm | Centimeter

m Meter (ezdxf default)
km | Kilometer

in Inch
ft Foot
yd Yard
mi Mile

(internal API), public interface set_raster_variables ()

set_wipeout_variables (frame: int = 0) — None
Set wipeout variables.

Parameters f£rame — 0 = do not show image frame; 1 = show image frame

(internal API)

Tables

Table Classes

Generic Table Class

class ezdxf.sections.table.Table

Generic collection of table entries. Table entry names are case insensitive: “Test” == “TEST”.

static key (entity: Union[str, DXFEntity]) — str
Unified table entry key.

has_entry (name: Union[str, DXFEntity]) — bool
Returns True if an table entry name exist.

__contains___ (name: Union[str, DXFEntity]) — bool
Returns True if an table entry name exist.

len__ () —int
Count of table entries.

__iter__ () — Iterable[DXFEntity]
Iterable of all table entries.

new (name: str, dxfattribs: dict = None) — DXFEntity
Create a new table entry name.

Parameters

6.8. Reference

219

ezdxf Documentation, Release 0.17.2

* name — name of table entry, case insensitive
e dxfattribs — additional DXF attributes for table entry

get (name: str) — DXFEntity
Get table entry name (case insensitive). Raises DXFValueError if table entry does not exist.

remove (name: str) — None
Removes table entry name. Raises DXFValueError if table-entry does not exist.

duplicate_entry (name: str, new_name: str) — DXFEntity
Returns a new table entry new_name as copy of name, replaces entry new_name if already exist.

Raises DXFValueError — name does not exist

Layer Table

class ezdxf.sections.table.LayerTable
Subclass of Table.

Collection of Layer objects.

add (name: str, *, color: int = 256, true_color: int = None, linetype: str = 'Continuous’, lineweight: int = - 1,
plot: bool = True, transparency: Optional[float] = None, dxfattribs: Dict = None) — Layer
Add anew Layer.

Parameters
* name (str) - layer name
e color (int)— AutoCAD Color Index (ACI) value, default is BYLAYER

¢ true_color (int) — true color value, use ezdxf.rgb2int () to create int values
from RGB values

* linetype (str) - line type name, default is “Continuous”
* lineweight (int) - line weight, default is BYLAYER
e plot (bool) - plot layer as bool, default is True

* transparency - transparency value in the range [0, 1], where 1 is 100% transparent and
0 is opaque
e dxfattribs (dict) - additional DXF attributes

New in version 0.17.

Linetype Table

class ezdxf.sections.table.LinetypeTable
Subclass of Table.

Collection of Linet ype objects.

add (name: str, pattern: Union[List[float], str], *, description: str = ", length: float = 0.0, dxfattribs: Dict =
None) — Linetype
Add a new line type entry. The simple line type pattern is a list of floats [total_pattern_length,
eleml, elem2, ...] wherean element> 0 is a line, an element < O is a gap and an element == 0.0
is a dot. The definition for complex line types are strings, like: 'A, .5,-.2, ["GAS", STANDARD, S=.
1,U=0.0,X=-0.1,Y=-.05],—.25" similar to the line type definitions stored in the line definition .lin

220 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

files, for more information see the tutorial about complex line types. Be aware that not many CAD applications
and DXF viewers support complex linetypes.

See also:

 Tutorial for simple line types

e Tutorial for complex line types

Parameters
* name (str) - line type name
* pattern - line type pattern as list of floats or as a string
* description (str) - line type description, optional
* length (float) - total pattern length, only for complex line types required
e dxfattribs (dict) - additional DXF attributes

New in version 0.17.

Style Table

class ezdxf.sections.table.TextstyleTable
Subclass of Table.

Collection of Textstyle objects.

add (name: str, *, font: str, dxfattribs: Dict = None) — Textstyle
Add a new text style entry for TTF fonts. The entry must not yet exist, otherwise an DXFTableEntryEr—
ror exception will be raised.

Finding the TTF font files is the task of the DXF viewer and each viewer is different (hint: support files).
Parameters
* name (str) — text style name

e font (str)-TTF font file name like “Arial.ttf”, the real font file name from the file system
is required and remember only Windows is case insensitive.

e dxfattribs (dict) - additional DXF attributes
New in version 0.17.

add_shx (shx_file: str, *, dxfattribs: Dict = None) — Textstyle
Add a new shape font (SHX file) entry. These are special text style entries and have no name. The entry must
not yet exist, otherwise an DXFTableEntryError exception will be raised.

Finding the SHX files is the task of the DXF viewer and each viewer is different (hint: support files).
Parameters
e shx_file (str) - shape file name like “gdt.shx”
e dxfattribs (dict) - additional DXF attributes

New in version 0.17.

6.8. Reference 221

https://ezdxf.mozman.at/docs/tutorials/linetypes.html
https://ezdxf.mozman.at/docs/tutorials/linetypes.html#tutorial-for-complex-linetypes

ezdxf Documentation, Release 0.17.2

get_shx (shx_file: str) — Textstyle
Get existing entry for a shape file (SHX file), or create a new entry.

Finding the SHX files is the task of the DXF viewer and each viewer is different (hint: support
Parameters shx_file (str) - shape file name like “gdt.shx”

find_shx (shx_file: str) — Optional[Textstyle]
Find the shape file (SHX file) text style table entry, by a case insensitive search.

A shape file table entry has no name, so you have to search by the font attribute.

Parameters shx_file (str) - shape file name like “gdt.shx”

DimStyle Table

class ezdxf.sections.table.DimStyleTable
Subclass of Table.

Collection of DimSt y1e objects.

add (name: str, *, dxfattribs: Dict = None) — DimStyle
Add a new dimension style table entry.

Parameters
* name (str)— dimension style name
e dxfattribs (dict) - DXEF attributes

New in version 0.17.

ApplD Table

class ezdxf.sections.table.AppIDTable
Subclass of Table.

Collection of AppID objects.

add (name: str, *, dxfattribs: Dict = None) — AppID
Add a new appid table entry.

Parameters
* name (str)— appid name
e dxfattribs (dict) - DXF attributes

New in version 0.17.

files).

222 Chapter 6

. Contents

ezdxf Documentation, Release 0.17.2

UCS Table

class ezdxf.sections.table.UCSTable
Subclass of Table.

Collection of UCSTableEntry objects.

add (name: str, *, dxfattribs: Dict = None) — UCSTableEntry
Add a new UCS table entry.

Parameters
¢ name (str) - UCS name
e dxfattribs (dict) - DXF attributes

New in version 0.17.

View Table

class ezdxf.sections.table.ViewTable
Subclass of Table.

Collection of View objects.

add (name: str, *, dxfattribs: Dict = None) — View
Add a new view table entry.

Parameters
¢ name (str)— view name
e dxfattribs (dict)- DXF attributes

New in version 0.17.

Viewport Table

class ezdxf.sections.table.ViewportTable

The viewport table stores the modelspace viewport configurations. A viewport configuration is a tiled view of
multiple viewports or just one viewport. In contrast to other tables the viewport table can have multiple entries
with the same name, because all viewport entries of a multi-viewport configuration are having the same name - the

viewport configuration name.

The name of the actual displayed viewport configuration is “* ACTIVE”.

Duplication of table entries is not supported: duplicate_entry () raises Not ImplementedError

add (name: str, *, dxfattribs: Dict = None) — VPort

Add a new modelspace viewport entry. A modelspace viewport configuration can consist of multiple viewport

entries with the same name.

Parameters

* name (str) - viewport name, multiple entries possible

e dxfattribs (dict) - additional DXF attributes

New in version 0.17.

get_config (self, name: str) — List[VPort]

Returns a list of VPort objects, for the multi-viewport configuration name.

6.8. Reference

223

ezdxf Documentation, Release 0.17.2

delete_config (name: str) — None
Delete all VPort objects of the multi-viewport configuration name.

Block Record Table

class ezdxf.sections.table.BlockRecordTable
Subclass of Table.

Collection of B1ockRecord objects.

add (name: str, *, dxfattribs: Dict = None) — BlockRecord
Add a new block record table entry.

Parameters
¢ name (str)— block record name
e dxfattribs (dict) - DXF attributes

New in version 0.17.

Layer

LAYER (DXF Reference) definition, defines attribute values for entities on this layer for their attributes set to BY LAYER.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'LAYER'
Factory function | Drawing.layers.new ()

See also:
Layer Concept and Tutorial for Layers

class ezdxf.entities.Layer

dxf.handle
DXEF handle (feature for experts)

dxf.owner
Handle to owner (LayerTable).

dxf .name
Layer name, case insensitive and can not contain any of this characters: <>/\":; ?2*|=" (str)

dxf.flags
Layer flags (bit-coded values, feature for experts)

Layer is frozen; otherwise layer is thawed; use is_frozen (), freeze () and thaw ()

Layer is frozen by default in new viewports

Layer is locked; use is_locked (), lock (), unlock ()

6 | If set, table entry is externally dependent on an xref

32 | If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is for the benefit of AutoCAD commands. It can be ignored by most programs
that read DXF files and need not be set by programs that write DXF files)

SN N

224 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-D94802B0-8BE8-4AC9-8054-17197688AFDB

ezdxf Documentation, Release 0.17.2

dxf.color
Layer color, but use property Layer. color to get/set color value, because color is negative for layer status

off (int)

dxf.true_color
Layer true color value as int, use property Layer. rgb to set/get true color value as (r, g, b) tuple.

(requires DXF R2004)

dxf.linetype
Name of line type (str)

dxf.plot
Plot flag (int). Whether entities belonging to this layer should be drawn when the document is exported
(plotted) to pdf. Does not affect visibility inside the CAD application itself.

—

plot layer (default value)
0 | don’t plot layer

dxf.lineweight
Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line weight is 200,
values outside this range prevents AutoCAD from loading the file.

ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight.
(requires DXF R13)

dxf.plotstyle_handle
Handle to plot style name?

(requires DXF R13)

dxf.material_handle
Handle to default Material.

(requires DXF R13)

rgb
Get/set DXF attribute dxf. t rue_color as (1, g, b) tuple, returns None if attribute dxf. t rue_color
is not set.

layer.rgb = (30, 40, 50)
r, g, b = layer.rgb

This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level
attribute dxf.true color.

color
Get/set layer color, preferred method for getting the layer color, because dxf. color is negative for layer
status off.

description
Get/set layer description as string

transparency
Get/set layer transparency as float value in the range from 0 to 1. O for no transparency (opaque) and 1 for
100% transparency.

is_frozen () — bool
Returns True if layer is frozen.

6.8. Reference 225

ezdxf Documentation, Release 0.17.2

freeze () — None
Freeze layer.

thaw () — None
Thaw layer.

is_locked () — bool
Returns True if layer is locked.

lock () — None
Lock layer, entities on this layer are not editable - just important in CAD applications.

unlock () — None
Unlock layer, entities on this layer are editable - just important in CAD applications.

is_off () — bool
Returns True if layer is off.

is_on () — bool
Returns True if layer is on.

on () — None
Switch layer on (visible).

off () — None
Switch layer off (invisible).

get_color () — int
Use property Layer.color instead.

set_color (value: int) — None
Use property Layer. color instead.

rename (name: str) — None
Rename layer and all known (documented) references to this layer.

Warning: Renaming layers may damage the DXF file in some circumstances!

Parameters name — new layer name

Raises
¢ ValueError — name contains invalid characters: <>/":;7*|="
* ValueError - layer name already exist

* ValueError —renaming of layers ' 0' and 'DEFPOINTS ' not possible

Style

Important: DXF is not a layout preserving data format like PDF. It is more similar to the MS Word format. Many
applications can open MS Word documents, but the displayed or printed document does not look perfect like the result
of MS Word.

The final rendering of DXF files is highly dependent on the interpretation of DXF entities by the rendering engine, and the
DXEF reference does not provide any guidelines for rendering entities. The biggest visual differences of CAD applications
are the text renderings, therefore the only way to get the exact same result is to use the same CAD application.

226 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

The DXF format does not and can not embed TTF fonts like the PDF format!

The Text st y1e entity defines a text style (DXF Reference), and can be used by the entities: Text, Attrib, Attdef,
MText, Dimension, Leader and MultiLeader.

Example to create a new text style “Arial” and to apply this text style:

doc.styles.add ("Arial", font="Arial.ttf")
msp = doc.modelspace ()
msp.add_text ("my text", dxfattribs={"style": "Arial"})

The settings stored in the Text st y1e entity are the default text style values used by CAD applications if the text settings
are not stored in the text entity itself. But not all setting are substituted by the default value. The height or width
attribute must be stored in the text entities itself in order to influence the appearance of the text. It is recommended that
you do not rely on the default settings in the Text sty 1e entity, set all attributes in the text entity itself if supported.

Font Settings

Just a few settings are available exclusive by the Text sty le entity:

The most important setting is the font attribute, this attribute defines the rendering font as raw TTF file name, e.g.
“Arial.ttf” or “OpenSansCondensed-Light.ttf”, this file name is often not the name displayed in GUI application and you
have to digg down into the fonts folder e.g. (“C:\Windows\Fonts”) to get the the real file name for the TTF font. Do not
include the path!

6.8. Reference 227

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EF68AF7C-13EF-45A1-8175-ED6CE66C8FC9

ezdxf Documentation, Release 0.17.2

Algemein Sicherheit Detals Vorgdngerversionen

A OpenSansCondensed-Light tf

Dateityp: True Type-Schriftartendatei ()

Cffnen mit: A Windows-Schriftartenanzeige Endem...

Ort: CWindows\Fonts

Grofe: 215 KB (220,540 Bytes)

Grole auf ‘

Datentrager: 216 KB (221.184 Bytes)

Erstellt: Sonntag, 30. Dezember 2018, 11:34:05

Geandert: Martag, 9. Mai 2011, 01:00:00

fgt”ﬁr Heute, 21. Februar 2021, vor 38 Minuten
Atribute: [] Schreibgeschiitzt Erweitert...
[] Versteckt
QK Abbrechen Dbemehmen

AutoCAD supports beyond the legacy SHX fonts only TTF fonts. The SHX font format is not documented and only
available in some CAD applications. The ezdxf drawing add-on replaces the SHX fonts by TTF fonts, which look
similar to the SHX fonts, unfortunately the license of these fonts is unclear, therefore they can not be packaged with
ezdxf. They are installed automatically if you use an Autodesk product like TrueView, or search the internet at you own
risk for these TTF fonts.

The extended font data can provide extra information for the font, it is stored in the XDATA section, not well documented
and not widely supported.

Important: The DXF format does not and can not embed TTF fonts like the PDF format!

You need to make sure that the CAD application is properly configured to have access to the system fonts. The DXF
format has no setting where the CAD application should search for fonts, and does not guarantee that the text rendering
on other computers or operating systems looks the same as on your current system on which you created the DXF.

The second exclusive setting is the vertical text flag in Textstyle.flags. The vertical text style is enabled for all
entities using the text style. Vertical text works only for SHX fonts and is not supported for TTF fonts (in AutoCAD) and
is works only for the single line entities Text and At trib. Most CAD applications beside AutoCAD and BricsCAD
do not support vertical text rendering and even AutoCAD and BricsCAD have problems with vertical text rendering in
some circumstances. Using the vertical text feature is not recommended.

228 Chapter 6. Contents

https://www.autodesk.com/products/dwg/viewers

ezdxf Documentation, Release 0.17.2

Subclass of ezdxf.entities.DXFEntity
DXF type 'STYLE'
Factory function | Drawing.styles.new ()

See also:
Tutorial for Text and DXF internals for DIMSTYLE Table.

class ezdxf.entities.Textstyle

property is_backward
Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.

property is_upside_down
Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.

property is_vertical_stacked
Get/set style flag VERTICAL_STACKED, for vertical stacked text.

dxf.handle
DXEF handle (feature for experts).

dxf.owner
Handle to owner (TextstyleTable).

dxf .name
Style name (str)

dxf.flags
Style flags (feature for experts).

1 If set, this entry describes a shape

Vertical text

16 | If set, table entry is externally dependent on an xref

32 | If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)commands. It can be ignored by most
programs that read DXF files and need not be set by programs that write DXF files)

dxf.height
Fixed height in drawing units as float value, O for not fixed.

dxf.width
Width factor as float value, default value is 1.

dxf.oblique
Oblique (slanting) angle in degrees as float value, default value is O for no slanting.

dxf.generation_flags
Text generations flags as int value.

[\

text is backward (mirrored along the x-axis)
4 | textis upside down (mirrored about the base line)

dxf.last_height
Last height used in drawing units as float value.

6.8. Reference 229

ezdxf Documentation, Release 0.17.2

dxf.font
Raw font file name as string without leading path, e.g. “Arial.ttf” for TTF fonts or the SHX font name like
“TXT” or “TXT.SHX".

dxf .bigfont
Big font name as string, blank if none. No documentation how to use this feature, maybe just a legacy artifact.

property has_extended_font_data
Returns True if extended font data is present.

get_extended_font_data () — Tuple[str, bool, bool]
Returns extended font data as tuple (font-family, italic-flag, bold-flag).

73]

The extended font data is optional and not reliable! Returns (7, False, False) if extended font data is not

present.

set_extended_font_data (family: str = ", *, italic=False, bold=False) — None
Set extended font data, the font-family name family is not validated by ezdxf. Overwrites existing data.

discard_extended_font_data()
Discard extended font data.

make_font (cap_height: float = None, width_factor: float = None) — AbstractFont
Returns a font abstraction AbstractFont for this text style. Returns a font for a cap height of 1, if the
text style has auto height (Textstyle.dxf.height is 0) and the given cap_height is None or 0. Uses
the Textstyle.dxf.width attribute if the given width_factor is None or 0, the default value is 1. The
attribute Textstyle.dxf.big_~font isignored.

Linetype

Defines a linetype (DXF Reference).

Subclass of ezdxf.entities.DXFEntity
DXEF type 'LTYPE'
Factory function | Drawing.linetypes.new ()

See also:

Tutorial for Linetypes

DXEF Internals: LTYPE Table

class ezdxf.entities.Linetype

dxf.name
Linetype name (str).

dxf.owner
Handle to owner (Table).

dxf.description
Linetype description (str).

dxf.length
Total pattern length in drawing units (float).

dxf.items
Number of linetype elements (int).

230

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F57A316C-94A2-416C-8280-191E34B182AC

ezdxf Documentation, Release 0.17.2

DimStyle
blue vars available in R13+ Text
green vars available in R2007+ color: dimlrt (178)
v-position: dimtad=1(77)
Dimension Line h-position: dimjust (280) suppress
Suppress color: dimrld (176) dimsoxd (1
dimsod (175) N lineweight: dimwd (371) g
— dimdle (46) linetype: dimltype (345) = dimdle (46)
3 A+ E ++ g
g I sl 7| I g
£ ia 7T 2
LArrovv 1 = Arrow 2 J -
block name: dimblk1 (6) or dimblk(5) = block name: dimblk2 (7)
scale factor: dimasz (41) — 300 — & or dimblk(5)
color: dimclrd (176) =
on/off: dimsah (173) 'H‘ N
stroke instead blk: dimtsz> 0 (142) jlmtgaé)_g4777) . Extension Line 2 *\
Extension Line 1 imtad=0(77) =3 suppress: dimse2 (76)
f(olor dimdlre (177) 7i o linetype: dimltex2 (347)
_ suppress: dimse1 (75) 300 & .
= lineweight: dimlwe (372) dimtad=4 (77) - <
2 I linetype: dimltex1 (346) I 2
= > > g 12

distance: 3 draWing units i Definition points defined in the Dimension entity

blue vars available in R13+ measurement * (dimlfac = 100) (144)

dimmd = 0.5 (45): rounding value
dimdec =1(271): decimal places

dimtad=1(77)

dimzin =12 (78): zero suppression

dimsep="."(278)

dimtvp=0 (145)

fimtadzo (77)
dimsd1 (281)

=
dimgap (147)

-
00.5
i
00.

\\ dimsd2 (282)

suppress suppress

dimgap (147)

ﬁ dimgap (147)
dimtxt(140)

dimpost = "<>mm" (3)

DIMSTYLE (DXF Reference) defines the appearance of Dimension entities. Each of this dimension variables starting
with "dim. . ." can be overridden for any Dimension entity individually.

6.8. Reference 231

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F2FAD36F-0CE3-4943-9DAD-A9BCD2AE81DA

ezdxf Documentation, Release 0.17.2

Subclass of ezdxf.entities.DXFEntity
DXF type '"DIMSTYLE'
Factory function | Drawing.dimstyles.new ()

class ezdxf.entities.DimStyle

dxf.owner
Handle to owner (Table).

dxf.name
Dimension style name.

dxf.flags
Standard flag values (bit-coded values):

16 | If set, table entry is externally dependent on an xref

32 | If both this bit and bit 16 are set, the externally dependent XREF has been successfully resolved
64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.dimpost
Prefix/suffix for primary units dimension values.

dxf.dimapost
Prefix/suffix for alternate units dimensions.

dxf.dimblk
Block type to use for both arrowheads as name string.

dxf.dimblkl
Block type to use for first arrowhead as name string.

dxf.dimblk2
Block type to use for second arrowhead as name string.

dxf.dimscale
Global dimension feature scale factor. (default=1)

dxf.dimasz
Dimension line and arrowhead size. (default=0.25)

dxf.dimexo
Distance from origin points to extension lines. (default imperial=0.0625, default metric=0.625)

dxf.dimdli
Incremental spacing between baseline dimensions. (default imperial=0.38, default metric=3.75)

dxf .dimexe
Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25)

dxf.dimrnd
Rounding value for decimal dimensions. (default=0)

Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to 0.25, all distances
round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer.

dxf.dimdle
Dimension line extension beyond extension lines. (default=0)

232 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf.

dxf

.dimtp

Upper tolerance value for tolerance dimensions. (default=0)

dimtm

Lower tolerance value for tolerance dimensions. (default=0)

dimtxt

Size of dimension text. (default imperial=0.28, default metric=2.5)

dimcen

Controls placement of center marks or centerlines. (default imperial=0.09, default metric=2.5)
dimtsz

Controls size of dimension line tick marks drawn instead of arrowheads. (default=0)
dimaltf

Alternate units dimension scale factor. (default=25.4)

dimlfac

Scale factor for linear dimension values. (default=1)

dimtvp

Vertical position of text above or below dimension line if dimtad is 0. (default=0)
dimtfac

Scale factor for fractional or tolerance text size. (default=1)
dimgap

Gap size between dimension line and dimension text. (default imperial=0.09, default metric=0.625)
dimaltrnd

Rounding value for alternate dimension units. (default=0)
dimtol

Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0)
dimlim

Toggles creation of limits-style dimension text. (default=0)
dimtih

Orientation of text inside extension lines. (default imperial=1, default metric=0)
dimtoh

Orientation of text outside extension lines. (default imperial=1, default metric=0)
dimsel

Toggles suppression of first extension line. (default=0)
dimse2

Toggles suppression of second extension line. (default=0)
dimtad

Sets vertical text placement relative to dimension line. (default imperial=0, default metric=1)

0 | center
1 | above
2 | outside, handled like above by ezdxf
3 | JIS, handled like above by ezdxf
4 | below
.dimzin

Zero suppression for primary units dimensions. (default imperial=0, default metric=8)

6.8.

Reference 233

ezdxf Documentation, Release 0.17.2

Values 0-3 affect feet-and-inch dimensions only.

Suppresses zero feet and precisely zero inches

Includes zero feet and precisely zero inches

Includes zero feet and suppresses zero inches

Includes zero inches and suppresses zero feet

Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)
Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)
2 | Suppresses both leading and trailing zeros (for example, 0.5000 becomes .5)

— 00| | W=D

dxf.dimazin
Controls zero suppression for angular dimensions. (default=0)

0 | Displays all leading and trailing zeros

1 | Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000)

2 | Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5)

3 | Suppresses leading and trailing zeros (for example, 0.5000 becomes .5)
dxf.dimalt

Enables or disables alternate units dimensioning. (default=0)

dxf.dimaltd
Controls decimal places for alternate units dimensions. (default imperial=2, default metric=3)

dxf.dimtofl
Toggles forced dimension line creation. (default imperial=0, default metric=1)

dxf.dimsah
Toggles appearance of arrowhead blocks. (default=0)

dxf.dimtix
Toggles forced placement of text between extension lines. (default=0)

dxf.dimsoxd
Suppresses dimension lines outside extension lines. (default=0)

dxf.dimclrd
Dimension line, arrowhead, and leader line color. (default=0)

dxf.dimclre
Dimension extension line color. (default=0)

dxf.dimclrt
Dimension text color. (default=0)

dxf.dimadec
Controls the number of decimal places for angular dimensions.

dxf.dimunit
Obsolete, now use DIMLUNIT AND DIMFRAC

dxf.dimdec
Decimal places for dimension values. (default imperial=4, default metric=2)

dxf.dimtdec
Decimal places for primary units tolerance values. (default imperial=4, default metric=2)

dxf.dimaltu
Units format for alternate units dimensions. (default=2)

234 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf.dimalttd
Decimal places for alternate units tolerance values. (default imperial=4, default metric=2)

dxf.dimaunit
Unit format for angular dimension values. (default=0)

dxf.dimfrac
Controls the fraction format used for architectural and fractional dimensions. (default=0)

dxf.dimlunit
Specifies units for all nonangular dimensions. (default=2)

dxf.dimdsep
Specifies a single character to use as a decimal separator. (default imperial = “.”, default metric = “,”) This is
an integer value, use ord (" .") to write value.

dxf .dimtmove
Controls the format of dimension text when it is moved. (default=0)

Moves the dimension line with dimension text
Adds a leader when dimension text is moved
2 | Allows text to be moved freely without a leader

— O

dxf.dimjust
Horizontal justification of dimension text. (default=0)

Center of dimension line

Left side of the dimension line, near first extension line
Right side of the dimension line, near second extension line
Over first extension line

Over second extension line

AW =IO

dxf.dimsdl
Toggles suppression of first dimension line. (default=0)

dxf.dimsd2
Toggles suppression of second dimension line. (default=0)

dxf.dimtolj
Vertical justification for dimension tolerance text. (default=1)

Align with bottom line of dimension text
Align vertical centered to dimension text
Align with top line of dimension text

N = O

dxf.dimtzin
Zero suppression for tolerances values, see DimStyle.dxf.dimzin

dxf.dimaltz
Zero suppression for alternate units dimension values. (default=0)

dxf.dimalttz
Zero suppression for alternate units tolerance values. (default=0)

dxf.dimfit
Obsolete, now use DIMATFIT and DIMTMOVE

6.8. Reference 235

ezdxf Documentation, Release 0.17.2

dxf.dimupt
Controls user placement of dimension line and text. (default=0)

dxf.dimatfit
Controls placement of text and arrowheads when there is insufficient space between the extension lines. (de-
fault=3)

dxf.dimtxsty
Text style used for dimension text by name.

dxf.dimtxsty_handle
Text style used for dimension text by handle of STYLE entry. (use DimStyle.dxf.dimtxsty to get/set
text style by name)

dxf.dimldrblk
Specify arrowhead used for leaders by name.

dxf.dimldrblk_handle
Specify arrowhead used for leaders by handle of referenced block. (use DimStyle.dxf.dimldrblkto
get/set arrowhead by name)

dxf.dimblk_handle
Block type to use for both arrowheads, handle of referenced block. (use DimStyle.dxf.dimblk to
get/set arrowheads by name)

dxf.dimblkl_handle
Block type to use for first arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk1 to
get/set arrowhead by name)

dxf.dimblk2_handle
Block type to use for second arrowhead, handle of referenced block. (use DimStyle.dxf.dimblk2 to
get/set arrowhead by name)

dxf.dimlwd
Lineweight value for dimension lines. (default=-2, BYBLOCK)

dxf.dimlwe
Lineweight value for extension lines. (default=-2, BYBLOCK)

dxf.dimltype
Specifies the linetype used for the dimension line as linetype name, requires DXF R2007+

dxf.dimltype_handle
Specifies the linetype used for the dimension line as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltype to get/set linetype by name)

dxf.dimltexl
Specifies the linetype used for the extension line 1 as linetype name, requires DXF R2007+

dxf.dimlex1l_handle
Specifies the linetype used for the extension line 1 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex] to get/set linetype by name)

dxf.dimltex2
Specifies the linetype used for the extension line 2 as linetype name, requires DXF R2007+

dxf.dimlex2_handle
Specifies the linetype used for the extension line 2 as handle to LTYPE entry, requires DXF R2007+ (use
DimStyle.dxf.dimltex2 to get/set linetype by name)

dxf.dimfxlon
Extension line has fixed length if set to 1, requires DXF R2007+

236

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf.dimfxl
Length of extension line below dimension line if fixed (DimStyle.dxf.dimtfxlon==1),DimStyle.
dxf .dimexen defines the the length above the dimension line, requires DXF R2007+

dxf.dimt£fill
Text fill O=off; 1=background color; 2=custom color (see DimStyle.dxf.dimtfillclr), requires
DXF R2007+

dxf.dimtfillclr
Text fill custom color as color index (1-255), requires DXF R2007+

dxf.dimarcsym
Display arc symbol, supported only by ArcDimension:

0 | arc symbol preceding the measurement text
1 | arc symbol above the measurement text
2 | disable arc symbol

copy_to_header (dwg: Drawing) — None
Copy all dimension style variables to HEADER section of doc.

set_arrows (blk: str =", blkl: str = ", blk2: str = ", ldrblk: str = ") — None
Set arrows by block names or AutoCAD standard arrow names, set DIMTSZ to 0 which disables tick.

Parameters
¢ blk — block/arrow name for both arrows, if DIMSAH is 0
¢ blk1 — block/arrow name for first arrow, if DIMSAH is 1
¢ blk2 — block/arrow name for second arrow, if DIMSAH is 1
¢ 1drblk - block/arrow name for leader

set_tick (size: float = 1) — None
Set tick size, which also disables arrows, a tick is just an oblique stroke as marker.

Parameters size — arrow size in drawing units

set_text_align (halign: Optional[str] = None, valign: Optional[str] = None, vshift: Optional[float] =

None) — None
Set measurement text alignment, halign defines the horizontal alignment (requires DXF R2000+), valign

defines the vertical alignment, abovel and above2 means above extension line 1 or 2 and aligned with extension
line.

Parameters
¢ halign - “left”, “right”, “center”, “abovel”, “above2”, requires DXF R2000+
e valign - “above”, “center”, “below”

* vshift — vertical text shift, if valign is “center”; >0 shift upward, <0 shift downwards

set_text_format (prefix: str = ", postfix: str = ", rnd: Optional[float] = None, dec: Optional[int] =
None, sep: Optional[str] = None, leading_zeros: bool = True, trailing_zeros: bool =

True)
Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.

Parameters
e prefix — Dimension text prefix text as string

* postfix — Dimension text postfix text as string

6.8.

Reference 237

ezdxf Documentation, Release 0.17.2

¢ rnd - Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

* dec - Sets the number of decimal places displayed for the primary units of a dimension,
requires DXF R2000+

e sep - “” or “,” as decimal separator, requires DXF R2000+

* leading_zeros — Suppress leading zeros for decimal dimensions if False

* trailing_zeros — Suppress trailing zeros for decimal dimensions if False

set_dimline_format (color: Optional[int] = None, linetype: Optional[str] = None, lineweight: Op-
tional[int] = None, extension: Optional[float] = None, disablel: Optional[{bool]
= None, disable2: Optional[bool] = None)
Set dimension line properties

Parameters
¢ color - color index
¢ linetype - linetype as string, requires DXF R2007+
e lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm, requires DXF R2000+
* extension - extension length
e disablel - True to suppress first part of dimension line, requires DXF R2000+
* disable2 - True to suppress second part of dimension line, requires DXF R2000+

set_extline_format (color: Optional[int] = None, lineweight: Optional[int] = None, extension:
Optional[float] = None, offset: Optional[float] = None, fixed_length: Op-

tional[float] = None)
Set common extension line attributes.

Parameters
* color - color index
¢ lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length above dimension line
» offset - offset from measurement point
» fixed_length - set fixed length extension line, length below the dimension line

set_extlinel (linetype: Optional[str] = None, disable=False)
Set extension line 1 attributes.

Parameters
* linetype - linetype for extension line 1, requires DXF R2007+
* disable - disable extension line 1 if True

set_extline2 (linetype: Optional[str] = None, disable=False)
Set extension line 2 attributes.

Parameters
¢ linetype - linetype for extension line 2, requires DXF R2007+

¢ disable — disable extension line 2 if True

238 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

set_tolerance (upper: float, lower:

Optional[float] = None, hfactor: float = 1.0, align: Op-

tional[ezdxf .enums.MTextLineAlignment] = None, dec: Optional[int] = None, lead-

ing_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) — None
Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and
trailing zero suppression.

Parameters

upper — upper tolerance value

lower — lower tolerance value, if None same as upper

hfactor — tolerance text height factor in relation to the dimension text height

align - tolerance text alignment enum ezdxf.enums.MTextLineAlignment re-

quires DXF R2000+

dec — Sets the number of decimal places displayed, requires DXF R2000+

leading_zeros — suppress leading zeros for decimal dimensions if False, requires

DXF R2000+

trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires

DXF R2000+

Changed in version 0.17.2: argument align as enum ezdxf.enums.MTextLineAlignment

set_limits (upper: float, lower: float, hfactor: float = 1.0, dec: Optional[int] = None, leading_zeros:
Optional[bool] = None, trailing_zeros: Optional[bool] = None) — None

Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading
and trailing zero suppression.

Parameters

¢ upper — upper limit value added to measurement value

VPort

lower — lower lower value subtracted from measurement value

hfactor - limit text height factor in relation to the dimension text height

dec — Sets the number of decimal places displayed, requires DXF R2000+

leading_zeros — suppress leading zeros for decimal dimensions if False, requires

DXF R2000+

trailing_zeros — suppress trailing zeros for decimal dimensions if False, requires

DXF R2000+

The viewport table (DXF Reference) stores the modelspace viewport configurations. So this entries just modelspace
viewports, not paperspace viewports, for paperspace viewports see the Viewport entity.

See also:

Subclass of

ezdxf.entities.DXFEntity

DXF type

'VPORT'

Factory function

Drawing.viewports.new ()

DXF Internals: VPORT Configuration Table

6.8. Reference

239

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8CE7CC87-27BD-4490-89DA-C21F516415A9

ezdxf Documentation, Release 0.17.2

class ezdxf.entities.VPort
Subclass of DXFEntity

Defines a viewport configurations for the modelspace.

dxf.owner
Handle to owner (ViewportTable).

dxf.name
Viewport name

dxf.flags
Standard flag values (bit-coded values):

16 | If set, table entry is externally dependent on an xref

32 | If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.lower_left
Lower-left corner of viewport

dxf.upper_right
Upper-right corner of viewport

dxf.center
View center point (in DCS)

dxf.snap_base
Snap base point (in DCS)

dxf.snap_spacing
Snap spacing X and Y

dxf.grid_spacing
Grid spacing X and Y

dxf.direction_point
View direction from target point (in WCS)

dxf.target_point
View target point (in WCS)

dxf.height
View height

dxf.aspect_ratio

dxf.lens_length
Lens focal length in mm

dxf.front_clipping
Front clipping plane (offset from target point)

dxf .back_clipping
Back clipping plane (offset from target point)

dxf.snap_rotation
Snap rotation angle in degrees

dxf.view_twist
View twist angle in degrees

240 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf.status
dxf.view_mode
dxf.circle_zoom
dxf.fast_zoom
dxf.uecs_icon
dxf.snap_on
dxf.grid_on
dxf.snap_style

dxf.snap_isopair

View

The View table (DXF Reference) stores named views of the model or paperspace layouts. This stored views makes parts
of the drawing or some view points of the model in a CAD applications more accessible. This views have no influence
to the drawing content or to the generated output by exporting PDFs or plotting on paper sheets, they are just for the
convenience of CAD application users.

Subclass of ezdxf.entities.DXFEntity
DXF type 'VIEW'
Factory function | Drawing.views.new ()

See also:
DXF Internals: VIEW Table

class ezdxf.entities.View

dxf.owner
Handle to owner (Table).

dxf .name
Name of view.

dxf.flags
Standard flag values (bit-coded values):

1 If set, this is a paper space view

16 | If set, table entry is externally dependent on an xref

32 | If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf .height
View height (in DCS)

dxf.width
View width (in DCS)

dxf.center_point
View center point (in DCS)

6.8. Reference 241

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-CF3094AB-ECA9-43C1-8075-7791AC84F97C

ezdxf Documentation, Release 0.17.2

dxf.direction_point
View direction from target (in WCS)

dxf.target_point
Target point (in WCS)

dxf.lens_length
Lens length

dxf.front_clipping
Front clipping plane (offset from target point)

dxf .back_clipping
Back clipping plane (offset from target point)

dxf.view_twist
Twist angle in degrees.

dxf.view_mode
View mode (see VIEWMODE system variable)

dxf.render_mode

Flat shaded with wireframe
Gouraud shaded with wireframe

0 | 2D Optimized (classic 2D)
1 | Wireframe

2 | Hidden line

3 | Flat shaded

4 | Gouraud shaded

5

6

dxf.ucs
1 if there is a UCS associated to this view; 0 otherwise

dxf.uecs_origin
UCS origin as (X, y, z) tuple (appears only if ucs is set to 1)

dxf.ucs_xaxis
UCS x-axis as (X, y, z) tuple (appears only if ucs is set to 1)

dxf.ucs_yaxis
UCS y-axis as (X, y, z) tuple (appears only if ucs is set to 1)

dxf.ucs_ortho_type
Orthographic type of UCS (appears only if ucs is set to 1)

0 | UCS is not orthographic
1 | Top

2 | Bottom

3 | Front

4 | Back

5 | Left

6 | Right

dxf.elevation
UCS elevation

242 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf.ucs_handle

Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed (appears only if ucs
issetto 1)

dxf .base_ucs_handle
Handle of UCSTable of base UCS if UCS is orthographic. If not present and ucs_ortho_type is
non-zero, then base UCS is taken to be WORLD (appears only if ucs is set to 1)

dxf.camera_plottable
1 if the camera is plottable

dxf .background_handle
Handle to background object (optional)

dxf.live_selection_handle
Handle to live section object (optional)

dxf.visual_style_handle
Handle to visual style object (optional)

dxf.sun_handle
Sun hard ownership handle.

AppID

Defines an APPID (DXF Reference). These table entries maintain a set of names for all registered applications.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'APPID'
Factory function | Drawing.appids.new ()

class ezdxf.entities.AppID

dxf.owner
Handle to owner (Table).

dxf .name
User-supplied (or application-supplied) application name (for extended data).

dxf.flags
Standard flag values (bit-coded values):

16 | If set, table entry is externally dependent on an xref
32 | If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

6.8. Reference 243

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-6E3140E9-E560-4C77-904E-480382F0553E

ezdxf Documentation, Release 0.17.2

ucs

Defines an named or unnamed user coordinate system (DXF Reference) for usage in CAD applications. This UCS table
entry does not interact with ezdxf in any way, to do coordinate transformations by ezdxf use the ezdxf.math.UCS
class.

Subclass of ezdxf.entities.DXFEntity
DXEF type 'Ucs!
Factory function | Drawing.ucs.new ()

See also:
UCS and OCS

class ezdxf.entities.UCSTableEntry

dxf.owner
Handle to owner (Table).

dxf.name
UCS name (str).

dxf.flags
Standard flags (bit-coded values):

16 | If set, table entry is externally dependent on an xref

32 | If both this bit and bit 16 are set, the externally dependent xref has been successfully resolved

64 | If set, the table entry was referenced by at least one entity in the drawing the last time the drawing
was edited. (This flag is only for the benefit of AutoCAD)

dxf.origin
Origin as (x, y, z) tuple

dxf.xaxis
X-axis direction as (X, y, z) tuple

dxf.yaxis
Y-axis direction as (X, y, z) tuple

ucs () — UCS
Returns an ezdxf.math. UCS object for this UCS table entry.

BlockRecord

BLOCK_RECORD (DXF Reference) is the core management structure for Bl ockLayout and Layout. This is an
internal DXF structure managed by ezdxf, package users don’t have to care about it.

Subclass of ezdxf.entities.DXFEntity
DXF type "BLOCK_RECORD'
Factory function | Drawing.block_records.new ()

class ezdxf.entities.BlockRecord

244 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1906E8A7-3393-4BF9-BD27-F9AE4352FB8B
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A1FD1934-7EF5-4D35-A4B0-F8AE54A9A20A

ezdxf Documentation, Release 0.17.2

dxf .owner
Handle to owner (Table).

dxf .name
Name of associated BLOCK.

dxf.layout
Handle to associated DXFLayout, if paperspace layout or modelspace else “0”

dxf .explode
1 for BLOCK references can be exploded else O

dxf.scale
1 for BLOCK references can be scaled else 0

dxf.units

BLOCK insert units
0 Unitless
1 Inches
2 Feet
3 Miles
4 Millimeters
5 Centimeters
6 Meters
7 Kilometers
8 Microinches
9 Mils
10 | Yards
11 | Angstroms
12 | Nanometers
13 | Microns
14 | Decimeters
15 | Decameters
16 | Hectometers
17 | Gigameters
18 | Astronomical units
19 | Light years
20 | Parsecs
21 | US Survey Feet
22 | US Survey Inch
23 | US Survey Yard
24 | US Survey Mile

property is_active_paperspace
True if is “active” paperspace layout.

property is_any_ paperspace
True if is any kind of paperspace layout.

property is_any_ layout
True if is any kind of modelspace or paperspace layout.

property is_block_layout
True if not any kind of modelspace or paperspace layout, just a regular block definition.

6.8. Reference

245

ezdxf Documentation, Release 0.17.2

property is_modelspace
True if is the modelspace layout.

property is_xref
True if represents an XREF (external reference) or XREF_OVERLAY.

Internal Structure

Do not change this structures, this is just an information for experienced developers!

The BLOCK_RECORD is the owner of all the entities in a layout and stores them in an EntitySpace object
(BlockRecord.entity_space). For each layout exist a BLOCK definition in the BLOCKS section, a reference
to the B1ock entity is stored in BlockRecord.block.

Modelspace and Paperspace layouts require an additional DXFLayout object in the OBJECTS section.
See also:

More information about Block Management Structures and Layout Management Structures.

Blocks

A block definition (B1ockLayout) is a collection of DXF entities, which can be placed multiply times at different
layouts or other blocks as references to the block definition.

See also:

Tutorial for Blocks and DXF Internals: Block Management Structures

Block

BLOCK (DXF Reference) entity is embedded into the B1ockLayout object. The BLOCK entity is accessible by the
BlockLayout .block attribute.

Subclass of ezdxf.entities.DXFEntity
DXF type 'BLOCK'
Factory function | Drawing.blocks.new () (returns a BlockLayout)

See also:
Tutorial for Blocks and DXF Internals: Block Management Structures

class ezdxf.entities.Block

dxf.handle
BLOCK handle as plain hex string. (feature for experts)

dxf.owner
Handle to owner as plain hex string. (feature for experts)

dxf.layer
Layer name as string; default value is '0'

dxf .name
BLOCK name as string. (case insensitive)

246 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-66D32572-005A-4E23-8B8B-8726E8C14302

ezdxf Documentation, Release 0.17.2

dxf .base_point
BLOCK base pointas (x, y, z) tuple, default valueis (0, 0, 0)

Insertion location referenced by the Tnsert entity to place the block reference and also the center of rotation
and scaling.

dxf.flags
BLOCK flags (bit-coded)

1 Anonymous block generated by hatching, associative dimensioning, other internal operations, or an
application

2 Block has non-constant attribute definitions (this bit is not set if the block has any attribute definitions
that are constant, or has no attribute definitions at all)

4 Block is an external reference (xref)

8 Block is an xref overlay

16 | Block is externally dependent

32 | This is a resolved external reference, or dependent of an external reference (ignored on input)

64 | This definition is a referenced external reference (ignored on input)

dxf.xref_ path
File system path as string, if this block defines an external reference (XREF).

is_layout_block
Returns True if this is a Modelspace or Paperspace block definition.

is_anonymous
Returns True if this is an anonymous block generated by hatching, associative dimensioning, other internal
operations, or an application.

is_xref
Returns True if bock is an external referenced file.

is_xref_ overlay
Returns True if bock is an external referenced overlay file.

EndBlk

ENDBLK entity is embedded into the BlockLayout object. =~ The ENDBLK entity is accessible by the
BlockLayout .endblk attribute.

Subclass of | ezdxf.entities.DXFEntity
DXEF type 'ENDBLK'

class ezdxf.entities.EndBlk

dxf.handle
BLOCK handle as plain hex string. (feature for experts)

dxf .owner
Handle to owner as plain hex string. (feature for experts)

dxf.layer
Layer name as string; should always be the same as Block.dxf. layer

6.8.

Reference 247

ezdxf Documentation, Release 0.17.2

Insert

Block reference (DXF Reference) with maybe attached attributes (At t rib).

Subclass of

ezdxf.entities.DXFGraphic

DXEF type

'INSERT'

Factory function

ezdxf.layouts.BaseLayout.add _blockref ()

Inherited DXF attributes

Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

TODO: influence of layer, linetype, color DXF attributes to block entities

class ezdxf.entities.Insert

dxf.name
BLOCK name (str)

dxf.insert

Insertion location of the BLOCK base point as (2D/3D Point in OCS)

dxf .xscale

Scale factor for x direction (float)

dxf.yscale

Scale factor for y direction (float)

Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.zscale

Scale factor for z direction (float)

Not all CAD applications support non-uniform scaling (e.g. LibreCAD).

dxf.rotation
Rotation angle in degrees (float)

dxf.row_count

Count of repeated insertions in row direction, MINSERT entity if > 1 (int)

dxf.row_spacing

Distance between two insert points (MINSERT) in row direction (float)

dxf.column_count

Count of repeated insertions in column direction, MINSERT entity if > 1 (int)

dxf.column_spacing

Distance between two insert points (MINSERT) in column direction (float)

attribs

A 1ist of all attached At ¢ rib entities.

has_scaling

Returns True if any axis scaling is applied.

248

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-28FA4CFB-9D5E-4880-9F11-36C97578252F

ezdxf Documentation, Release 0.17.2

has_uniform_scaling
Returns True if scaling is uniform in x-, y- and z-axis ignoring reflections e.g. (1, 1, -1) is uniform scaling.

mcount
Returns the multi-insert count, MINSERT (multi-insert) processing is required if mcount > 1.

set_scale (factor: float)
Set uniform scaling.

block () — Optional[BlockLayout]
Returns associated BIlockLayout.

pPlace (insert: Vertex = None, scale: Tuple[float, float, float] = None, rotation: float = None) — Insert
Set block reference placing location insert, scaling and rotation attributes. Parameters which are None will
not be altered.

Parameters
e insert —insertlocationas (x, y [,z]) tuple
* scale- (x-scale, y-scale, z-scale) tuple
* rotation - rotation angle in degrees

grid (size: Tuple[int, int] = (1, 1), spacing: Tuple[float, float] = (1, 1)) — Insert
Place block reference in a grid layout, grid size defines the row- and column count, spacing defines the distance
between two block references.

Parameters
* size —gridsize as (row_count, column_count) tuple
¢ spacing - distance between placing as (row_spacing, column_spacing) tuple

has_attrib (tag: str, search_const: bool = False) — bool
Returns True if ATTRIB fag exist, for search_const doc see get_attrib ().

Parameters
* tag - tag name as string
¢ search_const —search also const ATTDEF entities

get_attrib (tag: str, search_const: bool = False) — Optional[Union[Aftrib, AttDef]]
Get attached At t rib entity with dxf.tag == tag, returns None if not found. Some applications may
not attach constant ATTRIB entities, set search_const to True, to get at least the associated At t De £ entity.

Parameters
* tag - tag name
* search_const - search also const ATTDEEF entities

get_attrib_text (tag: str, default: str = ", search_const: bool = False) — str
Get content text of attached At trib entity with dxf.tag == tag, returns default if not found. Some
applications may not attach constant ATTRIB entities, set search_const to True, to get content text of the
associated At tDef entity.

Parameters
* tag - tag name
e default - default value if ATTRIB fag is absent

* search_const - search also const ATTDEEF entities

6.8.

Reference 249

ezdxf Documentation, Release 0.17.2

add_attrib (fag: str, text: str, insert: Vertex = (0, 0), dxfattribs=None) — Attrib
Attach an At t rib entity to the block reference.

Example for appending an attribute to an INSERT entity with none standard alignment:

e.add_attrib ('EXAMPLETAG', 'example text') .set_placement (
(3, 7), align=TextEntityAlignment .MIDDLE_CENTER

)

Parameters
* tag - tag name as string
¢ text — content text as string
e insert —insert location as tuple (x, y[, z]) in WCS

e dxfattribs — additional DXF attributes for the ATTRIB entity

add_auto_attribs (values: Dict[str, str]) — ezdxf.entities.insert.Insert
Attach for each At tdef entity, defined in the block definition, automatically an At t rib entity to the block
reference and set tag/value DXF attributes of the ATTRIB entities by the key/value pairs (both as
strings) of the values dict. The ATTRIB entities are placed relative to the insert location of the block reference,
which is identical to the block base point.

This method avoids the wrapper block of the add_auto_blockref () method, but the visual results may
not match the results of CAD applications, especially for non uniform scaling. If the visual result is very
important to you, use the add_auto_blockref () method.

Parameters values — Attrib tag values as tag/value pairs

delete_attrib (tag: str, ignore=False) — None
Delete an attached At ¢ ri b entity from INSERT. If ignoreis False, an DXFKeyError exception is raised,
if ATTRIB tag does not exist.

Parameters

* tag— ATTRIB name

e ignore —False for raising DXFKeyError if ATTRIB fag does not exist.
Raises DxXFKeyError —if ATTRIB fag does not exist.

delete_all_attribs () — None
Delete all At trib entities attached to the INSERT entity.

reset_transformation () — None
Reset block reference parameters location, rotation and extrusion vector.

transform (m: Matrix44) — Insert
Transform INSERT entity by transformation matrix m inplace.

Unlike the transformation matrix m, the INSERT entity can not represent a non orthogonal target coordinate
system, for this case an InsertTransformationError will be raised.

translate (dx: float, dy: float, dz: float) — Insert
Optimized INSERT translation about dx in x-axis, dy in y-axis and dz in z-axis.

virtual_entities (skipped_entity_callback: Callable[[DXFGraphic, str], None] = None) — lter-

able[DXFGraphic]
Yields “virtual” entities of a block reference. This method is meant to examine the block reference entities at

the “exploded” location without really “exploding” the block reference. The skipped_entity_callback()" will
be called for all entities which are not processed, signature: skipped_entity_callback (entity:

250 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

DXFEntity, reason: str), entityisthe original (untransformed) DXF entity of the block definition,
the reason string is an explanation why the entity was skipped.

This entities are not stored in the entity database, have no handle and are not assigned to any layout. It is
possible to convert this entities into regular drawing entities by adding the entities to the entities database and
a layout of the same DXF document as the block reference:

doc.entitydb.add (entity)
msp = doc.modelspace ()
msp.add_entity (entity)

This method does not resolve the MINSERT attributes, only the sub-entities of the base INSERT will be
returned. To resolve MINSERT entities check if multi insert processing is required, that’s the case if property
Insert.mcount>1,usethe Tnsert.multi_insert () method to resolve the MINSERT entity into
single INSERT entities.

Warning: Non uniform scaling may return incorrect results for text entities (TEXT, MTEXT, AT-
TRIB) and maybe some other entities.

Parameters skipped_entity_callback — called whenever the transformation of an entity
is not supported and so was skipped

multi_insert () — Iterable[/nsert]
Yields a virtual INSERT entity for each grid element of a MINSERT entity (multi-insert).

explode (target_layout: BaseLayout = None) — EntityQuery
Explode block reference entities into target layout, if target layout is None, the target layout is the layout of
the block reference. This method destroys the source block reference entity.

Transforms the block entities into the required WCS location by applying the block reference attributes insert,
extrusion, rotation and the scaling values xscale, yscale and zscale.

Attached ATTRIB entities are converted to TEXT entities, this is the behavior of the BURST command of
the AutoCAD Express Tools.

Returns an Ent i t yQuery container with all “exploded” DXF entities.

Warning: Non uniform scaling may lead to incorrect results for text entities (TEXT, MTEXT, AT-
TRIB) and maybe some other entities.

Parameters target_layout — target layout for exploded entities, None for same layout as
source entity.

uecs () — UCS
Returns the block reference coordinate system as ezdxf.math. UCS object.

6.8. Reference 251

ezdxf Documentation, Release 0.17.2

Attrib

The ATTRIB (DXF Reference) entity represents a text value associated with a tag. In most cases an ATTRIB is appended
to an Tnsert entity, but it can also appear as standalone entity.

Subclass of ezdxf.entities.Text

DXF type "ATTRIB'

Factory function ezdxf.layouts.BaseLayout.add_attrib () (stand alone entity)
Factory function Insert.add_attrib () (attached to Tnsert)

Inherited DXF attributes | Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Attrib
ATTRIB supports all DXF attributes and methods of parent class Text.

dxf.tag
Tag to identify the attribute (str)

dxf.text
Attribute content as text (str)

property is_invisible
Attribute is invisible (does not appear).

property is_const
This is a constant attribute.

property is_verify
Verification is required on input of this attribute. (CAD application feature)

property is_preset
No prompt during insertion. (CAD application feature)

property has_embedded_mtext_entity
Returns True if the entity has an embedded MTEXT entity for multi line support.

virtual_mtext_entity () — ezdxf.entities.mtext.MText
Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties
as the host entity.

plain_mtext (fast=True) — str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.

The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

The “accurate” mode is much slower than the “fast” mode.

Parameters fast — uses the “fast” mode to extract the plain MTEXT content if True or the
“accurate” mode if set to False

252 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7DD8B495-C3F8-48CD-A766-14F9D7D0DD9B

ezdxf Documentation, Release 0.17.2

set_mtext (mtext: ezdxf.entities.mtext. MText, graphic_properties=True) — None
Set multi-line properties from a MText entity.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEEF entity will be exported.

Parameters
* mtext —source MText entity

* graphic_properties —copy graphic properties (color, layer, ...) from source MTEXT
if True

embed_mtext (mfext: ezdxf.entities.mtext. MText, graphic_properties=True) — None
Set multi-line properties from a MText entity and destroy the source entity afterwards.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
* mtext —source MText entity

* graphic_properties —copy graphic properties (color, layer, ...) from source MTEXT
if True

AttDef

The ATTDEF (DXF Reference) entity is a template in a Bl ockLayout, which will be used to create an attached
Attribentity for an Tnsert entity.

Subclass of ezdxf.entities.Text

DXF type "ATTDEF'

Factory function ezdxf.layouts.BaseLayout.add_attdef ()
Inherited DXF attributes | Common graphical DXF attributes

See also:

Tutorial for Blocks

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.AttDef

ATTDEEF supports all DXF attributes and methods of parent class Text.

dxf.tag
Tag to identify the attribute (str)

dxf.text
Attribute content as text (str)

dxf.prompt
Attribute prompt string. (CAD application feature)

dxf.field length
Just relevant to CAD programs for validating user input

6.8. Reference 253

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0EA099B-6F88-4BCC-BEC7-247BA64838A4

ezdxf Documentation, Release 0.17.2

property is_invisible
Attribute is invisible (does not appear).

property is_const
This is a constant attribute.

property is_verify
Verification is required on input of this attribute. (CAD application feature)

property is_preset
No prompt during insertion. (CAD application feature)

property has_embedded_mtext_entity
Returns True if the entity has an embedded MTEXT entity for multi line support.

virtual_mtext_entity () — ezdxf.entities.mtext.MText
Returns the embedded MTEXT entity as a regular but virtual MText entity with the same graphical properties
as the host entity.

plain_mtext (fast=True) — str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no embedded
MTEXT entity exist.

The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

The “accurate” mode is much slower than the “fast” mode.

Parameters fast — uses the “fast” mode to extract the plain MTEXT content if True or the
“accurate” mode if set to False

set_mtext (mtext: ezdxf.entities.mtext. MText, graphic_properties=True) — None
Set multi-line properties from a MText entity.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEF entity will be exported.

Parameters
* mtext —source MText entity

* graphic_properties —copy graphic properties (color, layer, ...) from source MTEXT
if True

embed_mtext (mfext: ezdxf.entities.mtext. MText, graphic_properties=True) — None
Set multi-line properties from a MText entity and destroy the source entity afterwards.

The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line AT-
TRIB/ATTDEEF entity will be exported.

Parameters
* mtext —source MText entity

* graphic_properties —copy graphic properties (color, layer, ...) from source MTEXT
if True

254 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Layouts

Layout Manager

The layout manager is unique to each DXF drawing, access the layout manager as 1 ayout s attribute of the Drawing
object (e.g. doc.layouts.rename ("Layoutl", "PlanView")).

class ezdxf.layouts.Layouts

The Layout s class manages Paperspace layouts and the ModeIspace.

_len__ () —int
Returns count of existing layouts, including the modelspace layout.

__contains___ (name: str) — bool
Returns True if layout name exist.

__iter__ () — Iterable[Layout]
Returns iterable of all layouts as Layout objects, including the modelspace layout.

names () — List[str]
Returns a list of all layout names, all names in original case sensitive form.

names_in_taborder () — List[str]
Returns all layout names in tab order as shown in CAD applications.

modelspace () — Modelspace
Returns the Mode 1 space layout.

get (name: str) — Layout
Returns Layout by name, case insensitive “Model” == “MODEL”.

Parameters name — layout name as shown in tab, e.g. 'Model ' for modelspace

new (name: str, dxfattribs: dict = None) — Paperspace
Returns a new Paperspace layout.

Parameters

* name — layout name as shown in tabs in CAD applications

* dxfattribs — additional DXF attributes for the DXFLayout entity
Raises

e DXFValueError — Invalid characters in layout name.

e DXFValueError — Layout name already exist.

rename (old_name: str, new_name: str) — None
Rename a layout from old_name to new_name. Can not rename layout 'Model' and the new name of a
layout must not exist.

Parameters
* old_name - actual layout name, case insensitive
* new_name — new layout name, case insensitive
Raises
* DXFValueError —try to rename 'Model'

e DXFValueError — Layout new_name already exist.

6.8.

Reference 255

ezdxf Documentation, Release 0.17.2

delete (name: str) — None
Delete layout name and destroy all entities in that layout.

Parameters name (st r) — layout name as shown in tabs
Raises
* DXFKeyError — if layout name do not exists
* DXFValueError — deleting modelspace layout is not possible
* DXFValueError — deleting last paperspace layout is not possible

active_layout () — Paperspace
Returns the active paperspace layout.

set_active_layout (name: str) — None
Set layout name as active paperspace layout.

get_layout_for_entity (entity: DXFEntity) — Layout
Returns the owner layout for a DXF entity.

Layout Types

A Layout represents and manages DXF entities, there are three different layout objects:
* Modelspace is the common working space, containing basic drawing entities.

* Paperspace is arrangement of objects for printing and plotting, this layout contains basic drawing entities and
viewports to the Modelspace.

e BlockLayout works on an associated B1ock, Blocks are collections of drawing entities for reusing by block
references.

Warning: Do not instantiate layout classes by yourself - always use the provided factory functions!

Entity Ownership

A layout owns all entities residing in their entity space, this means the dxf . owner attribute of any DXFGraphic in
this layout is the dx £ . handle of the layout, and deleting an entity from a layout is the end of life of this entity, because
it is also deleted from the Ent it yDB. But it is possible to just unlink an entity from a layout, so it can be assigned to
another layout, use the move_to_Ilayout () method to move entities between layouts.

BaseLayout

class ezdxf.layouts.BaseLayout
BaseLayout is the common base class for Layout and BlockLayout.
is_alive
False if layout is deleted.

is_active_paperspace
True if is active layout.

is_any paperspace
True if is any kind of paperspace layout.

256 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

is_modelspace
True if is modelspace layout.

is_any_layout
True if is any kind of modelspace or paperspace layout.

is_block_layout
True if not any kind of modelspace or paperspace layout, just a regular block definition.

units
set drawing units.

Type Get/Set layout/block drawing units as enum, see also
Type ref

_len__ () —int
Returns count of entities owned by the layout.

__iter_ () — Iterator[DXFGraphic]
Returns iterable of all drawing entities in this layout.

__getitem__ (index)
Get entity at index.

The underlying data structure for storing entities is organized like a standard Python list, therefore index can
be any valid list indexing or slicing term, like a single index layout [—-1] to get the last entity, or an index
slice layout [:10] to get the first 10 or less entities as List [DXFGraphic].

get_extension_dict () — ExtensionDict
Returns the associated extension dictionary, creates a new one if necessary.

delete_entity (entity: DXFGraphic) — None
Delete entity from layout entity space and the entity database, this destroys the entizy.

delete_all_entities () — None
Delete all entities from this layout and from entity database, this destroys all entities in this layout.

unlink_entity (entity: DXFGraphic) — None
Unlink entity from layout but does not delete entity from the entity database, this removes entity just from the
layout entity space.

purge ()
Remove all destroyed entities from the layout entity space.

query (query: str = '*') — EntityQuery
Get all DXF entities matching the Entity Query String.

groupby (dxfattrib: str = ", key: KeyFunc = None) — dict
Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key function.

Parameters
e dxfattrib - grouping by DXF attribute like ' layer"'

* key — key function, which accepts a DXFGraphic entity as argument and returns the
grouping key of an entity or None to ignore the entity. Reason for ignoring: a queried DXF
attribute is not supported by entity.

move_to_layout (entity: DXFGraphic, layout: BaselLLayout) — None
Move entity to another layout.

Parameters

* entity — DXF entity to move

6.8.

Reference 257

ezdxf Documentation, Release 0.17.2

¢ layout - any layout (modelspace, paperspace, block) from same drawing

add_entity (entity: DXFGraphic) — None
Add an existing DXFGraphic entity to a layout, but be sure to unlink (unlink_ entity ()) entity from
the previous owner layout. Adding entities from a different DXF drawing is not supported.

add_foreign_entity (entity: DXFGraphic, copy=True) — None
Add a foreign DXF entity to a layout, this foreign entity could be from another DXF document or an entity
without an assigned DXF document. The intention of this method is to add simple entities from another
DXF document or from a DXF iterator, for more complex operations use the i mporter add-on. Especially
objects with BLOCK section (INSERT, DIMENSION, MLEADER) or OBJECTS section dependencies
(IMAGE, UNDERLAY) can not be supported by this simple method.

Not all DXF types are supported and every dependency or resource reference from another DXF document
will be removed except attribute layer will be preserved but only with default attributes like color 7 and
linetype CONTINUOUS because the layer attribute doesn’t need a layer table entry.

If the entity is part of another DXF document, it will be unlinked from this document and its entity database
if argument copy is False, else the entity will be copied. Unassigned entities like from DXF iterators will
just be added.

Supported DXF types:
e POINT
* LINE
* CIRCLE
* ARC
» ELLIPSE
« LWPOLYLINE
* SPLINE
* POLYLINE
* 3DFACE
* SOLID
» TRACE
* SHAPE
« MESH
* ATTRIB
* ATTDEF
* TEXT
* MTEXT
» HATCH

Parameters
¢ entity — DXF entity to copy or move

* copy —if True copy entity from other document else unlink from other document

258

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

add_point (location: Vertex, dxfattribs=None) — Point
Add a Point entity at location.

Parameters
¢ location —2D/3D point in WCS
e dxfattribs — additional DXF attributes

add_line (start: Vertex, end: Vertex, dxfattribs=None) — Line
Add a Line entity from start to end.

Parameters
e start —2D/3D point in WCS
* end - 2D/3D point in WCS
e dxfattribs - additional DXF attributes

add_circle (center: Vertex, radius: float, dxfattribs=None) — Circle
Add a Circle entity. This is an 2D element, which can be placed in space by using OCS.

Parameters
* center - 2D/3D point in WCS
e radius - circle radius
e dxfattribs - additional DXF attributes

add_ellipse (center: Vertex, major_axis: Vertex = (1, 0, 0), ratio: float = 1, start_param: float = 0,
end_param: float = 6.283185307179586, dxfattribs=None) — Ellipse
Add an E111ipse entity, ratio is the ratio of minor axis to major axis, start_param and end_param defines

start and end point of the ellipse, a full ellipse goes from 0 to 2. The ellipse goes from start to end param in
counter clockwise direction.

Parameters
¢ center — center of ellipse as 2D/3D point in WCS
* major_axis — major axis as vector (X, y, z)
* ratio - ratio of minor axis to major axis in range +/-[1e-6, 1.0]
e start_param - start of ellipse curve
* end_param - end param of ellipse curve
* dxfattribs - additional DXF attributes

add_arc (center: Vertex, radius: float, start_angle: float, end_angle: float, is_counter_clockwise: bool =

True, dxfattribs=None) — Arc
Add an Arc entity. The arc goes from start_angle to end_angle in counter clockwise direction by default, set

parameter is_counter_clockwise to False for clockwise orientation.
Parameters
* center - center of arc as 2D/3D point in WCS
e radius - arc radius
e start_angle - start angle in degrees
* end_angle - end angle in degrees
¢ is_counter_clockwise — False for clockwise orientation

e dxfattribs — additional DXF attributes

6.8.

Reference 259

ezdxf Documentation, Release 0.17.2

add_solid (points: Iterable[Vertex], dxfattribs=None) — Solid
Add a So1id entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters

* points —iterable of 3 or 4 2D/3D points in WCS
e dxfattribs — additional DXF attributes

add_trace (points: Iterable Vertex], dxfattribs=None) — Trace
Add a Trace entity, points is an iterable of 3 or 4 points.

Hint: The last two vertices are in reversed order: a square has the vertex order 0-1-3-2

Parameters
* points —iterable of 3 or 4 2D/3D points in WCS

e dxfattribs — additional DXF attributes

add_3dface (points: Iterable[Vertex], dxfattribs=None) — Face3d
Add a 3DFace entity, points is an iterable 3 or 4 2D/3D points.

Hint: In contrast to SOLID and TRACE, the last two vertices are in regular order: a square has the vertex
order 0-1-2-3

Parameters

e points —iterable of 3 or 4 2D/3D points in WCS
e dxfattribs — additional DXF attributes

add_text (fext: str, dxfattribs=None) — Text
Add a Text entity, see also Textstyle.

Parameters
* text — content string
¢ dxfattribs — additional DXF attributes

add_blockref (name: str, insert: Vertex, dxfattribs=None) — Insert
Add an Tnsert entity.

When inserting a block reference into the modelspace or another block layout with different units, the scaling
factor between these units should be applied as scaling attributes (xscale, ...) e.g. modelspace in meters

and block in centimeters, xscale has to be 0.01.
Parameters
* name — block name as str
* insert - insert location as 2D/3D point in WCS

e dxfattribs — additional DXF attributes

260 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

add_auto_blockref (name: str, insert: Vertex, values: Dict/str, str], dxfattribs=None) — Insert
Add an Tnsert entity. This method adds for each At t de £ entity, defined in the block definition, automat-
ically an At trib entity to the block reference and set (tag, value) DXF attributes of the ATTRIB entities
by the (key, value) pairs (both as strings) of the values dict.

The Attrib entities are placed relative to the insert point, which is equal to the block base point.

This method wraps the INSERT and all the ATTRIB entities into an anonymous block, which produces
the best visual results, especially for non uniform scaled block references, because the transformation
and scaling is done by the CAD application. But this makes evaluation of block references with at-
tributes more complicated, if you prefer INSERT and ATTRIB entities without a wrapper block use the
add_blockref with_attribs () method.

Parameters
* name — block name
e insert —insert location as 2D/3D point in WCS
e values — At trib tag values as (tag, value) pairs
* dxfattribs — additional DXF attributes

add_attdef (rag: str, insert: Vertex = (0, 0), text: str = ", dxfattribs=None) — AttDef
Add an AttDef as stand alone DXF entity.

Set position and alignment by the idiom:

layout.add_attdef ("NAME") .set_placement (
(2, 3), align=TextEntityAlignment.MIDDLE_CENTER
)

Parameters
* tag - tag name as string
e insert —insert location as 2D/3D point in WCS
* text - tag value as string
e dxfattribs — additional DXF attributes

add_polyline2d (points: Iterable[Vertex], format: str = None, *, close: bool = False, dxfattribs=None)

— Polyline
Add a 2D Polyline entity.

Parameters
* points —iterable of 2D points in WCS
* close — True for a closed polyline
» format — user defined point format like add_Iwpolyline (), defaultis None
* dxfattribs — additional DXF attributes

add_polyline3d (points: Iterable[Vertex], *, close: bool = False, dxfattribs=None) — Polyline
Add a 3D Polyline entity.

Parameters
* points —iterable of 3D points in WCS

* close — True for a closed polyline

. Reference 261

ezdxf Documentation, Release 0.17.2

e dxfattribs — additional DXF attributes

add_polymesh (size: Tuple[int, int] = (3, 3), dxfattribs=None) — Polymesh
Add a Polymesh entity, which is a wrapper class for the POLYLINE entity. A polymesh is a grid of mcount
X ncount vertices and every vertex has its own (X, y, z)-coordinates.

Parameters
e size — 2-tuple (mcount, ncount)
e dxfattribs — additional DXF attributes

add_polyface (dxfattribs=None) — Polyface
Add a Polyface entity, which is a wrapper class for the POLYLINE entity.

Parameters dxfattribs — additional DXF attributes for Po1y11ine entity

add_shape (name: str, insert: Vertex = (0, 0), size: float = 1.0, dxfattribs=None) — Shape
Add a Shape reference to a external stored shape.

Parameters
* name - shape name as string
* insert - insert location as 2D/3D point in WCS
¢ size - size factor
e dxfattribs — additional DXF attributes

add_1lwpolyline (points: Iterable[Vertex], format: str = 'xyseb', *, close: bool = False, dxfattribs=None)
— LWPolyline
Add a 2D polyline as LiWPo1y11ine entity. A points are defined as (X, y, [start_width, [end_width, [bulge]]])

tuples, but order can be redefined by the format argument. Set start_width, end_width to O to be ignored like
(x,y, 0, 0, bulge).

The LiwPolyline is defined as a single DXF entity and needs less disk space than a Poly1ine entity.
(requires DXF R2000)

Format codes:
e x = x-coordinate
¢ y = y-coordinate
¢ s = start width
¢ e =end width
* b = bulge value

* v =(X,y [,z]) tuple (z-axis is ignored)

Parameters
* points —iterable of (X, y, [start_width, [end_width, [bulge]]]) tuples
¢ format — user defined point format, default is “xyseb”
* close — True for a closed polyline
* dxfattribs — additional DXF attributes

add_mtext (fext: str, dxfattribs=None) — MText

Add a multiline text entity with automatic text wrapping at boundaries as MText entity. (requires DXF
R2000)

262 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Parameters
* text — content string
e dxfattribs — additional DXF attributes

add_mtext_static_columns (content: Iterable[str], width: float, gutter_width: float, height: float,

dxfattribs=None) — MText
Add a multiline text entity with static columns as MText entity. The content is spread across the columns,

the count of content strings determine the count of columns.

This factory method adds automatically a column break "\N" at the end of each column text to force a new
column. The height attribute should be big enough to reserve enough space for the tallest column. Too small
values produce valid DXEF files, but the visual result will not be as expected. The height attribute also defines
the total height of the MTEXT entity.

(requires DXF R2000)
Parameters

¢ content - iterable of column content

* width - column width

* gutter_width — distance between columns

* height — max. column height

e dxfattribs — additional DXF attributes
New in version 0.17.

add_mtext_dynamic_manual_height_columns (content: str, width: float, gutter_width: float,
heights: Sequence(float], dxfattribs=None) —

Add a multiline text entity with dynamic columns as Tévgl;eélgtity. The content is spread across the columns
automatically by the CAD application. The heights sequence determine the height of the columns, except for
the last column, which always takes the remaining content. The height value for the last column is required
but can be 0, because the value is ignored. The count of heights also determines the count of columns, and
max (heights) defines the total height of the MTEXT entity, which may be wrong if the last column
requires more space.

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXEF viewers and CAD application, which do the MTEXT content distribution completely by itself.

(requires DXF R2000)
Parameters
* content - column content as a single string
¢ width - column width
e gutter_width — distance between columns
* heights - column height for each column
e dxfattribs — additional DXF attributes

New in version 0.17.

6.8. Reference 263

ezdxf Documentation, Release 0.17.2

add_mtext_dynamic_auto_height_columns (content: str, width: float, gutter_width: float,

height: float, count: int, dxfattribs=None) —

Add a multiline text entity with as much columns as nMegde)e(é for the given common fixed height. The content
is spread across the columns automatically by the CAD application. The height argument also defines the
total height of the MTEXT entity. To get the correct column count requires an exact MTEXT rendering like
AutoCAD, which is not done by ezdxf, therefore passing the expected column count is required to calculate
the correct total width.

This current implementation works best for DXF R2018, because the content is stored as a continuous text in
a single MTEXT entity. For DXF versions prior to R2018 the content should be distributed across multiple
MTEXT entities (one entity per column), which is not done by ezdxf, but the result is correct for advanced
DXEF viewers and CAD application, which do the MTEXT content distribution completely by itself.

Because of the current limitations the use of this method is not recommend. This situation may improve in
future releases, but the exact rendering of the content will also slow down the processing speed dramatically.

(requires DXF R2000)
Parameters
* content - column content as a single string
* width - column width
e gutter_width — distance between columns
* height — max. column height
* count - expected column count
e dxfattribs — additional DXF attributes

New in version 0.17.

add_ray (start: Vertex, unit_vector: Vertex, dxfattribs=None) — Ray

Add a Ray that begins at start point and continues to infinity (construction line). (requires DXF R2000)
Parameters
* start - location 3D point in WCS
* unit_vector - 3D vector (X, y, z)

e dxfattribs — additional DXF attributes

add_xline (start: Vertex, unit_vector: Vertex, dxfattribs=None) — XLine

Add an infinity X7, i ne (construction line). (requires DXF R2000)
Parameters
* start - location 3D point in WCS
e unit_vector - 3D vector (X, y, z)

e dxfattribs — additional DXF attributes

add_mline (vertices: Iterable[Vertex] = None, *, close: bool = False, dxfattribs=None) — MLine

Add a MLine entity
Parameters
e vertices — MLINE vertices (in WCS)
* close — True to add a closed MLINE
e dxfattribs — additional DXF attributes

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

add_spline (fit_points: Iterable[Vertex] = None, degree: int = 3, dxfattribs=None) — Spline
Add a B-spline (Sp1 i ne entity) defined by the given fit_points - the control points and knot values are created
by the CAD application, therefore it is not predictable how the rendered spline will look like, because for every
set of fit points exists an infinite set of B-splines.

If fir_points is None, an “empty” spline will be created, all data has to be set by the user.
The SPLINE entity requires DXF R2000.

AutoCAD creates a spline through fit points by a global curve interpolation and an unknown method to
estimate the direction of the start- and end tangent.

See also:

* Tutorial for Spline

e ezdxf.math.fit_points_to_cad_cv()

Parameters

e fit_points —iterable of fit pointsas (x, y [, z]) in WCS, creates an empty Spline
if None

* degree — degree of B-spline, max. degree supported by AutoCAD is 11
* dxfattribs — additional DXF attributes

add_cad_spline_control_frame (fit_points: Iterable[Vertex], tangents: Iterable[Vertex] = None,
estimate: str = '5-p', dxfattribs=None) — Spline
Add a Spline entity passing through the given fit points. This method tries to create the same curve as
CAD applications do. To understand the limitations and for more information see function ezdxf.math.
fit_points_to_cad_cv().

Parameters
e fit_points —iterable of fit points as (x, y[, z]) in WCS
* tangents - start- and end tangent, default is autodetect
* estimate — tangent direction estimation method
¢ dxfattribs - additional DXF attributes

add_spline_control_frame (fit_points: Iterable[Vertex], degree: int = 3, method: str = 'chord’, dx-
fattribs=None) — Spline
Add a Sp1ine entity passing through the given fir_points, the control points are calculated by a global curve
interpolation without start- and end tangent constrains. The new SPLINE entity is defined by control points
and not by the fit points, therefore the SPLINE looks always the same, no matter which CAD application
renders the SPLINE.

* “uniform”: creates a uniform t vector, from O to 1 evenly spaced, see uniform method

 “distance”, “chord”: creates a t vector with values proportional to the fit point distances, see chord length
method

» “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see
centripetal method

133

e “arc”: creates a t vector with values proportional to the arc length between fit points.

Use function add_cad_spline _control_frame () to create SPLINE entities from fit points similar
to CAD application including start- and end tangent constraints.

Parameters

6.8.

Reference 265

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html

ezdxf Documentation, Release 0.17.2

e fit_points —iterable of fit points as (x, y[, z]) in WCS

* degree — degree of B-spline, max. degree supported by AutoCAD is 11
* method - calculation method for parameter vector t

e dxfattribs — additional DXF attributes

add_open_spline (control_points: Iterable[Vertex], degree: int = 3, knots: Iterable[float] = None, dx-

fattribs=None) — Spline
Add an open uniform Sp1ine defined by control_points. (requires DXF R2000)

Open uniform B-splines start and end at your first and last control point.
Parameters
* control_points —iterable of 3D points in WCS
* degree —degree of B-spline, max. degree supported by AutoCAD is 11
* knots — knot values as iterable of floats
e dxfattribs - additional DXF attributes

add_rational_spline (control_points: Iterable[Vertex], weights: Sequence[float], degree: int = 3,
knots: Iterable[float] = None, dxfattribs=None) — Spline
Add an open rational uniform Sp1ine defined by control_points. (requires DXF R2000)

weights has to be an iterable of floats, which defines the influence of the associated control point to the shape
of the B-spline, therefore for each control point is one weight value required.

Open rational uniform B-splines start and end at the first and last control point.
Parameters
¢ control_points —iterable of 3D points in WCS
* weights — weight values as iterable of floats
* degree — degree of B-spline, max. degree supported by AutoCAD is 11
* knots — knot values as iterable of floats
e dxfattribs — additional DXF attributes

add_hatch (color: int = 7, dxfattribs=None) — Hatch
Add a Hat ch entity. (requires DXF R2000)

Parameters
¢ color —fill color as :ref ACT', default is 7 (black/white).
e dxfattribs - additional DXF attributes

add_mpolygon (color: int = 256, fill_color: int = None, dxfattribs=None) — MPolygon
Add a MPolygon entity. (requires DXF R2000)

The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF
library.

DXEF version R2004+ is required to use a fill color different from BYLAYER. For R2000 the fill color is
always BYLAYER, set any ACI value to create a filled MPOLYGON entity.

Parameters

¢ color - boundary color as AutoCAD Color Index (ACI), default is BYLAYER.
e £ill_color —fill color as AutoCAD Color Index (ACI), default is None

266 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

e dxfattribs — additional DXF attributes

add_mesh (dxfattribs=None) — Mesh
Add a Mesh entity. (requires DXF R2007)

Parameters dxfattribs — additional DXF attributes

add_image (image_def: ImageDef, insert: Vertex, size_in_units: Tuple[float, float], rotation: float = 0.0,
dxfattribs=None) — Image
Add an Tmage entity, requires a ITmageDe £ entity, see Tutorial for Image and ImageDef. (requires DXF
R2000)

Parameters
* image_def - required image definition as TmageDef
* insert - insertion point as 3D point in WCS
* size_in_units -size as (%, y) tuple in drawing units
e rotation - rotation angle around the extrusion axis, default is the z-axis, in degrees
e dxfattribs - additional DXF attributes

add_wipeout (vertices: Iterable[Vertex], dxfattribs=None) — Wipeout
Adda ezdxf.entities.Wipeout entity, the masking area is defined by WCS vertices.

This method creates only a 2D entity in the xy-plane of the layout, the z-axis of the input vertices are ignored.

add_underlay (underlay_def: UnderlayDefinition, insert: Vertex = (0, 0, 0), scale=(1, 1, 1), rotation:
float = 0.0, dxfattribs=None) — Underlay
Add an Underlay entity, requires a UnderlayDefinition entity, see Tutorial for Underlay and Un-

derlayDefinition. (requires DXF R2000)
Parameters
* underlay_def - required underlay definition as UnderlayDefinition
* insert - insertion point as 3D point in WCS

* scale - underlay scaling factor as (X, y, z) tuple or as single value for uniform scaling for
X,y and z

* rotation - rotation angle around the extrusion axis, default is the z-axis, in degrees
e dxfattribs — additional DXF attributes

add_linear_dim (base: Vertex, pl: Vertex, p2: Vertex, location: Vertex = None, text: str = '<>', angle:
float = 0, text_rotation: float = None, dimstyle: str = 'EZDXF", override: Dict = None,
dxfattribs=None) — DimStyleOverride
Add horizontal, vertical and rotated Dimension line. If an UCS is used for dimension line rendering,
all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function.
Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

6.8.

Reference 267

ezdxf Documentation, Release 0.17.2

base - location of dimension line, any point on the dimension line or its extension will do
(in UCS)

p1 — measurement point 1 and start point of extension line 1 (in UCS)
P2 — measurement point 2 and start point of extension line 2 (in UCS)
location — user defined location for text mid point (in UCS)

99 9

text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZDXF”
angle — angle from ucs/wcs x-axis to dimension line in degrees

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

override — DimStyleOverride attributes

dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_multi_point_linear_dim (base: Vertex, points: Iterable[Vertex], angle: float = 0, ucs: UCS

= None, avoid_double_rendering: bool = True, dimstyle: str =
'EZDXF", override: Dict = None, dxfattribs=None, discard=False)
— Non

e

Add multiple linear dimensions for iterable points. If an UCS is used for dimension line rendering, all point
definitions in UCS coordinates, translation into WCS and OCS is done by the rendering function. Extrusion
vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method sets many design decisions by itself, the necessary geometry will be generated automatically, no
required nor possible render () call. This method is easy to use but you get what you get.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

base — location of dimension line, any point on the dimension line or its extension will do
(in UCS)

points —iterable of measurement points (in UCS)

angle — angle from ucs/wcs x-axis to dimension line in degrees (0 = horizontal, 90 = ver-
tical)

ucs - user defined coordinate system

avoid_double_rendering — suppresses the first extension line and the first arrow if
possible for continued dimension entities

dimstyle — dimension style name (DimStyle table entry), default is “EZDXF”
override — DimStyleOverride attributes
dxfattribs - additional DXF attributes for the DIMENSION entity

discard - discard rendering result for friendly CAD applications like BricsCAD to get a
native and likely better rendering result. (does not work with AutoCAD)

268

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

add_aligned_dim (pl: Vertex, p2: Vertex, distance: float, text: str = '<>', dimstyle: str = 'EZDXF’,
override: Dict = None, dxfattribs=None) — DimStyleOverride
Add linear dimension aligned with measurement points p/ and p2. If an UCS is used for dimension line

rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done by the rendering
function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See also: Tutorial for Linear Dimensions

This method returns a DimSt yleOverride object, to create the necessary dimension geometry, you have
to call DimStyleOverride.render () manually, this two step process allows additional processing
steps on the Dimension entity between creation and rendering.

Note: FEzdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
e pl — measurement point 1 and start point of extension line 1 (in UCS)
* p2 — measurement point 2 and start point of extension line 2 (in UCS)
* distance - distance of dimension line from measurement points

95 9

* text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

e dimstyle — dimension style name (DimSt y e table entry), default is “EZDXF”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim (center: Vertex, mpoint: Vertex = None, radius: float = None, angle: float = None, *,
location: Vertex = None, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: Dict

= None, dxfattribs=None) — DimStyleOverride
Add a radius Dimension line. The radius dimension line requires a center point and a point mpoint on

the circle or as an alternative a radius and a dimension line angle in degrees. See also: Tutorial for Radius
Dimensions

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimSt yleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps on the Dimension
entity between creation and rendering.

Following render types are supported:
 Default text location outside: text aligned with dimension line; dimension style: “EZ_RADIUS”
¢ Default text location outside horizontal: “EZ_RADIUS” + dimtoh=1
¢ Default text location inside: text aligned with dimension line; dimension style: “EZ_RADIUS_INSIDE”
¢ Default text location inside horizontal: “EZ_RADIUS_INSIDE” + dimtih=1

* User defined text location: argument location != None, text aligned with dimension line; dimension style:
“EZ_RADIUS”

¢ User defined text location horizontal: argument location != None, “EZ_RADIUS” + dimtoh=1 for text
outside horizontal, “EZ_RADIUS” + dimtih=1 for text inside horizontal

6.8. Reference 269

ezdxf Documentation, Release 0.17.2

Placing the dimension text at a user defined location, overrides the mpoint and the angle argument, but requires
a given radius argument. The location argument does not define the exact text location, instead it defines the
dimension line starting at center and the measurement text midpoint projected on this dimension line going
through location, if text is aligned to the dimension line. If text is horizontal, location is the kink point of the
dimension line from radial to horizontal direction.

Note: FEzdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
* center — center point of the circle (in UCS)
* mpoint — measurement point on the circle, overrides angle and radius (in UCS)
¢ radius - radius in drawing units, requires argument angle
* angle - specify angle of dimension line in degrees, requires argument radius

* location — user defined dimension text location, overrides mpoint and angle, but requires
radius (in UCS)

9 9

¢ text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* dimstyle — dimension style name (DimStyle table entry), default is “EZ_RADIUS”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_radius_dim_2p (center: Vertex, mpoint: Vertex, *, text: str = '<>', dimstyle: str = 'EZ_RADIUS',

override: Dict = None, dxfattribs=None) — DimStyleOverride
Shortcut method to create a radius dimension by center point, measurement point on the circle and the mea-

surement text at the default location defined by the associated dimstyle, for further information see general
method add radius dim().

 dimstyle “EZ_RADIUS”: places the dimension text outside
* dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
¢ center - center point of the circle (in UCS)
* mpoint — measurement point on the circle (in UCS)

99 9

* text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

270

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

add_radius_dim_cra (center: Vertex, radius: float, angle: float, *, text: str = '<>', dimstyle: str =

'EZ_RADIUS', override: Dict = None, dxfattribs=None) — DimStyleOverride

Shortcut method to create a radius dimension by (c)enter point, (r)adius and (a)ngle, the measurement text is
placed at the default location defined by the associated dimstyle, for further information see general method
add_radius_dim().

 dimstyle “EZ_RADIUS”: places the dimension text outside
 dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters

center — center point of the circle (in UCS)
radius - radius in drawing units
angle — angle of dimension line in degrees

99 9

text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_RADIUS”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_diameter_dim (center: Vertex, mpoint: Vertex = None, radius: float = None, angle: float = None,

* location: Vertex = None, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override:
Dict = None, dxfattribs=None) — DimStyleOverride

Add a diameter Dimension line. The diameter dimension line requires a center point and a point mpoint
on the circle or as an alternative a radius and a dimension line angle in degrees.

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

center — specifies the center of the circle (in UCS)
mpoint — specifies the measurement point on the circle (in UCS)
radius - specify radius, requires argument angle, overrides pl argument

angle - specify angle of dimension line in degrees, requires argument radius, overrides p/
argument

location — user defined location for text mid point (in UCS)

29 9

text — None or "<>" the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

dimstyle — dimension style name (DimStyIe table entry), default is “EZ_RADIUS”

6.8. Reference

271

ezdxf Documentation, Release 0.17.2

e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_diameter_dim_2p (pl: Vertex, p2: Vertex, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override:

Dict = None, dxfattribs=None) — DimStyleOverride
Shortcut method to create a diameter dimension by two points on the circle and the measurement text

at the default location defined by the associated dimstyle, for further information see general method
add_diameter_dim (). Center point of the virtual circle is the mid point between p/ and p2.

* dimstyle “EZ_RADIUS”: places the dimension text outside
 dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside

Parameters
* pl —first point of the circle (in UCS)

* p2 - second point on the opposite side of the center point of the circle (in UCS)

9 9

* text — None or “<>" the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* dimstyle — dimension style name (DimStyle table entry), default is “EZ_RADIUS”
e override - DimStyleOverride attributes

¢ dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

add_angular_dim_21 (base: Vertex, linel: Tuple[Vertex, Vertex], line2: Tuple[Vertex, Vertex], *, loca-
tion: Vertex = None, text: str = '<>', text_rotation: float = None, dimstyle: str =

'EZ_CURVED', override: Dict = None, dxfattribs=None) — DimStyleOverride
Add angular Dimension from 2 lines. The measurement is always done from linel to line2 in counter

clockwise orientation. This does not always match the result in CAD applications!

If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimSt yleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base - location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

* linel —specifies start leg of the angle (start point, end point) and determines extension line
1 (in UCS)

* line2 - specifies end leg of the angle (start point, end point) and determines extension line
2 (in UCS)

* location — user defined location for text mid point (in UCS)

272 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

95 9

* text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
e override - DimStyleOverride attributes

* dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
New in version v(.18.

add_angular_dim_3p (base: Vertex, center: Vertex, pl: Vertex, p2: Vertex, *, location: Vertex = None,
text: str = '<>', text_rotation: float = None, dimstyle: str = 'EZ_CURVED', over-
ride: Dict = None, dxfattribs=None) — DimStyleOverride
Add angular Dimension from 3 points (center, pl, p2). The measurement is always done from p/ to p2 in
counter clockwise orientation. This does not always match the result in CAD applications!

If an UCS is used for angular dimension rendering, all point definitions in UCS coordinates, translation into
WCS and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimSt y leOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters

* base - location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

* center - specifies the vertex of the angle

* pl - specifies start leg of the angle (center -> p1) and end point of extension line 1 (in UCS)
* p2 —specifies end leg of the angle (center -> p2) and end point of extension line 2 (in UCS)
* location — user defined location for text mid point (in UCS)

9 9

* text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

e dimstyle — dimension style name (DimSt y e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

New in version v0.18.

6.8. Reference 273

ezdxf Documentation, Release 0.17.2

add_angular_dim_cra (center: Vertex, radius: float, start_angle: float, end_angle: float, distance:

float, *, location: Vertex = None, text: str = '<>', text_rotation: float = None,
dimstyle: str = 'EZ_CURVED', override: Dict = None, dxfattribs=None) —
DimStyleOverride

Shortcut method to create an angular dimension by (c)enter point, (r)adius and start- and end (a)ngles,
the measurement text is placed at the default location defined by the associated dimstyle. The measure-
ment is always done from start_angle to end_angle in counter clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim _3p().

Parameters

center — center point of the angle (in UCS)

radius - the distance from center to the start of the extension lines in drawing units
start_angle - start angle in degrees (in UCS)

end_angle - end angle in degrees (in UCS)

distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for text mid point (in UCS)

95 9

text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

New in version v0.18.

add_angular_dim_arc (arc: ezdxf.math.arc.ConstructionArc, distance: float, *, location: Vertex

= None, text: str = '<>', text_rotation: float = None, dimstyle: str =
'EZ_CURVED', override: Dict = None, dxfattribs=None) — DimStyleOver-

Shortcut method to creatg(;% angular dimension from a ConstructionArc. This construction tool can
be created from ARC entities and the tool itself provides various construction class methods. The mea-
surement text is placed at the default location defined by the associated dimstyle. The measurement is al-
ways done from start_angle to end_angle of the arc in counter clockwise orientation. This does not al-
ways match the result in CAD applications! For further information see the more generic factory method
add_angular_dim _3p().

Parameters

arc— ConstructionArc
distance —distance from start of the extension lines to the dimension line in drawing units

location — user defined location for text mid point (in UCS)

99 9

text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else text is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

274

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* dimstyle — dimension style name (DimStyle table entry), default is “EZ_CURVED”
e override - DimStyleOverride attributes
* dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

New in version v0.18.

add_arc_dim_3p (base: Vertex, center: Vertex, pl: Vertex, p2: Vertex, *, location: Vertex = None, text:
str = '<>', text_rotation: float = None, dimstyle: str = 'EZ_CURVED', override: Dict =
None, dxfattribs=None) — DimStyleOverride
Add ArcDimension from 3 points (center, pl, p2). Point p/ defines the radius and the start angle of the

arc, point p2 only defines the end angle of the arc.

If an UCS is used for arc dimension rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimSt yleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps onthe ArcDimension
entity between creation and rendering.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

* base —location of dimension line, any point on the dimension line or its extension is valid
(in UCS)

* center - specifies the vertex of the angle

¢ pl - specifies the radius (center -> p1) and the star angle of the arc, this is also the start point
for the 1st extension line (in UCS)

* p2 —specifies the end angle of the arc. The start 2nd extension line is defined by this angle
and the radius defined by p1 (in UCS)

¢ location —user defined location for text mid point (in UCS)

* text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

* text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

* dimstyle — dimension style name (DimSt y1e table entry), default is “EZ_CURVED”
e override — DimStyleOverride attributes

* dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
New in version v(.18.

add_arc_dim_cra (center: Vertex, radius: float, start_angle: float, end_angle: float, distance: float, *,
location: Vertex = None, text: str = '<>', text_rotation: float = None, dimstyle: str =

'EZ_CURVED', override: Dict = None, dxfattribs=None) — DimStyleOverride
Shortcut method to create an arc dimension by (c)enter point, (r)adius and start- and end (a)ngles, the mea-

surement text is placed at the default location defined by the associated dimstyle.

6.8. Reference 275

ezdxf Documentation, Release 0.17.2

Note: FEzdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

center — center point of the angle (in UCS)

radius - the distance from center to the start of the extension lines in drawing units
start_angle - start angle in degrees (in UCS)

end_angle - end angle in degrees (in UCS)

distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for text mid point (in UCS)

99 9

text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else zext is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_CURVED”
override — DimStyleOverride attributes

dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride

New in version v0.18.

add_arc_dim_arc (arc: ezdxf.math.arc.ConstructionArc, distance: float, *, location: Vertex = None, text:

str = '<>', text_rotation: float = None, dimstyle: str = 'EZ_CURVED', override: Dict
= None, dxfattribs=None) — DimStyleOverride

Shortcut method to create an arc dimension from a ConstructionArc. This construction tool can be
created from ARC entities and the tool itself provides various construction class methods. The measurement
text is placed at the default location defined by the associated dimstyle.

Note: Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.

Parameters

arc - ConstructionArc
distance —distance from start of the extension lines to the dimension line in drawing units
location — user defined location for text mid point (in UCS)

9 9

text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

text_rotation - rotation angle of the dimension text as absolute angle (x-axis=0, y-
axis=90) in degrees

dimstyle — dimension style name (DimSt y Ie table entry), default is “EZ_CURVED”

override — DimStyleOverride attributes

276

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

e dxfattribs - additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
New in version v0.18.

add_ordinate_dim (feature_location: Vertex, offset: Vertex, dtype: int, *, origin: Vertex = Vec3(0.0, 0.0,
0.0), rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF", override: Dict
= None, dxfattribs=None) — ezdxf .entities.dimstyleoverride.DimStyleOverride
Add an ordinate type Dimension line. The feature location is defined in the global coordinate system,

which is set as render UCS, which is the WCS by default.

If an UCS is used for dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default.

This method returns a DimStyleOverride object - to create the necessary dimension geometry, you have
to call render () manually, this two step process allows additional processing steps on the Dimension
entity between creation and rendering.

Note: Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.

Parameters
» feature_location - feature location in the global coordinate system (UCS)

* offset — offset vector of leader end point from the feature location in the local coordinate
system

e dtype — 1 = x-type, 0 = y-type
* origin - specifies the origin (0, 0) of the local coordinate system in UCS
e rotation - rotation angle of the local coordinate system in degrees

95 9

* text — None or “<>” the measurement is drawn as text, ” ” (a single space) suppresses the
dimension text, everything else fext is drawn as dimension text

* dimstyle — dimension style name (DimSt y e table entry), default is “EZDXF”
e override — DimStyleOverride attributes

e dxfattribs — additional DXF attributes for the DIMENSION entity

Returns: DimStyleOverride
New in version v0.18.

add_ordinate_x_dim (feature_location: Vertex, offset: Vertex, *, origin: Vertex = Vec3(0.0, 0.0, 0.0),
rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF", override: Dict =
None, dxfattribs=None) — ezdxf.entities.dimstyleoverride.DimStyleOverride

Shortcut to add a x-type feature ordinate DIMENSION, for more information see

add_ordinate_dim/().
New in version v0.18.

add_ordinate_y_dim (feature_location: Vertex, offset: Vertex, *, origin: Vertex = Vec3(0.0, 0.0, 0.0),
rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF", override: Dict =
None, dxfattribs=None) — ezdxf.entities.dimstyleoverride.DimStyleOverride

Shortcut to add a y-type feature ordinate DIMENSION, for more information see

add_ordinate_dim/().

. Reference 277

ezdxf Documentation, Release 0.17.2

New in version v0.18.

add_leader (vertices: Iterable[Vertex], dimstyle: str = 'EZDXF", override: Dict = None, dxfattribs=None)

— Leader
The Leader entity represents an arrow, made up of one or more vertices (or spline fit points) and an arrow-

head. The label or other content to which the Leader is attached is stored as a separate entity, and is not
part of the Leader itself. (requires DXF R2000)

Leader shares its styling infrastructure with Dimension.

By default a Leade r without any annotation is created. For creating more fancy leaders and annotations see
documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementa-
tion notes .

Parameters
e vertices - leader vertices (in WCS)
¢ dimstyle — dimension style name (DimSty1e table entry), default is “EZDXF”
e override —override DimSt yleOverride attributes
e dxfattribs - additional DXF attributes

add_multileader_mtext (style: str = ‘Standard’, dxfattribs=None) — MultiLeaderMTextBuilder
Add a MultiLeader entity but returns a MultiLeaderMTextBuilder.

New in version 0.18.

add_multileader_block (style: str = ‘Standard’, dxfattribs=None) — MultiLeaderBlockBuilder
Add a MultiLeader entity but returns a MultiLeaderBlockBuilder.

New in version 0.18.

add_body (acis_data: Iterable[str] = None, dxfattribs=None) — Body
Add a Body entity. (requires DXF R2000-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no
functionality to create ACIS data.

Parameters

* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible

e dxfattribs — additional DXF attributes

add_region (acis_data: Iterable[str] = None, dxfattribs=None) — Region
Add a Region entity. (requires DXF R2000-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no
functionality to create ACIS data.

Parameters

* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible

e dxfattribs — additional DXF attributes

add_3dsolid (acis_data: Iterable[str] = None, dxfattribs=None) — Solid3d
Add a 3DSOLID entity (So11id3d). (requires DXF R2000-R2010)

278 Chapter 6. Contents

https://atlight.github.io/formats/dxf-leader.html
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 0.17.2

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no

functionality to create ACIS data.

Parameters
* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible
e dxfattribs - additional DXF attributes
add_surface (acis_data: Iterable[str] = None, dxfattribs=None) — Surface
Add a Surface entity. (requires DXF R2000-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no

functionality to create ACIS data.
Parameters
* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible
¢ dxfattribs - additional DXF attributes
add_extruded_surface (acis_data: Iterable[str] = None, dxfattribs=None) — ExtrudedSurface
Add a Ext rudedSurface entity. (requires DXF R2000-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no

functionality to create ACIS data.

Parameters
* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible
e dxfattribs — additional DXF attributes

add_lofted_surface (acis_data: Iterable[str] = None, dxfattribs=None) — LoftedSurface
Add a LoftedSurface entity. (requires DXF R2007-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no

functionality to create ACIS data.
Parameters
* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible
e dxfattribs — additional DXF attributes
add_revolved_surface (acis_data: Iterable[str] = None, dxfattribs=None) — RevolvedSurface
Add a RevolvedSurface entity. (requires DXF R2007-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no

functionality to create ACIS data.

Parameters
* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf

possible

6.8. Reference 279

ezdxf Documentation, Release 0.17.2

e dxfattribs — additional DXF attributes

add_swept_surface (acis_data: Iterable[str] = None, dxfattribs=None) — SweptSurface
Add a SweptSurface entity. (requires DXF R2007-R2010)

The ACIS data has to be provided as an iterable of strings with no line endings and only the SAT (text)
format is supported, DXF R2013+ uses the SAB (binary) format which is not supported, and ezdxf has no
functionality to create ACIS data.

Parameters

* acis_data — ACIS data as iterable of text lines as strings, no interpretation by ezdxf
possible

e dxfattribs — additional DXF attributes

Layout

class ezdxf.layouts.Layout
Layout is a subclass of BaseLayout and common base class of Modelspace and Paperspace.

name
Layout name as shown in tabs of CAD applications.

dxf
Returns the DXF name space attribute of the associated DXFLayout object.

This enables direct access to the underlying LAYOUT entity, e.g. Layout .dxf.layout_flags

__contains___ (entity: Union| DXFGraphic, str]) — bool
Returns True if entity is stored in this layout.

Parameters entity — DXFGraphic object or handle as hex string

reset_extents (extmin=(1le+20, le+20, 1e+20), extmax=(- le+20, - 1e+20, - le+20)) — None
Reset extents to given values or the AutoCAD default values.

“Drawing extents are the bounds of the area occupied by objects.” (Quote Autodesk Knowledge Network)
Parameters
¢ extmin — minimum extents or (+1e20, +1e20, +1e20) as default value
¢ extmax — maximum extents or (-1e20, -1e20, -1e20) as default value

reset_limits (limmin=None, limmax=None) — None
Reset limits to given values or the AutoCAD default values.

“Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit clicking
or entering point locations.” (Quote Autodesk Knowledge Network)

The Paperspace class has an additional method reset_paper_Ilimits () todeduce the default limits
from the paper size settings.

Parameters
¢ extmin — minimum extents or (0, 0) as default
* extmax — maximum extents or (paper width, paper height) as default value

set_plot_type (value: int = 5) — None

280 Chapter 6. Contents

https://knowledge.autodesk.com/de/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/DEU/AutoCAD-Core/files/GUID-B3926CFA-DE74-4661-A9A5-2738A1FD937B-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-6CF82FC7-E1BC-4A8C-A23D-4396E3D99632-htm.html

ezdxf Documentation, Release 0.17.2

last screen display

drawing extents

drawing limits

view specific (defined by Layout .dxf.plot_view_name)

window specific (defined by Layout .set_plot_window_limits())
layout information (default)

N RN =IO

Parameters value - plot type
Raises DXFValueError —for value out of range
set_plot_style (name: str = ‘ezdxf.ctb’, show: bool = False) — None
Set plot style file of type .ctb.
Parameters
* name - plot style filename
* show — show plot style effect in preview? (AutoCAD specific attribute)
set_plot_window (lower_left: Tuple[float, float] = (0, 0), upper_right: Tuple[float, float] = (0, 0)) —
Set plot window sizlg(i)ge(scaled) paper space units.
Parameters
* lower_left —lower left corner as 2D point
* upper_right — upper right corner as 2D point

set_redraw_order (handles: Union[Dict, Iterable[Tuple[str, str]]]) — None
If the header variable $SSORTENTS Regen flag (bit-code value 16) is set, AutoCAD regenerates entities in
ascending handles order.

To change redraw order associate a different sort handle to entities, this redefines the order in which the
entities are regenerated. handles can be a dict of entity_handle and sort_handle as (k, v) pairs, or an iterable
of (entity_handle, sort_handle) tuples.

The sort_handle doesn’t have to be unique, some or all entities can share the same sort handle and a sort
handle can be an existing handle.

The “0” handle can be used, but this sort_handle will be drawn as latest (on top of all other entities) and not
as first as expected.

Parameters handles - iterable or dict of handle associations; an iterable of 2-tuples (en-
tity_handle, sort_handle) or a dict (k, v) association as (entity_handle, sort_handle)

get_redraw_order () — Iterable[Tuple[str, str]]
Returns iterable for all existing table entries as (entity_handle, sort_handle) pairs, see also
set_redraw_order ().

plot_viewport_borders (state: bool = True) — None
show_plot_styles (state: bool = True) — None
plot_centered (state: bool = True) — None
plot_hidden (state: bool = True) — None
use_standard_scale (state: bool = True) — None
use_plot_styles (state: bool = True) — None

scale_lineweights (state: bool = True) — None

. Reference 281

ezdxf Documentation, Release 0.17.2

print_lineweights (state: bool = True) — None
draw_viewports_first (state: bool = True) — None
model_type (state: bool = True) — None

update_paper (state: bool = True) — None
zoom_to_paper_on_update (state: bool = True) — None
plot_flags_initializing (state: bool = True) — None
prev_plot_init (state: bool = True) — None

set_plot_flags (flag, state: bool = True) — None

Modelspace

class ezdxf.layouts.Modelspace
Modelspaceis asubclass of Layout.

The modelspace contains the “real” world representation of the drawing subjects in real world units.

name
Name of modelspace is fixed as “Model”.

new_geodata (dxfattribs: dict = None) — GeoData
Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the OB-

JECTS section and not in the modelspace, it is linked to the modelspace by an ExtensionDict located
in BLOCK_RECORD of the modelspace.

The GEODATA entity requires DXF R2010. The DXF reference does not document if other layouts than
the modelspace supports geo referencing, so I assume getting/setting geo data may only make sense for the

modelspace.

Parameters dxfattribs — DXF attributes for GeoDat a entity

get_geodata () — Optional[GeoData]
Returns the GeoDat a entity associated to the modelspace or None.

Paperspace

class ezdxf.layouts.Paperspace
Paperspace is a subclass of Layout.

Paperspace layouts are used to create different drawing sheets of the modelspace subjects for printing or PDF
export.

name
Layout name as shown in tabs of CAD applications.

page_setup (size=(297, 210), margins=(10, 15, 10, 15), units="mm’', offset=(0, 0), rotation=0, scale=16,

name='ezdxf", device="DWG to PDF.pc3")
Setup plot settings and paper size and reset viewports. All parameters in given units (mm or inch).

Reset paper limits, extents and viewports.
Parameters
* size — paper size as (width, height) tuple

* margins — (top, right, bottom, left) hint: clockwise

282 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

e units - “mm” or “inch”
* offset — plot origin offset is 2D point
e rotation - see table Rotation

e scale - integer in range [0, 32] defines a standard scale type or as tuple(numerator, de-
nominator) e.g. (1, 50) for scale 1:50

* name — paper name prefix “{name}_({width}_x_{height}_{unit})”

* device —device .pc3 configuration file or system printer name

int | Rotation

0 no rotation

1 90 degrees counter-clockwise
2 upside-down

3 90 degrees clockwise

viewports () — List[Viewport]
Get all VIEWPORT entities defined in this paperspace layout. Returns a list of Viewport objects, sorted
by id, the first entity is always the main viewport with an id of 1.

main_viewport () — Optional[Viewport]
Returns the main viewport of this paper space layout, or None if no main viewport exist.

add_viewport (center: Vertex, size: Tuple[float, float], view_center_point: Vertex, view_height: float,
dxfattribs: dict = None) — Viewport
Add anew Viewport entity.

reset_viewports () — None
Delete all existing viewports, and create a new main viewport.

reset_main_viewport (center: Vertex = None, size: Vertex = None) — Viewport
Reset the main viewport of this paper space layout to the given values, or reset them to the default values,
deduced from the paper settings. Creates a new main viewport if none exist.

Ezdxf does not create a main viewport by default, because CAD applications don’t require one.
Parameters
* center — center of the viewport in paper space units
* size - viewport size as (width, height) tuple in paper space units

reset_paper_limits () — None
Set paper limits to default values, all values in paperspace units but without plot scale (?).

get_paper_limits () — Tuple[Vec2, Vec2]
Returns paper limits in plot paper units, relative to the plot origin.

plot origin = lower left corner of printable area + plot origin offset

Returns tuple (Vec2(x1, y1), Vec2(x2, y2)), lower left corner is (x1, y1), upper right corner is (x2,
y2).

6.8.

Reference 283

ezdxf Documentation, Release 0.17.2

BlockLayout

class ezdxf.layouts.BlockLayout
BlockLayout is a subclass of BaselLayout.

Block layouts are reusable sets of graphical entities, which can be referenced by multiple Tnsert entities. Each
reference can be placed, scaled and rotated individually and can have it’s own set of DXF At t 1 b entities attached.

property name
Get/set the BLOCK name

property block
the associated B1ock entity.

property endblk
the associated EndB1k entity.

property dxf
DXF name space of associated B1ockRecord table entry.

property can_explode
Set property to True to allow exploding block references of this block.

property scale_uniformly
Set property to True to allow block references of this block only scale uniformly.

property base_point
Returns the base point of the block.

__contains___ (entity) — bool
Returns True if block contains entity.

Parameters entity — DXFGraphic object or handle as hex string

attdefs () — Iterable[ezdxf entities.attrib. AttDef]
Returns iterable of all At tde £ entities.

has_attdef (tag: str) — bool
Returns True if an At tdef for fag exist.

get_attdef (tag: str) — Optional[ezdxf.entities.dxfgfx. DXFGraphic]
Returns attached At tdef entity by tag name.

get_attdef_text (tag: str, default: str =") — str
Returns text content for At t def fag as string or returns default if no At tdef for tag exist.

Parameters
* tag - name of tag

e default — default value if fag not exist

284 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Groups

A group is just a bunch of DXF entities tied together. All entities of a group has to be on the same layout (modelspace or
any paper layout but not block). Groups can be named or unnamed, but in reality an unnamed groups has just a special
name like “*Annnn”. The name of a group has to be unique in the drawing. Groups are organized in the main group
table, which is stored as attribute groups in the Drawing object.

Group entities have to be in modelspace or any paperspace layout but not in a block definition!

DXFGroup

class ezdxf.entities.dxfgroups.DXFGroup
The group name is not stored in the GROUP entity, it is stored in the GroupCollection object.

dxf.description
group description (string)

dxf .unnamed
1 for unnamed, O for named group (int)

dxf.selectable
1 for selectable, O for not selectable group (int)

__iter__ () — Iterator[ezdxf.entities.dxfentity. DXFEntity]
Iterate over all DXF entities in DXFGroup as instances of DXFGraphic or inherited (LINE, CIRCLE,
).

_len__ () —int
Returns the count of DXF entities in DXFGroup.

__getitem___ (item)
Returns entities by standard Python indexing and slicing.

__contains___ (item: Union[str, ezdxf.entities.dxfentity. DXFEntity]) — bool
Returns True if item is in DXFGroup. item has to be a handle string or an object of type DXFEntity or

inherited.

handles () — Iterable[str]
Iterable of handles of all DXF entities in DXFGroup.

edit_data () — List[ezdxf.entities.dxfentity. DXFEntity]
Context manager which yields all the group entities as standard Python list:

with group.edit_data () as data:
add new entities to a group
data.append (modelspace.add_line((0, 0), (3, 0)))
remove last entity from a group
data.pop ()

set_data (entities: Iterable[ezdxf.entities.dxfentity. DXFEntity]) — None
Set entities as new group content, entities should be an iterable DXFGraphic or inherited (LINE, CIRCLE,
...). Raises DXFValueError if not all entities be on the same layout (modelspace or any paperspace layout
but not block)

extend (entities: Iterable[ezdxf.entities.dxfentity. DXFEntity]) — None
Add entities to DXFGroup without immediate verification!

Validation at DXF export may raise a DXFStructureError!

6.8. Reference 285

ezdxf Documentation, Release 0.17.2

clear () — None
Remove all entities from DXFGroup, does not delete any drawing entities referenced by this group.

audit (auditor: Auditor) — None
Remove invalid entities from DXFGroup.

Invalid entities are:
* deleted entities
« all entities which do not reside in model- or paper space

« all entities if they do not reside in the same layout

GroupCollection

Each Drawing has one group table, which is accessible by the attribute groups.

class ezdxf.entities.dxfgroups.GroupCollection
Manages all DXFGroup objects of a Drawing.

_len__ () —int
Returns the count of DXF groups.

__iter_ ()
Iterate over all existing groups as (name, group) tuples. name is the name of the group as string and group is
an DXFGroup object.

__contains___ (name: str) — bool
Returns True if a group name exist.

get (name: str) — DXFGroup
Returns the group name. Raises DXFKeyError if group name does not exist.

groups () — DXFGroup
Iterable of all existing groups.

new (name: str = None, description: str = ", selectable: bool = True) — DXFGroup
Creates a new group. If name is None an unnamed group is created, which has an automatically generated
name like “* Annnn”. Group names are case insensitive.

Parameters
* name — group name as string
* description - group description as string
e selectable — group is selectable if True

delete (group: Union[DXFGroup, str]) — None
Delete group, group can be an object of type DXFGroup or a group name as string.

clear ()
Delete all groups.

audit (auditor: Auditor) — None
Removes empty groups and invalid handles from all groups.

286 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

DXF Entities

All DXF entities can only reside in the BaseLayout and inherited classes like Modelspace, Paperspace and
BlockLayout.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

DXF Entity Base Class

Common base class for all DXF entities and objects.

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFEntity

dxf
The DXEF attributes namespace:

set attribute value
entity.dxf.layer = 'MyLayer'

get attribute value
linetype = entity.dxf.linetype

delete attribute
del entity.dxf.linetype

dxf.handle
DXEF handle is a unique identifier as plain hex string like F000. (feature for experts)

dxf.owner
Handle to owner as plain hex string like F000. (feature for experts)

doc
Get the associated Drawing instance.

property is_alive
Is False if entity has been deleted.

property is_virtual
Is True if entity is a virtual entity.

property is_bound
Is True if entity is bound to DXF document.

property is_copy
Is True if the entity is a copy.

property uuid
Returns an UUID, which allows to distinguish even virtual entities without a handle.

Dynamic attribute: this UUID will be created at the first request.

property source_of_copy
The immediate source entity if this entity is a copy else None. Never references a destroyed entity.

6.8. Reference 287

ezdxf Documentation, Release 0.17.2

property origin_of_copy
The origin source entity if this entity is a copy else None. References the first non virtual source entity and
never references a destroyed entity.

property has_source_block_reference
Is True if this virtual entity was created by a block reference.

property source_block_reference
The source block reference (INSERT) which created this virtual entity. The property is None if this entity
was not created by a block reference.

dxftype () — str
Get DXF type as string, like LINE for the line entity.

_str__ () —str
Returns a simple string representation.

__repr_ () —»str
Returns a simple string representation including the class.

has_dxf_attrib (key: str) — bool
Returns True if DXF attribute key really exist.

Raises DXFAttributeError if key is not an supported DXF attribute.

is_supported_dxf_attrib (key: str) — bool
Returns True if DXF attrib key is supported by this entity. Does not grant that attribute key really exist.

get_dxf_attrib (key: str, default: Optional[Any] = None) — Any
Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if default is DXF~
ValueError and no DXF default value is defined:

layer = entity.get_dxf_attrib("layer")
same as
layer = entity.dxf.layer

Raises DXFAttributeError if key is not an supported DXF attribute.

set_dxf_attrib (key: str, value: Any) — None
Set new value for DXF attribute key:

entity.set_dxf_ attrib("layer", "MyLayer")
same as
entity.dxf.layer = "MyLayer"

Raises DXFAttributeError if key is not an supported DXF attribute.

del_dxf_attrib (key: str) — None
Delete DXF attribute key, does not raise an error if attribute is supported but not present.

Raises DXFAttributeError if key is not an supported DXF attribute.

dxfattribs (drop: Optional[Set[str]] = None) — Dict
Returns a dict with all existing DXF attributes and their values and exclude all DXF attributes listed in set
drop.

update_dxf_attribs (dxfattribs: Dict) — None
Set DXF attributes by a dict like { 'layer': 'test', 'color': 4}.

set_flag_state (flag: int, state: bool = True, name: str = 'flags') — None
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to 0 (off) if state is False.

288 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

get_flag_state (flag: int, name: str = 'flags') — bool
Returns True if any flag of DXF attribute is 1 (on), else False. Always check only one flag state at the
time.

has_extension_dict
Returns True if entity has an attached ExtensionDict instance.

get_extension_dict () — ExtensionDict
Returns the existing ExtensionDict instance.

Raises AttributeError — extension dict does not exist

new_extension_dict () — ExtensionDict
Create a new ExtensionDict instance .

discard_extension_dict () — None
Delete ExtensionDict instance .

has_app_data (appid: str) — bool
Returns True if application defined data for appid exist.

get_app_data (appid: str) — Tags
Returns application defined data for appid.

Parameters appid — application name as defined in the APPID table.
Raises DXFValueError —no data for appid found

set_app_data (appid: str, tags: Iterable)
Set application defined data for appid as iterable of tags.

Parameters
* appid - application name as defined in the APPID table.
* tags —iterable of (code, value) tuples or DXFTag

discard_app_data (appid: str)
Discard application defined data for appid. Does not raise an exception if no data for appid exist.

has_xdata (appid: str) — bool
Returns True if extended data for appid exist.

get_xdata (appid: str) — Tags
Returns extended data for appid.

Parameters appid — application name as defined in the APPID table.
Raises DXFValueError —no extended data for appid found

set_xdata (appid: str, tags: Iterable)
Set extended data for appid as iterable of tags.

Parameters
* appid - application name as defined in the APPID table.
* tags —iterable of (code, value) tuples or DXFTag

discard_xdata (appid: str) — None
Discard extended data for appid. Does not raise an exception if no extended data for appid exist.

has_xdata_1list (appid: str, name: str) — bool
Returns True if a tag list name for extended data appid exist.

6.8. Reference 289

ezdxf Documentation, Release 0.17.2

get_xdata_list (appid: str, name: str) — Tags
Returns tag list name for extended data appid.

Parameters
¢ appid - application name as defined in the APPID table.
* name - extended data list name
Raises DXFValueError —no extended data for appid found or no data list name not found

set_xdata_1list (appid: str, name: str, tags: Iterable)
Set tag list name for extended data appid as iterable of tags.

Parameters
* appid - application name as defined in the APPID table.
* name — extended data list name
* tags —iterable of (code, value) tuples or DXFTag

discard_xdata_list (appid: str, name: str) — None
Discard tag list name for extended data appid. Does not raise an exception if no extended data for appid or
no tag list name exist.

replace_xdata_1list (appid: str, name: str, tags: Iterable)
Replaces tag list name for existing extended data appid by fags. Appends new list if tag list name do not exist,
but raises DXFValueError if extended data appid do not exist.

Parameters
¢ appid - application name as defined in the APPID table.
* name - extended data list name
* tags —iterable of (code, value) tuples or DXFTag
Raises DXFValueError —no extended data for appid found

has_reactors () — bool
Returns True if entity has reactors.

get_reactors () — List[str]
Returns associated reactors as list of handles.

set_reactors (handles: Iterable[str]) — None
Set reactors as list of handles.

append_reactor_handle (handle: str) — None
Append handle to reactors.

discard_reactor_handle (handle: str) — None
Discard handle from reactors. Does not raise an exception if handle does not exist.

290 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

DXF Graphic Entity Base Class

Common base class for all graphical DXF entities.

This entities resides in entity spaces like Mode I space, any Paperspace or BlockLayout.

| Subclass of | ezdxf.entities.DXFEntity |

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.DXFGraphic

rgb
Get/set DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute dxr.
true_ color isnot set.

entity.rgb = (30, 40, 50)
r, g, b = entity.rgb

This is the recommend method to get/set RGB values, when ever possible do not use the DXF low level
attribute dxf . true_color.

transparency
Get/set transparency value as float. Value range 0 to 1, where 0 means entity is opaque and 1 means entity
is 100% transparent (invisible). This is the recommend method to get/set transparency values, when ever
possible do not use the DXF low level attribute DXFGraphic.dxf.transparency

This attribute requires DXF R2004 or later, returns 0 for prior DXF versions and raises DXFAttribu—
teError for setting transparency in older DXF versions.

property is_transparency_by_layer
Returns True if entity inherits transparency from layer.

property is_transparency_by_block
Returns True if entity inherits transparency from block.

ocs () — OCS
Returns object coordinate system (OCS) for 2D entities like Text or Circle, returns a pass-through OCS
for entities without OCS support.

get_layout () — BaseLayout
Returns the owner layout or returns None if entity is not assigned to any layout.

unlink_from_layout () — None
Unlink entity from associated layout. Does nothing if entity is already unlinked.

It is more efficient to call the unliink_entity () method of the associated layout, especially if you have
to unlink more than one entity.

copy_to_layout (layout: BaseLayout) — DXFEntity
Copy entity to another layout, returns new created entity as DXFEnt ity object. Copying between different
DXF drawings is not supported.

Parameters layout — any layout (model space, paper space, block)

Raises DXFStructureError — for copying between different DXF drawings

6.8. Reference 291

ezdxf Documentation, Release 0.17.2

move_to_layout (layout: BaseLayout, source: BaseLayout = None)
Move entity from model space or a paper space layout to another layout. For block layout as source, the block
layout has to be specified. Moving between different DXF drawings is not supported.

Parameters

¢ layout - any layout (model space, paper space, block)

* source - provide source layout, faster for DXF R12, if entity is in a block layout
Raises DXFStructureError —for moving between different DXF drawings

graphic_properties () — Dict
Returns the important common properties layer, color, linetype, lineweight, Itscale, true_color and
color_name as dxfartribs dict.

has_hyperlink () — bool
Returns True if entity has an attached hyperlink.

get_hyperlink () — Tuple[str, str, str]
Returns hyperlink, description and location.

set_hyperlink (link: str, description: Optional[str] = None, location: Optional[str] = None)
Set hyperlink of an entity.

transform (t: Matrix44) — DXFGraphic
Inplace transformation interface, returns self (floating interface).

Parameters m — 4x4 transformation matrix (ezdxf.math.Matrix44)

translate (dx: float, dy: float, dz: float) — DXFGraphic
Translate entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).

Basic implementation uses the t ransform () interface, subclasses may have faster implementations.

scale (sx: float, sy: float, sz: float) — DXFGraphic
Scale entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating interface).

scale_uniform (s: float) — DXFGraphic
Scale entity inplace uniform about s in x-axis, y-axis and z-axis, returns self (floating interface).

rotate_x (angle: float) — DXFGraphic
Rotate entity inplace about x-axis, returns self (floating interface).

Parameters angle - rotation angle in radians

rotate_y (angle: float) — DXFGraphic
Rotate entity inplace about y-axis, returns self (floating interface).

Parameters angle — rotation angle in radians

rotate_z (angle: float) — DXFGraphic
Rotate entity inplace about z-axis, returns self (floating interface).

Parameters angle - rotation angle in radians

rotate_axis (axis: Vec3, angle: float) — DXFGraphic
Rotate entity inplace about vector axis, returns self (floating interface).

Parameters
* axis — rotation axis as tuple or Vec3

* angle - rotation angle in radians

292 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Common graphical DXF attributes

DXFGraphic.dxf.layer
Layer name as string; default='0"

DXFGraphic.dxf.linetype
Linetype as string, special names 'BYLAYER', 'BYBLOCK'; default value is ' BYLAYER'

DXFGraphic.dxf.color
AutoCAD Color Index (ACI), default = 256

Constants defined in ezdxf.11dxf.const

0 BYBLOCK
256 | BYLAYER
257 | BYOBJECT

DXFGraphic.dxf.lineweight
Line weight in mm times 100 (e.g. 0.13mm = 13). There are fixed valid lineweights which are accepted
by AutoCAD, other values prevents AutoCAD from loading the DXF document, BricsCAD isn’t that
picky. (requires DXF R2000)

Constants defined in ezdxf.11dxf.const

-1 | LINEWEIGHT_BYLAYER
-2 | LINEWEIGHT_BYBLOCK
-3 | LINEWEIGHT_DEFAULT

Valid DXF lineweights stored in VALID_DXF_LINEWEIGHTS:O0, 5, 9, 13, 15, 18, 20, 25, 30, 35,
40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211

DXFGraphic.dxf.ltscale
Line type scale as float; default = 1 . 0 (requires DXF R2000)

DXFGraphic.dxf.invisible
1 for invisible, O for visible; default = 0 (requires DXF R2000)

DXFGraphic.dxf.paperspace
0 for entity resides in modelspace or a block, 1 for paperspace, this attribute is set automatically by
adding an entity to a layout (feature for experts); default = 0

DXFGraphic.dxf.extrusion
Extrusion direction as 3D vector; default= (0, 0, 1)

DXFGraphic.dxf.thickness
Entity thickness as float; default = 0. 0 (requires DXF R2000)

DXFGraphic.dxf.true_color
True color value as int 0x00RRGGBB, use DXFGraphic. rgb to get/set true color values as (r,
g, b) tuples. (requires DXF R2004)

DXFGraphic.dxf.color_name
Color name as string. (requires DXF R2004)

DXFGraphic.dxf.transparency
Transparency value as int, 0x020000TT 0x00 = 100% transparent / OXFF = opaque, spe-
cial value 0x01000000 means transparency by block. An unset transparency value means
transparency by layer. Use DXFGraphic.transparency to get/set transparency as float

6.8. Reference 293

ezdxf Documentation, Release 0.17.2

value, and the properties DXFGraphic.is_transparency_by_block and DXFGraphic.
is_transparency_by_layer to check special cases.

(requires DXF R2004)

DXFGraphic.dxf.shadow_mode

casts and receives shadows
casts shadows

receives shadows

ignores shadows

W= O

(requires DXF R2007)

Face3d

A 3DFACE (DXF Reference) is real 3D solid filled triangle or quadrilateral. Access vertices by name (entity.dxf.

vtx0 = (1.7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).
Subclass of ezdxf.entities.DXFGraphic
DXEF type '3DFACE'
Factory function ezdxf.layouts.BaseLayout.add 3dface ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Face3d
Face3d because 3dface is not a valid Python class name.

dxf.vtx0
Location of 1. vertex (3D Point in WCS)

dxf.vtxl
Location of 2. vertex (3D Point in WCS)

dxf.vtx2
Location of 3. vertex (3D Point in WCS)

dxf.vtx3
Location of 4. vertex (3D Point in WCS)

dxf.invisible_edge
invisible edge flag (int, default=0)

first edge is invisible
second edge is invisible
third edge is invisible
fourth edge is invisible

O | N —

Combine values by adding them, e.g. 1+4 = first and third edge is invisible.

294 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-747865D5-51F0-45F2-BEFE-9572DBC5B151

ezdxf Documentation, Release 0.17.2

transform (m: Matrix44) — Face3d
Transform the 3DFACE entity by transformation matrix m inplace.

wcs_vertices (close: bool = False) — List[Vec3]
Returns WCS vertices, if argument close is True, last vertex == first vertex.

returns 4 vertices when close=False and 5 vertices when close=True. Some edges may have 0 length.

Compeatibility interface to SOLID and TRACE. The 3DFACE entity returns already WCS vertices.

Solid3d

3DSOLID (DXF Reference) created by an ACIS based geometry kernel provided by the Spatial Corp.

See also:

Ezdxf will never create or interpret ACIS data, for more information see the FAQ: How fo add/edit ACIS based entities
like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXEF type '3DSOLID'
Factory function ezdxf.layouts.BaseLayout.add 3dsolid()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid3d
Same attributes and methods as parent class Body.

dxf.history_handle
Handle to history object.

Arc

ARC (DXF Reference) center at location dxf . center and radius of dxf.radius from dxf.start_angle to
dxf.end_angle. ARC goes always from dxf.start_angle to dxf.end_angle in counter clockwise orien-
tation around the dxf . ext rusion vector, whichis (0, 0, 1) by default and the usual case for 2D arcs.

Subclass of ezdxf.entities.Circle

DXEF type '"ARC'

Factory function ezdxf.layouts.BaseLayout.add _arc ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Arc

dxf.center
Center point of arc (2D/3D Point in OCS)

6.8. Reference 295

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-19AB1C40-0BE0-4F32-BCAB-04B37044A0D3
http://www.spatial.com/products/3d-acis-modeling
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0B14D8F1-0EBA-44BF-9108-57D8CE614BC8

ezdxf Documentation, Release 0.17.2

dxf.radius
Radius of arc (float)

dxf.start_angle
Start angle in degrees (float)

dxf.end_angle
End angle in degrees (float)

start_point
Returns the start point of the arc in WCS, takes OCS into account.

end_point
Returns the end point of the arc in WCS, takes OCS into account.

angles (num: int) — Iterable[float]
Returns num angles from start- to end angle in degrees in counter clockwise order.

All angles are normalized in the range from [0, 360).

flattening (sagitta: float) — Iterable[Vertex]
Approximate the arc by vertices in WCS, argument segment is the max. distance from the center of an arc
segment to the center of its chord. Yields Vec2 objects for 2D arcs and Vec 3 objects for 3D arcs.

New in version 0.15.

transform (m: Matrix44) — Arc
Transform ARC entity by transformation matrix m inplace.

Raises NonUniformScalingError () for non uniform scaling.

to_ellipse (replace=True) — Ellipse
Convert CIRCLE/ARC to an E111ipse entity.

Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.
Parameters replace — replace (delete) source entity by ELLIPSE entity if True

to_spline (replace=True) — Spline
Convert CIRCLE/ARC to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.
Parameters replace — replace (delete) source entity by SPLINE entity if True

construction_tool () — ConstructionArc
Returns 2D construction tool ezdxf.math.ConstructionArc, ignoring the extrusion vector.

apply_construction_tool (arc: ConstructionArc) — Arc
Set ARC data from construction tool ezdxf.math.ConstructionArc, will not change the extrusion
vector.

Body

BODY (DXF Reference) created by an ACIS based geometry kernel provided by the Spatial Corp.
See also:

Ezdxf will never create or interpret ACIS data, for more information see the FAQ: How to add/edit ACIS based entities
like 3DSOLID, REGION or SURFACE?

296 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7FB91514-56FF-4487-850E-CF1047999E77
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 0.17.2

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'BODY
Factory function ezdxf.layouts.BaseLayout.add_body ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 (*AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Body

dxf.version
Modeler format version number, default value is 1

dxf.flags
Require DXF R2013.

dxf.uid
Require DXF R2013.

acis_data
Get/Set ACIS text data as list of strings for DXF R2000 to R2010 and binary encoded ACIS data for DXF

R2013 and later as list of bytes.

has_binary_data
Returns True if ACIS data is of type List [bytes], False if datais of type List [str].

tostring () — str
Returns ACIS data as one string for DXF R2000 to R2010.

tobytes () — bytes
Returns ACIS data as joined bytes for DXF R2013 and later.

set_text (text: str, sep: str = \n') — None
Set ACIS data from one string.

Circle

CIRCLE (DXF Reference) center at location dxf . center and radius of dxf.radius.

Subclass of ezdxf.entities.DXFGraphic

DXEF type 'CIRCLE'

Factory function ezdxf.layouts.BaseLayout.add circle ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Circle

dxf.center
Center point of circle (2D/3D Point in OCS)

6.8. Reference 297

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-8663262B-222C-414D-B133-4A8506A27C18

ezdxf Documentation, Release 0.17.2

dxf.radius
Radius of circle (float)

vertices (angle: Iterable[float]) — Iterable[Vec3]
Yields vertices of the circle for iterable angles in WCS.

Parameters angles —iterable of angles in OCS as degrees, angle goes counter clockwise around
the extrusion vector, OCS x-axis = 0 deg.

flattening (sagitta: float) — Iterable[Vec3]
Approximate the circle by vertices in WCS, argument sagitta is the max. distance from the center of an arc
segment to the center of its chord. Returns a closed polygon: start vertex == end vertex!

Yields always Vec 3 objects.
New in version 0.15.

transform (m: Matrix44) — Circle
Transform the CIRCLE entity by transformation matrix m inplace.

Raises NonUniformScalingError () for non uniform scaling.

translate (dx: float, dy: float, dz: float) — Circle
Optimized CIRCLE/ARC translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating
interface).

to_ellipse (replace=True) — Ellipse
Convert CIRCLE/ARC to an E111ipse entity.

Adds the new ELLIPSE entity to the entity database and to the same layout as the source entity.
Parameters replace - replace (delete) source entity by ELLIPSE entity if True

to_spline (replace=True) — Spline
Convert CIRCLE/ARC to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.

Parameters replace - replace (delete) source entity by SPLINE entity if True

Dimension

The DIMENSION entity (DXF Reference) represents several types of dimensions in many orientations and alignments.
The basic types of dimensioning are linear, radial, angular, ordinate, and arc length.

For more information about dimensions see the online help from AutoDesk: About the Types of Dimensions

Important: The DIMENSION entity is reused to create dimensional constraints, such entities do not have an associ-
ated geometrical block nor a dimension type group code (2) and reside on layer *ADSK_CONSTRAINTS. Use property
Dimension.is_dimensional_constraint to check for this objects. Dimensional constraints are not docu-
mented in the DXF reference and not supported by ezdxf.

See also:
* Tutorial for Linear Dimensions
e Tutorial for Radius Dimensions
* Tutorial for Diameter Dimensions

e Tutorial for Angular Dimensions

298 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-239A1BDD-7459-4BB9-8DD7-08EC79BF1EB0
https://knowledge.autodesk.com/support/autocad/getting-started/caas/CloudHelp/cloudhelp/2020/ENU/AutoCAD-Core/files/GUID-9A8AB1F2-4754-444C-B90D-CD3F2FC8A3E0-htm.html

ezdxf Documentation, Release 0.17.2

e Tutorial for Ordinate Dimensions

Subclass of ezdxf.entities.DXFGraphic
DXF type '"DIMENSION'

factory function see table below

Inherited DXF attributes | Common graphical DXF attributes

Factory Functions

Linear and Rotated Dimension (DXF) add_linear_dim()

Aligned Dimension (DXF) add_aligned_dim/()

Angular Dimension (DXF) add_angular_dim_ 21 ()

Angular 3P Dimension (DXF) add_angular_dim_3p ()

Angular Dimension by center, radius, angles | add_angular_dim_cra()

Angular Dimension by ConstructionArc add_angular_dim_arc()

Diameter Dimension (DXF) add_diameter_dim()

Radius Dimension (DXF) add _radius_dim/()

Ordinate Dimension (DXF) add_ordinate_dim() (not implemented)

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dimension
There is only one Dimension class to represent all different dimension types.

dxf.version
Version number: 0 = R2010. (int, DXF R2010)

dxf .geometry
Name of the BLOCK that contains the entities that make up the dimension picture.

For AutoCAD this graphical representation is mandatory, else AutoCAD will not open the DXF drawing.
BricsCAD will render the DIMENSION entity by itself, if the graphical representation is not present, but
uses the BLOCK instead of rendering, if it is present.

dxf.dimstyle
Dimension style (DimSt y1e) name as string.

dxf.dimtype
Values 0-6 are integer values that represent the dimension type. Values 32, 64, and 128 are bit values, which
are added to the integer values.

6.8. Reference 299

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 0.17.2

dxf

dxf.

dxf.

dxf.

dxf

dxf

dxf

dxf

dxf

Linear and Rotated Dimension (DXF)

Aligned Dimension (DXF)

Angular Dimension (DXF)

Diameter Dimension (DXF)

Radius Dimension (DXF)

Angular 3P Dimension (DXF)

Ordinate Dimension (DXF)

subclass ezdxf.entities.ArcDimension introduced in DXF R2004

Indicates that graphical representation geometry is referenced by this dimension only. (always
set in DXF R13 and later)

64 | Ordinate type. This is a bit value (bit 7) used only with integer value 6. If set, ordinate is X-type;
if not set, ordinate is Y-type

128 | This is a bit value (bit 8) added to the other dimtype values if the dimension text has been
positioned at a user-defined location rather than at the default location

RN N B|W |~ O

[958
[\

.defpoint

Definition point for all dimension types. (3D Point in WCS)
Linear and rotated dimension: dxf . defpoint specifies the dimension line location.

Arc and angular dimension: dxf .defpoint and dxfdefpoint4 specify the endpoints of the line used
to determine the second extension line.

defpoint2
Definition point for linear and angular dimensions. (3D Point in WCS)

Linear and rotated dimension: The dxf . defpoint?2 specifies the start point of the first extension line.

Arc and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of the
line used to determine the first extension line.

defpoint3
Definition point for linear and angular dimensions. (3D Point in WCS)

Linear and rotated dimension: The dxf . defpoint 3 specifies the start point of the second extension line.

Arc and angular dimension: The dxf.defpoint?2 and dxf.defpoint3 specify the endpoints of the
line used to determine the first extension line.

defpoint4
Definition point for diameter, radius, and angular dimensions. (3D Point in WCS)

Arc and angular dimension: dxf .defpoint and dxf .defpoint4 specify the endpoints of the line used
to determine the second extension line.

.defpoint5

Point defining dimension arc for angular dimensions, specifies the location of the dimension line arc. (3D
Point in OCS)

.angle

Angle of linear and rotated dimensions in degrees. (float)

.leader_length

Leader length for radius and diameter dimensions. (float)

.text_midpoint

Middle point of dimension text. (3D Point in OCS)

.insert

Insertion point for clones of a linear dimensions. (3D Point in OCS)

300

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-F0004556-493C-48D5-8619-61D6ADF05C04
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-7A123D5D-AC98-4A9A-A8CF-1A7EF5030418
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-165A992D-9017-4C1E-B8CC-E70A17191BFE
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-09821B78-9F8E-43BA-82F2-8C931485EDC9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72F01288-0D63-43E8-8179-8CE3BA544C40

ezdxf Documentation, Release 0.17.2

This value translates the content of the associated anonymous block for cloned linear dimensions, similar to
the insert attribute of the Tnsert entity.

dxf.attachment_point
Text attachment point (int, DXF R2000), default value is 5.

Top left

Top center
Top right
Middle left
Middle center
Middle right
Bottom left
Bottom center
Bottom right

\O| 00 | O\ | | W1 —

dxf.line_spacing_style
Dimension text line-spacing style (int, DXF R2000), default value is 1.

1 | Atleast (taller characters will override)
Exact (taller characters will not override)

dxf.line_spacing_ factor
Dimension text-line spacing factor. (float, DXF R2000)

Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4. 00.

dxf.actual_measurement
Actual measurement (float, DXF R2000), this is an optional attribute and often not present. (read-only value)

dxf.text
Dimension text explicitly entered by the user (str), default value is an empty string.

If empty string or ' <> "', the dimension measurement is drawn as the text, if ' ' (one blank space), the text
is suppressed. Anything else is drawn as the text.

dxf.oblique_angle
Linear dimension types with an oblique angle have an optional dxf . oblique_angle.

When added to the rotation dxf . angle of the linear dimension, it gives the angle of the extension lines.

dxf.text_rotation
Defines is the rotation angle of the dimension text away from its default orientation (the direction of the

dimension line). (float)

dxf.horizontal_direction
Indicates the horizontal direction for the dimension entity (float).

This attribute determines the orientation of dimension text and lines for horizontal, vertical, and rotated linear
dimensions. This value is the negative of the angle in the OCS xy-plane between the dimension line and the
OCS x-axis.

property dimtype
dxf.dimt ype without binary flags (32, 62, 128).

property is_dimensional_constraint
Returns True if the DIMENSION entity is a dimensional constrains object.

6.8. Reference 301

ezdxf Documentation, Release 0.17.2

get_dim_style () — DimStyle
Returns the associated DimSty1e entity.

get_geometry block () — Optional[BlockLayout]
Returns BlockLayout of associated anonymous dimension block, which contains the entities that make

up the dimension picture. Returns None if block name is not set or the BLOCK itself does not exist

get_measurement () — Union[float, ezdxf.math._vector.Vec3]
Returns the actual dimension measurement in WCS units, no scaling applied for linear dimensions. Returns
angle in degrees for angular dimension from 2 lines and angular dimension from 3 points. Returns vector
from origin to feature location for ordinate dimensions.

override () — DimStyleOverride
Returns the DimStyleOverride object.

render ()
Render graphical representation as anonymous block.

transform (m: Matrix44) — Dimension
Transform the DIMENSION entity by transformation matrix m inplace.

Raises NonUniformScalingError () for non uniform scaling.

virtual_entities () — Iterable[DXFGraphic]
Yields ‘virtual’ parts of DIMENSION as basic DXF entities like LINE, ARC or TEXT.

This entities are located at the original positions, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode (target_layout: BaseLayout = None) — EntityQuery
Explode parts of DIMENSION as basic DXF entities like LINE, ARC or TEXT into target layout, if target

layout is None, the target layout is the layout of the DIMENSION.
Returns an Ent it yQuery container with all DXF primitives.

Parameters target_layout - target layout for DXF parts, None for same layout as source
entity.

DimStyleOverride

All of the DimSty1e attributes can be overridden for each Dimension entity individually.

The DimStyleOverride class manages all the complex dependencies between DimStyle and Dimension, the
different features of all DXF versions and the rendering process to create the Dimension picture as BLOCK, which is

required for AutoCAD.

class ezdxf.entities.DimStyleOverride

dimension
Base Dimension entity.

dimstyle
By dimension referenced DimStyle entity.

dimstyle_attribs
Contains all overridden attributes of dimension, asa dict with DimStyle attribute names as keys.

__getitem__ (key: str) — Any
Returns DIMSTYLE attribute key, see also get ().

302 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

__setitem__ (key: str, value: Any) — None
Set DIMSTYLE attribute key in dimstyle_attribs.

__delitem__ (key: str) — None
Deletes DIMSTYLE attribute key from dimstyle_attribs,ignores KeyErrors silently.

get (attribute: str, default: Optional[Any] = None) — Any
Returns DIMSTYLE attribute from override dict dimstyle_attribs orbase DimStyle.

Returns default value for attributes not supported by DXF R12. This is a hack to use the same algorithm to
render DXF R2000 and DXF R12 DIMENSION entities. But the DXF R2000 attributes are not stored in
the DXF R12 file! Does not catch invalid attributes names! Look into debug log for ignored DIMSTYLE
attributes.

pop (attribute: str, default: Optional[Any] = None) — Any
Returns DIMSTYLE attribute from override dict dimstyle attribs and removes this attribute from
override dict.

update (attribs: dict) — None
Update override dict dimstyle_attribs.

Parameters attribs — dict of DIMSTYLE attributes

commit () — None
Writes overridden DIMSTYLE attributes into ACAD:DSTYLE section of XDATA of the DIMENSION
entity.

get_arrow_names () — Tuple[str, str]
Get arrow names as strings like ‘ARCHTICK".

Returns tuple of [dimblk1, dimblk2]
Return type Tuple[str, str]

set_arrows (blk: Optional[str] = None, blkl: Optional[str] = None, blk2: Optional[str] = None, ldrblk:
Optional[str] = None, size: Optional[float] = None) — None
Set arrows or user defined blocks and disable oblique stroke as tick.

Parameters
* blk - defines both arrows at once as name str or user defined block
* blk1 — defines left arrow as name str or as user defined block
* blk2 — defines right arrow as name str or as user defined block
¢ 1drblk — defines leader arrow as name str or as user defined block
e size — arrow size in drawing units

set_tick (size: float = 1) — None
Use oblique stroke as tick, disables arrows.

Parameters size — arrow size in daring units

set_text_align (halign: Optional[str] = None, valign: Optional[str] = None, vshift: Optional[float] =
None) — None
Set measurement text alignment, halign defines the horizontal alignment, valign defines the vertical alignment,

abovel and above2 means above extension line 1 or 2 and aligned with extension line.
Parameters
* halign - left, right, center, abovel, above2, requires DXF R2000+

e valign - above, center, below

6.8.

Reference 303

ezdxf Documentation, Release 0.17.2

* vshift — vertical text shift, if valign is center; >0 shift upward, <0 shift downwards

set_tolerance (upper: float, lower: Optional[float] = None, hfactor: Optional[float] = None, align: Op-
tional[ezdxf .enums.MTextLineAlignment] = None, dec: Optional[int] = None, lead-

ing_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) — None
Set tolerance text format, upper and lower value, text height factor, number of decimal places or leading and

trailing zero suppression.
Parameters

* upper — upper tolerance value

* lower — lower tolerance value, if None same as upper

* hfactor - tolerance text height factor in relation to the dimension text height

¢ align - tolerance text alignment enum ezdxf.enums.MTextLineAlignment

* dec - Sets the number of decimal places displayed

¢ leading_zeros - suppress leading zeros for decimal dimensions if False

* trailing_zeros —suppress trailing zeros for decimal dimensions if False
Changed in version 0.17.2: argument align as enum ezdxf.enums.MTextLineAlignment

set_limits (upper: float, lower: float, hfactor: Optional[float] = None, dec: Optional[int] = None, lead-
ing_zeros: Optional[bool] = None, trailing_zeros: Optional[bool] = None) — None
Set limits text format, upper and lower limit values, text height factor, number of decimal places or leading

and trailing zero suppression.
Parameters
* upper — upper limit value added to measurement value
¢ lower - lower lower value subtracted from measurement value
* hfactor - limit text height factor in relation to the dimension text height
* dec - Sets the number of decimal places displayed, required DXF R2000+

* leading_zeros - suppress leading zeros for decimal dimensions if False, required DXF
R2000+

* trailing_zeros —suppress trailing zeros for decimal dimensions if False, required DXF
R2000+

set_text_format (prefix: str = ", postfix: str = ", rnd: Optional[float] = None, dec: Optional[int]
= None, sep: Optional[str] = None, leading_zeros: Optional[bool] = None, trail-
ing_zeros: Optional[bool] = None) — None
Set dimension text format, like prefix and postfix string, rounding rule and number of decimal places.
Parameters
* prefix — dimension text prefix text as string

* postfix — dimension text postfix text as string

¢ rnd - Rounds all dimensioning distances to the specified value, for instance, if DIMRND
is set to 0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.

* dec - Sets the number of decimal places displayed for the primary units of a dimension.
requires DXF R2000+

7Rl © %

e sep - “” or “,” as decimal separator

304 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* leading_zeros - suppress leading zeros for decimal dimensions if False
* trailing_zeros —suppress trailing zeros for decimal dimensions if False

set_dimline_format (color: Optional[int] = None, linetype: Optional[str] = None, lineweight: Op-
tional[int] = None, extension: Optional[float] = None, disablel : Optional[{bool]

= None, disable2: Optional[bool] = None)
Set dimension line properties

Parameters
* color - color index
¢ linetype - linetype as string
* lineweight - line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length
* disablel — True to suppress first part of dimension line
¢ disable2 — True to suppress second part of dimension line

set_extline_format (color: Optional[int] = None, lineweight: Optional[int] = None, extension:
Optional{ float] = None, offset: Optional[float] = Nomne, fixed_length: Op-
tional[float] = None)
Set common extension line attributes.

Parameters
e color - color index
e lineweight — line weight as int, 13 = 0.13mm, 200 = 2.00mm
* extension - extension length above dimension line
* offset - offset from measurement point
» fixed_length - set fixed length extension line, length below the dimension line

set_extlinel (linetype: Optional[str] = None, disable=False)
Set extension line 1 attributes.

Parameters
* linetype - linetype for extension line 1
¢ disable — disable extension line 1 if True

set_extline2 (linetype: Optional[str] = None, disable=False)
Set extension line 2 attributes.

Parameters
* linetype - linetype for extension line 2
¢ disable — disable extension line 2 if True

set_text (fext: str = '<>') — None
Set dimension text.

9 9

e fext =" ” to suppress dimension text

23

e text = “” or “<>" to use measured distance as dimension text
* else use “text” literally

shift_text (dh: float, dv: float) — None
Set relative text movement, implemented as user location override without leader.

6.8.

Reference 305

ezdxf Documentation, Release 0.17.2

Parameters

¢ dh - shift text in text direction

* dv - shift text perpendicular to text direction

set_location (location: Vertex, leader=False, relative=False) — None
Set text location by user, special version for linear dimensions, behaves for other dimension types like

user_location_override ().

Parameters

¢ location — user defined text location (Vertex)

¢ leader - create leader from text to dimension line

e relative — location is relative to default location.

user_location_override (location: Vertex) — None
Set text location by user, location is relative to the origin of the UCS defined in the render () method or

WCS if the ucs argument is None.

render (ucs: UCS = None, discard=False) — BaseDimensionRenderer
Initiate dimension line rendering process and also writes overridden dimension style attributes into the

DSTYLE XDATA section.

For a friendly CAD applications like BricsCAD you can discard the dimension line rendering, because it is
done automatically by BricsCAD, if no dimension rendering BLOCK is available and it is likely to get better

results as by ezdxf.

AutoCAD does not render DIMENSION entities automatically, so I rate AutoCAD as an unfriendly CAD

application.
Parameters

* ucs — user coordinate system

* discard - discard rendering done by ezdxf (works with BricsCAD, but not tolerated by

AutoCAD)

Returns Rendering object used to render the DIMENSION entity for analytics

Return type BaseDimensionRenderer

ArcDimension

The ARC_DIMENSION entity was introduced in DXF R2004 and is not documented in the DXF reference.

See also:

Tutorial for Arc Dimensions

Subclass of

ezdxf.entities.Dimension

DXEF type

'"ARC_DIMENSION'

factory function

e add_arc_dim_3p ()
e add_arc_dim_cra /()
e add_arc_dim _arc()

Inherited DXF attributes

Common graphical DXF attributes

Required DXF version

R2004 / AC1018

306

Chapter 6

. Contents

ezdxf Documentation, Release 0.17.2

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.ArcDimension

dxf.defpoint2
start point of first extension line in OCS

dxf.defpoint3
start point of second extension line in OCS

dxf.defpoint4
center point of arc in OCS

dxf.start_angle
dxf.end_angle
dxf.is_partial
dxf.has_leader
dxf.leader_pointl
dxf.leader_point2

dimtype
Returns always 8.

Ellipse

ELLIPSE (DXF Reference) with center point at location dx f . center and a major axis dxf .major_axis as vector.
dxf.ratioistheratio of minor axis to major axis. dxf .start_paramand dxf.end_param defines the starting-
and the end point of the ellipse, a full ellipse goes from 0 to 2 *pi. The ellipse goes from starting- to end param in counter
clockwise direction.

dxf.extrusion is supported, but does not establish an OCS, but creates an 3D entity by extruding the base ellipse in
direction of the dxf .extrusion vector.

Subclass of ezdxf.entities.DXFGraphic
DXF type '"ELLIPSE'
factory function add_ellipse ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.Ellipse

dxf.center
Center point of circle (2D/3D Point in WCS)

dxf.major_axis
Endpoint of major axis, relative to the dxf . center (Vec3), default valueis (1, 0, 0).

dxf.ratio
Ratio of minor axis to major axis (float), has to be in range from 0. 000001 to 1, default value is 1.

6.8. Reference 307

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-107CB04F-AD4D-4D2F-8EC9-AC90888063AB

ezdxf Documentation, Release 0.17.2

dxf.start_param
Start parameter (float), default value is 0.

dxf.end_param
End parameter (float), default value is 2 *p1.

start_point
Returns the start point of the ellipse in WCS.

end_point
Returns the end point of the ellipse in WCS.

minor_axis
Returns the minor axis of the ellipse as Vec3 in WCS.

construction_tool () — ConstructionEllipse
Returns construction tool ezdxf.math.ConstructionEllipse.

apply_construction_tool (e: ConstructionEllipse) — Ellipse
Set ELLIPSE data from construction tool ezdxf.math.ConstructionEllipse.

vertices (params: Iterable[float]) — Iterable[Vec3]
Yields vertices on ellipse for iterable params in WCS.

Parameters params — param values in the range from 0 to 2*p1i in radians, param goes counter
clockwise around the extrusion vector, major_axis = local x-axis = 0 rad.

flattening (distance: float, segments: int = §) — Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided. Returns a closed polygon for a full ellipse: start vertex == end vertex.

Parameters
* distance — maximum distance from the projected curve point onto the segment chord.
* segments — minimum segment count
New in version 0.15.

params (num: int) — Iterable[float]
Returns num params from start- to end param in counter clockwise order.

All params are normalized in the range from [0, 2pi).

transform (m: Matrix44) — Ellipse
Transform the ELLIPSE entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Ellipse
Optimized ELLIPSE translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self (floating inter-
face).

to_spline (replace=True) — Spline
Convert ELLIPSE to a Sp1ine entity.

Adds the new SPLINE entity to the entity database and to the same layout as the source entity.
Parameters replace - replace (delete) source entity by SPLINE entity if True

classmethod from_arc (entity: DXFGraphic) — Ellipse
Create a new ELLIPSE entity from ARC or CIRCLE entity.

The new SPLINE entity has no owner, no handle, is not stored in the entity database nor assigned to any
layout!

308

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Hatch

The HATCH entity (DXF Reference) fills an enclosed area defined by one or more boundary paths with a hatch pattern,
solid fill, or gradient fill.

All points in OCS as (x, y) tuples (Hatch.dxf.elevation is the z-axis value).

There are two different hatch pattern default scaling, depending on the HEADER variable SMEASUREMENT, one for
ISO measurement (m, cm, mm, ...) and one for imperial measurement (in, ft, yd, ...).

Starting with ezdxf v0.15 the default scaling for predefined hatch pattern will be chosen according this measurement
setting in the HEADER section, this replicates the behavior of BricsCAD and other CAD applications. ezdxf uses the
ISO pattern definitions as a base line and scales this pattern down by factor 1/25.6 for imperial measurement usage. The
pattern scaling is independent from the drawing units of the document defined by the HEADER variable SINSUNITS.

Prior to ezdxf v0.15 the default scaling was always the ISO measurement scaling, no matter which value SMEASURE-
MENT had.

See also:

Tutorial for Hatch and DXF Units

Subclass of ezdxf.entities.DXFGraphic
DXEF type '"HATCH'
Factory function ezdxf.layouts.BaseLayout.add hatch ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Boundary paths helper classes

Path manager: BoundaryPaths
e PolylinePath

* EdgePath

LineEdge

ArcEdge

— EFEllipseEdge

SplineEdge

Pattern and gradient helper classes

® Pattern
e PatternLine
e Gradien

class ezdxf.entities.Hatch

dxf.pattern_name
Pattern name as string

6.8. Reference 309

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-C6C71CED-CE0F-4184-82A5-07AD6241F15B

ezdxf Documentation, Release 0.17.2

dxf.solid_f£ill

1 | solid fill, better use: Hatch.set solid fill ()
pattern fill, better use: Hatch.set_pattern_fill ()

dxf.associative

1 | associative hatch
0 | not associative hatch

Associations not handled by ezdxf, you have to set the handles to the associated DXF entities by yourself.

dxf.hatch_style

0 | normal
outer
2 | ignore

—_

(search AutoCAD help for more information)

dxf.pattern_type

user
predefined
2 | custom

—| O

dxf.pattern_angle
Actual pattern angle in degrees (float). Changing this value does not rotate the pattern, use
set_pattern_angle () for this task.

dxf.pattern_scale
Actual pattern scaling factor (float). Changing this value does not scale the pattern use
set_pattern_scale () for this task.

dxf.pattern_double
1 = double pattern size else 0. (int)

dxf.n_seed_points
Count of seed points (better user: get__seed_points ())

dxf.elevation
Z value represents the elevation height of the OCS. (float)

paths
BoundaryPaths object.

pattern
Pattern object.

gradient
Gradient object.

310 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

seeds
Listof (x, vy) tuples.

property has_solid_fill
True if entity has a solid fill. (read only)

property has_pattern_fill
True if entity has a pattern fill. (read only)

property has_gradient_data
True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

property bgcolor
Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)

usage:

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition (lines: Sequence, factor: float = 1, angle: float = 0) — None
Setup pattern definition by a list of definition lines and a definition line is a 4-tuple (angle, base_point, offset,
dash_length_items), the pattern definition should be designed for scaling factor 1 and angle O.

* angle: line angle in degrees
* base-point: 2-tuple (X, y)
« offset: 2-tuple (dx, dy)

* dash_length_items: list of dash items (item > O is a line, item < O is a gap and item == 0.0 is a point)

Parameters
e lines - list of definition lines
» factor - pattern scaling factor
¢ angle - rotation angle in degrees
set_pattern_scale (scale: float) — None
Set scaling of pattern definition to scale.

Starts always from the original base scaling, set_pattern_scale (1) reset the pattern scaling to
the original appearance as defined by the pattern designer, but only if the the pattern attribute dxr.
pattern_scale represents the actual scaling, it is not possible to recreate the original pattern scaling
from the pattern definition itself.

Parameters scale — pattern scaling factor

set_pattern_angle (angle: float) — None
Set rotation of pattern definition to angle in degrees.

Starts always from the original base rotation 0, set_pattern_angle (0) reset the pattern rotation
to the original appearance as defined by the pattern designer, but only if the the pattern attribute dxr.
pattern_angle represents the actual rotation, it is not possible to recreate the original rotation from the
pattern definition itself.

Parameters angle - rotation angle in degrees

set_solid_£il1 (color: int = 7, style: int = 1, rgb: RGB = None)
Set Hat ch to solid fill mode and removes all gradient and pattern fill related data.

6.8.

Reference 311

ezdxf Documentation, Release 0.17.2

Parameters

color — AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
style - hatch style (0 = normal; 1 = outer; 2 = ignore)

rgb — true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2000.

set_pattern_£ill (name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style:

int = 1, pattern_type: int = 1, definition=None) — None

Set Hatch and MPolygon to pattern fill mode. Removes all gradient related data. The pattern definition
should be designed for scaling factor 1. Predefined hatch pattern like “ANSI33” are scaled according to the
HEADER variable SMEASUREMENT for ISO measurement (m, cm, ...), or imperial units (in, ft, ...), this
replicates the behavior of BricsCAD.

Parameters

name — pattern name as string

color — pattern color as AutoCAD Color Index (ACI)

angle — angle of pattern fill in degrees

scale — pattern scaling as float

double - double size flag

style - hatch style (0 = normal; 1 = outer; 2 = ignore)

pattern_type — pattern type (0 = user-defined; 1 = predefined; 2 = custom)

definition - list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition()

set_gradient (colorl: Tuple[int, int, int] = (0, 0, 0), color2: Tuple[int, int, int] = (255, 255, 255),

rotation: float = 0.0, centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str
= 'LINEAR') — None

Set Hatch and MPolygon to gradient fill mode and removes all pattern fill related data. Gradient support
requires DXF R2004+. A gradient filled hatch is also a solid filled hatch.

Valid gradient type names are:

¢ 'LINEAR'

e '"CYLINDER'

e 'INVCYLINDER'

¢ 'SPHERICAL'

e '"INVSPHERICAL'

e '"HEMISPHERICAL'

e 'INVHEMISPHERICAL'

'CURVED'

'INVCURVED'

Parameters

* colorl —(r, g, b)-tuple for first color, rgb values as int in the range [0, 255]

* color2 —(r, g, b)-tuple for second color, rgb values as int in the range [0, 255]

e rotation - rotation angle in degrees

312

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* centered - determines whether the gradient is centered or not
* one_color - | for gradient from color! to tinted colorl
* tint - determines the tinted target color! for a one color gradient. (valid range 0.0 to 1.0)
* name - name of gradient type, default “LINEAR”
set_seed_points (points: Iterable[Tuple[float, float]]) — None

Set seed points, points is an iterable of (x, y)-tuples. I don’t know why there can be more than one seed point.
All points in OCS (Hatch.dxf.elevation is the Z value)

transform (m: Matrix44) — Hatch
Transform entity by transformation matrix m inplace.

associate (path: ezdxf.entities.boundary_paths. AbstractBoundaryPath, entities: Iterable[DXFEntity])
Set association from hatch boundary path to DXF geometry entities.

A HATCH entity can be associative to a base geometry, this association is not maintained nor verified by
ezdxf, so if you modify the base geometry the geometry of the boundary path is not updated and no verification
is done to check if the associated geometry matches the boundary path, this opens many possibilities to create
invalid DXF files: USE WITH CARE!

remove_association ()
Remove associated path elements.

Boundary Paths

The hatch entity is build by different functional path types, this are filter flags for the Hatch. dxf.hatch_style:
* EXTERNAL.: defines the outer boundary of the hatch
¢ OUTERMOST: defines the first tier of inner hatch boundaries
e DEFAULT: default boundary path

As you will learn in the next sections, these are more the recommended usage type for the flags, but the fill algorithm
doesn’t care much about that, for instance an OUTERMOST path doesn’t have to be inside the EXTERNAL path.

Island Detection

In general the island detection algorithm works always from outside to inside and alternates filled and unfilled areas. The
area between then 1st and the 2nd boundary is filled, the area between the 2nd and the 3rd boundary is unfilled and so on.
The different hatch styles defined by the Hatch. dxf.hatch_style attribute are created by filtering some boundary
path types.

Hatch Style

e HATCH_STYLE_IGNORE: Ignores all paths except the paths marked as EXTERNAL, if there are more than
one path marked as EXTERNAL, they are filled in NESTED style. Creates no hatch if no path is marked as
EXTERNAL.

* HATCH_STYLE_OUTERMOST: Ignores all paths marked as DEFAULT, remaining EXTERNAL and OUTER-
MOST paths are filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL or OUTERMOST.

e HATCH_STYLE_NESTED: Use all existing paths.

6.8. Reference 313

ezdxf Documentation, Release 0.17.2

Hatch Boundary Helper Classes

class ezdxf.entities.BoundaryPaths
Defines the borders of the hatch, a hatch can consist of more than one path.

paths
List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write)

external_paths () — Iterable[Union[PolylinePath, EdgePath]]
Iterable of external paths, could be empty.

outermost_paths () — Iterable[Union[PolylinePath, EdgePath]]
Iterable of outermost paths, could be empty.

default_paths () — Iterable[Union[PolylinePath, EdgePath]]
Iterable of default paths, could be empty.

rendering_paths (hatch_style: int) — Iterable[Union[PolylinePath, EdgePath]]
Iterable of paths to process for rendering, filters unused boundary paths according to the given hatch style:

* NESTED: use all boundary paths
¢ OUTERMOST: use EXTERNAL and OUTERMOST boundary paths
¢ IGNORE: ignore all paths except EXTERNAL boundary paths

Yields paths in order of EXTERNAL, OUTERMOST and DEFAULT.

add_polyline_path (path_vertices, is_closed=1, flags=1) — PolylinePath
Create and add a new PolylinePath object.

Parameters
* path_vertices —iterable of polyline vertices as (x, y) or (X, y, bulge)-tuples.
* is_closed - 1 for a closed polyline else O
e flags — external(1) or outermost(16) or default (0)

add_edge_path (flags=1) — EdgePath
Create and add a new EdgePat h object.

Parameters f£lags — external(1) or outermost(16) or default (0)

polyline_to_edge_paths (just_with_bulge=True) — None
Convert polyline paths including bulge values to line- and arc edges.

Parameters just_with_bulge — convert only polyline paths including bulge values if True

edge_to_polyline_paths (distance: float, segments: int = 16)
Convert all edge paths to simple polyline paths without bulges.

Parameters

* distance — maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

* segments — minimum segment count per curve

arc_edges_to_ellipse_edges () — None
Convert all arc edges to ellipse edges.

ellipse_edges_to_spline_edges (num: int = 32) — None
Convert all ellipse edges to spline edges (approximation).

314 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Parameters num — count of control points for a full ellipse, partial ellipses have proportional fewer
control points but at least 3.

spline_edges_to_line_edges (factor: int = 8) — None
Convert all spline edges to line edges (approximation).

Parameters factor - count of approximation segments = count of control points x factor

all_to_spline_edges (num: int = 64) — None
Convert all bulge, arc and ellipse edges to spline edges (approximation).

Parameters num — count of control points for a full circle/ellipse, partial circles/ellipses have
proportional fewer control points but at least 3.

all_to_line_edges (num: int = 64, spline_factor: int = 8) — None
Convert all bulge, arc and ellipse edges to spline edges and approximate this splines by line edges.

Parameters

¢ num - count of control points for a full circle/ellipse, partial circles/ellipses have proportional
fewer control points but at least 3.

* spline_factor — count of spline approximation segments = count of control points x
spline_factor

clear () — None
Remove all boundary paths.

class ezdxf.entities.BoundaryPathType

POLYLINE
polyline path type

EDGE
edge path type

class ezdxf.entities.PolylinePath
A polyline as hatch boundary path.

type
Path type as BoundaryPathType.POLYLINE enum

path_type_flags

(bit coded flags)
0 default
1 external
2 | polyline, will be set by ezdxf

16 | outermost

My interpretation of the path_type_flags, see also Tutorial for Hatch:
* external - path is part of the hatch outer border
¢ outermost - path is completely inside of one or more external paths
e default - path is completely inside of one or more outermost paths

If there are troubles with AutoCAD, maybe the hatch entity has the Hatch.dxf.pixel_size attribute
set - delete it del hatch.dxf.pixel_size and maybe the problem is solved. ezdxf does not use the
Hatch.dxf.pixel_size attribute, but it can occur in DXF files created by other applications.

6.8. Reference 315

ezdxf Documentation, Release 0.17.2

is_closed
True if polyline path is closed.

vertices
List of path vertices as (X, y, bulge)-tuples. (read/write)

source_boundary_objects

List of handles of the associated DXF entities for associative hatches. There is no support for associative

hatches by ezdxf, you have to do it all by yourself. (read/write)

set_vertices (vertices: Iterable[Sequence[float]], is_closed: bool = True) — None
Set new vertices as new polyline path, a vertex has to be a (x, y) or a (x, y, bulge)-tuple.

clear () — None

Removes all vertices and all handles to associated DXF objects (source_boundary_objects).

class ezdxf.entities.EdgePath
Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, E11ipseEdge of
SplineEdge. Make sure there are no gaps between edges and the edge path must be closed to be recognized as

path. AutoCAD is very picky in this regard. Ezdxf performs no checks on gaps between the edges
prevent creating open loops.

and does not

Note: ArcEdge and E11ipseEdge are ALWAYS represented in counter-clockwise orientation, even if an
clockwise oriented edge is required to build a closed loop. To add a clockwise oriented curve swap start- and end

angles and set the ccw flag to False and ezdxf will export a correct clockwise orientated curve.

type
Path type as BoundaryPathType . EDGE enum

path_type_flags
(bit coded flags)

0 default
1 external
16 | outermost

see PolylinePath.path_type_flags

edges
List of boundary edges of type LineEdge, ArcEdge, E11lipseEdge of SplineEdge

source_boundary_objects
Required for associative hatches, list of handles to the associated DXF entities.

clear () — None
Delete all edges.

add_1line (start, end) — LineEdge
Add a I.i neEdge from start to end.

Parameters
e start - start point of line, (x, y)-tuple
¢ end - end point of line, (X, y)-tuple

add_arc (center, radius=1., start_angle=0., end_angle=360., ccw: bool = True) — ArcEdge
Add an ArcEdge.

Adding Clockwise Oriented Arcs:

316

Chapter 6

. Contents

ezdxf Documentation, Release 0.17.2

Clockwise oriented ArcEdge objects are sometimes necessary to build closed loops, but the ArcEdge
objects are always represented in counter-clockwise orientation. To add a clockwise oriented ArcEdge
you have to swap the start- and end angle and set the ccw flag to False, e.g. to add a clockwise oriented
ArcEdge from 180 to 90 degree, add the ArcEdge in counter-clockwise orientation with swapped angles:

edge_path.add_arc (center, radius, start_angle=90, end_angle=180, ccw=False)

Parameters
e center - center point of arc, (X, y)-tuple
e radius - radius of circle
* start_angle - start angle of arc in degrees (end_angle for a clockwise oriented arc)
* end_angle - end angle of arc in degrees (start_angle for a clockwise oriented arc)
e ccw — True for counter clockwise False for clockwise orientation
add_ellipse (center, major_axis_vector=(1., 0.), minor_axis_length=1., start_angle=0.,

end_angle=360., ccw: bool = True) — EllipsePath
Add an E11ipseEdge.

Adding Clockwise Oriented Ellipses:

Clockwise oriented £111ipseEdge objects are sometimes necessary to build closed loops, but the E1 -
1ipseEdge objects are always represented in counter-clockwise orientation. To add a clockwise oriented
EllipseEdge you have to swap the start- and end angle and set the ccw flag to False, e.g. toadd a
clockwise oriented E11ipseEdge from 180 to 90 degree, add the £11ipseEdge in counter-clockwise
orientation with swapped angles:

edge_path.add_ellipse(center, major_axis, ratio, start_angle=90, end_
—angle=180, ccw=False)

Parameters
e center — center point of ellipse, (X, y)-tuple
* major_axis — vector of major axis as (X, y)-tuple
e ratio - ratio of minor axis to major axis as float

* start_angle - start angle of ellipse in degrees (end_angle for a clockwise oriented el-
lipse)

* end_angle - end angle of ellipse in degrees (start_angle for a clockwise oriented ellipse)
¢ ccw — True for counter clockwise False for clockwise orientation
add_spline (fit_points=None, control_points=None, knot_values=None, weights=None, degree=3, ratio-

nal=0, periodic=0) — SplinePath
Add a SplineEdge.

Parameters

e fit_points — points through which the spline must go, at least 3 fit points are required.
list of (X, y)-tuples

e control_points — affects the shape of the spline, mandatory and AutoCAD crashes on
invalid data. list of (x, y)-tuples

6.8. Reference 317

ezdxf Documentation, Release 0.17.2

* knot_values — (knot vector) mandatory and AutoCAD crashes on invalid data. list of
floats; ezdxf provides two tool functions to calculate valid knot values: ezdxf.math.
uniform_knot_vector (), ezdxf.math.open_uniform knot_vector ()
(default if None)

* weights — weight of control point, not mandatory, list of floats.
* degree — degree of spline (int)

* periodic - 1 for periodic spline, O for none periodic spline

e start_tangent —start_tangent as 2d vector, optional

* end_tangent - end_tangent as 2d vector, optional

Warning: Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for the
spline edge itself. On the contrary, if the knot_values in the spline edge are missing or invalid AutoCAD
crashes.

class ezdxf.entities.EdgeType

LINE
ARC
ELLIPSE
SPLINE

class ezdxf.entities.LineEdge
Straight boundary edge.

type
Edge type as Edge Type . LINE enum

start
Start point as (X, y)-tuple. (read/write)

end
End point as (x, y)-tuple. (read/write)

class ezdxf.entities.ArcEdge
Arc as boundary edge in counter-clockwise orientation, see EdgePath.add_arc ().

type
Edge type as EdgeType . ARC enum

center
Center point of arc as (X, y)-tuple. (read/write)

radius
Arc radius as float. (read/write)

start_angle
Arc start angle in counter-clockwise orientation in degrees. (read/write)

end_angle
Arc end angle in counter-clockwise orientation in degrees. (read/write)

ccw
True for counter clockwise arc else False. (read/write)

318 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

class ezdxf.entities.EllipseEdge
Elliptic arc as boundary edge in counter-clockwise orientation, see EdgePath.add_ellipse ().

type
Edge type as EdgeType . ELLIPSE enum

major_axis_vector
Ellipse major axis vector as (X, y)-tuple. (read/write)

minor_axis_length
Ellipse minor axis length as float. (read/write)

radius
Ellipse radius as float. (read/write)

start_angle
Ellipse start angle in counter-clockwise orientation in degrees. (read/write)

end_angle
Ellipse end angle in counter-clockwise orientation in degrees. (read/write)

ccw
True for counter clockwise ellipse else False. (read/write)

class ezdxf.entities.SplineEdge
Spline as boundary edge.

type
Edge type as Edge Type . SPLINE enum

degree
Spline degree as int. (read/write)

rational

1 for rational spline else 0. (read/write)
periodic

1 for periodic spline else 0. (read/write)

knot_values
List of knot values as floats. (read/write)

control_points

List of control points as (x, y)-tuples. (read/write)
fit_points

List of fit points as (x, y)-tuples. (read/write)

weights
List of weights (of control points) as floats. (read/write)

start_tangent
Spline start tangent (vector) as (X, y)-tuple. (read/write)

end_tangent
Spline end tangent (vector) as (X, y)-tuple. (read/write)

6.8. Reference 319

ezdxf Documentation, Release 0.17.2

Hatch Pattern Definition Helper Classes

class ezdxf.entities.Pattern

lines
List of pattern definition lines (read/write). see PatternLine

add_1line (angle: float = 0, base_point: Vertex = (0, 0), offset: Vertex = (0, 0), dash_length_items: Iter-

able[float] = None) — None
Create a new pattern definition line and add the line to the Pattern. 1 ines attribute.

clear () — None
Delete all pattern definition lines.

scale (factor: float = 1, angle: float = 0) — None
Scale and rotate pattern.

Be careful, this changes the base pattern definition, maybe better use Hatch. set_pattern_scale ()
or Hatch.set_pattern_angle ().

Parameters
¢ factor - scaling factor
* angle - rotation angle in degrees

class ezdxf.entities.PatternLine
Represents a pattern definition line, use factory function Pat tern. add_Iline () tocreate new pattern definition
lines.

angle
Line angle in degrees. (read/write)

base_point
Base point as (X, y)-tuple. (read/write)

offset
Offset as (x, y)-tuple. (read/write)

dash_length_items
List of dash length items (item > O is line, < 0 is gap, 0.0 = dot). (read/write)

Hatch Gradient Fill Helper Classes

class ezdxf.entities.Gradient

colorl
First rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)

color2
Second rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)

one_color
If one_coloris 1 - the hatch is filled with a smooth transition between color1 and a specified t int of
colorl. (read/write)

rotation
Gradient rotation in degrees. (read/write)

320 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

centered

Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and
to the left, creating the illusion of a light source to the left of the object. (read/write)

tint

Specifies the tint (color 1 mixed with white) of a color to be used for a gradient fill of one color. (read/write)

See also:

Tutorial for Hatch Pattern Definition

Image

Add a raster IMAGE (DXF Reference) to the DXF file, the file itself is not embedded into the DXF file, it is always a
separated file. The IMAGE entity is like a block reference, you can use it multiple times to add the image on different
locations with different scales and rotations. But therefore you need a also a IMAGEDEEF entity, see TmageDef. ezdxf
creates only images in the xy-plan, you can place images in the 3D space too, but then you have to set the Tmage. dxf.

u_pixel and the ITmage.dxf.v_pixel vectors by yourself.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'IMAGE'
Factory function ezdxf.layouts.BaseLayout.add_image ()

Inherited DXF attributes | Common graphical DXF attributes

Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Image

dxf.insert

Insertion point, lower left corner of the image (3D Point in WCS).

dxf.u_pixel

U-vector of a single pixel (points along the visual bottom of the image, starting at the insertion point) as (x,

vy, z) tuple

dxf.v_pixel

V-vector of a single pixel (points along the visual left side of the image, starting at the insertion point) as (x,

y, z) tuple
dxf.image_size
Image size in pixels as (x, vy) tuple

dxf.image_def_handle
Handle to the image definition entity, see ImageDef

dxf.flags
Image.dxf.flags Value | Description
Image.SHOW_IMAGE 1 Show image
Image.SHOW_WHEN_NOT_ALIGNED | 2 Show image when not aligned with screen
Image.USE_CLIPPING_BOUNDARY | 4 Use clipping boundary
8

Image.USE_TRANSPARENCY

Transparency is on

6.8. Reference

321

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3A2FF847-BE14-4AC5-9BD4-BD3DCAEF2281

ezdxf Documentation, Release 0.17.2

dxf.clipping
Clipping state:

0 | clipping off
1 | clipping on

dxf.brightness
Brightness value (0-100; default = 50)

dxf.contrast
Contrast value (0-100; default = 50)

dxf.fade
Fade value (0-100; default = 0)

dxf.clipping_boundary_type
Clipping boundary type:

1 | Rectangular
Polygonal

dxf.count_boundary_points
Number of clip boundary vertices, maintained by ezdxf.

dxf.clip_mode
Clip mode (DXF R2010):

Outside
1 | Inside

boundary_path
A list of vertices as pixel coordinates, Two vertices describe a rectangle, lower left corneris (-0.5, -0.
5) and upper right corner is (ImageSizeX-0.5, ImageSizeY-0.5), more than two vertices is a
polygon as clipping path. All vertices as pixel coordinates. (read/write)

image_def
Returns the associated IMAGEDEEF entity, see ImageDef.

reset_boundary_path () — None
Reset boundary path to the default rectangle [(-0.5, -0.5), (ImageSizeX-0.5, ImageSizeY-0.5)].

set_boundary_path (vertices: Iterable[Vertex]) — None
Set boundary path to vertices. Two vertices describe a rectangle (lower left and upper right corner), more
than two vertices is a polygon as clipping path.

boundary_path_wcs () — List[Vec3]
Returns the boundary/clipping path in WCS coordinates.

New in version 0.14.

Since version 0.16 it’s recommended to create the clipping path as Path object by the make_path ()
function:

form ezdxf.path import make_path

image = ... # get Iimage entity
clipping_path = make_path (image)

322

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

transform (m: Matrix44) — Image
Transform IMAGE entity by transformation matrix m inplace.

Leader

The LEADER entity (DXF Reference) represents an arrow, made up of one or more vertices (or spline fit points) and an
arrowhead. The label or other content to which the Leader is attached is stored as a separate entity, and is not part of
the Leader itself.

Leader shares its styling infrastructure with Dimension.

By default a Leader without any annotation is created. For creating more fancy leaders and annotations see documen-
tation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation notes .

Subclass of ezdxf.entities.DXFGraphic
DXF type 'LEADER'
Factory function ezdxf.layouts.BaseLayout.add leader ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 (*AC1015")

class ezdxf.entities.Leader

dxf.dimstyle
Name of Dimstyle as string.

dxf .has_arrowhead

0 | Disabled
1 | Enabled

dxf.path_type
Leader path type:

Straight line segments
1 | Spline

dxf.annotation_type

Created with text annotation

Created with tolerance annotation
Created with block reference annotation
Created without any annotation (default)

W= O

dxf.hookline_direction
Hook line direction flag:

Hookline (or end of tangent for a splined leader) is the opposite direction from the horizontal vector
1 | Hookline (or end of tangent for a splined leader) is the same direction as horizontal vector (see
has_hook_line)

6.8. Reference 323

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-396B2369-F89F-47D7-8223-8B7FB794F9F3
https://atlight.github.io/formats/dxf-leader.html

ezdxf Documentation, Release 0.17.2

dxf.has_hookline

0 | No hookline
1 | Has a hookline

dxf.text_height
Text annotation height in drawing units.

dxf.text_width
Text annotation width.

dxf.block_color
Color to use if leader’s DIMCLRD = BYBLOCK

dxf.annotation_handle
Hard reference (handle) to associated annotation (MText, Tolerance, or Insert entity)

dxf.normal_vector
Extrusion vector? default= (0, 0, 1).

.dxf .horizontal_direction
Horizontal direction for leader, default= (1, 0, 0).

dxf.leader_offset_block_ref
Offset of last leader vertex from block reference insertion point, default= (0, 0, 0).

dxf.leader_offset_annotation_placement
Offset of last leader vertex from annotation placement point, default= (0, 0, 0).

vertices
List of Vec3 objects, representing the vertices of the leader (3D Point in WCS).

set_vertices (vertices: Iterable[Vertex])
Set vertices of the leader, vertices is an iterable of (x, y [,z]) tuples or Vec3.

transform (m: Matrix44) — Leader
Transform LEADER entity by transformation matrix m inplace.

virtual_entities () — Iterable[Union[Line, Arc]]
Yields ‘virtual’ parts of LEADER as DXF primitives.

This entities are located at the original positions, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode (farget_layout: BaseLayout = None) — EntityQuery
Explode parts of LEADER as DXF primitives into target layout, if target layout is None, the target layout is
the layout of the LEADER.

Returns an Ent it yQuery container with all DXF parts.

Parameters target_layout - target layout for DXF parts, None for same layout as source
entity.

New in version 0.14.

324 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Line

LINE (DXF Reference) entity is a 3D line from Line.dxf.start to Line.dxf.end.

Subclass of ezdxf.entities.DXFGraphic

DXEF type 'LINE'

Factory function ezdxf.layouts.BaseLayout.add_line ()
Inherited DXF Attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Line

dxf.start
start point of line (2D/3D Point in WCS)

dxf.end
end point of line (2D/3D Point in WCS)

dxf.thickness
Line thickness in 3D space in direction ext rusion, default value is 0. This value should not be confused
with the 1 ineweight value.

dxf.extrusion
extrusion vector, default valueis (0, 0, 1)

transform (m: Matrix44) — Line
Transform the LINE entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Line
Optimized LINE translation about dx in x-axis, dy in y-axis and dz in z-axis.

LWPolyline

The LWPOLYLINE entity (Lightweight POLYLINE, DXF Reference) is defined as a single graphic entity, which differs
from the old-style Polyline entity, which is defined as a group of sub-entities. LWPolyline display faster (in
AutoCAD) and consume less disk space, it is a planar element, therefore all points are located in the OCS as (x, y)-tuples
(LWPolyline.dxf.elevation is the z-axis value).

Changed in version 0.8.9: LwPo1y11ine stores point data as packed data (array.array).

Subclass of ezdxf.entities.DXFGraphic
DXF type "LWPOLYLINE'
factory function add_lwpolyline ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

6.8. Reference 325

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-FCEF5726-53AE-4C43-B4EA-C84EB8686A66
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-748FC305-F3F2-4F74-825A-61F04D757A50

ezdxf Documentation, Release 0.17.2

Bulge value

The bulge value is used to create arc shaped line segments for Poly1ine and LWPolyline entities. The arc starts at
the vertex which includes the bulge value and ends at the following vertex. The bulge value defines the ratio of the arc
sagitta (versine) to half line segment length, a bulge value of 1 defines a semicircle.

The sign of the bulge value defines the side of the bulge:
* positive value (> 0): bulge is right of line (counter clockwise)
* negative value (< 0): bulge is left of line (clockwise)

¢ 0 =no bulge

bulge = 0.5 [h=2.5

R6.25

bulge = 1.0 ‘ ‘

R5.0
h=5.0 T

326 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Start- and end width

The start width and end width values defines the width in drawing units for the following line segment. To use the default
width value for a line segment set value to 0.

Width and bulge values at last point

The width and bulge values of the last point has only a meaning if the polyline is closed, and they apply to the last line
segment from the last to the first point.

See also:

Tutorial for LWPolyline and Bulge Related Functions

User Defined Point Format Codes

Code | Point Component

bulge value
X,y [, z]) as tuple

X x-coordinate
y y-coordinate
S start width

e end width

b

v

class ezdxf.entities.LWPolyline

dxf.elevation
OCS z-axis value for all polyline points, default=0

dxf.flags
Constants defined in ezdxf.11dxf.const:

dxf.flags Value | Description
LWPOLYLINE_CLOSED 1 polyline is closed
LWPOLYLINE_PLINEGEN | 128 m

dxf.const_width
Constant line width (float), default value is 0.

dxf.count
Count of polyline points (read only), same as len (polyline)

property closed

Get/set closed state of polyline. A closed polyline has a connection from the last vertex to the first vertex.
property is_closed

Returns True if LWPOLYLINE is closed. Compatibility interface to Polyline

close (state: bool = True) — None
Get/set closed state of LWPOLYLINE. Compeatibility interface to Polyline

property has_arc
Returns True if LWPOLYLINE has an arc segment.

6.8. Reference 327

ezdxf Documentation, Release 0.17.2

property has_width
Returns True if LWPOLYLINE has any segment with width attributes or DXF attribute const_width != 0.

New in version 0.14.

len__ () —int
Returns count of polyline points.

__getitem__ (index: int) — Tuple[float, float, float, float, float]
Returns point at position index as (X, y, start_width, end_width, bulge) tuple. start_width, end_width and
bulge is 0 if not present, supports extended slicing. Point format is fixed as 'xyseb'.

All coordinates in OCS.

__setitem__ (index: int, value: Sequence[float]) — None
Set point at position index as (X, y, [start_width, [end_width, [bulge]]]) tuple. If start_width or end_width is
0 or left off the default value is used. If the bulge value is left off, bulge is 0 by default (straight line). Does
NOT support extend slicing. Point format is fixed as 'xyseb'.

All coordinates in OCS.
Parameters
* index - point index
¢ value - point value as (X, y, [start_width, [end_width, [bulge]]]) tuple

__delitem__ (index: int) — None
Delete point at position index, supports extended slicing.

_ _iter__ () — Iterator[Tuple[float, float, float, float, float]]
Returns iterable of tuples (x, y, start_width, end_width, bulge).

vertices () — Iterator[Tuple[float, float]]
Returns iterable of all polyline points as (x, y) tuples in OCS (dxf.elevation is the z-axis value).

vertices_in_wcs () — Iterable[ezdxf.math._vector.Vec3]
Returns iterable of all polyline points as Vec3(x, y, z) in WCS.

append (point: Sequence[float], format: str = 'xyseb') — None
Append point to polyline, format® specifies a user defined point format.

All coordinates in OCS.
Parameters
e point — (X, Yy, [start_width, [end_width, [bulge]]]) tuple
* format — format string, default is 'xyseb', see: format codes

append_points (points: Iterable[Sequence[float]], format: str = xyseb') — None
Append new points to polyline, format specifies a user defined point format.

All coordinates in OCS.
Parameters
* points —iterable of point, point is (X, y, [start_width, [end_width, [bulge]]]) tuple
e format - format string, default is 'xyseb', see: format codes

insert (pos: int, point: Sequencel[float], format: str = 'xyseb’) — None
Insert new point in front of positions pos, format specifies a user defined point format.

All coordinates in OCS.

Parameters

328 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* pos — insert position
* point - point data
» format — format string, default is ‘xyseb’, see: format codes

clear () — None
Remove all points.

get_points (format: str = xyseb’') — List[Sequence[float]]
Returns all points as list of tuples, format specifies a user defined point format.

All points in OCS as (x, y) tuples (dxf.elevation is the z-axis value).
Parameters format — format string, default is 'xyseb', see format codes

set_points (points: Iterable[Sequence[float]], format: str = xyseb') — None
Remove all points and append new points.

All coordinates in OCS.
Parameters
* points —iterable of point, point is (X, y, [start_width, [end_width, [bulge]]]) tuple
¢ format - format string, default is 'xyseb', see format codes

points (format: str = xyseb') — Iterator[List[Sequence[float]]]
Context manager for polyline points. Returns a standard Python list of points, according to the format string.

All coordinates in OCS.
Parameters format — format string, see format codes

transform (m: Matrix44) — LWPolyline
Transform the LWPOLYLINE entity by transformation matrix m inplace.

A non uniform scaling is not supported if the entity contains circular arc segments (bulges).
Parameters m — transformation Matrix44

Raises NonUniformScalingError — for non uniform scaling of entity containing circular
arc segments (bulges)

virtual_entities () — Iterable[Union[Line, Arc]]
Yields the graphical representation of LWPOLYLINE as virtual DXF primitives (LINE or ARC).

These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.

explode (target_layout: BaseLayout = None) — EntityQuery
Explode the LWPOLYLINE entity as DXF primitives (LINE or ARC) into the target layout, if the target
layout is None, the target layout is the layout of the source entity.

Returns an Ent it yQuery container of all DXF primitives.

Parameters target_layout — target layout for the DXF primitives, None for same layout as
the source entity.

6.8.

Reference 329

ezdxf Documentation, Release 0.17.2

MLine

The MLINE entity (DXF Reference).

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'MLINE'
factory function add_mline ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MLine

dxf.style_name
MLineStyle name stored in Drawing.mline_styles dictionary, use set_style () tochange the
MLINESTYLE and update geometry accordingly.

dxf.style_handle
Handle of MLineStyle,use set_style () tochange the MLINESTYLE and update geometry accord-
ingly.

dxf.scale_factor

MLINE scaling factor, use method set_scale_factor () to change the scaling factor and update ge-
ometry accordingly.

dxf.justification
Justification defines the location of the MLINE in relation to the reference line, use method
set_justification () to change the justification and update geometry accordingly.

Constants defined in ezdxf.11dxf.const:

dxf.justification Value
MLINE_TOP 0
MLINE_ZERO 1
MLINE_BOTTOM 2
MLINE_RIGHT (alias) 0
MLINE_CENTER (alias) | 1
MLINE_LEFT (alias) 2

dxf.flags
Use method close () and the properties start_caps and end_caps to change these flags.

Constants defined in ezdxf.11ldxf.const:

dxf.flags Value
MLINE_HAS_VERTEX 1
MLINE_CLOSED
MLINE_SUPPRESS_START_CAPS
MLINE_SUPPRESS_END_CAPS

oo AN

dxf.start_location
Start location of the reference line. (read only)

dxf.count
Count of MLINE vertices. (read only)

330 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-590E8AE3-C6D9-4641-8485-D7B3693E432C

ezdxf Documentation, Release 0.17.2

dxf.style_element_count
Count of elements in ML ineSt yle definition. (read only)

dxf.extrusion
Normal vector of the entity plane, but MLINE is not an OCS entity, all vertices of the reference line are
WCS! (read only)

vertices
MLINE vertices as MLineVertex objects, stored in a regular Python list.

property style
Get associated MLINESTYLE.

set_style (name: str) — None
Set MLINESTYLE by name and update geometry accordingly. The MLINESTYLE definition must exist.

set_scale_factor (value: float) — None
Set the scale factor and update geometry accordingly.

set_justification (value: int) — None
Set MLINE justification and update geometry accordingly. See dxf. justification for valid settings.

property is_closed
Returns True if MLINE is closed. Compatibility interface to Polyline

close (state: bool = True) — None
Get/set closed state of MLINE and update geometry accordingly. Compatibility interface to Polyline

property start_caps

Get/Set start caps state. True to enable start caps and False tu suppress start caps.
property end_caps

Get/Set end caps state. True to enable end caps and False tu suppress start caps.

_len__ ()
Count of MLINE vertices.

start_location () — Vec3
Returns the start location of the reference line. Callback function for dxf.start_location.

get_locations () — List[Vec3]
Returns the vertices of the reference line.

extend (vertices: Iterable[Vec3]) — None
Append multiple vertices to the reference line.

It is possible to work with 3D vertices, but all vertices have to be in the same plane and the normal vector of
this plan is stored as extrusion vector in the MLINE entity.

clear () — None
Remove all MLINE vertices.

update_geometry () — None
Regenerate the MLINE geometry based on current settings.

generate_geometry (vertices: List[ezdxf.math._vector.Vec3]) — None
Regenerate the MLINE geometry for new reference line defined by vertices.

transform (m: Matrix44) — MLine
Transform MLINE entity by transformation matrix m inplace.

virtual_entities () — Iterable[DXFGraphic]
Yields ‘virtual’ parts of MLINE as LINE, ARC and HATCH entities.

6.8. Reference 331

ezdxf Documentation, Release 0.17.2

This entities are located at the original positions, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode (target_layout: BaseLayout = None) — EntityQuery
Explode parts of MLINE as LINE, ARC and HATCH entities into target layout, if target layout is None, the
target layout is the layout of the MLINE.

Returns an Ent it yQuery container with all DXF parts.

Parameters target_layout — target layout for DXF parts, None for same layout as source
entity.

class ezdxf.entities.MLineVertex

location
Reference line vertex location.

line_direction
Reference line direction.

miter_direction

line_params
The line parameterization is a list of float values. The list may contain zero or more items.

The first value (miter-offset) is the distance from the vertex location along the miter direction
vector to the point where the line element’s path intersects the miter vector.

The next value (line-start-offset) is the distance along the 1ine direction from the miter/line path in-
tersection point to the actual start of the line element.

The next value (dash-length) is the distance from the start of the line element (dash) to the first break (gap)
in the line element. The successive values continue to list the start and stop points of the line element in this
segment of the mline.

fill_params
The fill parameterization is also a list of float values. Similar to the line parameterization, it describes the
parameterization of the fill area for this mline segment. The values are interpreted identically to the line
parameters and when taken as a whole for all line elements in the mline segment, they define the boundary of
the fill area for the mline segment.

class ezdxf.entities.MLineStyle
The MLineSt y1e stores the style properties for the MLINE entity.

dxf .name
dxf.description
dxf.flags

dxf.£fill_color
AutoCAD Color Index (ACI) value of the fill color

dxf.start_angle
dxf.end_angle

elements
MLineStyleElement s object

update_all ()
Update all MLINE entities using this MLINESTYLE.

The update is required if elements were added or removed or the offset of any element was changed.

332 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

class ezdxf.entities.mline.MLineStyleElements

elements
List of MLineStyleElement objects, one for each line element.

0

MLineStyleElements.__getitem__ (ifem)

MLineStyleElements.__len

MLineStyleElements.append (offset: float, color: int = 0, linetype: str = 'BYLAYER') — None
Append a new line element.

Parameters

* offset — normal offset from the reference line: if justification is MLINE_ZERO, positive
values are above and negative values are below the reference line.

e color — AutoCAD Color Index (ACI) value
¢ linetype - linetype name

class ezdxf.entities.mline.MLineStyleElement
Named tuple to store properties of a line element.

offset
Normal offset from the reference line: if justification is MLINE_ZERO, positive values are above and negative

values are below the reference line.

color
AutoCAD Color Index (ACI) value

linetype
Linetype name

Mesh

The MESH entity (DXF Reference) is a 3D mesh similar to the Polyface entity.
All vertices in WCS as (X, y, z) tuples

Changed in version 0.8.9: Mesh stores vertices, edges, faces and creases as packed data.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'MESH'
Factory function ezdxf.layouts.BaseLayout.add_mesh ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 (*AC1015")

See also:

Tutorial for Mesh and helper classes: MeshBuilder, MeshVertexMerger

class ezdxf.entities.Mesh

dxf.version

dxf.blend_crease
0 =off, 1 =on

6.8. Reference 333

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-4B9ADA67-87C8-4673-A579-6E4C76FF7025

ezdxf Documentation, Release 0.17.2

dxf.subdivision_levels
0 for no smoothing else integer greater than 0.

vertices
Vertices as list like VertexArray. (read/write)

edges
Edges as list like TagArray. (read/write)

faces
Faces as list like TagList. (read/write)

creases
Creases as array.array. (read/write)

edit_data () — Iterator[ezdxf.entities.mesh.MeshData]
Context manager various mesh data, returns MeshDat a.

Despite that vertices, edge and faces since ezdxf v0.8.9 are accessible as packed data types, the usage of
MeshData by context manager edit_data () is still recommended.

transform (m: Matrix44) — Mesh
Transform the MESH entity by transformation matrix m inplace.

MeshData

class ezdxf.entities.MeshData

vertices
A standard Python list with (x, y, z) tuples (read/write)

faces
A standard Python list with (v1, v2, v3,...) tuples (read/write)

Each face consist of a list of vertex indices (= index in vertices).

edges
A standard Python list with (v1, v2) tuples (read/write). These list represents the edges to which the
edge_crease_values values will be applied. Each edge consist of exact two vertex indices (= index in
vertices).

edge_crease_values
A standard Python list of float values, one value for each edge. (read/write)

add_face (vertices: Iterable[Vertex]) — Sequencel[int]
Add a face by coordinates, vertices is a list of (x, y, z) tuples.

add_edge_crease (vi: int, v2: int, crease: float)
Add an edge crease value, the edge is defined by the vertex indices v/ and v2. The crease value defines the
amount of subdivision that will be applied to this edge. A crease value of the subdivision level prevents the
edge from deformation and a value of 0.0 means no protection from subdividing.

optimize (precision: int = 6)
Try to reduce vertex count by merging near vertices. precision defines the decimal places for coordinate be
equal to merge two vertices.

334 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

MPolygon

The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application or DXF library.
The MPolygon class is very similar to the Hat ch class with small differences in supported DXF attributes and features.

The boundary paths of the MPOLYGON are visible and use the graphical DXF attributes of the main entity like dx f .
color,dxf.linetype and so on. The solid filling is only visible if the attribute dxf.solid_£i1l1 is 1, the color
of the solid fill is defined by dxf.£fi11_color as AutoCAD Color Index (ACI).

MPOLYGON supports ezdxf.entities.Gradient settings like HATCH for DXF R2004+. This feature is used
by method MPolygon.set_solid fill () toseta solid RGB fill color as linear gradient, this disables pattern fill
automatically.

The MPOLYGON does not support associated source path entities, because the MPOLYGON also represents the bound-
ary paths as visible graphical objects.

Hatch patterns are supported, but the hatch style tag is not supported, the default hatch style is ezdxf.const.
HATCH_STYLE_NESTED and the style flags of the boundary paths are ignored.

Background color for pattern fillings is supported, set background color by property MPolygon.bgcolor as RGB
tuple.

Note: Background RGB fill color for solid fill and pattern fill is set differently!

Autodesk products do support polyline paths including bulges. An example for edge paths as boundary paths is not
available or edge paths are not supported. Ezdxf does not export MPOLYGON entities including edge paths! The
BoundaryPaths.edge_to_polyline_paths () method converts all edge paths to simple polyline paths with
approximated curves, this conversion has to be done explicit.

See also:

For more information see the ezdxf.entities.Hatch documentation.

Subclass of ezdxf.entities.DXFGraphic
DXF type "MPOLYGON"
Factory function ezdxf.layouts.BaseLayout.add _mpolygon ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MPolygon

dxf.pattern_name
Pattern name as string

dxf.solid_f£fill

1 | solid fill, better use: MPolygon.set_solid fill ()
0 | pattern fill, better use: MPolygon.set_pattern_fill ()

(search AutoCAD help for more information)

dxf.pattern_type

6.8. Reference 335

ezdxf Documentation, Release 0.17.2

0 | user
1 | predefined
2 | custom

dxf.pattern_angle
Actual pattern angle in degrees (float). Changing this value does not rotate the pattern, use
set_pattern_angle () for this task.

dxf.pattern_scale
Actual pattern scaling factor (float). Changing this value does not scale the pattern use
set_pattern_scale () for this task.

dxf.pattern_double
1 = double pattern size else 0. (int)

dxf.elevation
Z value represents the elevation height of the OCS. (float)

paths
BoundaryPaths object.

pattern
Pattern object.

gradient
Gradient object.

property has_solid_fill
True if entity has a solid fill. (read only)

property has_pattern_fill
True if entity has a pattern fill. (read only)

property has_gradient_data
True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read only)

property bgcolor
Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255] (read/write/del)

usage:

r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color

set_pattern_definition (lines: Sequence, factor: float = 1, angle: float = 0) — None
Setup pattern definition by a list of definition lines and a definition line is a 4-tuple (angle, base_point, offset,
dash_length_items), the pattern definition should be designed for scaling factor 1 and angle 0.

* angle: line angle in degrees
¢ base-point: 2-tuple (X, y)
* offset: 2-tuple (dx, dy)

* dash_length_items: list of dash items (item > O is a line, item < O is a gap and item == 0.0 is a point)

Parameters
¢ lines — list of definition lines

» factor - pattern scaling factor

336 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* angle - rotation angle in degrees
set_pattern_scale (scale: float) — None
Set scaling of pattern definition to scale.

Starts always from the original base scaling, set_pattern_scale (1) reset the pattern scaling to
the original appearance as defined by the pattern designer, but only if the the pattern attribute dxr.
pattern_scale represents the actual scaling, it is not possible to recreate the original pattern scaling
from the pattern definition itself.

Parameters scale — pattern scaling factor

set_pattern_angle (angle: float) — None
Set rotation of pattern definition to angle in degrees.

Starts always from the original base rotation 0, set_pattern_angle (0) reset the pattern rotation
to the original appearance as defined by the pattern designer, but only if the the pattern attribute dxr.
pattern_angle represents the actual rotation, it is not possible to recreate the original rotation from the
pattern definition itself.

Parameters angle — rotation angle in degrees

set_solid_ £ill (color: int = 7, style: int = 1, rgb: RGB = None)
Set MPolygon to solid fill mode and removes all gradient and pattern fill related data.

Parameters
e color — AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
* style - hatch style is not supported by MPOLYGON, just for symmetry to HATCH

¢ rgb — true color value as (r, g, b)-tuple - has higher priority than color. True color support
requires DXF R2004+

set_pattern_£ill (name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int = 0, style:
int = 1, pattern_type: int = 1, definition=None) — None
Set Hatch and MPolygon to pattern fill mode. Removes all gradient related data. The pattern definition
should be designed for scaling factor 1. Predefined hatch pattern like “ANSI33” are scaled according to the
HEADER variable SMEASUREMENT for ISO measurement (m, cm, ...), or imperial units (in, ft, ...), this
replicates the behavior of BricsCAD.

Parameters
* name — pattern name as string
* color — pattern color as AutoCAD Color Index (ACI)
* angle - angle of pattern fill in degrees
* scale - pattern scaling as float
* double - double size flag
e style - hatch style (0 = normal; 1 = outer; 2 = ignore)
* pattern_type — pattern type (0 = user-defined; 1 = predefined; 2 = custom)

* definition - list of definition lines and a definition line is a 4-tuple [angle, base_point,
offset, dash_length_items], see set_pattern_definition()

set_gradient (colorl: Tuple[int, int, int] = (0, 0, 0), color2: Tuple[int, int, int] = (255, 255, 255),
rotation: float = 0.0, centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str

= 'LINEAR') — None
Set Hatch and MPolygon to gradient fill mode and removes all pattern fill related data. Gradient support

requires DXF R2004+. A gradient filled hatch is also a solid filled hatch.

6.8. Reference 337

ezdxf Documentation, Release 0.17.2

Valid gradient type names are:

'LINEAR'
'CYLINDER'
'"INVCYLINDER'

' SPHERICAL'
'INVSPHERICAL'
'HEMISPHERICAL'
'INVHEMISPHERICAL'
'CURVED'

'INVCURVED'

Parameters

* colorl —(r, g, b)-tuple for first color, rgb values as int in the range [0, 255]

* color2 —(r, g, b)-tuple for second color, rgb values as int in the range [0, 255]

¢ rotation - rotation angle in degrees

* centered - determines whether the gradient is centered or not

* one_color - 1 for gradient from color! to tinted colorl

* tint - determines the tinted target color! for a one color gradient. (valid range 0.0 to 1.0)

* name - name of gradient type, default “LINEAR”

transform (m: Matrix44) — MPolygon
Transform entity by transformation matrix m inplace.

MText

The MTEXT entity (DXF Reference) fits a multiline text in a specified width but can extend vertically to an indefinite
length. You can format individual words or characters within the MText.

See also:

Tutorial for MText and MTextEditor

Subclass of

ezdxf.entities.DXFGraphic

DXEF type

'MTEXT'

Factory function

ezdxf.layouts.BaseLayout.add_mtext ()

Inherited DXF attributes

Common graphical DXF attributes

Required DXF version

DXF R2000 ('AC1015")

class ezdxf.entities.MText

dxf.insert

Insertion point (3D Point in OCS)

dxf.char_height
Initial text height (float); default=1.0

338

Chapter 6. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-5E5DB93B-F8D3-4433-ADF7-E92E250D2BAB

ezdxf Documentation, Release 0.17.2

dxf.width

Reference text width (float), forces text wrapping at given width.

dxf.attachment_point
Constants defined in ezdxf.11ldxf.const:

MText.dxf.attachment_point

<
L
c
D

MTEXT_TOP_LEFT

MTEXT_TOP_CENTER

MTEXT_TOP_RIGHT

MTEXT_MIDDLE_LEFT

MTEXT_MIDDLE_CENTER

MTEXT_MIDDLE_RIGHT

MTEXT_BOTTOM_LEFT

MTEXT_BOTTOM_CENTER

MTEXT_BOTTOM_RIGHT

O 00| | N[| K| W —

dxf.flow_direction
Constants defined in ezdxf . const:

MText.dxf.flow_direction

Value

Description

MTEXT_LEFT_TO_RIGHT | 1

left to right

MTEXT_TOP_TO_BOTTOM 3

top to bottom

MTEXT_BY_STYLE 5

by style (the flow direction is inherited from the associated text
style)

dxf.style

Text style (string); default = ' STANDARD'

dxf.text_direction

X-axis direction vector in WCS (3D Point); default value is (1, O,

text_direction are present, dxf .text_direction wins.

dxf.rotation

Text rotation in degrees (float); default = 0

dxf.line_spacing_style
Line spacing style (int), see table below

dxf.line_spacing_ factor
Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to 4. 00 (float).

Constants defined in ezdxf.11dxf.const:

dxf.bg_£ill

MText.dxf.line_spacing_style | Value | Description
MTEXT_AT_LEAST 1 taller characters will override
MTEXT_EXACT 2 taller characters will not override

Defines the background fill type. (DXF R2007)

0);if dxf.rotation and dxf.

6.8.

Reference

339

ezdxf Documentation, Release 0.17.2

MText.dxf.bg_fill Value | Description

MTEXT BG_OFF 0 no background color
MTEXT_BG_COLOR 1 use specified color

MTEXT _BG_WINDOW_COLOR | 2 use window color (?)
MTEXT_BG_CANVAS_COLOR 3 use canvas background color

dxf.box_fill_scale
Determines how much border there is around the text. (DXF R2007)

Requires: bg_fill, bg_fill_color else AutoCAD complains
Better use set_bg_color ()

dxf.bg_f£fill_color
Background fill color as AutoCAD Color Index (ACI) (DXF R2007)

Better use set_bg_color ()

dxf.bg_f£fill_true_color
Background fill color as true color value (DXF R2007), also dxf .bg_fill_color must be present, else

AutoCAD complains.
Better use set_bg_color ()

dxf.bg_£fill_color_name
Background fill color as name string (?) (DXF R2007), also dxf.bg_£fill_color must be present, else

AutoCAD complains.
Better use set_bg_color ()

dxf.transparency
Transparency of background fill color (DXF R2007), not supported by AutoCAD or BricsCAD.

text
MTEXT content as string (read/write).

Line endings \n will be replaced by the MTEXT line endings \P at DXF export, but not vice versa \P by
\n at DXF file loading.

set_location (insert: Vertex, rotation: float = None, attachment_point: int = None) — MText
Set attributes dxf.insert, dxf.rotation and dxf.attachment_point, None for dxf.
rotationor dxf.attachment_point preserves the existing value.

get_rotation () — float
Get text rotation in degrees, independent if it is defined by dx . rotationor dxf.text_direction.

set_rotation (angle: float) — ezdxf.entities.mtext.MText
Set attribute rotat ion to angle (in degrees) and deletes dxf. text_direction if present.

get_text_direction () — ezdxf.math._vector.Vec3
Returns the horizontal text direction as Vec 3 object, even if only the text rotation is defined.

set_bg_color (color: Optional[Union[int, str, Tuple[int, int, int]]], scale: float = 1.5, text_frame=False)
Set background color as AutoCAD Color Index (ACI) value or as name string or as RGB tuple (r, g, b).

Use special color name canvas, to set background color to canvas background color.
Use color = None to remove the background filling.
Setting only a text border is supported (color'="None"), but in this case the scaling is always 1.5.

Parameters

340 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

¢ color - color as AutoCAD Color Index (ACI), string, RGB tuple or None

¢ scale —determines how much border there is around the text, the value is based on the text
height, and should be in the range of [1, 5], where 1 fits exact the MText entity.

¢ text_frame — draw a text frame in text color if True

__diadd__ (fext: str) — MText
Append fext to existing content (text attribute).

append (text: str) — MText
Append fext to existing content (text attribute).

plain_text (split=False, fast=True) — Union[List[str], str]
Returns the text content without inline formatting codes.

The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD applications like
AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where the content was created by older
CAD applications or unreliable DXF libraries and CAD applications.

Parameters

e split - split content text at line breaks if True and returns a list of strings without line
endings

e fast —uses the “fast” mode to extract the plain MTEXT content if True or the “accurate”
mode if set to False

New in version 0.16.6: fast argument

all_columns_plain_text (split=False) — Union[List[str], str]
Returns the text content of all columns without inline formatting codes.

Parameters split — split content text at line breaks if True and returns a list of strings without
line endings

New in version 0.17.

all_columns_raw_content () — str
Returns the text content of all columns as a single string including the inline formatting codes.

New in version 0.17.

transform (m: Matrix44) — MText
Transform the MTEXT entity by transformation matrix m inplace.

ucs (m: Matrix44) — UCS
Returns the UCS of the MText entity, defined by the insert location (origin), the text direction or rotation
(x-axis) and the extrusion vector (z-axis).

. Reference 341

ezdxf Documentation, Release 0.17.2

MText Inline Codes

Code Description
\L Start underline
\I Stop underline
\O Start overline
\o Stop overline
\K Start strike-through
\k Stop strike-through
\P New paragraph (new line)
\p Paragraphs properties: indentation, alignment, tabulator
stops
\X Paragraph wrap on the dimension line (only in dimen-
sions)
\Q Slanting (oblique) text by angle - e.g. \Q30;
\H Text height - e.g. relative \H3x; absolut \H3;
\W Text width - e.g. relative \W0.8x; absolut \W0.8;
\T Tracking, character spacing - e.g. relative \T(0.5x; absolut
\T2;
\F Font selection e.g. \Fgdt;o - GDT-tolerance
\S Stacking, fractions e.g. \SA” B; space after “/” is required
to avoid caret decoding, \SX/Y; \S1#4;
\A Alignment
¢ \AQ; = bottom
¢ \Al; = center
* \A2; =top
\C Color change
* \Cl;=red
* \C2; = yellow
* \C3; = green
¢ \C4; = cyan
¢ \C5; =Dblue
* \C6; = magenta
e \C7; = white
\~ Non breaking space
{} Braces - define the text area influenced by the code, codes
and braces can be nested up to 8§ levels deep
\ Escape character - e.g. \{ = “{“
342 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Convenient constants defined in MTextEditor:

Constant Description
UNDERLINE_START start underline text
UNDERLINE_STOP stop underline text
OVERSTRIKE_START | start overline
OVERSTRIKE_STOP stop overline

STRIKE_START start strike trough
STRIKE_STOP stop strike trough
GROUP_START start of group
GROUP_END end of group
NEW_LINE start in new line
NBSP none breaking space

MultiLeader

New in version 0.18.

The MULTILEADER entity (DXF Reference) represents one ore more leaders, made up of one or more vertices (or spline
fit points) and an arrowhead. In contrast to the Leader entity the text- or block content is part of the MULTILEADER
entity.

AutoCAD, BricsCAD and maybe other CAD applications do accept 'MLEADER' as type string but they always create
entities with "MULTILEADER' as type string.

Because of the complexity of the MLEADER entity it is recommend to use the MultiLeaderBuilder to construct
the entity.

The visual design is based on an associated MLeaderStyle, but almost all attributes are also stored in the MULTI-
LEADER entity itself.

The attribute MultilLeader.dxf.property_override_flags should indicate which MLEADERSTYLE at-
tributes are overridden by MULTILEADER attributes, but these flags do not always reflect the state of overridden at-
tributes. The ezdxf MULTILEADER renderer uses always the attributes from the MULTILEADER entity and ignores
the override flags.

All vertices are WCS coordinates, even those for BLOCK entities which are OCS coordinates in the usual case.
See also:

e ezdxf.entities.MLeaderStyle

* ezdxf.render.MultilLeaderBuilder

* Tutorial for MultiLeader

e MULTILEADER Internals

Subclass of ezdxf.entities.DXFGraphic
DXF type "MULTILEADER'
Factory function ezdxf.layouts.BaselLayout.add_multileader ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.MultiLeader

6.8. Reference 343

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-72D20B8C-0F5E-4993-BEB7-0FCF94F32BE0

ezdxf Documentation, Release 0.17.2

dxf.arrow_head_handle
handle of the arrow head, see also ezdxf. render. arrows module, “closed filled” arrow if not set

dxf.arrow_head_size
arrow head size in drawing units

dxf.block_color
block color as raw color value, default is BY_BLOCK_RAW_VALUE

dxf .block_connection_type

0 | center extents
1 | insertion point

dxf.block_record handle
handle to block record of the BLOCK content

dxf.block_rotation
BLOCK rotation in radians

dxf .block_scale_vector
Vec3 object which stores the scaling factors for the x-, y- and z-axis

dxf.content_type

0 | none

1 | BLOCK

2 | MTEXT

3 | TOLERANCE

dxf.dogleg_length
dogleg length in drawing units

dxf.has_dogleg
dxf.has_landing
dxf.has_text_frame
dxf.is_annotative
dxf.is_text_direction_negative
dxf.leader_extend_to_text

dxf.leader_line_color
leader line color as raw color value

dxf.leader_linetype_ handle
handle of the leader linetype, “CONTINUOUS” if not set

dxf.leader_lineweight

dxf.leader_type

invisible
straight line leader
spline leader

N = O

344 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf .property_override_flags
Each bit shows if the MLEADERSTYLE is overridden by the value in the MULTILEADER entity, but this
is not always the case for all values, it seems to be save to always use the value from the MULTILEADER
entity.

dxf.scale
overall scaling factor

dxf.style_handle
handle to the associated MLEADERSTYLE object

dxf.text_IPE_align
unknown meaning

dxf.text_alignment_type
unknown meaning - its not the MTEXT attachment point!

dxf.text_angle_type

text angle is equal to last leader line segment angle

text is horizontal

text angle is equal to last leader line segment angle, but potentially rotated by 180 degrees so the right
side is up for readability.

N —=O

dxf.text_attachment_direction
defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top &
bottom:

horizontal - left & right of content
1 | vertical - top & bottom of content

dxf.text_attachment_point

MTEXT attachment point
1 | top left
2 | top center
3 | top right
dxf.text_bottom_attachment_type
9 | center

10 | overline and center

dxf.text_color
MTEXT color as raw color value

dxf.text_left_attachment_type

6.8. Reference 345

ezdxf Documentation, Release 0.17.2

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

RO N BRI =IO

dxf.text_right_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

RO AN| N| B| W =IO

dxf.text_style_handle
handle of the MTEXT text style, “Standard” if not set

dxf.text_top_attachment_type

9 center
10 | overline and center

dxf.version
always 27

context
MLeaderContext instance

arrow_heads
list of ArrowHeadData

block_attribs
listof AttribData

virtual_entities () — Iterable[DXFGraphic)
Yields the graphical representation of MULTILEADER as virtual DXF primitives.

This entities are located at the original location, but are not stored in the entity database, have no handle and
are not assigned to any layout.

explode (farget_layout: BaseLayout = None) — EntityQuery
Explode MULTILEADER as DXF primitives into target layout, if target layout is None, the target layout is
the layout of the source entity.

Returns an EntityQuery container with all DXF primitives.

346

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Parameters target_layout — target layout for the DXF primitives, None for same layout as
the source entity.

transform (m: Matrix44) — MultiLeader
Transform the MULTILEADER entity by transformation matrix m inplace.

Non uniform scaling is not supported.
Parameters m — transformation Matrix44
Raises NonUniformScalingError — for non uniform scaling

class ezdxf.entities.MLeaderContext

leaders
list of LeaderData objects

scale
redundant data: MultiLeader.dxf.scale

base_point
insert location as Vec3 of the MTEXT or the BLOCK entity?

char_height
MTEXT char height, already scaled

arrow_head_size
redundant data: MultiLeader.dxf.arrow_head size

landing_gap_size

left_attachment
redundant data: MultilLeader.dxf.text_left_attachment_type

right_attachment
redundant data: MultilLeader.dxf.text_right_attachment_type

text_align_type
redundant data: MultilLeader.dxf.text_attachment_point

attachment_type
BLOCK alignment?

content extents
1 | insertion point

mtext
instance of MTextDat a if content is MTEXT otherwise None

block
instance of Bl ockDat a if content is BLOCK otherwise None

plane_origin
Vec3

pPlane_x_axis
Vec3

plane_y_axis
Vec3

6.8. Reference 347

ezdxf Documentation, Release 0.17.2

plane_normal_reversed
the plan normal is x-axis “cross” y-axis (right-hand-rule), this flag indicates to invert this plan normal

top_attachment
redundant data: MultilLeader.dxf.text_top_attachment_type

bottom_attachment
redundant data: MultilLeader.dxf.text_bottom attachment_type

class ezdxf.entities.LeaderData

lines
list of LeaderLine

has_last_leader_line
unknown meaning

has_dogleg_vector

last_leader_point
WCS point as Vec3

dogleg_vector
WCS direction as Vec3

dogleg_length
redundant data: MultilLeader.dxf.dogleg _length

index
leader index?

attachment_direction
redundant data: MultiLeader.dxf.text_attachment_direction

breaks
list of break vertices as Vec3 objects

class ezdxf.entities.LeaderLine

vertices
list of WCS coordinates as Vec3

breaks
mixed list of mixed integer indices and break coordinates or None leader lines without breaks in it

index
leader line index?

color
leader line color override, ignore override value if BY_ BLOCK_RAW_VALUE

class ezdxf.entities.ArrowHeadData

index
arrow head index?

handle
handle to arrow head block

class ezdxf.entities.AttribData

348 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

handle
handle to At tdef entity in the BLOCK definition

index
unknown meaning

width
text width factor?

text
At trib content

class ezdxf.entities.MTextData
stores the content and attributes of the MTEXT entity

default_content
content as string

extrusion
extrusion vector of the MTEXT entity but MTEXT is not an OCS entity!

style_handle
redundant data: MultilLeader.dxf.text_style_handle

insert
insert location in WCS coordinates, same as ML.eaderContext .base_point?

text_direction
“horizontal” text direction vector in WCS

rotation
rotation angle in radians (!) around the extrusion vector, calculated as it were an OCS entity

width
unscaled column width

defined_height
unscaled defined column height

line_spacing_factor
see MText .dxf.line_spacing_factor

line_spacing_style
see MText .dxf.line_spacing_style

color
redundant data: MultilLeader.dxf.text_color

alignment
redundant data: MultiLeader.dxf.text_attachment_point

flow_direction

1 | horizontal
vertical
6 | by text style

bg_color
background color as raw color value

6.8. Reference 349

ezdxf Documentation, Release 0.17.2

bg_scale_factor
see MText .dxf.box_fill scale

bg_transparency
background transparency value

use_window_bg_color
has_bg_ fill

column_type
unknown meaning - most likely:

none
static
dynamic

N = O

use_auto_height

column_width
unscaled column width, redundant data width

column_gutter_width
unscaled column gutter width

column_flow_reversed

column_sizes
list of unscaled columns heights for dynamic column with manual heights

use_word_break

class ezdxf.entities.BlockData
stores the attributes for the Tnsert entity

block_record_handle
redundant data: MultilLeader.dxf.block record handle

extrusion
extrusion vector in WCS

insert
insertion location in WCS as Vec 3, same as ML.eaderContext .base_point?

scale
redundant data: MultilLeader.dxf.block_scale_vector

rotation
redundant data: MultiLeader.dxf.block rotation

color
redundant data: MultilLeader.dxf.block _color

350 Chapter 6

. Contents

ezdxf Documentation, Release 0.17.2

Point

POINT (DXF Reference) at location dxf . location.

The POINT styling is a global setting, stored as header variable SPDMODE, this also means all POINT entities in a DXF
document have the same styling:

center dot (.)
none ()
cross (+)
X-Cross (x)
tick ()

BR[O —=| O

Combined with these bit values

32 | circle
64 | Square

e.g. circle + square + center dot =32 + 64 + 0 =96

O O 4 " O

32 33 34 35 36

O 0 # K @M
66 67

G4 65 68

O 08 R O

96 a7 95 29 100

The size of the points is defined by the header variable $PDSIZE:

0 5% of draw area height
<0 | Specifies a percentage of the viewport size
>0 | Specifies an absolute size

Subclass of ezdxf.entities.DXFGraphic

DXEF type '"POINT'

Factory function ezdxf.layouts.BaseLayout.add _point ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Point

dxf.location
Location of the point (2D/3D Point in WCS)

dxf.angle
Angle in degrees of the x-axis for the UCS in effect when POINT was drawn (float); used when PDMODE
is nonzero.

6.8. Reference 351

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-9C6AD32D-769D-4213-85A4-CA9CCB5C5317
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Core/files/GUID-82F9BB52-D026-4D6A-ABA6-BF29641F459B-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/AutoCAD-Core/files/GUID-826CA91D-704B-400B-B784-7FCC9619AFB9-htm.html?st=\protect \TU\textdollar PDSIZE

ezdxf Documentation, Release 0.17.2

transform (m: Matrix44) — Point
Transform the POINT entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Point
Optimized POINT translation about dx in x-axis, dy in y-axis and dz in z-axis.

virtual_entities (pdsize: float = 1, pdmode: int = 0) — List{DXFGraphic]
Yields point graphic as DXF primitives LINE and CIRCLE entities. The dimensionless point is rendered as
zero-length line!

Check for this condition:

e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end)

if the rendering engine can’t handle zero-length lines.
Parameters
* pdsize - point size in drawing units

* pdmode - point styling mode

Polyline

The POLYLINE entity (POLYLINE DXF Reference) is very complex, it’s used to build 2D/3D polylines, 3D meshes
and 3D polyfaces. For every type exists a different wrapper class but they all have the same dxftype of 'POLYLINE'.
Detect POLYLINE type by Polyline.get_mode ().

POLYLINE types returned by Polyline.get_mode ():
¢ '"AcDb2dPolyline"' for 2D Polyline
e '"AcDb3dPolyline"' for 3D Polyline
e 'AcDbPolygonMesh' for Polymesh
e '"AcDbPolyFaceMesh' for Polyface
For 2D entities all vertices in OCS.

For 3D entities all vertices in WCS.

Subclass of ezdxf.entities.DXFGraphic

DXEF type '"POLYLINE'

2D factory function ezdxf.layouts.BaseLayout.add _polyline2d()
3D factory function ezdxf.layouts.BaseLayout.add _polyline3d()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Polyline
Vertex entities are stored in a standard Python list Polyline.vertices. Vertices can be retrieved and
deleted by direct access to Polyline. vertices attribute:

delete first and second vertex
del polyline.vertices[:2]

352 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-ABF6B778-BE20-4B49-9B58-A94E64CEFFF3

ezdxf Documentation, Release 0.17.2

dxf.elevation

Elevation point, the X and Y values are always 0, and the Z value is the polyline’s elevation (3D Point in OCS

when 2D, WCS when 3D).

dxf.flags
Constants defined in ezdxf.11ldxf.const:

LINE_MESH_CLOSED_N_DIRECTION

Polyline.dxf.flags Value Description

POLYLINE_CLOSED 1 This is a closed Polyline (or a polygon mesh closed in the
M direction)

POLY- 1 equals POLYLINE_CLOSED

LINE_MESH_CLOSED_M_DIRECTION

POLY- 2 Curve-fit vertices have been added

LINE_CURVE_FIT_VERTICES_ADDED

POLY- 4 Spline-fit vertices have been added

LINE_SPLINE_FIT_VERTICES_ADDED

POLYLINE_3D_POLYLINE 8 This is a 3D Polyline

POLYLINE_3D_POLYMESH 16 This is a 3D polygon mesh

POLY- 32 The polygon mesh is closed in the N direction

POLYLINE_POLYFACE_MESH 64 This Polyline is a polyface mesh

POLY- 128 | The linetype pattern is generated continuously around the
LINE_GENERATE_LINETYPE_PATTERN vertices of this Polyline

dxf.default_start_width
Default line start width (float); default = 0

dxf.default_end_width
Default line end width (float); default = 0

dxf.m_count
Polymesh M vertex count (int); default = 1

dxf.n_count
Polymesh N vertex count (int); default = 1

dxf.m_smooth_density
Smooth surface M density (int); default = O

dxf.n_smooth_density
Smooth surface N density (int); default = 0

dxf.smooth_type

Curves and smooth surface type (int); default=0, see table below

Constants for smooth_type defined in ezdxf.11dxf.const:

Polyline.dxf.smooth_type Value | Description
POLYMESH_NO_SMOOTH 0 no smooth surface fitted
POLYMESH_QUADRATIC_BSPLINE | 5 quadratic B-spline surface
POLYMESH_CUBIC_BSPLINE 6 cubic B-spline surface
POLYMESH_BEZIER_SURFACE 8 Bezier surface

vertices
List of Vertex entities.

6.8. Reference

353

ezdxf Documentation, Release 0.17.2

is_2d_polyline
True if POLYLINE is a 2D polyline.

is_3d_polyline
True if POLYLINE is a 3D polyline.

is_polygon_mesh
True if POLYLINE is a polygon mesh, see Polymesh

is_poly_ face_mesh
True if POLYLINE is a poly face mesh, see Polyface

is_closed
True if POLYLINE is closed.

is_m closed
True if POLYLINE (as Polymesh) is closed in m direction.

is_n_closed
True if POLYLINE (as Polymesh) is closed in n direction.

has_arc
Returns True if 2D POLYLINE has an arc segment.

has_width
Returns True if 2D POLYLINE has default width values or any segment with width attributes.

New in version 0.14.

get_mode () — str
Returns POLYLINE type as string:

¢ ‘AcDb2dPolyline’

¢ ‘AcDb3dPolyline’

* ‘AcDbPolygonMesh’
¢ ‘AcDbPolyFaceMesh’

m_close (status=True) — None
Close POLYMESH in m direction if status is True (also closes POLYLINE), clears closed state if status is
False.

n_close (status=True) — None
Close POLYMESH in n direction if status is True, clears closed state if status is False.

close (m_close=True, n_close=False) — None
Set closed state of POLYMESH and POLYLINE in m direction and n direction. True set closed flag,
False clears closed flag.

len__ () —int
Returns count of Vertex entities.

__getitem__ (pos) — ezdxf entities.polyline. DXFVertex
Get Vertex entity at position pos, supports 1ist slicing.

points () — Iterator[ezdxf.math._vector.Vec3]
Returns iterable of all polyline vertices as (x, y, z) tuples, notas Vertex objects.

append_vertex (point: Vertex, dxfattribs=None) — None
Append a single Vertex entity at location point.

Parameters

354

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

e point —as (x, yI[, z]) tuple
e dxfattribs — dict of DXF attributes for Vertex class

append_vertices (points: Iterable[Vertex], dxfattribs=None) — None
Append multiple Ve rtex entities at location points.

Parameters
* points —iterable of (x, y[, z]) tuples
* dxfattribs - dict of DXF attributes for the VERTEX objects

append_formatted_vertices (points: Iterable[Vertex], format: str = 'xy', dxfattribs=None) —

None
Append multiple Ve rtex entities at location points.

Parameters
¢ points —iterable of (x,y, [start_width, [end_width, [bulge]]]) tuple
* format — format string, default is 'xy ', see: User Defined Point Format Codes
e dxfattribs — dict of DXF attributes for the VERTEX objects

insert_vertices (pos: int, points: Iterable[Vertex], dxfattribs=None) — None
Insert vertices points into Polyline. vertices list at insertion location pos .

Parameters
* pos — insertion position of list Polyline.vertices
e points—listof (x, y[, z]) tuples
e dxfattribs — dict of DXF attributes for Ve rtex class

transform (m: Matrix44) — Polyline
Transform the POLYLINE entity by transformation matrix m inplace.

A non uniform scaling is not supported if a 2D POLYLINE contains circular arc segments (bulges).
Parameters m — transformation Matrix44

Raises NonUniformScalingError — for non uniform scaling of 2D POLYLINE containing
circular arc segments (bulges)

virtual_entities () — Iterable[Union[Line, Arc, Face3d]]
Yields the graphical representation of POLYLINE as virtual DXF primitives (LINE, ARC or 3DFACE).

These virtual entities are located at the original location, but are not stored in the entity database, have no
handle and are not assigned to any layout.

explode (farget_layout: BaseLayout = None) — EntityQuery
Explode the POLYLINE entity as DXF primitives (LINE, ARC or 3DFACE) into the target layout, if the
target layout is None, the target layout is the layout of the POLYLINE entity.

Returns an Ent it yQuery container of all DXF primitives.

Parameters target_layout — target layout for DXF primitives, None for same layout as
source entity.

6.8.

Reference 355

ezdxf Documentation, Release 0.17.2

Vertex

A VERTEX (VERTEX DXF Reference) represents a polyline/mesh vertex.

Subclass of

ezdxf.entities.DXFGraphic

DXEF type

'VERTEX'

Factory function

Polyline.append_vertex ()

Factory function

Polyline.extend()

Factory function

Polyline.insert_vertices ()

Inherited DXF Attributes

Common graphical DXF attributes

class ezdxf.entities.Vertex

dxf.location

Vertex location (2D/3D Point OCS when 2D, WCS when 3D)

dxf.start_width

Line segment start width (float); default = 0

dxf.end_width

Line segment end width (float); default = 0

dxf .bulge
Bulge value (float); default

=0.

The bulge value is used to create arc shaped line segments.

dxf.flags

Constants defined in ezdxf.11dxf.const:

Vertex.dxf.flags

Value Description

VTX_EXTRA_VERTE]

X ICRH

L ANIED vertex created by curve-fitting

VTX_CURVE_FIT_TA

NGEN|

[Tcurve-fit tangent defined for this vertex. A curve-fit tangent direction of
0 may be omitted from the DXF output, but is significant if this bit is

VTX_SPLINE_VERTE

X8CRY

LAPIHID vertex created by spline-fitting

VTX_SPLINE_FRAMH

CONTROhe B@INTontrol point

VTX_3D_POLYLINE_

VBRTE

EX3D polyline vertex

VTX_3D_POLYGON_)

MIESH

| VAEER{AdPgon mesh

VTX_3D_POLYFACE |

MESH

_paARAEXnesh vertex

dxf.tangent

Curve fit tangent direction (float), used for 2D spline in DXF R12.

dxf.vtxl

Index of 1st vertex, if used as face (feature for experts)

dxf.vtx2

Index of 2nd vertex, if used as face (feature for experts)

dxf.vtx3

Index of 3rd vertex, if used as face (feature for experts)

dxf.vtx4

Index of 4th vertex, if used as face (feature for experts)

is_2d_polyline_vertex

356

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0741E831-599E-4CBF-91E1-8ADBCFD6556D

ezdxf Documentation, Release 0.17.2

is_3d_polyline_vertex
is_polygon_mesh_vertex
is_poly_ face_mesh_vertex
is_face_record

format (format="xyz') — Sequence
Return formatted vertex components as tuple.

Format codes:

[Tt}

e “x” = x-coordinate

[Tt}

¢ “y” = y-coordinate
e “z” = z-coordinate
e “s” = start width

¢ “e” = end width

e “b” = bulge value

* “v’=(X,Y, z) as tuple
Args: format: format string, default is “xyz”

New in version 0.14.

Polymesh

Subclass of ezdxf.entities.Polyline

DXF type "POLYLINE'

Factory function ezdxf.layouts.BaseLayout.add _polymesh ()
Inherited DXF Attributes | Common graphical DXF attributes

class ezdxf.entities.Polymesh

A polymesh is a grid of m_count X n_count vertices, every vertex has its own (x,

z) location.

The Polymesh is an subclass of Polyline, DXF type is also '"POLYLINE' but get_mode () returns

'AcDbPolygonMesh’.

get_mesh_vertex (pos: Tuple[int, int]) — ezdxf.entities.polyline. DXFVertex
Get location of a single mesh vertex.

Parameters pos — 0-based (row, col) tuple, position of mesh vertex

set_mesh_vertex (pos: Tuple[int, int], point: Vertex, dxfattribs=None)
Set location and DXF attributes of a single mesh vertex.

Parameters
* pos — 0-based (row, col)-tuple, position of mesh vertex
e point - (X, Yy, z)-tuple, new 3D coordinates of the mesh vertex
e dxfattribs —dict of DXF attributes

get_mesh_vertex_cache () — ezdxf.entities.polyline.MeshVertexCache

Get a MeshVertexCache object for this POLYMESH. The caching object provides fast access to the

locat ion attribute of mesh vertices.

6.8. Reference

357

ezdxf Documentation, Release 0.17.2

MeshVertexCache

class ezdxf.entities.MeshVertexCache

Cache mesh vertices in a dict, keys are O-based (row, col) tuples.

Set vertex location: cache [row, col] = (x, y, z)
Get vertex location: x, y, z = cache[row, col]
vertices

Dict of mesh vertices, keys are 0-based (row, col) tuples.

__getitem__ (pos: Tuple[int, int]) — Vertex
Get mesh vertex location as (X, y, z)-tuple.

Parameters pos — 0-based (row, col)-tuple.

__setitem__ (pos: Tuple[int, int], location: Vertex) — None
Get mesh vertex location as (X, y, z)-tuple.

Parameters
* pos — 0-based (row, col)-tuple.

e location - (X, Yy, z)-tuple

Polyface
Subclass of ezdxf.entities.Polyline
DXF type "POLYLINE'
Factory function ezdxf.layouts.BaseLayout.add polyface ()
Inherited DXF Attributes | Common graphical DXF attributes
See also:

Tutorial for Polyface

class ezdxf.entities.Polyface

A polyface consist of multiple location independent 3D areas called faces. The Polyfaceisasubclass of Poly—
line, DXF typeis also 'POLYLINE' but get_mode () returns 'AcDbPolyFaceMesh'.

append_face (face: FaceType, dxfattribs=None) — None
Append a single face. A faceisalistof (x, vy, z) tuples.

Parameters
e face-List[(x, y, z) tuples]
e dxfattribs — dict of DXF attributes for VERTEX objects

append_faces (faces: Iterable[FaceType], dxfattribs=None) — None
Append multiple faces. faces is a list of single faces and a single face is alistof (x, vy, z) tuples.

Parameters
e faces —listof List[(x, vy, z) tuples]
e dxfattribs — dict of DXF attributes for teth VERTEX objects

faces () — Iterable[List[Vertex]]
Iterable of all faces, a face is a tuple of vertices.

358

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Returns [vertex, vertex, vertex, [vertex,] face_record]
Return type list

optimize (precision: int = 6) — None
Rebuilds Polyface including vertex optimization by merging vertices with nearly same vertex locations.

Parameters precision - floating point precision for determining identical vertex locations

Ray

RAY entity (DXF Reference) starts at Ray . dxf . point and continues to infinity (construction line).

Subclass of ezdxf.entities.XLine
DXEF type 'RAY'
Factory function ezdxf.layouts.BaseLayout.add _ray ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.Ray

dxf.start

Start point as (3D Point in WCS)
dxf.unit_vector

Unit direction vector as (3D Point in WCS)

transform (m: Matrix44) — Ray
Transform the XLINE/RAY entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Ray
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.

Region

REGION (DXF Reference) created by an ACIS based geometry kernel provided by the Spatial Corp.

See also:

Ezdxf will never create or interpret ACIS data, for more information see the FAQ: How fo add/edit ACIS based entities
like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXF type '"REGION'
Factory function ezdxf.layouts.BaseLayout.add _region ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

6.8. Reference 359

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-638B9F01-5D86-408E-A2DE-FA5D6ADBD415
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-644BF0F0-FD79-4C5E-AD5A-0053FCC5A5A4
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 0.17.2

class ezdxf.entities.Region
Same attributes and methods as parent class Body.

Shape

SHAPES (DXF Reference) are objects that are used like block references, each SHAPE reference can be scaled and
rotated individually. The SHAPE definitions are stored in external shape files (*.SHX), and ezdxf can not create this
shape files.

Subclass of ezdxf.entities.DXFGraphic

DXEF type ' SHAPE'

Factory function ezdxf.layouts.BaseLayout.add_shape ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Shape

dxf.insert
Insertion location as (2D/3D Point in WCS)

dxf .name
Shape name (str)

dxf.size
Shape size (float)

dxf.rotation
Rotation angle in degrees; default value is 0

dxf.xscale
Relative X scale factor (float); default value is 1

dxf.oblique
Oblique angle in degrees (float); default value is 0

transform (m: Matrix44) — Shape
Transform the SHAPE entity by transformation matrix m inplace.

Solid

SOLID (DXF Reference) is a filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0 = (1.
7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).If only 3 vertices are provided the last (3rd) vertex will be
repeated in the DXF file.

The SOLID entity stores the vertices in an unusual way, the last two vertices are reversed. The coordinates [(0, 0), (1, 0),
(1, 1), (0, 1)] do not create a square as you would expect:

360 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0988D755-9AAB-4D6C-8E26-EC636F507F2C
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E0C5F04E-D0C5-48F5-AC09-32733E8848F2

ezdxf Documentation, Release 0.17.2

Reverse the last two vertices to get the expected square: [(0, 0), (1, 0), (0, 1), (1, 1)]

Note: The Solid.vertices () and Solid.wcs_vertices () methods return the vertices in the expected (re-

6.8. Reference 361

ezdxf Documentation, Release 0.17.2

versed) order.

Subclass of ezdxf.entities.DXFGraphic

DXEF type 'SOLID'

Factory function ezdxf.layouts.BaseLayout.add _solid/()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Solid

dxf.vtx0
Location of 1. vertex (2D/3D Point in OCS)

dxf.vtxl
Location of 2. vertex (2D/3D Point in OCS)

dxf.vtx2
Location of 3. vertex (2D/3D Point in OCS)

dxf.vtx3
Location of 4. vertex (2D/3D Point in OCS)

transform (m: Matrix44) — Solid
Transform the SOLID/TRACE entity by transformation matrix m inplace.

vertices (close: bool = False) — List[Vec3]
Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
duplicated last vertex if represents a triangle.

New in version 0.15.

wcs_vertices (close: bool = False) — List[Vec3]
Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
duplicated last vertex if represents a triangle.

New in version 0.15.

Spline

SPLINE curve (DXF Reference), all coordinates have to be 3D coordinates even the spline is only a 2D planar curve.

The spline curve is defined by control points, knot values and weights. The control points establish the spline, the various
types of knot vector determines the shape of the curve and the weights of rational splines define how strong a control
point influences the shape.

To create a Sp1ine curve you just need a bunch of fit points - knot values and weights are optional (tested with AutoCAD
2010). If you add additional data, be sure that you know what you do.

New in version 0.16: The function ezdxf.math.fit_points_to_cad_cv () calculates control vertices from
given fit points. This control vertices define a cubic B-spline which matches visually the SPLINE entities created by
BricsCAD and AutoCAD from fit points.

See also:

362 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-E1F884F8-AA90-4864-A215-3182D47A9C74

ezdxf Documentation, Release 0.17.2

» Wikipedia article about B_splines

* Department of Computer Science and Technology at the Cambridge University

e Tutorial for Spline

Subclass of

ezdxf.entities.DXFGraphic

DXEF type

'SPLINE'

Factory function

see table below

Inherited DXF attributes

Common graphical DXF attributes

Required DXF version

DXF R2000 ('AC1015")

Factory Functions

Basic spline entity

add_spline ()

Spline control frame from fit points

add_spline_control_frame ()

Open uniform spline

add_open_spline ()

Closed uniform spline

add_closed_spline()

Open rational uniform spline

add_rational_spline()

Closed rational uniform spline

add_closed_rational_spline()

class ezdxf.entities.Spline

All points in

WCS as (x, y, z) tuples

dxf .degree
Degree of the spline curve (int).

dxf.flags
Bit coded option flags, constants defined in ezdxf. 11dxf.const:

dxf.flags

Value | Description

CLOSED_SPLINE 1 Spline is closed

PERIODIC_SPLINE | 2

RATIONAL_SPLINE | 4

PLANAR_SPLINE 8

LINEAR_SPLINE 16 planar bit is also set

dxf.n_knots
Count of knot values (int), automatically set by ezdxf (read only)

dxf.n_fit_points
Count of fit points (int), automatically set by ezdxf (read only)

dxf.n_control_points
Count of control points (int), automatically set by ezdxf (read only)

dxf .knot

_tolerance

Knot tolerance (float); default = 1e-10

dxf.fit_

tolerance

Fit tolerance (float); default = 1e-10

dxf.cont

rol_point_tolerance

Control point tolerance (float); default = 1e-10

6.8. Reference

363

https://en.wikipedia.org/wiki/Spline_%28mathematics%29
https://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node4.html

ezdxf Documentation, Release 0.17.2

dxf.start_tangent
Start tangent vector as (3D vector in WCS)

dxf.end_tangent
End tangent vector as (3D vector in WCS)

closed
True if spline is closed. A closed spline has a connection from the last control point to the first control point.

(read/write)

control_points
VertexArray of control points in WCS.

fit_points
VertexArray of fit points in WCS.

knots
Knot values as array.array ('d").

weights
Control point weights as array.array ('d').

control_point_count () — int
Count of control points.

fit_point_count () — int
Count of fit points.

knot_count () — int
Count of knot values.

construction_tool () — BSpline
Returns the construction tool ezdxf.math.BSpline.

apply_construction_tool (s: BSpline) — Spline
Apply SPLINE data from a BSp1 ine construction tool or from a geomdl .BSpline.Curve object.

flattening (distance: float, segments: int = 4) — Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments
between two knots, if the distance from the center of the approximation segment to the curve is bigger than
distance the segment will be subdivided.

Parameters

¢ distance — maximum distance from the projected curve point onto the segment chord.
* segments — minimum segment count between two knots
New in version 0.15.

set_open_uniform (control_points: Sequence[Vertex], degree: int = 3) — None
Open B-spline with uniform knot vector, start and end at your first and last control points.

set_uniform (control_points: Sequence[Vertex], degree: int = 3) — None
B-spline with uniform knot vector, does NOT start and end at your first and last control points.

set_closed (control_points: Sequence[Vertex], degree=3) — None
Closed B-spline with uniform knot vector, start and end at your first control point.

set_open_rational (control_points: Sequence[Vertex], weights: Sequence[float], degree: int = 3) —

None
Open rational B-spline with uniform knot vector, start and end at your first and last control points, and has
additional control possibilities by weighting each control point.

364

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

set_uniform_rational (control_points: Sequence[Vertex], weights: Sequence[float], degree: int = 3)

— None
Rational B-spline with uniform knot vector, does NOT start and end at your first and last control points, and

has additional control possibilities by weighting each control point.

set_closed_rational (control_points: Sequence[Vertex], weights: Sequence[float], degree: int = 3)

— None
Closed rational B-spline with uniform knot vector, start and end at your first control point, and has additional

control possibilities by weighting each control point.

transform (m: Matrix44) — Spline
Transform the SPLINE entity by transformation matrix m inplace.

classmethod from_arc (entity: DXFGraphic) — Spline
Create a new SPLINE entity from a CIRCLE, ARC or ELLIPSE entity.

The new SPLINE entity has no owner, no handle, is not stored in the entity database nor assigned to any
layout!

Surface

SURFACE (DXF Reference) created by an ACIS based geometry kernel provided by the Spatial Corp.
See also:

Ezdxf will never create or interpret ACIS data, for more information see the FAQ: How to add/edit ACIS based entities
like 3DSOLID, REGION or SURFACE?

Subclass of ezdxf.entities.Body
DXF type ' SURFACE'
Factory function ezdxf.layouts.BaseLayout.add_ surface ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Surface
Same attributes and methods as parent class Body.

dxf.u_count
Number of U isolines.

dxf.v_count
Number of V2 isolines.

6.8. Reference 365

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863
http://www.spatial.com/products/3d-acis-modeling

ezdxf Documentation, Release 0.17.2

ExtrudedSurface
(DXF Reference)
Subclass of ezdxf.entities.Surface
DXEF type 'EXTRUDEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add extruded_surface ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2007 ("AC1021")

class ezdxf.entities.ExtrudedSurface
Same attributes and methods as parent class Surface

dxf.class_id
dxf.sweep_vector
dxf.draft_angle
dxf.draft_start_distance
dxf.draft_end_distance
dxf.twist_angle
dxf.scale_factor
dxf.align_angle
dxf.solid

dxf.sweep_alignment_flags

No alignment

Align sweep entity to path
Translate sweep entity to path
Translate path to sweep entity

W= O

dxf.align_start

dxf .bank

dxf .base_point_set

dxf.sweep_entity_ transform_computed
dxf.path_entity_transform_computed
dxf.reference_vector_for_controlling_ twist

transformation_matrix_extruded_entity
type: Matrix44

sweep_entity transformation_matrix
type: Matrix44

path_entity transformation_matrix
type: Matrix44

366 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 0.17.2

LoftedSurface

(DXF Reference)
Subclass of ezdxf.entities.Surface
DXF type 'LOFTEDSURFACE"'

Factory function

ezdxf.layouts.BaseLayout.add lofted_surface()

Inherited DXF attributes

Common graphical DXF attributes

Required DXF version

DXFE R2007 ('AC1021")

class ezdxf.entities.LoftedSurface
Same attributes and methods as parent class Surface.

dxf.plane_normal_lofting_type

dxf.start_draft_angle

dxf.end_draft_angle

dxf.start_draft_magnitude

dxf.end_draft_magnitude

dxf.arc_length_parameterization

dxf.no_twist
dxf.align_direction
dxf.simple_surfaces
dxf.closed_surfaces
dxf.solid
dxf.ruled_surface

dxf.virtual_guide

set_transformation_matrix_lofted_entity

type: Matrix44

RevolvedSurface

(DXF Reference)
Subclass of ezdxf.entities.Surface
DXF type 'REVOLVEDSURFACE'
Factory function ezdxf.layouts.BaseLayout.add _revolved_surface ()
Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2007 ('AC1021")

class ezdxf.entities.RevolvedSurface
Same attributes and methods as parent class Surface

dxf.class_id
dxf.axis_point

dxf.axis_vector

6.8. Reference

367

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 0.17.2

SweptSurface
(DXF Reference)
Subclass of ezdxf.entities.Surface
DXEF type ' SWEPTSURFACE'
Factory function ezdxf.layouts.BaseLayout.add_swept_surface ()

dxf

dxf.
dxf.
dxf.
dxf.
dxf.
dxf.
dxf.

.revolve_angle

start_angle
draft_angle
start_draft_distance
end_draft_distance
twist_angle

solid

close_to_axis

transformation_matrix_revolved_entity

type: Matrix44

Inherited DXF attributes | Common graphical DXF attributes

Required DXF version DXF R2007 ('AC1021")

class ezdxf.entities.SweptSurface
Same attributes and methods as parent class Surface

dxf
dxf
dxf

.swept_entity_id
.path_entity_id
.draft_angle

draft_start_distance

dxf.
dxf.
dxf.
dxf.
dxf.
dxf.
dxf.

dxf
dxf

dxf.

dxf

dxf.

draft_end_distance
twist_angle
scale_factor
align_angle

solid
sweep_alignment

align_start

.bank

.base_point_set

sweep_entity_transform_computed

.path_entity_transform_computed

reference_vector_for_controlling_twist

368

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB62483A-89C3-47C4-80E5-EA3F08979863

ezdxf Documentation, Release 0.17.2

transformation_matrix_sweep_entity

type: Matrix44

transformation_matrix_path_entity ()

type: Matrix44

sweep_entity transformation_matrix ()

type: Matrix44

path_entity transformation_matrix()

Text

type: Matrix44

The single line TEXT entity (DXF Reference). The st y1e attribute stores the associated Text st y e entity as string,
which defines the basic font properties. The text size is stored as cap height in the he i ght attribute in drawing units.
Text alignments are defined as enums of type ezdxf.enums. TextEntityAlignment.

See also:

See the documentation for the Text st y 1 e class to understand the limitations of text representation in the DXF format.

Tutorial for Text

Subclass of ezdxf.entities.DXFGraphic

DXEF type 'TEXT'

Factory function ezdxf.layouts.BaseLayout.add_text ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Text

dxf

dxf.

dxf.

dxf

dxf.

dxf.

dxf.

.text

Text content as string.

insert
First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT, ALIGNED and FIT.

align_point
The main alignment point of text (2D/3D Point in OCYS), if the alignment is anything else than LEFT, or the
second alignment point for the ALIGNED and FIT alignments.

.height

Text height in drawing units as float value, the default value is 1.

rotation
Text rotation in degrees as float value, the default value is 0.

oblique
Text oblique angle (slanting) in degrees as float vlaue, the default value is O (straight vertical text).

style
Textstyle name as case insensitive string, the default value is “Standard”

6.8. Reference 369

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-62E5383D-8A14-47B4-BFC4-35824CAE8363

ezdxf Documentation, Release 0.17.2

dxf.width
Width scale factor as float value, the default value is 1.

dxf.halign
Horizontal alignment flag as int value, use the set_placement () and get_align_enum () methods
to handle text alignment, the default value is O.

Left

Right

Aligned (if vertical alignment = 0)
Middle (if vertical alignment = 0)
Fit (if vertical alignment = 0)

| WO

dxf.wvalign
Vertical alignment flag as int value, use the set_placement () and get_align_enum () methods to
handle text alignment, the default value is O.

0 | Baseline
1 | Bottom
2 | Middle
3 | Top

dxf.text_generation_flag
Text generation flags as int value, use the is_backwardand is_upside_down attributes to handle this
flags.

2 | textis backward (mirrored in X)
4 | textis upside down (mirrored in Y)

property is_backward
Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.

property is_upside_down
Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.

set_placement (pl: Vertex, p2: Vertex = None, align: TextEntityAlignment = None)
Set text alignment and location.

The alignments ALIGNED and FIT are special, they require a second alignment point, the text is aligned on
the virtual line between these two points and sits vertically at the base line.

e ALIGNED: Text is stretched or compressed to fit exactly between p/ and p2 and the text height is also
adjusted to preserve height/width ratio.

e FIT: Textis stretched or compressed to fit exactly between pl and p2 but only the text width is adjusted,
the text height is fixed by the dxf. height attribute.

e MIDDLE: also a special adjustment, centered text like MIDDLE_CENTER, but vertically centred at the
total height of the text.
Parameters
e pl —first alignment point as (x, y[, z])

* p2 —second alignment point as (X, y[, z]), required for ALIGNED and FIT else ignored

370 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* align-new alignment as enum TextEntityAlignment, None to preserve the exist-
ing alignment.

set_pos (pl: Vertex, p2: Vertex = None, align: str = None)
Set text alignment and location. (deprecated)

The alignments “ALIGNED” and “FIT” are special, they require a second alignment point, the text is aligned
on the virtual line between these two points and sits vertically at the base line.

* “ALIGNED”: Text is stretched or compressed to fit exactly between p/ and p2 and the text height is also
adjusted to preserve height/width ratio.

» “FIT”: Text is stretched or compressed to fit exactly between p/ and p2 but only the text width is adjusted,
the text height is fixed by the dxf. height attribute.

* “MIDDLE”: also a special adjustment, centered text like “MIDDLE_CENTER?”, but vertically centred
at the total height of the text.

Warning: Will be removed in v1.0.0, use set_placement ()

Parameters
* pl —first alignment point as (X, y[, z])
¢ p2 - second alignment point as (X, y[, z]), required for “ALIGNED” and “FIT” else ignored
* align - new alignment as string or None to preserve the existing alignment.
get_placement () — Tuple[TextEntityAlignment, Vec3, Optional[Vec3]]

Returns a tuple (align, pl, p2), align is the alignment enum TextEntityAlignment, pl is the alignment
point, p2 is only relevant if align is ALIGNED or FIT, otherwise it is None.

get_pos () — Tuple[str, Vec3, Optional[Vec3]]
Returns a tuple (align, pl, p2), align is the alignment method, p! is the alignment point, p2 is only relevant if
align is “ALIGNED” or “FIT”, otherwise it is None (deprecated).

Warning: Will be removed in v1.0.0, use get_placement ()

get_align_enum () — ezdxf.enums. TextEntityAlignment
Returns the current text alignment as TextEntityAlignment, see also set_placement ().

get_align () — str
Returns the current text alignment as string (deprecated).

Warning: Will be removed in v1.0.0, use get_align_enum/()

set_align_enum (align="TextEntityAlignment. LEFT) — Text
Just for experts: Sets the text alignment without setting the alignment points, set adjustment points
attr:dxf.insert and dxf.align_point manually.

Parameters align — TextEntityAlignment

set_align (align: str = 'LEFT') — Text
Set the text alignment as string (deprecated)

6.8.

Reference 371

ezdxf Documentation, Release 0.17.2

Warning: Will be removed in v1.0.0, use set_align_enum/()

transform (m: Matrix44) — Text
Transform the TEXT entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — Text
Optimized TEXT/ATTRIB/ATTDEEF translation about dx in x-axis, dy in y-axis and dz in z-axis, returns self.

plain_text () — str
Returns text content without formatting codes.

font_name () — str
Returns the font name of the associated Textstyle.

fit_length () — float
Returns the text length for alignments TextEntityAlignment .FIT and TextEntityAlignment.
ALIGNED, defined by the distance from the insertion point to the align point or O for all other alignments.

Trace

TRACE entity (DXF Reference) is solid filled triangle or quadrilateral. Access vertices by name (entity.dxf.vtx0
= (1.7, 2.3))orbyindex (entity[0] = (1.7, 2.3)).If only 3 vertices are provided the last (3rd) vertex
will be repeated in the DXF file.

The TRACE entity stores the vertices in an unusual way, the last two vertices are reversed. The coordinates [(0, 0), (1,
0), (1, 1), (0, 1)] do not create a square as you would expect:

Reverse the last two vertices to get the expected square: [(0, 0), (1, 0), (0, 1), (1, 1)]

372 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EA6FBCA8-1AD6-4FB2-B149-770313E93511

ezdxf Documentation, Release 0.17.2

Note: The Trace.vertices () and Trace.wcs_vertices () methods return the vertices in the expected (re-
versed) order.

Subclass of ezdxf.entities.DXFGraphic

DXEF type 'TRACE'

Factory function ezdxf.layouts.BaseLayout.add_ trace ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Trace

dxf.vtx0
Location of 1. vertex (2D/3D Point in OCS)

dxf.vtxl
Location of 2. vertex (2D/3D Point in OCS)

dxf.vtx2
Location of 3. vertex (2D/3D Point in OCS)

dxf.vtx3
Location of 4. vertex (2D/3D Point in OCS)

transform (m: Matrix44) — Trace
Transform the SOLID/TRACE entity by transformation matrix m inplace.

6.8. Reference 373

ezdxf Documentation, Release 0.17.2

vertices (close: bool = False) — List[Vec3]
Returns OCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
duplicated last vertex if represents a triangle.

New in version 0.15.

wes_vertices (close: bool = False) — List[Vec3]
Returns WCS vertices in correct order, if argument close is True, last vertex == first vertex. Does not return
duplicated last vertex if represents a triangle.

New in version 0.15.

Underlay

UNDERLAY entity (DXF Reference) links an underlay file to the DXF file, the file itself is not embedded into the
DXEF file, it is always a separated file. The (PDF)UNDERLAY entity is like a block reference, you can use it multiple
times to add the underlay on different locations with different scales and rotations. But therefore you need a also a
(PDF)DEFINITION entity, see UnderlayDefinition.

The DXF standard supports three different file formats: PDF, DWF (DWFx) and DGN. An Underlay can be clipped by
a rectangle or a polygon path. The clipping coordinates are 2D OCS coordinates in drawing units but without scaling.

Subclass of

ezdxf.entities.DXFGraphic

DXEF type

internal base class

Factory function

ezdxf.layouts.BaseLayout.add _underlay ()

Inherited DXF attributes

Common graphical DXF attributes

Required DXF version

DXF R2000 ('AC1015")

class ezdxf.entities.Underlay
Base class of PdfUnderlay, DwfUnderlay and DgnUnderlay

dxf.insert

Insertion point, lower left corner of the image in OCS.

dxf.scale_x

Scaling factor in x-direction (float)

dxf.scale_y

Scaling factor in y-direction (float)

dxf.scale_z

Scaling factor in z-direction (float)

dxf.rotation

ccw rotation in degrees around the extrusion vector (float)

dxf.extrusion

extrusion vector, default = (0,

dxf.underlay_def handle

0, 1)

Handle to the underlay definition entity, see UnderlayDefinition

dxf.flags

374

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3EC8FBCC-A85A-4B0B-93CD-C6C785959077

ezdxf Documentation, Release 0.17.2

dxf.flags Value | Description
UNDERLAY_CLIPPING 1 clipping is on/off
UNDERLAY_ON 2 underlay is on/off
UNDERLAY_MONOCHROME 4 Monochrome
UNDERLAY_ADJUST_FOR_BACKGROUND | 8 Adjust for background

dxf.contrast
Contrast value (20 - 100; default = 100)

dxf . fade
Fade value (0 - 80; default = 0)

clipping
True or False (read/write)

on
True or False (read/write)

monochrome
True or False (read/write)

adjust_for_background
True or False (read/write)

scale

Scaling (x, vy, z) tuple (read/write)

boundary_path
Boundary path as list of vertices (read/write).

Two vertices describe a rectangle (lower left and upper right corner), more than two vertices is a polygon as

clipping path.
get_underlay_def () — UnderlayDefinition

Returns the associated DEFINITION entity. see UnderlayDefinition.

set_underlay_def (underlay_def: UnderlayDefinition) — None
Set the associated DEFINITION entity. see UnderlayDefinition.

reset_boundary_path ()
Removes the clipping path.

PdfUnderlay

Subclass of

ezdxf.entities.Underlay

DXF type "PDFUNDERLAY '

Factory function

ezdxf.layouts.BaseLayout.add underlay ()

Inherited DXF attributes

Common graphical DXF attributes

Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.PdfUnderlay
PDF underlay.

6.8. Reference

375

ezdxf Documentation, Release 0.17.2

DwfUnderlay
Subclass of ezdxf.entities.Underlay
DXF type 'DWFUNDERLAY '
Factory function ezdxf.layouts.BaseLayout.add underlay ()
Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.DwfUnderlay

DWEF underlay.
DgnUnderlay
Subclass of ezdxf.entities.Underlay
DXF type 'DGNUNDERLAY '
Factory function ezdxf.layouts.BaseLayout.add_underlay ()
Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.DgnUnderlay
DGN underlay.

Viewport

The VIEWPORT (DXF Reference) entity is a window from a paperspace layout to the modelspace.

Subclass of ezdxf.entities.DXFGraphic

DXF type "VIEWPORT'

Factory function ezdxf.layouts.Paperspace.add_viewport ()
Inherited DXF attributes | Common graphical DXF attributes

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Viewport

dxf.center
Center point of the viewport located in the paper space layout in paper space units stored as 3D point. (Error

in the DXF reference)

dxf.width
Viewport width in paperspace units (float)

dxf.height
Viewport height in paperspace units (float)

dxf.status
Viewport status field (int)

376 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-2602B0FB-02E4-4B9A-B03C-B1D904753D34

ezdxf Documentation, Release 0.17.2

dxf.

dxf

dxf.
dxf.
dxf.
dxf.

dxf

dxf

dxf

dxf.

dxf
dxf

dxf

dxf.
dxf.

-1 | On, but is fully off screen, or is one of the viewports that is not active because the SMAXACTVP

count is currently being exceeded.

0 Off

>0 | On and active. The value indicates the order of stacking for the viewports, where 1 is the active

viewport, 2 is the next, and so forth

id
Viewport id (int)

.view_center_point

View center point in modelspace stored as 2D point, but represents a WCS point. (Error in the DXF reference)

snap_base_point
snap_spacing
snap_angle

grid_spacing

.view_direction_vector

View direction (3D vector in WCS).

.view_target_point

View target point (3D point in WCS).

.perspective_lens_length
Lens focal length in mm as 35mm film equivalent.

front_clip_plane_z_value

.back_clip_plane_z_value

.view_height

View height in WCS.

.view_twist_angle

circle_zoom

flags
Viewport status bit-coded flags:

6.8. Reference

377

ezdxf Documentation, Release 0.17.2

Bit value | Constant in | Description
ezdxf.const
1 (Ox1) VSF_PERSPECTIVE_FIablEs perspective mode
2 (0x2) VSF_FRONT_CLIPRIE@ables front clipping
4 (0x4) VSF_BACK_CLIPPINEnables back clipping
8 (0x8) VSF_USC_FOLLOW Enables UCS follow
16 (0x10) | VSF_FRONT_CLIPRIEGBEQTroAflCIpYot at eye
32 (0x20) | VSF_UCS_ICON_VISIBIRHIEYUCS icon visibility
64 (0x40) | VSF_UCS_ICON_AT_BRHKENJICS icon at origin
128 VSEF_FAST _ZOOM | Enables fast zoom
(0x80)
256 VSF_SNAP_MODE | Enables snap mode
(0x100)
512 VSF_GRID_MODE | Enables grid mode
(0x200)
1024 VSF_ISOMETRIC_SNER&EY{dmetric snap style
(0x400)
2048 VSF_HIDE_PLOT_M®@nbles hide plot mode
(0x800)
4096 VSF_KISOPAIR_TOP kIsoPairTop. If set and kIsoPairRight is not set, then isopair top is
(0x1000) enabled. If both klsoPairTop and klsoPairRight are set, then isopair
left is enabled
8192 VSF_KISOPAIR_RIGHTsoPairRight. If set and kIsoPairTop is not set, then isopair right is
(0x2000) enabled
16384 VSF_LOCK_ZOOM | Enables viewport zoom locking
(0x4000)
32768 VSF_CURRENTLY_|ACY#NSy ENARIchEibled
(0x8000)
65536 VSF_NON_RECTANM ARAR (ohiRRINGular clipping
(0x10000)
131072 VSF_TURN_VIEWPORdin®He viewport off
(0x20000)
262144 VSF_NO_GRID_LIMIESables the display of the grid beyond the drawing limits
(0x40000)
524288 VSF_ADAPTIVE_GRIEnabkSkdaptive grid display
(0x80000)
1048576 | VSF_SUBDIVIDE_GRHnables subdivision of the grid below the set grid spacing when the
(0x100000 grid display is adaptive
2097152 | VSF_GRID_FOLLOWERBIRKRIdANIBWs workplane switching
(0x200000

Use helper method set_flag_state () to set and clear viewport flags, e.g. lock viewport:

vp.set_flag_state (ezdxf.const.VSF_LOCK_ZOOM, True)

dxf.eclipping_boundary_ handle

dxf.plot_style_name

dxf.render_mode

378

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Flat shaded with wireframe
Gouraud shaded with wireframe

0 | 2D Optimized (classic 2D)
1 | Wireframe

2 | Hidden line

3 | Flat shaded

4 | Gouraud shaded

5

6

dxf.ucs_per_viewport
dxf.uecs_icon

dxf.ues_origin
UCS origin as 3D point.

dxf.uecs_x_axis
UCS x-axis as 3D vector.

dxf.ucs_y_axis
UCS y-axis as 3D vector.

dxf.ucs_handle
Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed.

dxf.ucs_ortho_type

0 | not orthographic
1 | Top

2 | Bottom

3 | Front

4 | Back

5 | Left

6 | Right

dxf.ucs_base_handle
Handle of UCSTable of base UCS if UCS is orthographic (Viewport.dxf.ucs_ortho_type is
non-zero). If not present and Viewport.dxf.ucs_ortho_type is non-zero, then base UCS is taken
to be WORLD.

dxf.elevation

dxf.shade_plot_mode

(DXF R2004)
0 | As Displayed
1 | Wireframe
2 | Hidden
3 | Rendered

dxf.grid_frequency
Frequency of major grid lines compared to minor grid lines. (DXF R2007)

dxf .background_handle
dxf.shade_plot_handle

6.8. Reference 379

ezdxf Documentation, Release 0.17.2

dxf.visual_style_handle
dxf.default_lighting flag
dxf.default_lighting_style

One distant light
1 | Two distant lights

dxf.view_brightness
dxf.view_contrast

dxf.ambient_light_color_1
as AutoCAD Color Index (ACI)

dxf.ambient_light_color_2
as true color value

dxf.ambient_light_color_3
as true color value

dxf.sun_handle

dxf.ref_vp_object_1
dxf.ref_vp_object_2
dxf.ref_vp_object_3
dxf.ref_vp_object_4

frozen_layers
Set/get frozen layers as list of layer names.

Wipeout

THE WIPEOUT (DXF Reference) entity is a polygonal area that masks underlying objects with the current background
color. The WIPEOUT entity is based on the IMAGE entity, but usage does not require any knowledge about the IMAGE
entity.

The handles to the support entities TmageDef and TmageDefReactor are always “0”, both are not needed by the
WIPEOUT entity.

Subclass of ezdxf.entities.Image
DXF type "WIPEOUT'
Factory function ezdxf.layouts.BaseLayout.add wipeout ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

Warning: Do not instantiate entity classes by yourself - always use the provided factory functions!

class ezdxf.entities.Wipeout

380 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-2229F9C4-3C80-4C67-9EDA-45ED684808DC

ezdxf Documentation, Release 0.17.2

set_masking_area (vertices: Iterable[Vertex]) — None
Set a new masking area, the area is placed in the layout xy-plane.

XLine

XLINE entity (DXF Reference) is a construction line that extents to infinity in both directions.

Subclass of ezdxf.entities.DXFGraphic
DXEF type 'XLINE'
Factory function ezdxf.layouts.BaseLayout.add _xline ()

Inherited DXF attributes | Common graphical DXF attributes
Required DXF version DXF R2000 ('AC1015")

class ezdxf.entities.XLine

dxf.start

Location point of line as (3D Point in WCS)
dxf.unit_vector

Unit direction vector as (3D Point in WCS)

transform (m: Matrix44) — XLine
Transform the XLINE/RAY entity by transformation matrix m inplace.

translate (dx: float, dy: float, dz: float) — XLine
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.

DXF Objects

All DXF objects can only reside in the OBJECTS section of a DXF document.

Dictionary

The DICTIONARY is a general storage entity.

AutoCAD maintains items such as MLINE_STYLES and GROUP definitions as objects in dictionaries. Other applica-
tions are free to create and use their own dictionaries as they see fit. The prefix ' ACAD_ ' is reserved for use by AutoCAD
applications.

Dictionary entries are (key, DXFEnt it y) pairs for fully loaded or new created DXF documents. The referenced entities
are owned by the dictionary and cannot be graphical entities that always belong to the layout in which they are located.

Loading DXF files is done in two passes, because at the first loading stage not all referenced objects are already stored in
the entity database. Therefore the entities are stored as handles strings at the first loading stage and have to be replaced
by the real entity at the second loading stage. If the entity is still a handle string after the second loading stage, the entity
does not exist.

Dictionary keys are handled case insensitive by AutoCAD, but not by ezdxf, in doubt use an uppercase key. AutoCAD
stores all keys in uppercase.

6.8. Reference 381

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-55080553-34B6-40AA-9EE2-3F3A3A2A5C0A
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-40B92C63-26F0-485B-A9C2-B349099B26D0

ezdxf Documentation, Release 0.17.2

Subclass of ezdxf.entities.DXFObject
DXF type "DICTIONARY'
Factory function | ezdxf.sections.objects.ObjectsSection.add _dictionary ()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.Dictionary

dxf.hard_owned
If set to 1, indicates that elements of the dictionary are to be treated as hard-owned.

dxf.cloning
Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf):

0 | not applicable

1 | keep existing

2 | use clone

3 | <xref>0<name>
4 | 0<name>

5 | Unmangle name

is_hard_owner
Returns True if the dictionary is hard owner of entities. Hard owned entities will be destroyed by deleting
the dictionary.

_len__ () —int
Returns count of dictionary entries.

__contains___ (key: str) — bool
Returns key in self.

__getitem___ (key: str) — DXFEntity
Return self[key].

The returned value can be a handle string if the entity does not exist.
Raises DXFKeyError — key does not exist

_ setitem__ (key: str, value: DXFEntity) — None
Set self[key] = entity.

Only DXF objects stored in the OBJECTS section are allowed as content of Dictionary objects. DXF
entities stored in layouts are not allowed.

Raises DXFTypeError —invalid DXF type

__delitem__ (key: str) — None
Delete self[key].

Raises DXFKeyError — key does not exist

keys () — KeysView
Returns a KeysView of all dictionary keys.

items () — ItemsView
Returns an TtemsView for all dictionary entries as (key, entity) pairs. An entity can be a handle string if
the entity does not exist.

382 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

count () — int
Returns count of dictionary entries.

get (key: str, default: DXFEntity = None) — Optional[DXFEntity]
Returns the DXFEnt ity for key, if key exist else default. An entity can be a handle string if the entity does
not exist.

add (key: str, value: DXFEntity) — None
Add entry (key, value).

Raises
e DXFValueError — invalid entity handle
* DXFTypeError —invalid DXF type

remove (key: str) — None
Delete entry key. Raises DXFKeyError, if key does not exist. Destroys hard owned DXF entities.

discard (key: str) — None
Delete entry key if exists. Does not raise an exception if key doesn’t exist and does not destroy hard owned
DXF entities.

clear () — None
Delete all entries from the dictionary and destroys hard owned DXF entities.

add_new_dict (key: str, hard_owned: bool = False) — Dictionary
Create a new sub-dictionary of type Dictionary.

Parameters
¢ key —name of the sub-dictionary
* hard_owned - entries of the new dictionary are hard owned

get_required_dict (key: str) — Dictionary
Get entry key or create a new Dictionary, if Key not exist.

add_dict_var (key: str, value: str) — DictionaryVar
Addanew DictionaryVar.

Parameters
* key - entry name as string
¢ value - entry value as string

add_xrecord (key: str) — XRecord
Add a new XRecord.

Parameters key — entry name as string

link_dxf_object (name: str, obj: DXFEntity) — None
Add obj and set owner of obj to this dictionary.

Graphical DXF entities have to reside in a layout and therefore can not be owned by a Dictionary.

Raises DXFTypeError — obj has invalid DXF type

6.8.

Reference 383

ezdxf Documentation, Release 0.17.2

DictionaryWithDefault

Subclass of

ezdxf.entities.Dictionary

DXEF type

'ACDBDICTIONARYWDFLT'

Factory func-
tion

ezdxf.sections.objects.ObjectsSection.add dictionary_with_default

class ezdxf.entities.DictionaryWithDefault

dxf.default
Handle to default entry as hex string like FF00.

get (key: str) — DXFEntity
Returns DXFEnt ity for key or the predefined dictionary wide dxf . default entity if key does not exist
or None if default value also not exist.

set_default (default: ezdxf.entities.dxfobj. DXFObject) — None
Set dictionary wide default entry.

Parameters default — default entry as DXFEntity

DictionaryVar

class ezdxf.

Subclass of ezdxf.entities.DXFObject

DXEF type 'DICTIONARYVAR'

Factory function | ezdxf.entities.Dictionary.add _dict_var()

entities.DictionaryVar

dxf.schema
Object schema number (currently set to 0)

dxf.value
Value as string.

property value
Get/set the value of the DictionaryVar as string.

DXFLayout

LAYOUT entity is part of a modelspace or paperspace layout definitions.

Subclass of ezdxf.entities.PlotSettings

DXF type "LAYOUT'

Factory function | internal data structure, use Layout s to manage layout objects.

class ezdxf

.entities.DXFLayout

dxf.name
Layout name as shown in tabs by CAD applications

384

Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-433D25BF-655D-4697-834E-C666EDFD956D

ezdxf Documentation, Release 0.17.2

TODO

DXFObiject

Common base class for all non-graphical DXF objects.

class ezdxf.entities.DXFObject
A class hierarchy marker class and subclass of ezdxf.entities.DXFEntity

GeoData

The GEODATA entity is associated to the Modelspace object. The GEODATA entity is supported since the DXF
version R2000, but was officially documented the first time in the DXF reference for version R2009.

Subclass of ezdxf.entities.DXFObject

DXEF type 'GEODATA'

Factory function ezdxf.layouts.Modelspace.new_geodata ()
Required DXF version | R2010 (*AC1024")

See also:

using_geodata.py

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.GeoData

dxf.version

1 | R2009
R2010
dxf.coordinate_type
0 | unknown
1 | local grid
2 | projected grid
3 | geographic (latitude/longitude)

dxf.block_record_handle
Handle of host BLOCK_RECORD table entry, in general the Mode I space.

Changed in version 0.10: renamed from dxf .block_record

dxf.design_point
Reference point in WCS coordinates.

6.8. Reference 385

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-104FE0E2-4801-4AC8-B92C-1DDF5AC7AB64
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-104FE0E2-4801-4AC8-B92C-1DDF5AC7AB64
https://github.com/mozman/ezdxf/blob/master/examples/using_geodata.py

ezdxf Documentation, Release 0.17.2

dxf

dxf.

dxf.

dxf

dxf.

dxf

dxf.

dxf

dxf.

dxf.
dxf.
dxf.
dxf.
dxf.
dxf.

dxf

.reference_point

Reference point in geo coordinates, valid only when coordinate type is local grid. The difference between
dxf.design_point and dxf.reference_point defines the translation from WCS coordinates to geo-coordinates.

north_direction
North direction as 2D vector. Defines the rotation (about the dxf.design_point) to transform from WCS
coordinates to geo-coordinates

horizontal_unit_scale
Horizontal unit scale, factor which converts horizontal design coordinates to meters by multiplication.

.vertical_unit_scale

Vertical unit scale, factor which converts vertical design coordinates to meters by multiplication.

horizontal_units
Horizontal units (see B1ockRecord). Will be O (Unitless) if units specified by horizontal unit scale is not
supported by AutoCAD enumeration.

.vertical_units

Vertical units (see B1ockRecord). Will be 0 (Unitless) if units specified by vertical unit scale is not sup-
ported by AutoCAD enumeration.

up_direction
Up direction as 3D vector.

.scale_estimation_method

none

user specified scale factor
grid scale at reference point
prismoidal

AW N =

sea_level_correction
Bool flag specifying whether to do sea level correction.

user_scale_factor
sea_level_elevation
coordinate_projection_radius
geo_rss_tag
observation_from_tag

observation_to_tag

.mesh_faces_count

source_vertices

2D source vertices in the CRS of the GeoData as VertexArray. Used together with target vertices to
define the transformation from the CRS of the GeoData to WGS84.

target_vertices

2D target vertices in WGS84 (EPSG:4326) as VertexArray. Used together with source_vertices to define

the transformation from the CRS of the geoData to WGS84.

faces

List of face definition tuples, each face entry is a 3-tuple of vertex indices (0-based).

386

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

coordinate_system_definition
The coordinate system definition string. Stored as XML. Defines the CRS used by the GeoData. The EPSG
number and other details like the axis-ordering of the CRS is stored.

get_crs () — Tuple[int, bool]
Returns the EPSG index and axis-ordering, axis-ordering is True if fist axis is labeled “E” or “W” and
False if first axis is labeled “N” or “S”.

If axis-ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON (see
chapter 3.1.1).

Raises InvalidGeoDataException — for invalid or unknown XML data

The EPSG number is stored in a tag like:

<Alias 1d="27700" type="CoordinateSystem">
<ObjectId>0SGB1936.NationalGrid</ObjectId>
<Namespace>EPSG Code</Namespace>

</Alias>

The axis-ordering is stored in a tag like:

<Axis uom="METER">
<CoordinateSystemAxis>
<AxisOrder>1</AxisOrder>
<AxisName>Easting</AxisName>
<AxisAbbreviation>E</AxisAbbreviation>
<AxisDirection>east</AxisDirection>
</CoordinateSystemAxis>
<CoordinateSystemAxis>
<AxisOrder>2</AxisOrder>
<AxisName>Northing</AxisName>
<AxisAbbreviation>N</AxisAbbreviation>
<AxisDirection>north</AxisDirection>
</CoordinateSystemAxis>
</Axis>

get_crs_transformation (no_checks: bool = False) — Tuple[Matrix44, int]
Returns the transformation matrix and the EPSG index to transform WCS coordinates into CRS coordinates.
Because of the lack of proper documentation this method works only for tested configurations, set argument
no_checks to True to use the method for untested geodata configurations, but the results may be incorrect.

Supports only “Local Grid” transformation!
Raises InvalidGeoDataException — for untested geodata configurations

setup_local_grid (design_point: Vec3, reference_point: Vec3, north_direction: Vec2 = Y_AXIS, crs:

str = EPSG_3395)
Setup local grid coordinate system. This method is designed to setup CRS similar to EPSG:3395 World

Mercator, the basic features of the CRS should fulfill this assumptions:
¢ base unit of reference coordinates is 1 meter
¢ right-handed coordinate system: +Y=north/+X=east/+Z=up

The CRS string is not validated nor interpreted!

Hint: The reference point must be a 2D cartesian map coordinate and not a globe (lon/lat) coordinate like
stored in GeoJSON or GPS data.

6.8. Reference 387

ezdxf Documentation, Release 0.17.2

Parameters
e design_point — WCS coordinates of the CRS reference point
* reference_point — CRS reference point in 2D cartesian coordinates
¢ north_direction — north direction a 2D vertex, default is (0, 1)

* crs — Coordinate Reference System definition XML string, default is the definition string
for EPSG:3395 World Mercator

ImageDef

IMAGEDEEF entity defines an image file, which can be placed by the Tmage entity.

Subclass of ezdxf.entities.DXFObject

DXF type ' IMAGEDEF '

Factory function (1) | ezdxf.document.Drawing.add_image_def ()

Factory function (2) | ezdxf.sections.objects.ObjectsSection.add_image_def ()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.ImageDef

dxf.class_version
Current version is 0.

dxf.filename
Relative (to the DXF file) or absolute path to the image file as string.

dxf.image_size
Image size in pixel as (x, y) tuple.

dxf.pixel_size
Default size of one pixel in drawing units as (x, vy) tuple.

dxf.loaded
0 =unloaded; 1 =loaded, default = 1

dxf.resolution_units

0 | No units
2 | Centimeters
5 | Inch

Default = 0

388 Chapter 6. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-EFE5319F-A71A-4612-9431-42B6C7C3941F

ezdxf Documentation, Release 0.17.2

ImageDefReactor

class ezdxf.entities.ImageDefReactor

dxf.class_version

dxf.image_handle

MLeaderStyle

The MLEADERSTYLE object (DXF Reference) store all attributes required to create new Mult i Leader entities. The
meaning of these attributes are not really documented in the DXF Reference. The default style “Standard” always exist.

See also:
e ezdxf.entities.MultiLeader
* ezdxf.render.MultilLeaderBuilder
* Tutorial for MultiLeader

Create anew MLeaderStyle:

import ezdxf

doc = ezdxf.new()
new_style = doc.mleader_styles.new("NewStyle™)

Duplicate an existing style:

duplicated_style = doc.mleader_styles.duplicate_entry ("Standard", "DuplicatedStyle™)
Subclass of ezdxf.entities.DXFObject
DXF type "MLEADERSTYLE'
Factory function | ezdxf.document .Drawing.mleader_styles.new ()

class ezdxf.entities.MLeaderStyle

dxf.align_space
unknown meaning

dxf.arrow_head_handle
handle of default arrow head, see also ezdxf . render. arrows module, by default no handle is set, which
mean default arrow “closed filled”

dxf.arrow_head_size
default arrow head size in drawing units, default is 4.0

dxf.block_color
default block color as ;term:raw color value, default is BY BLOCK_RAW_VALUE

dxf .block_connection_type

0 | center extents
1 | insertion point

6.8. Reference 389

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0E489B69-17A4-4439-8505-9DCE032100B4
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-0E489B69-17A4-4439-8505-9DCE032100B4

ezdxf Documentation, Release 0.17.2

dxf .block_record_handle
handle to block record of the BLOCK content, not set by default

dxf .block_rotation
default BLOCK rotation in radians, default is 0.0

dxf.block_scale_x
default block x-axis scale factor, default is 1.0

dxf .block_scale_y
default block y-axis scale factor, default is 1.0

dxf.block_scale_z
default block z-axis scale factor, default is 1.0

dxf .break_gap_size
default break gap size, default is 3.75

dxf.char_height
default MTEXT char height, default is 4.0

dxf.content_type

0 | none

1 | BLOCK

2 | MTEXT

3 | TOLERANCE

default is MTEXT (2)

dxf.default_text_content
default MTEXT content as string, default is *”

dxf.dogleg_length
default dogleg length, default is 8.0

dxf.draw_leader_order_type
unknown meaning

dxf.draw_mleader_order_type
unknown meaning

dxf.first_segment_angle_constraint
angle of fist leader segment in radians, default is 0.0

dxf.has_block_rotation
dxf.has_block_scaling

dxf.has_dogleg
default is 1

dxf.has_landing
default is 1

dxf.is_annotative
default is 0

dxf.landing_gap
default landing gap size, default is 2.0

390 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

dxf.leader_line_color
default leader line color as raw color value, default is BY_ BLOCK_RAW_VALUE

dxf.leader_linetype_handle
handle of default leader linetype

dxf.leader_lineweight
default leader lineweight, default is LINEWEIGHT_BYBLOCK

dxf.leader_type

0 | invisible
straight line leader
2 | spline leader

[u—y

default is 1

dxf.max_leader_segments_points
max count of leader segments, default is 2

dxf.name
MLEADERSTYLE name

dxf.overwrite_property_value
unknown meaning

dxf.scale
overall scaling factor, default is 1.0

dxf.second_segment_angle_constraint
angle of fist leader segment in radians, default is 0.0

dxf.text_align_always_left
use always left side to attach leaders, default is O

dxf.text_alignment_type
unknown meaning - its not the MTEXT attachment point!

dxf.text_angle_type

text angle is equal to last leader line segment angle

text is horizontal

2 | text angle is equal to last leader line segment angle, but potentially rotated by 180 degrees so the right
side is up for readability.

=}

default is 1

dxf.text_attachment_direction
defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach to the top &
bottom:

horizontal - left & right of content
1 | vertical - top & bottom of content

default is O

6.8. Reference 391

ezdxf Documentation, Release 0.17.2

dxf.text_bottom_attachment_type

9 center
10 | overline and center

default is 9

dxf.text_color
default MTEXT color as raw color value, default is BY_BLOCK_RAW_VALUE

dxf.text_left_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

O I N RN —=O

dxf.text_right_attachment_type

top of top MTEXT line

middle of top MTEXT line

middle of whole MTEXT

middle of bottom MTEXT line

bottom of bottom MTEXT line

bottom of bottom MTEXT line & underline bottom MTEXT line
bottom of top MTEXT line & underline top MTEXT line
bottom of top MTEXT line

bottom of top MTEXT line & underline all MTEXT lines

RN N BRI =IO

dxf.text_style_handle
handle of the default MTEXT text style, not set by default, which means “Standard”

dxf.text_top_attachment_type

center
10 | overline and center

392 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Placeholder

The ACDBPLACEHOLDER object for internal usage.

Subclass of

ezdxf.entities.DXFObject

DXEF type

'ACDBPLACEHOLDER'

Factory function

ezdxf.sections.objects.ObjectsSection.add _placeholder ()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.Placeholder

PlotSettings

All PLOTSETTINGS attributes are part of the DXFLayout entity, I don’t know if this entity also appears as standalone

entity.

Subclass of ezdxf.entities.DXFObject
DXF type '"PLOTSETTINGS'
Factory function | internal data structure

class ezdxf.entities.PlotSettings

dxf .page_setup_name
Page setup name

TODO

Sun

SUN entity defines properties of the sun.

Subclass of ezdxf.entities.DXFObject

DXEF type 'SUN'

Factory function | creating a new SUN entity is not supported

class ezdxf.entities.Sun

dxf.version

Current version is 1.

dxf.status

on=1oroff =0

dxf.color

AutoCAD Color Index (ACI) value of the sun.

dxf.true_color
true color value of the sun.

6.8. Reference

393

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-3BC75FF1-6139-49F4-AEBB-AE2AB4F437E4
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-1113675E-AB07-4567-801A-310CDE0D56E9
http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-BB191D89-9302-45E4-9904-108AB418FAE1

ezdxf Documentation, Release 0.17.2

dxf.intensity
Intensity value in the range of 0 to 1. (float)

dxf.julian_day

use calendardate () toconvert dxf.julian_day to datetime.datet ime object.

dxf.time
Day time in seconds past midnight. (int)

dxf.daylight_savings_time

dxf .shadows

0 | Sun do not cast shadows
1 | Sun do cast shadows

dxf.shadow_type
dxf.shadow_map_size

dxf.shadow_softness

UnderlayDefinition

UnderlayDefinition (DXF Reference) defines an underlay file, which can be placed by the Underlay entity.

Subclass of ezdxf.entities.DXFObject

DXEF type internal base class

Factory function (1) | ezdxf.document.Drawing.add _underlay_def ()

Factory function (2) | ezdxf.sections.objects.ObjectsSection.add _underlay_def ()

class ezdxf.entities.UnderlayDefinition
Base class of PdfDefinition, DwfDefinitionand DgnDefinition

dxf.filename
Relative (to the DXF file) or absolute path to the underlay file as string.

dxf .name
Defines which part of the underlay file to display.

'pdf' | PDF page number
'dgn' | always 'default’
'dwf' ?

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

394 Chapter 6

. Contents

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A4FF15D3-F745-4E1F-94D4-1DC3DF297B0F

ezdxf Documentation, Release 0.17.2

PdfDefinition

Subclass of ezdxf.entities.UnderlayDefinition

DXF type 'PDFDEFINITION'

Factory function (1) | ezdxf.document.Drawing.add _underlay_def ()

Factory function (2) | ezdxf.sections.objects.ObjectsSection.add _underlay_def ()

class ezdxf.entities.PdfDefinition
PDF underlay file.

DwfDefinition

Subclass of ezdxf.entities.UnderlayDefinition

DXF type 'DWFDEFINITION'

Factory function (1) | ezdxf.document.Drawing.add _underlay_def ()

Factory function (2) | ezdxf.sections.objects.ObjectsSection.add _underlay_def ()

class ezdxf.entities.DwfDefinition
DWF underlay file.

DgnDefinition

Subclass of ezdxf.entities.UnderlayDefinition

DXF type "DGNDEFINITION'

Factory function (1) | ezdxf.document.Drawing.add _underlay_def ()

Factory function (2) | ezdxf.sections.objects.ObjectsSection.add _underlay_def ()

class ezdxf.entities.DgnDefinition
DGN underlay file.

XRecord

Important class for storing application defined data in DXF files.

XRECORD objects are used to store and manage arbitrary data. They are composed of DXF group codes ranging from
1 through 369. This object is similar in concept to XDATA but is not limited by size or order.

To reference a XRECORD by an DXF entity, store the handle of the XRECORD in the XDATA section, application
defined data or the ExtensionDict of the DXF entity.

See also:
e Extended Data (XDATA)
e Extension Dictionary

* Storing Custom Data in DXF Files

6.8. Reference 395

http://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-24668FAF-AE03-41AE-AFA4-276C3692827F

ezdxf Documentation, Release 0.17.2

Subclass of ezdxf.entities.DXFObject
DXF type ' XRECORD'
Factory function | ezdxf.sections.objects.ObjectsSection.add _xrecord()

Warning: Do not instantiate object classes by yourself - always use the provided factory functions!

class ezdxf.entities.XRecord

dxf.cloning
Duplicate record cloning flag (determines how to merge duplicate entries, ignored by ezdxf):

0 | not applicable

1 | keep existing

2 | use clone

3 | <xref>0<name>
4 | 0<name>

5 | Unmangle name

tags
Raw DXF tag container Tags. Be careful ezdxf does not validate the content of XRECORDS.

clear () — None
Remove all DXF tags.

reset (tags: Iterable[Union[ezdxf 1ldxf.types. DXFTag, Tuple[int, Any]]]) — None
Reset DXF tags.

extend (tags: Iterable[Union[ezdxf 11dxf.types. DXFTag, Tuple[int, Any]]]) — None
Extend DXF tags.

Extended Data (XDATA)

Extended data (XDATA) is a DXF tags structure to store arbitrary data in DXF entities. The XDATA is associated to an
AppID and only one tag list is supported for each AppID per entity.

Warning: Low level usage of XDATA is an advanced feature, it is the responsibility of the programmer to create
valid XDATA structures. Any errors can invalidate the DXF file!

This section shows how to store DXF tags directly in DXF entity but there is also a more user friendly and safer way to
store custom XDATA in DXF entities:

e XDataUserList
* XDataUserDict
Use the high level methods of DXFEnt ity to manage XDATA tags.
* has_xdata ()
e get_xdata ()

* set_xdata ()

396 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Get XDATA tags asa ezdxf.11dxf.tags. Tags data structure, without the mandatory first tag (1001, AppID):

if entity.has_xdata ("EZDXE") :
tags = entity.get_xdata ("EZDXE")

or use alternatively:
try:

tags = entity.get_xdata ("EZDXEF")
except DXFValueError:

XDATA for "EZDXF" does not exist

Set DXF tags as list of (group code, value) tuples or as ezdxf.11dxf.tags. Tags data structure, valid DXF tags
for XDATA are documented in the section about the Extended Data internals. The mandatory first tag (1001, AppID) is
inserted automatically if not present.

Set only new XDATA tags:

if not entity.has_xdata ("EZDXE") :
entity.set_xdata ("EZDXF", [(1000, "MyString")])

Replace or set new XDATA tags:

entity.set_xdata ("EZDXE", [(1000, "MyString")])

See also:
e Tutorial: Storing Custom Data in DXF Files
¢ Internals about Extended Data tags
* Internal XDATA management class: XData
¢ DXF R2018 Reference

Application-Defined Data (AppData)

The application-defined data feature is not very well documented in the DXF reference, so usage as custom data store is
not recommended. AutoCAD uses these feature to store the handle to the extension dictionary (ExtensionDict) of
a DXF entity and the handles to the persistent reactors (Reactors) of a DXF entity.

Use the high level methods of DXFEnt ity to manage application-defined data tags.
* has_app_data()
* get_app_data()
e set_app_data/()
e discard_app_data()

Hint: Ezdxf uses special classes to manage the extension dictionary and the reactor handles. These features cannot be
accessed by the methods above.

Set application-defined data:

entity.set_app_data ("YOURAPPID", [(1, "DataString")]))

6.8. Reference 397

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A2A628B0-3699-4740-A215-C560E7242F63

ezdxf Documentation, Release 0.17.2

Setting the content tags can contain the opening structure tag (102, “{ YOURAPPID”) and the closing tag (102, “}”), but
doesn’t have to. The returned Tags objects does not contain these structure tags. Which tags are valid for application-
defined data is not documented.

The ApplD has to have an entry in the AppID table.

Get application-defined data:

if entity.has_app_data ("YOURAPPID") :
tags = entity.get_app_data ("YOURAPPID")

tags content is [DXFTag(l, 'DataString')]

See also:
* Internals about Application-Defined Codes

* Internal AppData management class: AppData

Extension Dictionary

Every entity can have an extension dictionary, which can reference arbitrary DXF objects from the OBJECTS section
but not graphical entities. Using this mechanism, several applications can attach data to the same entity. The usage
of extension dictionaries is more complex than Extended Data (XDATA) but also more flexible with higher capacity for
adding data.

Use the high level methods of DXFEnt ity to manage extension dictionaries.
e has_extension_dict ()
e get_extension_dict ()
* new_extension_dict ()
* discard_extension_dict ()
The main data storage objects referenced by extension dictionaries are:
e Dictionary, structural container
e DictionaryVar, stores a single string
* XRecord, stores arbitrary data
See also:
e Tutorial: Storing Custom Data in DXF Files

class ezdxf.entities.xdict.ExtensionDict
Internal management class for extension dictionaries.

See also:

e Underlying DXF Dictionary class
e DXF Internals: Extension Dictionary
¢ DXF R2018 Reference
property is_alive
Returns True if the underlying Dictionary object is not deleted.

__contains__ (key: str)
Return key in self.

398 Chapter 6. Contents

https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-A55D4A3D-67CF-417E-B63F-3124CD8027FD

ezdxf Documentation, Release 0.17.2

__getitem__ (key: str)
Get self[key].

__setitem__ (key: str, value)
Set self[key] to value.

Only DXF objects stored in the OBJECTS section are allowed as content of the extension dictionary. DXF
entities stored in layouts are not allowed.

Raises DXFTypeError — invalid DXF type

__delitem _ (key: str)
Delete self[key], destroys referenced entity.

_len__ ()
Returns count of extension dictionary entries.

get (key: str, default=None) — Optional[DXFEntity]
Return extension dictionary entry key.

keys ()
Returns a KeysView of all extension dictionary keys.

items ()
Returns an TtemsView for all extension dictionary entries as (key, entity) pairs. An entity can be a handle
string if the entity does not exist.

discard (key: str) — None
Discard extension dictionary entry key.

add_dictionary (name: str, hard_owned: bool = True) — Dictionary
Create a new Dictionary object as extension dictionary entry name.

add_dictionary_var (name: str, value: str) — DictionaryVar
Create anew DictionaryVar object as extension dictionary entry name.

add_xrecord (name: str) — XRecord
Create a new XRecord object as extension dictionary entry name.

link_dxf_object (name: str, obj: DXFObject) — None
Link obj to the extension dictionary as entry name.

Linked objects are owned by the extensions dictionary and therefore cannot be a graphical entity, which have
to be owned by a BaseLayout.

Raises DXFTypeError — obj has invalid DXF type

destroy ()
Destroy the underlying Dictionary object.

Reactors
Persistent reactors are optional object handles of objects registering themselves as reactors on an object. Any DXF object
or DXF entity may have reactors.
Use the high level methods of DXFEnt ity to manage persistent reactor handles.
* has_reactors()
* get_reactors()
* set_reactors ()

* append_reactor_handle ()

6.8. Reference 399

ezdxf Documentation, Release 0.17.2

e discard _reactor_handle()
Ezdxf keeps these reactors only up to date, if this is absolute necessary according to the DXF reference.
See also:

¢ Internals about Persistent Reactors

* Internal Reactors management class: Reactors

Block Reference Management

The package ezdxf is not designed as a CAD library and does not automatically monitor all internal changes. This enables
faster entity processing at the cost of an unknown state of the DXF document.

In order to carry out precise BLOCK reference management, i.e. to handle dependencies or to delete unused BLOCK
definition, the block reference status (counter) must be acquired explicitly by the package user. All block reference
management structures must be explicitly recreated each time the document content is changed. This is not very efficient,
but it is safe.

Warning: And even with all this careful approach, it is always possible to destroy a DXF document by deleting an
absolutely necessary block definition.

Always remember that ezdxf is not intended or suitable as a basis for a CAD application!
New in version 0.18.

class ezdxf.blkrefs.BlockDefinitionIndex (doc: Drawing)
Index of all BIockRecord entities representing real BLOCK definitions, excluding all BI ockRecord entities
defining model space or paper space layouts. External references (XREF) and XREF overlays are included.

property block_records
Returns an iterator of all Bl ockRecord entities representing BLOCK definitions.

rebuild ()
Rebuild index from scratch.

has_handle (handle: str) — bool
Returns True if a BlockRecord for the given block record handle exist.

by_handle (handle: str) — Optional[BlockRecord]
Returns the BIockRecord for the given block record handle or None.

has_name (name: str) — bool
Returns True if a BIockRecord for the given block name exist.

by_name (name: str) — Optional[BlockRecord]
Returns B1ockRecord for the given block name or None.

class ezdxf.blkrefs.BlockReferenceCounter (doc: Drawing, index:

ezdxf.blkrefs.BlockDefinitionIndex = None)
Counts all block references in a DXF document.

Check if a block is referenced by any entity or any resource (DIMSYTLE, MLEADERSTYLE) in a DXF docu-
ment:

import ezdxf
from ezdxf.blkrefs import BlockReferenceCounter

(continues on next page)

400 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

doc = ezdxf.readfile("your.dxf")

counter = BlockReferenceCounter (doc)

count = counter.by_name ("XYZ")

print (f"Block 'XYZ' if referenced {count} times.")

by_handle (handle: str) — int
Returns the block reference count for a given B1 ockRecord handle.

by_name (block_name: str) — int
Returns the block reference count for a given block name.

Const

The module ezdxf. 11dxf.const, is also accessible from the e zdx £ namespace:

from ezdxf.lldxf.const import DXF12
import ezdxf

print (DXF12)
print (ezdxf.const .DXF12)

DXF Version Strings

Name Version Alias
DXF9 “AC1004” | “R9”
DXF10 “AC1006” | “R10”
DXF12 “AC1009” | “R12”
DXF13 “AC1012” | “R13”
DXF14 “AC1014” | “R14”
DXF2000 | “AC1015” | “R2000”
DXF2004 | “AC1018” | “R2004”
DXF2007 | “AC1021” | “R2007”
DXF2010 | “AC1024” | “R2010”
DXF2013 | “AC1027” | “R2013”
DXF2018 | “AC1032” | “R2018”

Exceptions

class ezdxf.lldxf.const.DXFError
Base exception for all ezdxf exceptions.

class ezdxf.lldxf.const .DXFStructureError (DXFError)

class ezdxf.lldxf.const .DXFVersionError (DXFError)
Errors related to features not supported by the chosen DXF Version

class ezdxf.lldxf.const .DXFValueError (DXFError)
class ezdxf.lldxf.const.DXFInvalidLineType (DXFValueError)

class ezdxf.lldxf.const.DXFBlockInUseError (DXFValueError)

6.8. Reference

401

ezdxf Documentation, Release 0.17.2

class
class
class
class
class

class

ezdxf

ezdxf.
ezdxf.
ezdxf.
ezdxf.

ezdxf.

.1ldxf.
11ldxf.
11ldxf.
lldxf.
11ldxf.
11ldxf.

const

const

const.

const.

const.

const

.DXFKeyError (DXFError)
.DXFUndefinedBlockError (DXFKeyError)

DXFAttributeError (DXFError)
DXFIndexError (DXFError)

DXFTypeError (DXFError)

.DXFTableEntryError (DXFValueError)

6.8.3 DXF Entity Creation

Layout Factory Methods

Recommended way to create DXF entities.

For all supported entities exist at least one factory method in the ezdxf. layouts.BaseLayout class. All factory
methods have the prefix: add_. . .

import ezdxf

doc = ezdxf.new/()
msp = doc.modelspace ()
msp.add_line((0, O, 0), (3, 0, 0), dxfattribs={"color": 2})

Thematic Index of Layout Factory Methods

DXF Primitives

e add_3dface()

e add_arc/()

e add_circle()

e add_ellipse()

* add _hatch ()

e add_image ()

* add_leader ()

e add _line()

e add_lwpolyline()

* add_mesh ()

e add mline()

* add_mpolygon ()

* add_multileader_mtext ()
* add_multileader_block ()
e add_point ()

* add_polyface()

402 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* add_polylineZ2d/()
e add_polyline3d()
* add_polymesh ()

e add_ray ()

* add_shape ()

* add_solid()

* add _trace()

e add_wipeout ()

* add_xline ()

Text Entities

* add_attdef ()

e add_mtext_dynamic_auto_height_columns ()

* add_mtext_dynamic_manual_height_columns ()
* add_mtext_static_columns ()

* add _mtext ()

e add_text ()

Spline Entity

* add_cad_spline_control_frame ()
* add_open_spline()

* add_rational_spline()

e add_spline_control_frame ()

* add_spline()

Block References and Underlays

e add_arrow_blockref ()
e add_auto_blockref ()
e add_blockref ()

* add_underlay ()

6.8. Reference 403

ezdxf Documentation, Release 0.17.2

Viewport Entity

Only available in paper space layouts.

e add_viewport ()

Dimension Entities

Linear Dimension

* add_aligned_dim()

e add _linear_dim()

e add_multi_point_linear_dim/()
Radius and Diameter Dimension

e add_diameter_dim 2p ()

* add_diameter_dim()

* add_radius_dim 2p ()

e add _radius_dim _cra/()

e add _radius_dim()
Angular Dimension

* add_angular_dim 21 ()

* add_angular_dim 3p()

* add_angular_dim_arc()

* add_angular_dim cra/()
Arc Dimension

* add_arc_dim_3p ()

* add_arc_dim_arc()

* add_arc_dim_cra ()
Ordinate Dimension

* add_ordinate_dim()

* add_ordinate_x_dim/()

* add_ordinate_y_dim()

404 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Miscellaneous

e add_entity/()
e add_foreign_entity()

e add_arrow ()

ACIS Entities

The creation of the required ACIS data has do be done by an external library!
e add _3dsolid()
e add_body ()
e add_extruded _surface ()
e add _lofted surface /()
* add_region()
* add_revolved_surface ()
* add_surface ()
e add_swept_surface()
See also:

Layout base class: BaseLayout

Factory Functions

Alternative way to create DXF entities for advanced ezdxf users.

The ezdxf.entities.factory module provides the new () function to create new DXF entities by their DXF
name and a dictionary of DXF attributes. This will bypass the validity checks in the factory methods of the BaseLayout
class.

This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the
entity to a layout (and document) by the layout method add_entity ().

import ezdxf
from ezdxf.entities import factory

doc = ezdxf.new()

msp = doc.modelspace ()
line = factory.new(
"LINE",
dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,

b
)
msp.add_entity(line)

6.8. Reference 405

ezdxf Documentation, Release 0.17.2

Direct Object Instantiation

For advanced developers with knowledge about the internal design of ezdxf.

Import the entity classes from sub-package ezdxf . ent it ies and instantiate them. This will bypass the validity checks
in the factory methods of the BaseLayout class and maybe additional required setup procedures for some entities -

study the source code!.

Warning: A refactoring of the internal ezdxf structures will break your code.

This new created entities are virtual entities which are not assigned to any DXF document nor to any layout. Add the

entity to a layout (and document) by the layout method add_entity ().

import ezdxf
from ezdxf.entities import Line

doc = ezdxf.new()
msp = doc.modelspace ()
line = Line.new(
dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,

)
msp.add_entity(line)

6.8.4 Enums

TextEntityAlignment
class ezdxf.enums.TextEntityAlignment (value)
Text alignment enum for the Text, Attriband AttDef entities.
LEFT
CENTER
RIGHT
ALIGNED
MIDDLE
FIT
BOTTOM_LEFT
BOTTOM_CENTER
BOTTOM_RIGHT
MIDDLE_LEFT
MIDDLE_CENTER
MIDDLE_RIGHT
TOP_LEFT

406

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

TOP_CENTER
TOP_RIGHT

MTextEntityAlignment
class ezdxf.enums.MTextEntityAlignment (value)
Text alignment enum for the MText entity.
TOP_LEFT
TOP_CENTER
TOP_RIGHT
MIDDLE_LEFT
MIDDLE_CENTER
MIDDLE_RIGHT
BOTTOM_LEFT
BOTTOM_CENTER

BOTTOM_RIGHT

MTextParagraphAlignment
class ezdxf.enums.MTextParagraphAlignment (value)
An enumeration.
DEFAULT
LEFT
RIGHT
CENTER
JUSTIFIED

DISTRIBUTED

MTextFlowDirection

class ezdxf.enums.MTextFlowDirection (value)
An enumeration.
LEFT_TO_RIGHT
TOP_TO_BOTTOM

BY_STYLE

6.8. Reference

407

ezdxf Documentation, Release 0.17.2

MTextLineAlignment

class ezdxf.enums.MTextLineAlignment (value)
An enumeration.
BOTTOM
MIDDLE

TOP

MTextStroke
class ezdxf.enums.MTextStroke (value)
Combination of flags is supported: UNDERLINE + STRIKE_TROUGH
UNDERLINE
STRIKE_THROUGH
OVERLINE

MTextLineSpacing

class ezdxf.enums.MTextLineSpacing (value)
An enumeration.
AT_LEAST

EXACT

MTextBackgroundColor
class ezdxf.enums.MTextBackgroundColor (value)
An enumeration.
OFF
COLOR
WINDOW
CANVAS

InsertUnits
class ezdxf.enums.InsertUnits (value)
An enumeration.
Unitless
Inches
Feet
Miles
Millimeters

Centimeters

408 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Meters
Kilometers
Microinches
Mils

Yards
Angstroms
Nanometers
Microns
Decimeters
Decameters
Hectometers
Gigameters
AstronomicalUnits
Lightyears
Parsecs
USSurveyFeet
USSurveyInch
USSurveyYard

USSurveyMile

Measurement

class ezdxf.enums.Measurement (value)
An enumeration.
Imperial

Metric

LengthUnits
class ezdxf.enums.LengthUnits (value)
An enumeration.
Scientific
Decimal
Engineering
Architectural

Fractional

6.8. Reference

409

ezdxf Documentation, Release 0.17.2

AngularUnits

class ezdxf.enums.AngularUnits (value)
An enumeration.
DecimalDegrees
DegreesMinutesSeconds
Grad

Radians

SortEntities

class ezdxf.enums.SortEntities (value)
An enumeration.
DISABLE

SELECTION
Sorts for object selection

SNAP
Sorts for object snap

REDRAW
Sorts for redraws; obsolete

MSLIDE
Sorts for MSLIDE command slide creation; obsolete

REGEN
Sorts for REGEN commands

PLOT
Sorts for plotting

POSTSCRIPT
Sorts for PostScript output; obsolete

ACI

class ezdxf.enums.ACI (value)
AutoCAD Color Index
BYBLOCK
BYLAYER
BYOBJECT
RED
YELLOW
GREEN
CYAN
BLUE

MAGENTA

410 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

BLACK

WHITE

6.8.5 Colors

Colors Module

This module provides functions and constants to manage all kinds of colors in DXF documents.

Converter Functions
ezdxf.colors.rgb2int (rgh: Tuple[int, int, int]) — int
Combined integer value from (r, g, b) tuple.

ezdxf.colors.int2rgb (value: int) — Tuple[int, int, int]
Split RGB integer value into (r, g, b) tuple.

ezdxf.colors.aci2rgb (index: int) — Tuple[int, int, int]
Convert AutoCAD Color Index (ACI) into (r, g, b) tuple, based on default AutoCAD colors.

ezdxf.colors.luminance (color: Tuple[int, int, int]) — float
Returns perceived luminance for a RGB color in the range [0.0, 1.0] from dark to light.

ezdxf.colors.decode_raw_color (value: int) — Tuple[int, Union[int, Tuple[int, int, int]]]
Decode raw color value as tuple(type, Union[aci, (r, g, b)]), the true color value is a (r, g, b) tuple.

ezdxf.colors.decode_raw_color_int (value: int) — Tuple[int, int]
Decode raw color value as tuple(type, int), the true color value is a 24-bit int value.

ezdxf.colors.encode_raw_color (value: Union[int, Tuple[int, int, int]]) — int
Encode true color value or AutoCAD Color Index (ACI) color value into a :term: raw color value.

ezdxf.colors.transparency2float (value: int) — float
Returns transparency value as float from 0 to 1, O for no transparency (opaque) and 1 for 100% transparency.

Parameters value — DXF integer transparency value, 0 for 100% transparency and 255 for opaque

ezdxf.colors.float2transparency (value: float) — int
Returns DXF transparency value as integer in the range from 0 to 255, where 0 is 100% transparent and 255 is
opaque.

Parameters value — transparency value as float in the range from O to 1, where O is opaque and 1 is
100% transparent.

ACI Color Values

Common AutoCAD Color Index (ACI) values, also accessible as IntEnum ezdxf.enums.ACT

6.8. Reference 411

ezdxf Documentation, Release 0.17.2

Default Palettes

BYBLOCK

o

BYLAYER

N
()1
(o)

BYOBJECT

257

RED

YELLOW

GREEN

CYAN

BLUE

MAGENTA

BLACK (on light background)

WHITE (on dark background)

NN N AW

Default color mappings from AutoCAD Color Index (ACI) to true color values.

Raw Color Types

Raw Color Vales

Transparency Values

model space | DXF_DEFAULT_COLORS

paper space

DXF_DEFAULT_PAPERSPACE_COLORS

COLOR_TYPE_BY_LAYER 0xCO0
COLOR_TYPE_BY_BLOCK 0xC1
COLOR_TYPE_RGB 0xC2
COLOR_TYPE_ACI 0xC3
COLOR_TYPE_WINDOW_BG | 0xC8

BY_LAYER_RAW_VALUE -1073741824
BY_BLOCK_RAW_VALUE -1056964608
WINDOW_BG_RAW_VALUE | -939524096
OPAQUE 0x20000FF
TRANSPARENCY_10 0x20000ES5
TRANSPARENCY_20 0x20000CC
TRANSPARENCY_30 0x20000B2
TRANSPARENCY_40 0x2000099
TRANSPARENCY_50 0x200007F
TRANSPARENCY_60 0x2000066
TRANSPARENCY_70 0x200004C
TRANSPARENCY_80 0x2000032
TRANSPARENCY_90 0x2000019
TRANSPARENCY_BYBLOCK | 0x1000000

412

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

6.8.6 Data Query

See also:

For usage of the query features see the tutorial: Tutorial for getting data from DXF files

Entity Query String

QueryString := EntityQuery ("[" AttribQuery "]" "i"?)*

The query string is the combination of two queries, first the required entity query and second the optional attribute query,
enclosed in square brackets, append ' 1 ' after the closing square bracket to ignore case for strings.

Entity Query

The entity query is a whitespace separated list of DXF entity names or the special name '*'. Where ' *' means all
DXF entities, exclude some entity types by appending their names with a preceding ! (e.g. all entities except LINE = ' *
!LINE'). All DXF names have to be uppercase.

Attribute Query

The optional attribute query is a boolean expression, supported operators are:
e not (!): !term is true, if term is false
e and (&): term & term is true, if both terms are true
e or (I): term | term is true, if one term is true
¢ and arbitrary nested round brackets
« append (i) after the closing square bracket to ignore case for strings

Attribute selection is a term: “name comparator value”, where name is a DXF entity attribute in lowercase, value is a
integer, float or double quoted string, valid comparators are:

e "==" equal “value”

e "!=" not equal “value”

e "<" Jower than “value”

e "<=" lower or equal than “value”

e ">" greater than “value”

e ">=" greater or equal than “value”

e " 2" match regular expression “value”

e " 12" does not match regular expression “value”

6.8. Reference 413

ezdxf Documentation, Release 0.17.2

Query Result

The EntityQuery class is the return type of all query () methods. Ent it yQuery contains all DXF entities of the
source collection, which matches one name of the entity query AND the whole attribute query. If a DXF entity does not
have or support a required attribute, the corresponding attribute search term is False.

examples:

LINE[text ? ".*"]:always empty, because the LINE entity has no text attribute.

LINE CIRCLE[layer=="construction"]: all LINE and CIRCLE entities with layer == "construc-
tion"

*[! (layer=="construction" & color<7)]: all entities except those with layer == "construc-
tion" and color < 7

*[layer=="construction"]i, (ignore case) all entities with layer == "construction" | "Con-
struction" | "ConStruction" ...

EntityQuery Class

class ezdxf.query.EntityQuery

The EntityQuery class is a result container, which is filled with dxf entities matching the query string. It is
possible to add entities to the container (extend), remove entities from the container and to filter the container.
Supports the standard Python Sequence methods and protocols.

first
First entity or None.

last
Last entity or None.

len__ () —int
Returns count of DXF entities.

__getitem___ (item)
Returns DXFEntity at index ifem, supports negative indices and slicing.

__iter_ () — Iterator[DXFEntity]
Returns iterable of DXFEntity objects.

extend (entities: Iterable]l DXFEntity], query: str = "*', unique: bool = True) — EntityQuery
Extent the Ent it yQuery container by entities matching an additional query.

remove (query: str = '*') — None
Remove all entities from Ent it yQuery container matching this additional query.

query (query: str = "*') — ezdxf.query. EntityQuery
Returns a new EntityQuery container with all entities matching this additional query.

raises: ParseException (pyparsing.py)

groupby (dxfattrib: str = ", key: Callable[[DXFEntity], Hashable] = None) — Dict[Hashable,

List{DXFEntity]]
Returns a dict of entity lists, where entities are grouped by a DXF attribute or a key function.

Parameters

e dxfattrib - grouping DXF attribute as string like ' layer"'

414

Chapter 6. Contents

http://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

ezdxf Documentation, Release 0.17.2

* key - key function, which accepts a DXFEntity as argument, returns grouping key of this
entity or None for ignore this object. Reason for ignoring: a queried DXF attribute is not
supported by this entity

The new() Function

ezdxf.query.new (entities: Iterablel DXFEntity] = None, query: str = '*') — EntityQuery
Start a new query based on sequence entities. The entities argument has to be an iterable of DXFEntity or
inherited objects and returns an Ent it yQuery object.

See also:

For usage of the groupby features see the tutorial: Retrieve entities by groupby() function

Groupby Function

ezdxf.groupby .groupby (entities: Iterablel DXFEntity], dxfattrib: str = ", key: KeyFunc = None) —

Dict[Hashable, List{DXFEntity]]
Groups a sequence of DXF entities by a DXF attribute like ' Llayer ', returns a dict with dxfattrib values as key

and a list of entities matching this dxfattrib. A key function can be used to combine some DXF attributes (e.g. layer
and color) and should return a hashable data type like a tuple of strings, integers or floats, key function example:

def group_key (entity: DXFEntity) :
return entity.dxf.layer, entity.dxf.color

For not suitable DXF entities return None to exclude this entity, in this case it’s not required, because groupby ()
catches DXFAttributeError exceptions to exclude entities, which do not provide layer and/or color attributes,
automatically.

Result dict for dxfattrib = ' layer ' may look like this:

{

'0': [... list of entities],
'Examplelayerl': [...],
'Examplelayer2': [... 1,

Result dict for key = group_key, which returns a (layer, color) tuple, may look like this:

{

('o', 1): [... list of entities 7],
("0, 3y [oo 1y
(o, Ny [... 1,

('ExampleLayerl', 1
('ExampleLayerl', 2
5
7

~

('ExampleLayerl',
('ExampleLayer2',

~ 0~

~

All entity containers (modelspace, paperspace layouts and blocks) and the Ent i t yQuery object have a dedicated
groupby () method.

Parameters

* entities —sequence of DXF entities to group by a DXF attribute or a key function

6.8. Reference 415

ezdxf Documentation, Release 0.17.2

* dxfattrib - grouping DXF attribute like ' layer"'

* key —key function, which accepts a DXFEnt ity as argument and returns a hashable grouping
key or None to ignore this entity

6.8.7 Math Utilities

Utility functions and classes located in module ezdxf . math.

Functions
ezdxf.math.closest_point (base: Vertex, points: Iterable[Vertex]) — Vec3
Returns closest point to base.
Parameters
* base - base point as Vec 3 compatible object
* points —iterable of points as Vec 3 compatible object

ezdxf.math.uniform_knot_vector (count: int, order: int, normalize=False) — List[float]
Returns an uniform knot vector for a B-spline of order and count control points.

order = degree + 1
Parameters
* count - count of control points
* order - spline order
* normalize - normalize values in range [0, 1] if True

ezdxf.math.open_uniform_knot_vector (count: int, order: int, normalize=False) — List[float]
Returns an open (clamped) uniform knot vector for a B-spline of order and count control points.

order = degree + 1
Parameters
* count - count of control points
* order - spline order
* normalize — normalize values in range [0, 1] if True

ezdxf.math.required_knot_values (count: int, order: int) — int
Returns the count of required knot values for a B-spline of order and count control points.

Parameters
* count - count of control points, in text-books referred as “n + 1”
* order - order of B-Spline, in text-books referred as “k”
Relationship:
“p” is the degree of the B-spline, text-book notation.
e k=p+1

e 2<k<n+1

416 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

ezdxf.math.xround (value: float, rounding: float = 0.0) — float
Extended rounding function, argument rounding defines the rounding limit:

0 remove fraction

0.1 round next to x.1, x.2, ... x.0

0.25 | round next to x.25, x.50, x.75 or x.00

0.5 round next to X.5 or x.0

1.0 | round to a multiple of 1: remove fraction

2.0 round to a multiple of 2: xxx2, xxx4, Xxx6 ...
5.0 | round to a multiple of 5: xxx5 or xxx0

10.0 | round to a multiple of 10: xx10, xx20, ...

Parameters
* value - float value to round
* rounding - rounding limit
ezdxf.math.linspace (start: float, stop: float, num: int, endpoint=True) — Iterable[float]
Return evenly spaced numbers over a specified interval, like numpy.linspace().

Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can
optionally be excluded.

ezdxf.math.area (vertices: Iterable[Vertex]) — float
Returns the area of a polygon, returns the projected area in the xy-plane for 3D vertices.

ezdxf.math.arc_angle_span_deg (start: float, end: float) — float
Returns the counter clockwise angle span from start to end in degrees.

Returns the angle span in the range of [0, 360], 360 is a full circle. Full circle handling is a special case, because
normalization of angles which describe a full circle would return O if treated as regular angles. e.g. (0, 360) —
360, (0, -360) — 360, (180, -180) — 360. Input angles with the same value always return 0 by definition: (0, 0) —
0, (-180, -180) — 0, (360, 360) — 0.

ezdxf.math.arc_angle_span_rad (start: float, end: float) — float
Returns the counter clockwise angle span from start to end in radians.

Returns the angle span in the range of [0, 2], 2 is a full circle. Full circle handling is a special case, because
normalization of angles which describe a full circle would return O if treated as regular angles. e.g. (0, 27t) — 2,
(0, -27) — 2m, (7, -m) — 27;. Input angles with the same value always return 0 by definition: (0, 0) — 0, (-, -7T)
— 0, 2m, 2m) — 0.

ezdxf.math.arc_segment_count (radius: float, angle: float, sagitta: float) — int
Returns the count of required segments for the approximation of an arc for a given maximum sagitta.

Parameters
e radius - arc radius
* angle - angle span of the arc in radians
* sagitta — max. distance from the center of an arc segment to the center of its chord

ezdxf.math.arc_chord_length (radius: float, sagitta: float) — float
Returns the chord length for an arc defined by radius and the sagitta.

Parameters
e radius - arc radius

* sagitta — distance from the center of the arc to the center of its base

6.8. Reference 417

https://en.wikipedia.org/wiki/Sagitta_(geometry)
https://en.wikipedia.org/wiki/Sagitta_(geometry)

ezdxf Documentation, Release 0.17.2

ezdxf.math.ellipse_param_span (start_param: float, end_param: float) — float
Returns the counter clockwise params span of an elliptic arc from start- to end param.

Returns the param span in the range [0, 2], 2 is a full ellipse. Full ellipse handling is a special case, because
normalization of params which describe a full ellipse would return O if treated as regular params. e.g. (0, 2wt) —
2w, (0, -27w) — 2m, (7, -7t) — 27. Input params with the same value always return 0 by definition: (0, 0) — 0, (-,
-t) — 0, 2m, 2m) — 0.

Alias to function: ezdxf.math.arc_angle_span_rad /()

ezdxf.math.has_matrix_2d_stretching (m: Matrix44) — bool
Returns True if matrix m performs a non-uniform xy-scaling. Uniform scaling is not stretching in this context.

Does not check if the target system is a cartesian coordinate system, use the Mat rix44 property is_cartesian
for that.

ezdxf.math.has_matrix_3d_stretching (m: Matrix44) — bool
Returns True if matrix m performs a non-uniform xyz-scaling. Uniform scaling is not stretching in this context.

Does not check if the target system is a cartesian coordinate system, use the Mat rix44 property i s_cartesian
for that.

Bulge Related Functions

See also:
Description of the Bulge value.

ezdxf.math.bulge_center (start_point: Vertex, end_point: Vertex, bulge: float) — Vec2
Returns center of arc described by the given bulge parameters.

Based on Bulge Center by Lee Mac.
Parameters
e start_point - start point as Vec2 compatible object
* end_point —end point as VecZ2 compatible object
* bulge - bulge value as float

ezdxf.math.bulge_radius (start_point: Vertex, end_point: Vertex, bulge: float) — float
Returns radius of arc defined by the given bulge parameters.

Based on Bulge Radius by Lee Mac
Parameters
* start_point - start point as VecZ2 compatible object
* end_point —end point as Vec2 compatible object
* bulge - bulge value

ezdxf.math.arc_to_bulge (center: Vertex, start_angle: float, end_angle: float, radius: float) — Tu-
ple[Vec2, Vec2, float]
Returns bulge parameters from arc parameters.

Parameters
* center — circle center point as VecZ2 compatible object
* start_angle - start angle in radians

* end_angle - end angle in radians

418 Chapter 6. Contents

http://www.lee-mac.com/bulgeconversion.html
http://www.lee-mac.com/bulgeconversion.html

ezdxf Documentation, Release 0.17.2

* radius - circle radius
Returns (start_point, end_point, bulge)
Return type tuple

ezdxf.math.bulge_to_arc (start_point: Vertex, end_point: Vertex, bulge: float) — Tuple[Vec2, float,

float, float]
Returns arc parameters from bulge parameters.

The arcs defined by bulge values of LWwPolyline and 2D Polyline entities start at the vertex which includes
the bulge value and ends at the following vertex.

Based on Bulge to Arc by Lee Mac.
Parameters
* start_point - start vertex as VecZ compatible object
* end_point - end vertex as VecZ2 compatible object
* bulge - bulge value
Returns (center, start_angle, end_angle, radius)
Return type Tuple

ezdxf.math.bulge_3_points (start_point: Vertex, end_point: Vertex, point: Vertex) — float
Returns bulge value defined by three points.

Based on 3-Points to Bulge by Lee Mac.
Parameters
* start_point - start point as VecZ2 compatible object
* end_point - end point as Vec2 compatible object

* point - arbitrary point as Vec2 compatible object

2D Functions
ezdxf.math.distance_point_line_2d (point: Vec2, start: Vec2, end: Vec2) — float
Returns the normal distance from point to 2D line defined by start- and end point.

ezdxf.math.point_to_line_relation (point: Vec2, start: Vec2, end: Vec2, abs_tol=1e-10) — int
Returns -1 if point is left line, +1 if point is right of line and 0 if point is on the line. The line is defined by two
vertices given as arguments start and end.

Parameters
* point - 2D point to test as Vec?2
* start - line definition point as Vec2
* end - line definition point as Vec?2
¢ abs_tol - tolerance for minimum distance to line
ezdxf.math.is_point_on_line_2d (point: Vec2, start: Vec2, end: Vec2, ray=True, abs_tol=1e-10) —
) o) bool
Returns True if point is on line.

Parameters

* point — 2D point to test as Vec?2

6.8. Reference 419

http://www.lee-mac.com/bulgeconversion.html
http://www.lee-mac.com/bulgeconversion.html

ezdxf Documentation, Release 0.17.2

* start - line definition point as Vec2

* end - line definition point as Vec?2

* ray —if True point has to be on the infinite ray, if False point has to be on the line segment
e abs_tol — tolerance for on line test

ezdxf.math.is_point_left_of_1line (point: Vec2, start: Vec2, end: Vec2, colinear=False) — bool
Returns True if point is “left of line” defined by start- and end point, a colinear point is also “left of line” if
argument colinear is True.

Parameters
* point - 2D point to test as Vec2
* start - line definition point as Vec2
* end - line definition point as Vec?2
* colinear — a colinear point is also “left of line” if True

ezdxf.math.is_point_in_polygon_2d (point: Vec2, polygon: Iterable[Vec2], abs_tol=1e-10) — int
Test if point is inside polygon.

Parameters
* point - 2D point to test as Vec2
* polygon — iterable of 2D points as Vec?2
* abs_tol - tolerance for distance check
Returns +1 for inside, 0 for on boundary line, —1 for outside

ezdxf.math.convex_hull_2d (points: Iterable[Vertex]) — List[Vertex]
Returns 2D convex hull for points.

Parameters points —iterable of points as Vec 3 compatible objects, z-axis is ignored

ezdxf.math.intersection_line_line_2d (linel: Tuple[Vec2, Vec2], line2: Tuple[Vec2, Vec2], vir-
tual=True, abs_tol=1e-10) — Optional[Vec2]
Compute the intersection of two lines in the xy-plane.

Parameters
* linel - start- and end point of first line to test e.g. ((x1, yl), (x2, y2)).
* line2 - start- and end point of second line to test e.g. ((x3, y3), (x4, y4)).
* virtual — True returns any intersection point, False returns only real intersection points.
e abs_tol - tolerance for intersection test.
Returns None if there is no intersection point (parallel lines) or intersection point as Vec?2

ezdxf.math.intersect_polylines_2d (pl: Sequence[Vec2], p2: Sequence[Vec2], abs_tol=1e-10) —
List[Vec2]
Returns the intersection points for two polylines as list of Vec2 objects, the list is empty if no intersection points
exist. Does not return self intersection points of p/ or p2. Duplicate intersection points are removed from the result
list, but the list does not have a particular order! You can sort the result list by result.sort () to introduce an
order.

Parameters
» pl — first polyline as sequence of Vec2 objects

» p2 —second polyline as sequence of VecZ2 objects

420 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* abs_tol - absolute tolerance for comparisons

New in version 0.17.2.

ezdxf.math.rytz_axis_construction (d/: Vec3, d2: Vec3) — Tuple[Vec3, Vec3, float]
The Rytz’s axis construction is a basic method of descriptive Geometry to find the axes, the semi-major axis and
semi-minor axis, starting from two conjugated half-diameters.

Source: Wikipedia

Given conjugated diameter d/ is the vector from center C to point P and the given conjugated diameter d2 is the
vector from center C to point Q. Center of ellipse is always (0, 0, 0). This algorithm works for 2D/3D vectors.

Parameters
* d1 - conjugated semi-major axis as Vec3
* d2 - conjugated semi-minor axis as Vec3
Returns Tuple of (major axis, minor axis, ratio)

ezdxf.math.eclip_polygon_2d (clip: Iterable[Vertex], subject: Iterable[Vertex], ccw_check: bool = True)
— List[Vec2]
Clip the subject polygon by the convex clipping polygon clip.

Implements the Sutherland—Hodgman algorithm for clipping polygons.
Parameters
* clip - the convex clipping polygon as iterable of vertices
* subject - the polygon to clip as a iterable of vertices

* ccw_check — check if the clipping polygon is in counter clockwise orientation if True, set
to False if the ccw check is done by the caller

Returns the clipped subject as list of Vec2

New in version 0.16.

ezdxf.math.offset_vertices_2d (vertices: Iterable[Vertex], offset: float, closed: bool = False) — It-
erable[Vec2]
Yields vertices of the offset line to the shape defined by vertices. The source shape consist of straight segments
and is located in the xy-plane, the z-axis of input vertices is ignored. Takes closed shapes into account if argument
closed is True, which yields intersection of first and last offset segment as first vertex for a closed shape. For closed
shapes the first and last vertex can be equal, else an implicit closing segment from last to first vertex is added. A
shape with equal first and last vertex is not handled automatically as closed shape.

Warning: Adjacent collinear segments in opposite directions, same as a turn by 180 degree (U-turn), leads to
unexpected results.

Parameters
* vertices - source shape defined by vertices

* offset - line offset perpendicular to direction of shape segments defined by vertices order,
offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment

* closed - True to handle as closed shape

source = [(0, 0), (3, 0), (3, 3), (0, 3)]
result = list (offset_vertices_2d(source, offset=0.5, closed=True))

6.8. Reference 421

https://en.m.wikipedia.org/wiki/Rytz%27s_construction
https://de.wikipedia.org/wiki/Algorithmus_von_Sutherland-Hodgman

ezdxf Documentation, Release 0.17.2

?’{/i/:_. . s 2 o2 oo om e e e

*
.
.
---I"I-'I"I'I"I'I‘-I"I‘
<
-
.
. ESUN PEME
.
.
.
- - -+ S,
/. UisE
* *
. ! o
- -
.
-
. .
.
.
.
*
.
-
g
. Do v e e e e e
*
.
.
*
x
Do s e e e e e e e
=

* = & & = B = = B = = = = 8 B

= = & & = B = = = 0w

LN)]

L

D EN]

* = & & = B = = B = = = = 8 B

L)]

-

LI

-

)

Example for a closed collinear shape, which creates 2 additional vertices and the first one has an unexpected location:

source = [(0, 0), (O, 1), (0, 2), (0, 3)]
result = list (offset_vertices_2d(source, offset=0.5, closed=True))
422 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

%) urrel 11 e
SURCETL) /— <LTLE] 7 L) /_
I T T S S S ST S S S S SR g S S R R S S S TR

¥n by CAD application

3D Functions

See also:

The free online book 3D Math Primer for Graphics and Game Development is a very good resource for learning vector
math and other graphic related topics, it is easy to read for beginners and especially targeted to programmers.

ezdxf.math.basic_transformation (move: Vertex = (0, 0, 0), scale: Vertex = (1, 1, 1), z_rotation: float

)) - =0) — Matrix44))
Returns a combined transformation matrix for translation, scaling and rotation about the z-axis.

Parameters
* move — translation vector
* scale - x-, y- and z-axis scaling as float triplet, e.g. (2, 2, 1)
* z_rotation - rotation angle about the z-axis in radians

ezdxf.math.normal_vector_3p (a: Vec3, b: Vec3, ¢: Vec3) — Vec3
Returns normal vector for 3 points, which is the normalized cross product for: a->b x a->c.

ezdxf.math.linear_vertex_spacing (start: Vec3, end: Vec3, count: int) — List[Vec3]
Returns count evenly spaced vertices from start to end.

ezdxf.math.best_£fit_normal (vertices: Iterable[Vertex]) — Vec3
Returns the “best fit” normal for a plane defined by three or more vertices. This function tolerates imperfect plane
vertices. Safe function to detect the extrusion vector of flat arbitrary polygons.

ezdxf.math.is_planar_f£face (face: Sequence[Vec3], abs_tol=1e-9) — bool
Returns True if sequence of vectors is a planar face.

Parameters
» face - sequence of Vec3 objects
¢ abs_tol - tolerance for normals check

ezdxf.math.subdivide_face (face: Sequence[Union[Vec3, Vec2]], quads=True) — lter-

able[List[Vec3]]
Yields new subdivided faces. Creates new faces from subdivided edges and the face midpoint by linear interpolation.

Parameters

» face — a sequence of vertices, Vec2 and Vec 3 objects supported.

6.8. Reference 423

https://gamemath.com/

ezdxf Documentation, Release 0.17.2

* quads - create quad faces if True else create triangles

ezdxf.math.subdivide_ngons (faces: Iterable[Sequence[Union[Vec3, Vec2]]]) — Iterable[List[Vec3]]
Yields only triangles or quad faces, subdivides ngons into triangles.

Parameters faces — iterable of faces as sequence of Vec2 and Vec 3 objects

ezdxf.math.distance_point_line_3d (point: Vec3, start: Vec3, end: Vec3) — float
Returns the normal distance from point to 3D line defined by start- and end point.

ezdxf.math.intersection_ray_ray_3d(rayl: Tuple[Vec3, Vec3], ray2: Tuple[Vec3, Vec3],

abs_tol=1e-10) — Sequence[Vec3]
Calculate intersection of two 3D rays, returns a O-tuple for parallel rays, a 1-tuple for intersecting rays and a 2-tuple
for not intersecting and not parallel rays with points of closest approach on each ray.

Parameters
* ray1l —first ray as tuple of two points as Vec3 objects
* ray2 - second ray as tuple of two points as Vec 3 objects
* abs_tol - absolute tolerance for comparisons

ezdxf.math.intersection_line_line_3d (linel: Tuple[Vec3, Vec3], line2: Tuple[Vec3, Vec3], vir-

tual=True, abs_tol=1e-10) — Optional[Vec3]
Returns the intersection point of two 3D lines, returns None if lines do not intersect.

Parameters
* linel —first line as tuple of two points as Ve c 3 objects
* line2 - second line as tuple of two points as Vec 3 objects
* virtual - True returns any intersection point, False returns only real intersection points
* abs_tol - absolute tolerance for comparisons
New in version 0.17.2.

ezdxf.math.intersect_polylines_3d (pl: Sequence[Vec3], p2: Sequence[Vec3], abs_tol=1e-10) —
List[Vec3]
Returns the intersection points for two polylines as list of Vec 3 objects, the list is empty if no intersection points
exist. Does not return self intersection points of p/ or p2. Duplicate intersection points are removed from the result
list, but the list does not have a particular order! You can sort the result list by result.sort () to introduce an
order.

Parameters
* p1 —first polyline as sequence of Vec3 objects
* p2 —second polyline as sequence of Vec 3 objects
* abs_tol - absolute tolerance for comparisons
New in version 0.17.2.

ezdxf.math.estimate_tangents (points: List[Vec3], method: str = 'S-points', normalize=True) —
List[Vec3]
Estimate tangents for curve defined by given fit points. Calculated tangents are normalized (unit-vectors).

Auvailable tangent estimation methods:
* “3-points”: 3 point interpolation
e “S-points”: 5 point interpolation

* “bezier”: tangents from an interpolated cubic bezier curve

424 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

o “diff”: finite difference

Parameters
* points - start-, end- and passing points of curve
* method - tangent estimation method
* normalize — normalize tangents if True

Returns tangents as list of Vec 3 objects

ezdxf.math.estimate_end_tangent_magnitude (points: List[Vec3], method: str = 'chord') —

List[Vec3]
Estimate tangent magnitude of start- and end tangents.

Auvailable estimation methods:
* “chord”: total chord length, curve approximation by straight segments
e “arc”: total arc length, curve approximation by arcs

e “bezier-n”: total length from cubic bezier curve approximation, n segments per section

Parameters
* points - start-, end- and passing points of curve

* method - tangent magnitude estimation method

ezdxf.math.fit_points_to_cad_cv (fit_points: Iterable[Vertex], tangents: Iterable[Vertex] = None, es-

timate: str = '5-p') — BSpline
Returns a cubic BSp1ine from fit points as close as possible to common CAD applications like BricsCAD.

There exist infinite numerical correct solution for this setup, but some facts are known:

¢ Global curve interpolation with start- and end derivatives, e.g. 6 fit points creates 8 control vertices in Bric-
sCAD

* Degree of B-spline is always 3, the stored degree is ignored, this is only valid for B-splines defined by fit points
» Knot parametrization method is “chord”
» Knot distribution is “natural”

The last missing parameter is the start- and end tangents estimation method used by BricsCAD, if these tangents
are stored in the DXF file provide them as argument fangents as 2-tuple (start, end) and the interpolated control
vertices will match the BricsCAD calculation, except for floating point imprecision.

If the end tangents are not given, the start- and ent tangent directions will be estimated. The argument estimate lets
choose from different estimation methods (first 3 letters are significant):

e “3-points”: 3 point interpolation

e “S-points”: 5 point interpolation

* “bezier”: tangents from an interpolated cubic bezier curve
e “diff”: finite difference

The estimation method “5-p” yields the closest match to the BricsCAD rendering, but sometimes “bez” creates a
better result.

If I figure out how BricsCAD estimates the end tangents directions, the argument estimate gets an additional value
for that case. The existing estimation methods will perform the same way as now, except for bug fixes. But the

6.8. Reference 425

ezdxf Documentation, Release 0.17.2

default value may change, therefore set argument estimate to specific value to always get the same result in the
future.

Parameters
» fit_points — points the spline is passing through
* tangents — start- and end tangent, default is autodetect
* estimate - tangent direction estimation method
Changed in version 0.16: removed unused arguments degree and method

ezdxf.math.fit_points_to_cubic_bezier (fit_points: Iterable[Vertex]) — BSpline
Returns a cubic BSp1ine from fit points without end tangents.

This function uses the cubic Bezier interpolation to create multiple Bezier curves and combine them into a single B-
spline, this works for short simple splines better than the fit_points_to_cad_cv (), butis worse for longer
and more complex splines.

Parameters fit_points — points the spline is passing through
New in version 0.16.

ezdxf.math.global_bspline_interpolation (fit_points: Iterable[Vertex], degree: int = 3, tangents:
Iterable[Vertex] = None, method: str = 'chord') —
BSpline
B-spline interpolation by the Global Curve Interpolation. Given are the fit points and the degree of the B-spline.
The function provides 3 methods for generating the parameter vector t:

* “uniform”: creates a uniform t vector, from O to 1 evenly spaced, see uniform method

e “chord”, “distance”: creates a t vector with values proportional to the fit point distances, see chord length
method

e “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point sqrt(distances), see
centripetal method

e “arc”: creates a t vector with values proportional to the arc length between fit points.

It is possible to constraint the curve by tangents, by start- and end tangent if only two tangents are given or by one
tangent for each fit point.

If tangents are given, they represent 1st derivatives and should be scaled if they are unit vectors, if only start- and
end tangents given the function est imate_end tangent_magnitude () helps with an educated guess, if
all tangents are given, scaling by chord length is a reasonable choice (Piegl & Tiller).

Parameters
* fit_points — fit points of B-spline, as list of Vec3 compatible objects

* tangents —if only two vectors are given, take the first and the last vector as start- and end
tangent constraints or if for all fit points a tangent is given use all tangents as interpolation
constraints (optional)

* degree — degree of B-spline
* method - calculation method for parameter vector t
Returns BSpline

ezdxf.math.local_cubic_bspline_interpolation (fit_points: Iterable[Vertex], method: str = '5-
points', tangents: Iterable[Vertex] = None)

— BSpline
B-spline interpolation by ‘Local Cubic Curve Interpolation’, which creates B-spline from fit points and estimated

tangent direction at start-, end- and passing points.

426 Chapter 6. Contents

https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-INT-global.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-uniform.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-chord-length.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-centripetal.html
https://en.wikipedia.org/wiki/B-spline

ezdxf Documentation, Release 0.17.2

Source: Piegl & Tiller: “The NURBS Book™ - chapter 9.3.4
Auvailable tangent estimation methods:
* “3-points”: 3 point interpolation
e “S-points”: 5 point interpolation
* “bezier”: cubic bezier curve interpolation
o “diff”: finite difference
or pass pre-calculated tangents, which overrides tangent estimation.
Parameters
» fit_points - all B-spline fit points as Vec 3 compatible objects
* method - tangent estimation method
* tangents — tangents as Ve c3 compatible objects (optional)
Returns BSpline

ezdxf.math.rational_bspline_from_arc (center: Vec3 = (0, 0), radius: float = 1, start_angle: float
=0, end_angle: float = 360, segments: int = 1) — BSpline
Returns a rational B-splines for a circular 2D arc.

Parameters
* center — circle center as Vec3 compatible object
* radius - circle radius
* start_angle - start angle in degrees
* end_angle - end angle in degrees

* segments — count of spline segments, at least one segment for each quarter (90 deg), default
is 1, for as few as needed.

ezdxf.math.rational_bspline_from_ellipse (ellipse: ConstructionEllipse, segments: int = 1) —
BSpline
Returns a rational B-splines for an elliptic arc.

Parameters
* ellipse —ellipse parameters as ConstructionEllipse object

* segments — count of spline segments, at least one segment for each quarter (5t/2), default is
1, for as few as needed.

ezdxf.math.open_uniform_bspline (control_points: Iterable[Vertex], order: int = 4, weights: Iter-

able[float] = None) — BSpline
Creates an open uniform (periodic) B-spline curve (open curve).

This is an unclamped curve, which means the curve passes none of the control points.
Parameters
* control_points —iterable of control points as Vec 3 compatible objects
* order - spline order (degree + 1)

* weights —iterable of weight values

6.8. Reference 427

https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html

ezdxf Documentation, Release 0.17.2

ezdxf.math.closed_uniform_bspline (control_points: Iterable[Vertex], order: int = 4, weights: Iter-

able[float] = None) — BSpline
Creates an closed uniform (periodic) B-spline curve (open curve).

This B-spline does not pass any of the control points.
Parameters
* control_points - iterable of control points as Vec 3 compatible objects
* order - spline order (degree + 1)
* weights — iterable of weight values

ezdxf.math.cubic_bezier_from_arc (center: Vec3 = (0, 0), radius: float = 1, start_angle: float
= 0, end_angle: float = 360, segments: int = 1) — lter-

able[Bezier4 P]
Returns an approximation for a circular 2D arc by multiple cubic Bézier-curves.

Parameters
* center — circle center as Vec3 compatible object
* radius - circle radius
* start_angle - start angle in degrees
* end_angle - end angle in degrees

* segments — count of Bézier-curve segments, at least one segment for each quarter (90 deg),
1 for as few as possible.

ezdxf.math.cubic_bezier_from_ellipse (ellipse: ConstructionEllipse, segments: int = 1) — Iter-

able[Bezier4 P]
Returns an approximation for an elliptic arc by multiple cubic Bézier-curves.

Parameters
* ellipse —ellipse parameters as ConstructionEl]lipse object

* segments — count of Bezier-curve segments, at least one segment for each quarter (7t/2), 1
for as few as possible.

ezdxf.math.cubic_bezier_ from_3p (pl: Vertex, p2: Vertex, p3: Vertex) — Bezier4P
Returns a cubic Bezier curve Bez ier4P from three points. The curve starts at p/, goes through p2 and ends at
p3. (source: pomax-2)

New in version 0.17.2.

ezdxf.math.cubic_bezier_interpolation (points: Iterable[Vertex]) — List[Bezier4P]
Returns an interpolation curve for given data points as multiple cubic Bézier-curves. Returns n-1 cubic Bézier-
curves for n given data points, curve i goes from point[i] to point[i+1].

Parameters points — data points

ezdxf.math.quadratic_to_cubic_bezier (bezier: Bezier3P) — Bezier4d P
Convert quadratic Bezier curves (ezdxf.math.Bezier3P) into cubic Bezier curves (ezdxf.math.
Bezier4PpP).

ezdxf.math.quadratic_bezier from_3p (pl: Vertex, p2: Vertex, p3: Vertex) — Bezier3P
Returns a quadratic Bezier curve Bez ier 3P from three points. The curve starts at pl, goes through p2 and ends
at p3. (source: pomax-2)

New in version 0.17.2.

428 Chapter 6. Contents

https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-open.html
https://pomax.github.io/bezierinfo/#pointcurves
https://pomax.github.io/bezierinfo/#pointcurves

ezdxf Documentation, Release 0.17.2

ezdxf.math.bezier_to_bspline (lterable[Union[Bezier3P, Bezier4P]], segments int = 4) — BSpline
Convert multiple quadratic or cubic Bezier curves into a single cubic B-spline (ezdxf.math.BSpline). For
good results the curves must be lined up seamlessly, i.e. the starting point of the following curve must be the same
as the end point of the previous curve. G1 continuity or better at the connection points of the Bézier curves is
required to get best results.

ezdxf.math.have_bezier_ curves_gl_continuity (bl: AnyBezier, b2 AnyBezier, gl_tol: float =

le-4) — bool
Return True if the given adjacent bezier curves have G1 continuity.

ezdxf.math.split_bezier (control_points: Sequence[AnyVec], t: float) — Tuple[List[AnyVec],

List[AnyVec]]:
Split Bezier curves at parameter ¢ by de Casteljau’s algorithm (source: pomax-1). Returns the control points for
two new Bezier curves of the same degree and type as the input curve.

Parameters

* control_points — of the Bezier curve as Vec2 or Vec 3 objects. Requires 3 points for
a quadratic curve, 4 points for a cubic curve, ...

* t — parameter where to split the curve in the range [0, 1]

New in version 0.17.2.

Transformation Classes

OCS Class

class ezdxf.math.OCS (extrusion: Vertex = Vec3(0.0, 0.0, 1.0))
Establish an OCS for a given extrusion vector.

Parameters extrusion — extrusion vector.

ux
X-axis unit vector
uy
y-axis unit vector
uz

Z-axis unit vector

from_wcs (point: Vertex) — Vertex
Returns OCS vector for WCS point.

points_from_wcs (points: Iterable[Vertex]) — Iterable[Vertex]
Returns iterable of OCS vectors from WCS points.

to_wces (point: Vertex) — Vertex
Returns WCS vector for OCS point.

points_to_wces (points: Iterable[Vertex]) — Iterable[Vertex]
Returns iterable of WCS vectors for OCS points.

render_axis (layout: BaseLayout, length: float = 1, colors: RGB = (1, 3, 5)) — None
Render axis as 3D lines into a layout.

6.8. Reference 429

https://pomax.github.io/bezierinfo/#splitting

ezdxf Documentation, Release 0.17.2

UCS Class

class ezdxf.math.UCS (origin: Vertex = (0, 0, 0), ux: Vertex = None, uy: Vertex = None, uz: Vertex =

None)
Establish an user coordinate system (UCS). The UCS is defined by the origin and two unit vectors for the x-, y- or

z-axis, all axis in WCS. The missing axis is the cross product of the given axis.
If x- and y-axis are None: ux= (1, 0, 0),uy= (0, 1, 0),uz= (0, 0, 1).

Unit vectors don’t have to be normalized, normalization is done at initialization, this is also the reason why scaling
gets lost by copying or rotating.

Parameters
* origin — defines the UCS origin in world coordinates
* ux — defines the UCS x-axis as vector in WCS
* uy — defines the UCS y-axis as vector in WCS

* uz — defines the UCS z-axis as vector in WCS

ux
X-axis unit vector
uy
y-axis unit vector
uz

Z-axis unit vector

is_cartesian
Returns True if cartesian coordinate system.

copy () — UCS
Returns a copy of this UCS.

to_wes (point: ezdxf.math._vector.Vec3) — ezdxf.math._vector.Vec3
Returns WCS point for UCS point.

points_to_wes (points: Iterable[ezdxf.math._vector. Vec3]) — Iterable[ezdxf.math._vector.Vec3]
Returns iterable of WCS vectors for UCS points.

direction_to_wes (vector: ezdxf.math._vector.Vec3) — ezdxf.math._vector.Vec3
Returns WCS direction for UCS vector without origin adjustment.

from_wcs (point: ezdxf.math._vector. Vec3) — ezdxf.math._vector.Vec3
Returns UCS point for WCS point.

points_from_wcs (points: Iterable[ezdxf.math._vector. Vec3]) — Iterable[ezdxf.math._vector.Vec3]
Returns iterable of UCS vectors from WCS points.

direction_from_wcs (vector: ezdxf.math._vector.Vec3) — ezdxf.math._vector.Vec3
Returns UCS vector for WCS vector without origin adjustment.

to_ocs (point: ezdxf.math._vector.Vec3) — ezdxf.math._vector.Vec3
Returns OCS vector for UCS point.

The OCS is defined by the z-axis of the UCS.

points_to_ocs (points: Iterable[ezdxf.math._vector. Vec3]) — Iterable[ezdxf.math._vector.Vec3]
Returns iterable of OCS vectors for UCS points.

The OCS is defined by the z-axis of the UCS.

430

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Parameters points — iterable of UCS vertices

to_ocs_angle_deg (angle: float) — float
Transforms angle from current UCS to the parent coordinate system (most likely the WCS) including the
transformation to the OCS established by the extrusion vector UCS. uz.

Parameters angle —in UCS in degrees

transform (m: Matrix44) — UCS
General inplace transformation interface, returns self (floating interface).

Parameters m — 4x4 transformation matrix (ezdxf.math.Matrix44)

rotate (axis: Vertex, angle: float) — UCS
Returns a new rotated UCS, with the same origin as the source UCS. The rotation vector is located in the
origin and has WCS coordinates e.g. (0, 0, 1) is the WCS z-axis as rotation vector.

Parameters
e axis — arbitrary rotation axis as vector in WCS
* angle - rotation angle in radians

rotate_local_x (angle: float) — UCS
Returns a new rotated UCS, rotation axis is the local x-axis.

Parameters angle — rotation angle in radians

rotate_local_y (angle: float) — UCS
Returns a new rotated UCS, rotation axis is the local y-axis.

Parameters angle — rotation angle in radians

rotate_local_z (angle: float) — UCS
Returns a new rotated UCS, rotation axis is the local z-axis.

Parameters angle — rotation angle in radians

shift (delta: Vertex) — UCS
Shifts current UCS by delta vector and returns self.

Parameters delta - shifting vector

moveto (location: Vertex) — UCS
Place current UCS at new origin location and returns self.

Parameters location — new origin in WCS

static from_x_axis_and_point_in_xy (origin: Vertex, axis: Vertex, point: Vertex) — UCS
Returns an new UCS defined by the origin, the x-axis vector and an arbitrary point in the xy-plane.

Parameters
e origin - UCS origin as (X, y, z) tuple in WCS
* axis — x-axis vector as (X, y, z) tuple in WCS
* point - arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in WCS

static from_x_axis_and_point_in_xz (origin: Vertex, axis: Vertex, point: Vertex) — UCS
Returns an new UCS defined by the origin, the x-axis vector and an arbitrary point in the xz-plane.

Parameters
* origin — UCS origin as (X, y, z) tuple in WCS

* axis — x-axis vector as (X, y, z) tuple in WCS

6.8.

Reference 431

ezdxf Documentation, Release 0.17.2

e point - arbitrary point unlike the origin in the xz-plane as (X, y, z) tuple in WCS

static from_y_ axis_and_point_in_xy (origin: Vertex, axis: Vertex, point: Vertex) — UCS
Returns an new UCS defined by the origin, the y-axis vector and an arbitrary point in the xy-plane.

Parameters
* origin - UCS origin as (X, y, z) tuple in WCS
* axis — y-axis vector as (X, y, z) tuple in WCS
* point - arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in WCS

static from_y_ axis_and_point_in_yz (origin: Vertex, axis: Vertex, point: Vertex) — UCS
Returns an new UCS defined by the origin, the y-axis vector and an arbitrary point in the yz-plane.

Parameters
* origin — UCS origin as (X, y, z) tuple in WCS
* axis - y-axis vector as (X, y, z) tuple in WCS
e point - arbitrary point unlike the origin in the yz-plane as (X, y, z) tuple in WCS

static from_z_axis_and_point_in_xz (origin: Vertex, axis: Vertex, point: Vertex) — UCS
Returns an new UCS defined by the origin, the z-axis vector and an arbitrary point in the xz-plane.

Parameters
e origin — UCS origin as (X, y, z) tuple in WCS
* axis —z-axis vector as (X, y, z) tuple in WCS
¢ point - arbitrary point unlike the origin in the xz-plane as (X, y, z) tuple in WCS

static from_z_axis_and_point_in_yz (origin: Vertex, axis: Vertex, point: Vertex) — UCS
Returns an new UCS defined by the origin, the z-axis vector and an arbitrary point in the yz-plane.

Parameters
¢ origin - UCS origin as (X, y, z) tuple in WCS
* axis - z-axis vector as (X, y, z) tuple in WCS
* point - arbitrary point unlike the origin in the yz-plane as (X, y, z) tuple in WCS

render_axis (layout: BaseLayout, length: float = 1, colors: Tuple[int, int, int] = (1, 3, 5))
Render axis as 3D lines into a layout.

Matrix44

class ezdxf.math.Matrix44 (*args)
This is a pure Python implementation for 4x4 transformation matrices , to avoid dependency to big numerical
packages like numpy, before binary wheels, installation of these packages wasn’t always easy on Windows.

The utility functions for constructing transformations and transforming vectors and points assumes that vectors are

stored as row vectors, meaning when multiplied, transformations are applied left to right (e.g. vAB transforms v
by A then by B).

Matrix44 initialization:
e Matrix44 () returns the identity matrix.
* Matrix44 (values) values is an iterable with the 16 components of the matrix.

e Matrix44 (rowl, row2, row3, rowd) four rows, each row with four values.

432 Chapter 6. Contents

https://en.wikipedia.org/wiki/Transformation_matrix

ezdxf Documentation, Release 0.17.2

__repr__ () —str
Returns the representation string of the matrix: Matrix44 ((col0, coll, col2, col3), (...),
(eve)y (o00))

get_row (row: int) — Tuple[float, ...]
Get row as list of of four float values.

Parameters row — row index [0 .. 3]

set_row (row: int, values: Sequence[float]) — None
Sets the values in a row.

Parameters
e row —row index [0 .. 3]
¢ values — iterable of four row values

get_col (col: int) — Tuple[float, ...]
Returns a column as a tuple of four floats.

Parameters col — column index [0 .. 3]

set_col (col: int, values: Sequence[float])
Sets the values in a column.

Parameters
¢ col — column index [0 .. 3]
e values - iterable of four column values

copy () — Matrix44
Returns a copy of same type.

__copy__ () — Matrix44
Returns a copy of same type.

classmethod scale (sx: float, sy: float = None, sz: float = None) — Matrix44
Returns a scaling transformation matrix. If sy is None, sy = sx, and if sz is None sz = sx.

classmethod translate (dx: float, dy: float, dz: float) — Matrix44
Returns a translation matrix for translation vector (dx, dy, dz).

classmethod x_rotate (angle: float) — Matrix44
Returns a rotation matrix about the x-axis.

Parameters angle — rotation angle in radians

classmethod y_rotate (angle: float) — Matrix44
Returns a rotation matrix about the y-axis.

Parameters angle — rotation angle in radians

classmethod z_rotate (angle: float) — Matrix44
Returns a rotation matrix about the z-axis.

Parameters angle - rotation angle in radians

classmethod axis_rotate (axis: Vertex, angle: float) — Matrix44
Returns a rotation matrix about an arbitrary axis.

Parameters
* axis —rotation axisas (x, y, z) tupleor Vec3 object

* angle - rotation angle in radians

6.8.

Reference 433

ezdxf Documentation, Release 0.17.2

classmethod xyz_rotate (angle_x: float, angle_y: float, angle_z: float) — Matrix44
Returns a rotation matrix for rotation about each axis.

Parameters
* angle_x - rotation angle about x-axis in radians
* angle_y - rotation angle about y-axis in radians
* angle_z - rotation angle about z-axis in radians

classmethod shear_xy (angle_x: float, angle_y: float) — Matrix44
Returns a translation matrix for shear mapping (visually similar to slanting) in the xy-plane.

Parameters
* angle_x — slanting angle in x direction in radians
* angle_y - slanting angle in y direction in radians

classmethod perspective_projection (left: float, right: float, top: float, bottom: float, near:

float, far: float) — Matrix44
Returns a matrix for a 2D projection.

Parameters
e left — Coordinate of left of screen
¢ right — Coordinate of right of screen
¢ top — Coordinate of the top of the screen
* bottom — Coordinate of the bottom of the screen
* near — Coordinate of the near clipping plane
e far — Coordinate of the far clipping plane

classmethod perspective_projection_£fov (fov: float, aspect: float, near: float, far: float)

. L — Matrix44
Returns a matrix for a 2D projection.

Parameters
e fov — The field of view (in radians)
* aspect — The aspect ratio of the screen (width / height)
* near - Coordinate of the near clipping plane
e far — Coordinate of the far clipping plane

static chain (*matrices: Iterable[Matrix44]) — Matrix44
Compose a transformation matrix from one or more matrices.

static ucs (ux: Vertex, uy: Vertex, uz: Vertex) — Matrix44
Returns a matrix for coordinate transformation from WCS to UCS. For transformation from UCS to WCS,
transpose the returned matrix.

Parameters
¢ ux — x-axis for UCS as unit vector
¢ uy — y-axis for UCS as unit vector
¢ uz — z-axis for UCS as unit vector

* origin — UCS origin as location vector

434 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

__hash__ ()
Return hash(self).

__getitem__ (index: Tuple[int, int])
Get (row, column) element.

__setitem__ (index: Tuple[int, int], value: float)
Set (row, column) element.

__iter__ () — Iterator[float]
Iterates over all matrix values.

rows () — Iterable[Tuple[float, ...]]
Iterate over rows as 4-tuples.

columns () — Iterable[Tuple[float, ...]]
Iterate over columns as 4-tuples.

__mul__ (other: Matrix44) — Matrix44
Returns a new matrix as result of the matrix multiplication with another matrix.

__imul__ (other: Matrix44) — Matrix44
Inplace multiplication with another matrix.

transform (vector: Vertex) — ezdxf.math._vector.Vec3
Returns a transformed vertex.

transform_direction (vector: Vertex, normalize=False) — ezdxf.math._vector.Vec3
Returns a transformed direction vector without translation.

transform_vertices (vectors: Iterable[Vertex]) — Iterable[ezdxf.math._vector.Vec3]
Returns an iterable of transformed vertices.

transform_directions (vectors: Iterable[Vertex], normalize=Fualse) — Iter-

able[ezdxf.math._vector.Vec3]
Returns an iterable of transformed direction vectors without translation.

transpose () — None
Swaps the rows for columns inplace.

determinant () — float
Returns determinant.

inverse () — None
Calculates the inverse of the matrix.

Raises ZeroDivisionError — if matrix has no inverse.

property is_cartesian
Returns True if target coordinate system is a right handed orthogonal coordinate system.

property is_orthogonal
Returns True if target coordinate system has orthogonal axis.

Does not check for left- or right handed orientation, any orientation of the axis valid.

6.8. Reference 435

ezdxf Documentation, Release 0.17.2

Construction Tools

Vec3

class ezdxf.math.Vee3 (*args)
This is an immutable universal 3D vector object. This class is optimized for universality not for speed. Immutable
means you can’t change (X, y, z) components after initialization:

vl = Vec3(1l, 2, 3)

v2 = vl

v2.z = 7 # this is not possible, raises AttributeError

v2 = Vec3(v2.x, v2.y, 7) # this creates a new Vec3() object
assert vl.z == 3 # and vl remains unchanged

Vec 3 initialization:
e Vec3 (), returns Vec3 (0, 0, 0)
e Vec3((x, y)),returns Vec3(x, vy, O0)
e Vec3((x, vy, z)),returnsVec3(x, vy, 2z)
e Vec3 (x, y),returnsVVec3(x, vy, 0)
e Vec3(x, vy, z),returnsVec3(x, vy, z)

Addition, subtraction, scalar multiplication and scalar division left and right handed are supported:

v = Vec3(1, 2, 3)

v + (1, 2, 3) == Vec3(2, 4, 6)

(1, 2, 3) + v == Vec3(2, 4, 06)

v - (1, 2, 3) == Vec3(0, 0, 0)

(1, 2, 3) — v == Vec3(0, 0, 0)

v * 3 == Vec3(3, 6, 9)

3 * v == Vec3(3, 6, 9)

Vec3(3, 6, 9) / 3 == Vec3(l, 2, 3)
-Vec3 (1, 2, 3) == (-1, -2, —-3)

Comparison between vectors and vectors or tuples is supported:

Vec3 (1, 2, 3) < Vec3 (2, 2, 2)
(1, 2, 3) < tuple(Vec3(2, 2, 2)) # conversion necessary
Vec3(1l, 2, 3) == (1, 2, 3)

bool (Vec3 (1, 2, 3)) is True
bool (Vec3 (0, 0, 0)) is False

X
x-axis value
Y
y-axis value
z
z-axis value
Xy
Vec3as (x, y, O0),projected on the xy-plane.
Xyz

Vec3as (x, y, z) tuple.

436 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

vec2
Real 2D vector as Vec?2 object.

magnitude
Length of vector.

magnitude_xy
Length of vector in the xy-plane.

magnitude_square
Square length of vector.

is_null
Vec3 (0, 0, 0).Has a fixed absolute testing tolerance of le-12!

Type True if all components are close to zero

angle

Angle between vector and x-axis in the xy-plane in radians.
angle_deg

Returns angle of vector and x-axis in the xy-plane in degrees.
spatial_angle

Spatial angle between vector and x-axis in radians.
spatial_angle_deg

Spatial angle between vector and x-axis in degrees.

__str__ () —str
Return ' (x, y, z)' asstring.

__repr__ () —»str
Return 'Vec3 (x, y, z)' asstring.

len__ () —int
Returns always 3.

__hash__ () —int

Returns hash value of vector, enables the usage of vector as key in set and dict.

copy () — Vec3
Returns a copy of vector as Vec 3 object.

__copy___ () — Vec3
Returns a copy of vector as Vec 3 object.

__deepcopy___ (memodict: dict) — Vec3
copy .deepcopy () support.

__getitem__ (index: int) — float
Support for indexing:

e v[0]is v.x
e v[1]isv.y
e v[2]isv.z

__iter__ () — Iterator[float]
Returns iterable of x-, y- and z-axis.

__abs__ () — float
Returns length (magnitude) of vector.

6.8.

Reference

437

ezdxf Documentation, Release 0.17.2

replace (x: float = None, y: float = None, z: float = None) — Vec3
Returns a copy of vector with replaced x-, y- and/or z-axis.

classmethod generate (items: Iterable[Vertex]) — Iterable[Vec3]
Returns an iterable of Vec 3 objects.

classmethod list (ifems: Iterable[Vertex]) — List[Vec3]
Returns a list of Vec 3 objects.

classmethod tuple (items: Iterable[Vertex]) — Sequence[Vec3]
Returns a tuple of Vec3 objects.

classmethod from_angle (angle: float, length: float = 1.) — Vec3
Returns a Vec 3 object from angle in radians in the xy-plane, z-axis = 0.

classmethod from_deg_angle (angle: float, length: float = 1.) — Vec3
Returns a Vec 3 object from angle in degrees in the xy-plane, z-axis = 0.

orthogonal (ccw: bool = True) — Vec3
Returns orthogonal 2D vector, z-axis is unchanged.

Parameters ccw — counter clockwise if True else clockwise

lerp (other: Vertex, factor=.5) — Vec3
Returns linear interpolation between self and other.

Parameters
* other - end point as Vec 3 compatible object
» factor - interpolation factor (0 = self, 1 = other, 0. 5 = mid point)

is_parallel (other: Vec3, abs_tolr=1e-12) — bool
Returns True if self and other are parallel to vectors.

project (other: Vertex) — Vec3
Returns projected vector of other onto self.

normalize (length: float = 1.) — Vec3
Returns normalized vector, optional scaled by length.

reversed () — Vec3
Returns negated vector (-self).

isclose (other: Vertex, *, rel_tol: float = 1e-09, abs_tol: float = le-12) — bool
Returns True if self is close to other. Uses math.isclose () to compare all axis.

Learn more about the math.isclose () function in PEP 485.

_neg__ () — Vec3
Returns negated vector (-self).

__bool__ () — bool
Returns True if vectorisnot (0, 0, 0).

__eq___ (other: Vertex) — bool
Equal operator.

Parameters other — Vec 3 compatible object

__1t__ (other: Vertex) — bool
Lower than operator.

Parameters other — Vec 3 compatible object

438

Chapter 6

. Contents

https://www.python.org/dev/peps/pep-0485/

ezdxf Documentation, Release 0.17.2

__add___ (other: Vertex) — Vec3
Add Vec3 operator: self + other.

__radd___ (other: Vertex) — Vec3
RAdd vec3 operator: other + self.

__sub___(other: Vertex) — Vec3
Sub Vec 3 operator: self - other.

__rsub___ (other: Vertex) — Vec3
RSub Vec3 operator: other - self.

__mul__ (other: float) — Vec3
Scalar Mul operator: self * other.

__rmul__ (other: float) — Vec3
Scalar RMul operator: other * self.

__truediv__ (other: float) — Vec3
Scalar Div operator: self / other.

dot (other: Vertex) — float
Dot operator: self . other

Parameters other — Vec 3 compatible object

cross (other: Vertex) — Vec3
Dot operator: self x other

Parameters other — Vec 3 compatible object

distance (other: Vertex) — float
Returns distance between self and other vector.

angle_about (base: Vec3, target: Vec3) — float
Returns counter clockwise angle in radians about self from base to target when projected onto the plane
defined by self as the normal vector.

Parameters
* base — base vector, defines angle 0
* target — target vector

angle_between (other: Vertex) — float
Returns angle between self and other in radians. +angle is counter clockwise orientation.

Parameters other — Vec 3 compatible object

rotate (angle: float) — Vec3
Returns vector rotated about angle around the z-axis.

Parameters angle — angle in radians

rotate_degq (angle: float) — Vec3
Returns vector rotated about angle around the z-axis.

Parameters angle — angle in degrees

static sum (items: Iterable[Vertex]) — Vec3
Add all vectors in items.

ezdxf.math.X AXIS
Vec3 (1, 0, 0)

6.8. Reference 439

ezdxf Documentation, Release 0.17.2

ezdxf.math.¥Y_AXIS

Vec3 (0, 1, 0)

ezdxf.math.Z_AXIS

ezdx

Vec2

clas

Vec3 (0, 0, 1)

f.math.NULLVEC
Vec3 (0, 0, 0)

s ezdxf.math.Vec2 (v=(0.0, 0.0), y=None)
Vec 2 represents a special 2D vector (x, y). The Vec2 classis optimized for speed and not immutable, i add (),
isub (), imul () and idiv () modifies the vector itself, the Vec3 class returns a new object.

VecZ initialization accepts float-tuples (x, y [, z]),two floats or any object providing x and y attributes like
VecZ and Vec3 objects.

Parameters

* v — vector object with x and y attributes/properties or a sequence of float [x, y, ...]or
x-axis as float if argument y is not None

» y —second float for Vec2 (x, vy)

VecZ implements a subset of Vec3.

Plane

clas

s ezdxf.math.Plane (normal: Vec3, distance: float)
Represents a plane in 3D space as normal vector and the perpendicular distance from origin.

normal
Normal vector of the plane.

distance_from_origin
The (perpendicular) distance of the plane from origin (0, 0, 0).

vector
Returns the location vector.

classmethod from_3p (a: Vec3, b: Vec3, ¢: Vec3) — Plane
Returns a new plane from 3 points in space.

classmethod from_vector (vector) — Plane
Returns a new plane from a location vector.

copy () — Plane
Returns a copy of the plane.

signed_distance_to (v: Vec3) — float
Returns signed distance of vertex v to plane, if distance is > 0, v is in ‘front’ of plane, in direction of the
normal vector, if distance is < 0, v is at the ‘back’ of the plane, in the opposite direction of the normal vector.

distance_to (v: Vec3) — float
Returns absolute (unsigned) distance of vertex v to plane.

is_coplanar_vertex (v: Vec3, abs_tol=1e-9) — bool
Returns True if vertex v is coplanar, distance from plane to vertex v is 0.

440

Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

is_coplanar_plane (p: Plane, abs_tol=1e-9) — bool
Returns True if plane p is coplanar, normal vectors in same or opposite direction.

BoundingBox

class ezdxf.math.BoundingBox (vertices: Iterable[Vertex] = None)
3D bounding box.

Parameters vertices —iterable of (x, z) tuples or Vec 3 objects

Yr

extmin
“lower left” corner of bounding box

extmax
“upper right” corner of bounding box

property is_empty
Returns True if bonding box is empty

property has_data
Returns True if bonding box is not empty

property size
Returns size of bounding box.

property center
Returns center of bounding box.

inside (vertex: Vertex) — bool
Returns True if vertex is inside this bounding box.

Vertices at the box border are inside!

any_inside (vertices: Iterable[Vertex]) — bool
Returns True if any vertex is inside this bounding box.

Vertices at the box border are inside!

all_inside (vertices: Iterable[Vertex]) — bool
Returns True if all vertices are inside this bounding box.

Vertices at the box border are inside!

intersect (other: BoundingBox) — bool

Returns True if this bounding box intersects with other but does not include touching bounding boxes, see

also overlap ():

bbox1 = BoundingBox ([(0, 0, 0), (1, 1, 1)1)
bbox2 = BoundingBox ([(1, 1, 1), (2, 2, 2)1)
assert bboxl.intersect (bbox2) is False

overlap (other: BoundingBox) — bool

Returns True if this bounding box intersects with other but in contrast to intersect () includes touching

bounding boxes too:

bbox1l = BoundingBox ([(0, 0, 0), (1, 1, 1)1)
bbox2 = BoundingBox ([(1, 1, 1), (2, 2, 2)1)
assert bboxl.overlap (bbox2) is True

New in version 0.17.2.

6.8. Reference

ezdxf Documentation, Release 0.17.2

contains (other: BoundingBox) — bool
Returns True if the other bounding box is completely inside of this bounding box.

New in version 0.17.2.

extend (vertices: Iterable[Vertex]) — None
Extend bounds by vertices.

Parameters vertices — iterable of Vertex objects

union (other: BoundingBox) — BoundingBox
Returns a new bounding box as union of this and other bounding box.

rect_vertices () — Tuple[Vec2, ...]
Returns the corners of the bounding box in the xy-plane as Vec2 objects.

cube_vertices () — Tuple[Vecs, ...]
Returns the 3D corners of the bounding box as Vec 3 objects.

BoundingBox2d

class ezdxf.math.BoundingBox2d (vertices: Iterable[Vertex] = None)
Optimized 2D bounding box.

Parameters vertices —iterable of (x, y[, z]) tuplesor Vec3 objects

extmin
“lower left” corner of bounding box

extmax
“upper right” corner of bounding box

property is_empty
Returns True if bonding box is empty

property has_data
Returns True if bonding box is not empty

property size
Returns size of bounding box.

property center
Returns center of bounding box.

inside (vertex: Vertex) — bool
Returns True if vertex is inside this bounding box.

Vertices at the box border are inside!

any_inside (vertices: Iterable[Vertex]) — bool
Returns True if any vertex is inside this bounding box.

Vertices at the box border are inside!

all_inside (vertices: Iterable[Vertex]) — bool
Returns True if all vertices are inside this bounding box.

Vertices at the box border are inside!

intersect (other: BoundingBox2d) — bool
Returns True if this bounding box intersects with other but does not include touching bounding boxes, see
also overlap ():

442 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

bboxl = BoundingBox2d ([(0, 0), (1, 1)1)
bbox2 = BoundingBox2d ([(1, 1), (2, 2)1)
assert bboxl.intersect (bbox2) is False

overlap (other: BoundingBox2d) — bool
Returns True if this bounding box intersects with other but in contrast to intersect () includes touching
bounding boxes too:

bboxl = BoundingBox2d ([(0, 0), (1, 1)1)
bbox2 = BoundingBox2d ([(1, 1), (2, 2)1)
assert bboxl.overlap (bbox2) is True

New in version 0.17.2.

contains (other: BoundingBox2d) — bool
Returns True if the other bounding box is completely inside of this bounding box.

New in version 0.17.2.

extend (vertices: Iterable[Vertex]) — None
Extend bounds by vertices.

Parameters vertices — iterable of Vertex objects

union (other: BoundingBox2d) — BoundingBox2d
Returns a new bounding box as union of this and other bounding box.

rect_vertices () — Tuple[Vec2, ...]
Returns the corners of the bounding box in the xy-plane as Vec2 objects.

ConstructionRay

class ezdxf.math.ConstructionRay (pl: Vertex, p2: Vertex = None, angle: float = None)
Infinite 2D construction ray as immutable object.

Parameters
* pl — definition point 1
* p2 - ray direction as 2nd point or None
* angle - ray direction as angle in radians or None

location
Location vector as Vec2.

direction
Direction vector as VecZ2.

slope
Slope of ray or None if vertical.

angle
Angle between x-axis and ray in radians.

angle_deg
Angle between x-axis and ray in degrees.

is_vertical
True if ray is vertical (parallel to y-axis).

6.8. Reference 443

ezdxf Documentation, Release 0.17.2

is_horizontal
True if ray is horizontal (parallel to x-axis).

str__ ()
Return str(self).

is_parallel (self, other: ConstructionRay) — bool
Returns True if rays are parallel.

intersect (other: ConstructionRay) — Vec2
Returns the intersection point as (x, y) tuple of self and other.

Raises ParallelRaysError —if rays are parallel

orthogonal (location: Vertex) — ConstructionRay
Returns orthogonal ray at location.

bisectrix (other: ConstructionRay) — ConstructionRay:
Bisectrix between self and other.

yof (x: float) — float
Returns y-value of ray for x location.

Raises ArithmeticError — for vertical rays

xof (y: float) — float
Returns x-value of ray for y location.

Raises ArithmeticError — for horizontal rays

ConstructionLine

class ezdxf.math.ConstructionLine (start: Vertex, end: Vertex)
2D ConstructionLine is similar to ConstructionRay, but has a start- and endpoint. The direction of line goes

from start- to endpoint, “left of line” is always in relation to this line direction.
Parameters
* start - start point of line as Ve c2 compatible object
* end - end point of line as Vec2 compatible object

start
start point as Vec2

end
end point as Vec?2

bounding_box
bounding box of line as BoundingBox2d object.

ray
collinear ConstructionRay.

is_vertical
True if line is vertical.

is_horizontal
True if line is horizontal.

_str__ ()
Return str(self).

444

Chapter 6

. Contents

ezdxf Documentation, Release 0.17.2

translate (dx: float, dy: float) — None
Move line about dx in x-axis and about dy in y-axis.

Parameters
¢ dx — translation in x-axis
¢ dy - translation in y-axis

length () — float
Returns length of line.

midpoint () — Vec2
Returns mid point of line.

inside_bounding_box (point: Vertex) — bool
Returns True if point is inside of line bounding box.

intersect (other: ConstructionLine, abs_tol: float = le-10) — Optional[Vec2]
Returns the intersection point of to lines or None if they have no intersection point.

Parameters
e other —other ConstructionLine
¢ abs_tol - tolerance for distance check

has_intersection (other: ConstructionLine, abs_tol: float = le-10) — bool
Returns True if has intersection with other line.

is_point_left_of_ 1line (point: Vertex, colinear=False) — bool
Returns True if point is left of construction line in relation to the line direction from start to end.

If colinear is True, a colinear point is also left of the line.

ConstructionCircle

class ezdxf.math.ConstructionCircle (center: Vertex, radius: float = 1.0)
Circle construction tool.

Parameters
* center — center point as VecZ2 compatible object
* radius — circle radius > 0

center
center point as Vec?2

radius
radius as float

bounding_box
2D bounding box of circle as BoundingBoxZ2d object.

static from_3p (pl: Vertex, p2: Vertex, p3: Vertex) — ConstructionCircle
Creates a circle from three points, all points have to be compatible to Vec2 class.

__str__ () —str
Returns string representation of circle “ConstructionCircle(center, radius)”.

translate (dx: float, dy: float) — None
Move circle about dx in x-axis and about dy in y-axis.

6.8. Reference

445

ezdxf Documentation, Release 0.17.2

Parameters
¢ dx — translation in x-axis
* dy - translation in y-axis

point_at (angle: float) — Vec2
Returns point on circle at angle as Vec2 object.

Parameters angle — angle in radians, angle goes counter clockwise around the z-axis, x-axis =0
deg.

vertices (angles: Iterable[float]) — Iterator[Vec2]
Yields vertices of the circle for iterable angles.

Parameters angles — iterable of angles as radians, angle goes counter clockwise around the
z-axis, x-axis = 0 deg.

New in version 0.17.1.

flattening (sagitta: float) — lIterator[Vec2]
Approximate the circle by vertices, argument sagitta is the max. distance from the center of an arc segment
to the center of its chord. Returns a closed polygon where the start vertex is coincident with the end vertex!

New in version 0.17.1.

inside (point: Vertex) — bool
Returns True if point is inside circle.

tangent (angle: float) — ConstructionRay
Returns tangent to circle at angle as ConstructionRay object.

Parameters angle — angle in radians

intersect_ray (ray: ConstructionRay, abs_tol: float = le-10) — Sequence[Vec2]
Returns intersection points of circle and ray as sequence of Vec2 objects.

Parameters

e ray - intersection ray

* abs_tol - absolute tolerance for tests (e.g. test for tangents)
Returns

tuple of Vec2 objects

tuple size | Description

0 no intersection

1 ray is a tangent to circle

2 ray intersects with the circle

intersect_line (ray: ConstructionlLine, abs_tol: float = le-10) — Sequence[Vec2]
Returns intersection points of circle and line as sequence of Vec2 objects.

Parameters

¢ line - intersection line

* abs_tol - absolute tolerance for tests (e.g. test for tangents)
Returns

tuple of VecZ objects

446 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

tuple size | Description

0 no intersection

1 line intersects or touches the circle at one point
2 line intersects the circle at two points

New in version 0.17.1.

intersect_circle (other: ConstructionCircle, abs_tol: float = le-10) — Sequence[Vec2]
Returns intersection points of two circles as sequence of VecZ2 objects.

Parameters

¢ other — intersection circle

¢ abs_tol — absolute tolerance for tests
Returns

tuple of Vec2 objects

tuple size | Description

0 no intersection

1 circle touches the other circle at one point
2 circle intersects with the other circle

ConstructionArc

class ezdxf.math.ConstructionArc (center: Vertex = (0, 0), radius: float = 1.0, start_angle: float
= 0.0, end_angle: float = 360.0, is_counter_clockwise: bool =

True)
This is a helper class to create parameters for the DXF Arc class.

ConstructionArc represents a 2D arc in the xy-plane, use an UCS to place arc in 3D space, see method
add_to_layout ().

Implements the 2D transformation tools: t ranslate (), scale _uniform() and rotate_z ()
Parameters
* center — center point as Vec2 compatible object
* radius —radius
* start_angle - start angle in degrees
* end_angle - end angle in degrees
* is_counter_clockwise — swaps start- and end angle if False

center
center point as Vec?2

radius
radius as float

start_angle
start angle in degrees

end_angle
end angle in degrees

6.8. Reference 447

ezdxf Documentation, Release 0.17.2

angle_span
Returns angle span of arc from start- to end param.

start_angle_rad
Returns the start angle in radians.

end_angle_rad
Returns the end angle in radians.

start_point
start point of arc as Vec?2.

end_point
end point of arc as Vec2.

bounding box
bounding box of arc as BoundingBox2d.

angles (num: int) — Iterable[float]
Returns num angles from start- to end angle in degrees in counter clockwise order.

All angles are normalized in the range from [0, 360).

vertices (a: Iterable[float]) — Iterable[ezdxf.math._vector.Vec2]
Yields vertices on arc for angles in iterable a in WCS as location vectors.

Parameters a — angles in the range from O to 360 in degrees, arc goes counter clockwise around
the z-axis, WCS x-axis = 0 deg.

tangents (a: Iterable[float]) — Iterable[ezdxf.math._vector.Vec2]
Yields tangents on arc for angles in iterable a in WCS as direction vectors.

Parameters a — angles in the range from O to 360 in degrees, arc goes counter clockwise around
the z-axis, WCS x-axis = 0 deg.

translate (dx: float, dy: float) — ConstructionArc
Move arc about dx in x-axis and about dy in y-axis, returns self (floating interface).

Parameters
¢ dx — translation in x-axis
* dy - translation in y-axis

scale_uniform (s: float) — ConstructionArc
Scale arc inplace uniform about s in x- and y-axis, returns self (floating interface).

rotate_z (angle: float) — ConstructionArc
Rotate arc inplace about z-axis, returns self (floating interface).

Parameters angle — rotation angle in degrees

classmethod from_2p_angle (start_point: Vertex, end_point: Vertex, angle: float, ccw: bool =

True) — ConstructionArc
Create arc from two points and enclosing angle. Additional precondition: arc goes by default in counter

clockwise orientation from start_point to end_point, can be changed by ccw = False.
Parameters
* start_point - start point as VecZ compatible object
* end_point - end point as VecZ2 compatible object
* angle - enclosing angle in degrees

¢ ccw — counter clockwise direction if True

448 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

classmethod from_2p_radius (start_point: Vertex, end_point: Vertex, radius: float, ccw: bool =
True, center_is_left: bool = True) — ConstructionArc
Create arc from two points and arc radius. Additional precondition: arc goes by default in counter clockwise

orientation from start_point to end_point can be changed by ccw = False.

The parameter center_is_left defines if the center of the arc is left or right of the line from start_point to
end_point. Parameter ccw = False swaps start- and end point, which also inverts the meaning of cen—
ter_is_left.

Parameters
* start_point - start point as Ve c2 compatible object
* end_point - end point as Vec2 compatible object
* radius - arc radius
* ccw — counter clockwise direction if True
* center_is_left — center point of arc is left of line from start- to end point if True

classmethod from_3p (start_point: Vertex, end_point: Vertex, def_point: Vertex, ccw: bool = True)

— ConstructionArc
Create arc from three points. Additional precondition: arc goes in counter clockwise orientation from

start_point to end_point.
Parameters
* start_point - start point as Vec2 compatible object
* end_point - end point as Vec2 compatible object
* def_point - additional definition point as VecZ2 compatible object
* ccw — counter clockwise direction if True

add_to_layout (layout: BaseLayout, ucs: UCS = None, dxfattribs: dict = None) — Arc
Add arc as DXF Arc entity to a layout.

Supports 3D arcs by using an UCS. An ConstructionArc is always defined in the xy-plane, but by using
an arbitrary UCS, the arc can be placed in 3D space, automatically OCS transformation included.

Parameters
¢ layout — destination layout as BaseLayout object
* ucs - place arc in 3D space by UCS object
* dxfattribs — additional DXF attributes for the ARC entity

intersect_ray (ray: ConstructionRay, abs_tol: float = le-10) — Sequence[Vec2]
Returns intersection points of arc and ray as sequence of VecZ2 objects.

Parameters

* ray - intersection ray

¢ abs_tol - absolute tolerance for tests (e.g. test for tangents)
Returns

tuple of Vec2 objects

tuple size | Description
0 no intersection
1 line intersects or touches the arc at one point
2 line intersects the arc at two points
6.8. Reference 449

ezdxf Documentation, Release 0.17.2

New in version 0.17.1.

intersect_line (ray: ConstructionlLine, abs_tol: float = le-10) — Sequence[Vec2]
Returns intersection points of arc and line as sequence of Vec2 objects.

Parameters

¢ line - intersection line

* abs_tol - absolute tolerance for tests (e.g. test for tangents)
Returns

tuple of Vec2 objects

tuple size | Description

0 no intersection

1 line intersects or touches the arc at one point
2 line intersects the arc at two points

New in version 0.17.1.

intersect_circle (circle: ConstructionCircle, abs_tol: float = 1e-10) — Sequence[Vec2]
Returns intersection points of arc and circle as sequence of Vec2 objects.

Parameters

e circle - intersection circle

¢ abs_tol - absolute tolerance for tests
Returns

tuple of Vec2Z objects

tuple size | Description

0 no intersection

1 circle intersects or touches the arc at one point
2 circle intersects the arc at two points

New in version 0.17.1.

intersect_arc (other: ConstructionArc, abs_tol: float = le-10) — Sequence[Vec2]
Returns intersection points of two arcs as sequence of Vec2 objects.

Parameters

e other - other intersection arc

¢ abs_tol - absolute tolerance for tests
Returns

tuple of Vec2 objects

tuple size | Description

0 no intersection

1 other arc intersects or touches the arc at one point
2 other arc intersects the arc at two points

New in version 0.17.1.

450 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

ConstructionEllipse

class ezdxf.math.ConstructionEllipse (center: Vertex = Vec3(0.0, 0.0, 0.0), major_axis: Vertex
= Vec3(1.0, 0.0, 0.0), extrusion: Vertex = Vec3(0.0, 0.0,
1.0), ratio: float = 1, start_param: float = 0, end_param:
float = 6.283185307179586, ccw: bool = True)
This is a helper class to create parameters for 3D ellipses.

Parameters
* center — 3D center point
* major_axis — major axis as 3D vector
* extrusion - normal vector of ellipse plane
* ratio - ratio of minor axis to major axis
* start_param - start param in radians
* end_param - end param in radians
* ccw — is counter clockwise flag - swaps start- and end param if False

center
center point as Vec3

major_axis
major axis as Vec3

minor_axis
minor axis as Vec 3, automatically calculated from ma jor_axisand extrusion.

extrusion
extrusion vector (normal of ellipse plane) as Vec3

ratio
ratio of minor axis to major axis (float)

start
start param in radians (float)

end
end param in radians (float)

start_point
Returns start point of ellipse as Vec3.

end_point
Returns end point of ellipse as Vec3.

property param_span
Returns the counter clockwise params span from start- to end param, see also ezdxf.math.
ellipse_param_span () for more information.

to_ocs () — ConstructionEllipse
Returns ellipse parameters as OCS representation.

OCS elevation is stored in center. z.

params (num: int) — Iterable[float]
Returns num params from start- to end param in counter clockwise order.

All params are normalized in the range from [0, 2).

6.8. Reference 451

ezdxf Documentation, Release 0.17.2

vertices (params: Iterable[float]) — Iterable[ezdxf.math._vector.Vec3]
Yields vertices on ellipse for iterable params in WCS.

Parameters params — param values in the range from [0, 2m) in radians, param goes counter
clockwise around the extrusion vector, major_axis = local x-axis = 0 rad.

flattening (distance: float, segments: int = 4) — Iterable[ezdxf.math._vector.Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided. Returns a closed polygon for a full ellipse: start vertex == end vertex.

Parameters
* distance — maximum distance from the projected curve point onto the segment chord.
* segments — minimum segment count
New in version 0.15.

params_from_vertices (vertices: Iterable[Vertex]) — Iterable[float]
Yields ellipse params for all given vertices.

The vertex don’t has to be exact on the ellipse curve or in the range from start- to end param or even in the
ellipse plane. Param is calculated from the intersection point of the ray projected on the ellipse plane from
the center of the ellipse through the vertex.

Warning: An input for start- and end vertex at param 0 and 2w return unpredictable results because of
floating point inaccuracy, sometimes 0 and sometimes 2.

dxfattribs () — Dict
Returns required DXF attributes to build an ELLIPSE entity.

Entity ELLIPSE has always a ratio in range from le-6 to 1.

main_axis_points () — Iterable[ezdxf.math._vector.Vec3]
Yields main axis points of ellipse in the range from start- to end param.

classmethod from_arc (center: Vertex = (0, 0, 0), radius: float = 1, extrusion: Vertex = (0, 0, 1),
start_angle: float = 0, end_angle: float = 360, ccw: bool = True) — Con-
structionEllipse

Returns ConstructionEl1lipse from arc or circle.

Arc and Circle parameters defined in OCS.
Parameters
* center - center in OCS
e radius - arc or circle radius
* extrusion — OCS extrusion vector
e start_angle - start angle in degrees
* end_angle - end angle in degrees
e cecw — arc curve goes counter clockwise from start to end if True

transform (m: Matrix44)
Transform ellipse in place by transformation matrix m.

swap_axis () — None
Swap axis and adjust start- and end parameter.

452 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

add_to_layout (layout: BaseLayout, dxfattribs: dict = None) — Ellipse
Add ellipse as DXF E111pse entity to a layout.

Parameters
¢ layout — destination layout as BaseLayout object

e dxfattribs — additional DXF attributes for the ELLIPSE entity

ConstructionBox

class ezdxf.math.ConstructionBox (center: Vertex = (0, 0), width: float = 1, height: float = 1, angle:
float = 0)
Helper class to create rectangles.

Parameters
* center — center of rectangle
* width — width of rectangle
* height - height of rectangle
* angle - angle of rectangle in degrees

center
box center

width
box width

height
box height

angle
rotation angle in degrees

corners
box corners as sequence of VecZ2 objects.

bounding_box
BoundingBox2d

incircle_radius
incircle radius

circumcircle_radius
circum circle radius

__iter__ () — Iterable[Vec2]
Iterable of box corners as Vec2 objects.

__getitem__ (corner) — Vec2
Get corner by index corner, 1ist like slicing is supported.

__repr__ () —»str
Returns string representation of box as ConstructionBox (center, width, height, angle)

classmethod from_points (pl: Vertex, p2: Vertex) — ConstructionBox
Creates a box from two opposite corners, box sides are parallel to x- and y-axis.

Parameters

e pl —first corner as VecZ2 compatible object

6.8. Reference 453

ezdxf Documentation, Release 0.17.2

* p2 —second corner as VecZ2 compatible object

translate (dx: float, dy: float) — None
Move box about dx in x-axis and about dy in y-axis.

Parameters
¢ dx — translation in x-axis
 dy - translation in y-axis

expand (dw: float, dh: float) — None
Expand box: dw expand width, dh expand height.

scale (sw: float, sh: float) — None
Scale box: sw scales width, sh scales height.

rotate (angle: float) — None
Rotate box by angle in degrees.

is_inside (point: Vertex) — bool
Returns True if point is inside of box.

is_any_corner_inside (other: ConstructionBox) — bool
Returns True if any corner of other box is inside this box.

is_overlapping (other: ConstructionBox) — bool
Returns True if this box and other box do overlap.

border_lines () — Sequence[ConstructionLine]
Returns border lines of box as sequence of ConstructionLine.

intersect (line: ConstructionLine) — List[Vec2]
Returns 0, 1 or 2 intersection points between line and box border lines.

Parameters line - line to intersect with border lines
Returns

list of intersection points

list size | Description
0 no intersection
1 line touches box at one corner
2 line intersects with box
ConstructionPolyline
class ezdxf.math.ConstructionPolyline (vertices: Iterable[Union[Sequence([float],

ezdxf.math._vector.Vec2, ezdxf.math._vector. Vec3]],

close: bool = False, rel_tol: float = 1e-09)
A polyline construction tool to measure, interpolate and divide anything that can be approximated or flattened into

vertices. This is an immutable data structure which supports the Sequence interface.
Parameters
* vertices - iterable of polyline vertices
* close — True to close the polyline (first vertex == last vertex)

* rel_tol - relative tolerance for floating point comparisons

454 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Example to measure or divide a SPLINE entity:

import ezdxf
from ezdxf.math import ConstructionPolyline

doc = ezdxf.readfile("your.dxf")

msp = doc.modelspace ()

spline = msp.query ("SPLINE") .first

if spline is not None:
polyline = ConstructionPolyline (spline.flattening(0.01))
print (f"Entity {spline} has an approximated length of {polyline.length}!")
get dividing points with a distance of 1.0 drawing unit to each other
points = list (polyline.divide_by_length(1.0))

New in version 0.18.

property length
Returns the overall length of the polyline.

property is_closed
Returns True if the polyline is closed (first vertex == last vertex).

data (index: int) — Tuple[float, float, Vec3]
Returns the tuple (distance from start, distance from previous vertex, vertex). All distances measured along
the polyline.

index_at (distance: float) — int
Returns the data index of the exact or next data entry for the given distance. Returns the index of last entry
if distance > 1ength.

vertex_at (distance: float) — Vec3
Returns the interpolated vertex at the given distance from the start of the polyline.

divide (count: int) — Iterator[Vec3]
Returns count interpolated vertices along the polyline. Argument count has to be greater than 2 and the start-
and end vertices are always included.

divide_by_length (length: float, force_last: bool = False) — Iterator[Vec3]
Returns interpolated vertices along the polyline. Each vertex has a fix distance length from its predecessor.
Yields the last vertex if argument force_last is True even if the last distance is not equal to length.

Shape2d

class ezdxf.math.Shape2d (verfices: Iterable[Vertex] = None)

2D geometry object as list of Vec?2 objects, vertices can be moved, rotated and scaled.
Parameters vertices —iterable of Vec2 compatible objects.

vertices
List of Vec2 objects

bounding_box
BoundingBoxZ2d

len__ () —int
Returns count of vertices.

__getitem__ (item) — Vec2
Get vertex by index item, supports 11ist like slicing.

Reference 455

ezdxf Documentation, Release 0.17.2

append (vertex: Vertex) — None
Append single vertex.

Parameters vertex — vertex as VecZ2 compatible object

extend (vertices: Iterable) — None
Append multiple vertices.

Parameters vertices - iterable of vertices as VecZ2 compatible objects

translate (vector: Vertex) — None
Translate shape about vector.

scale (sx: float = 1.0, sy: float = 1.0) — None
Scale shape about sx in x-axis and sy in y-axis.

scale_uniform (scale: float) — None
Scale shape uniform about scale in x- and y-axis.

rotate (angle: float, center: Vertex = None) — None
Rotate shape around rotation center about angle in degrees.

rotate_rad (angle: float, center: Vertex = None) — None
Rotate shape around rotation center about angle in radians.

offset (offset: float, closed: bool = False) — ezdxf.math.shape.Shape2d
Returns a new offset shape, for more information see also ezdxf.math.offset_vertices_2d()
function.

Parameters

¢ offset - line offset perpendicular to direction of shape segments defined by vertices order,
offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment

¢ closed - True to handle as closed shape

convex_hull () — ezdxf.math.shape.Shape2d
Returns convex hull as new shape.

Curves
BSpline

class ezdxf.math.BSpline (control_points: Iterable[Vertex], order: int = 4, knots: Iterable[float] = None,

weights: Iterable[float] = None)
Representation of a B-spline curve. The default configuration of the knot vector is an uniform open knot vector

(“clamped”).
Factory functions:
e fit_points_to_cad_cv ()
e fit_points_to_cubic_bezier()
e open_uniform bspline ()
e closed_uniform_bspline()
e rational_bspline_from_arc()
e rational_bspline_from ellipse ()

e global_bspline_interpolation()

456 Chapter 6. Contents

https://en.wikipedia.org/wiki/B-spline
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 0.17.2

e Jocal_cubic_bspline_interpolation ()

Parameters
* control_points — iterable of control points as Vec 3 compatible objects
* order - spline order (degree + 1)
* knots — iterable of knot values
* weights — iterable of weight values
property control_points
Control points as tuple of Vec3

property count
Count of control points, (n + 1 in text book notation).

property order
Order (k) of B-spline =p + 1

property degree
Degree (p) of B-spline = order - 1

property max_t
Biggest knot value.

property is_rational
Returns True if curve is a rational B-spline. (has weights)

property is_clamped
Returns True if curve is a clamped (open) B-spline.

knots () — Tuple[float, ...]
Returns a tuple of knot values as floats, the knot vector always has order + count values (n + p + 2 in text
book notation).

weights () — Tuple[float, ...]
Returns a tuple of weights values as floats, one for each control point or an empty tuple.

params (segments: int) — Iterable[float]
Yield evenly spaced parameters for given segment count.

reverse () — BSpline
Returns a new BSp1 ine object with reversed control point order.

transform (m: Matrix44) — BSpline
Returns a new BSp1ine object transformed by a Mat rix44 transformation matrix.

approximate (segments: int = 20) — Iterable[Vec3]
Approximates curve by vertices as Vec 3 objects, vertices count = segments + 1.

flattening (distance: float, segments: int = 4) — Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments
between two knots, if the distance from the center of the approximation segment to the curve is bigger than
distance the segment will be subdivided.

Parameters
¢ distance — maximum distance from the projected curve point onto the segment chord.
* segments — minimum segment count between two knots

New in version 0.15.

6.8. Reference 457

http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html
http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html

ezdxf Documentation, Release 0.17.2

point (& float) — Vec3
Returns point for parameter 7.

Parameters t — parameter in range [0, max_t]

points (1 Iterable[float]) — List[Vec3]
Yields points for parameter vector 7.

Parameters t — parameters in range [0, max_t]

derivative (¢ float, n: int = 2) — List[Vec3]
Return point and derivatives up to n <= degree for parameter .

e.g. n=1 returns point and 1st derivative.
Parameters
* t — parameter in range [0, max_t]
¢ n — compute all derivatives up to n <= degree
Returns n+1 values as Vec 3 objects

derivatives (t: Iterable[float], n: int = 2) — Iterable[List[Vec3]]
Yields points and derivatives up to n <= degree for parameter vector .

e.g. n=1 returns point and 1st derivative.
Parameters
e t — parameters in range [0, max_t]
¢ n — compute all derivatives up to n <= degree
Returns List of n+1 values as Vec 3 objects

insert_knot (t: float) — BSpline
Insert an additional knot, without altering the shape of the curve. Returns a new BSp1ine object.

Parameters t — position of new knot 0 < t < max_t

knot_refinement (u: Iterable[flat]) — BSpline
Insert multiple knots, without altering the shape of the curve. Returns a new BSp1ine object.

Parameters u — vector of new knots t and for each t: 0 <t < max_t

static from_ellipse (ellipse: ConstructionEllipse) — BSpline
Returns the ellipse as BSp1ine of 2nd degree with as few control points as possible.

static from_arc (arc: ConstructionArc) — BSpline
Returns the arc as BSp1ine of 2nd degree with as few control points as possible.

static from_fit_points (points: Iterable[Vertex], degree: int = 3, method='chord') — BSpline
Returns BSp1ine defined by fit points.

static arc_approximation (arc: ConstructionArc, num: int = 16) — BSpline
Returns an arc approximation as BSp 1 ine with num control points.

static ellipse_approximation (ellipse: ConstructionEllipse, num: int = 16) — BSpline
Returns an ellipse approximation as BSp i ne with num control points.

bezier_decomposition () — Iterable[List[Vec3]]
Decompose a non-rational B-spline into multiple Bézier curves.

This is the preferred method to represent the most common non-rational B-splines of 3rd degree by cubic
Bézier curves, which are often supported by render backends.

458 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Returns Yields control points of Bézier curves, each Bézier segment has degree+1 control points
e.g. B-spline of 3rd degree yields cubic Bézier curves of 4 control points.

cubic_bezier_approximation (level: int = 3, segments: int = None) — Iterable[Bezier4P)
Approximate arbitrary B-splines (degree != 3 and/or rational) by multiple segments of cubic Bézier
curves. The choice of cubic Bézier curves is based on the widely support of this curves by many ren-
der backends. For cubic non-rational B-splines, which is maybe the most common used B-spline, is
bezier decomposition () the better choice.

1. approximation by level: an educated guess, the first level of approximation segments is based on the
count of control points and their distribution along the B-spline, every additional level is a subdivision of
the previous level.

E.g. a B-Spline of 8§ control points has 7 segments at the first level, 14 at the 2nd level and 28 at the 3rd level,
a level >= 3 is recommended.

2. approximation by a given count of evenly distributed approximation segments.

Parameters

e level - subdivision level of approximation segments (ignored if argument segments is not
None)

¢ segments — absolute count of approximation segments

Returns Yields control points of cubic Bézier curves as Bez ier4P objects

Bezier

class ezdxf.math.Bezier (defpoints: Iterable[Union[Sequence[float], ezdxf.math._vector. Vec2,

ezdxf.math._vector. Vec3]])
A Bézier curve is a parametric curve used in computer graphics and related fields. Bézier curves are used to model

smooth curves that can be scaled indefinitely. “Paths”, as they are commonly referred to in image manipulation
programs, are combinations of linked Bézier curves. Paths are not bound by the limits of rasterized images and are
intuitive to modify. (Source: Wikipedia)

This is a generic implementation which works with any count of definition points greater than 2, but it is a simple
and slow implementation. For more performance look at the specialized Bezier4P class.

Objects are immutable.
Parameters defpoints — iterable of definition points as Ve c3 compatible objects.

control_points
Control points as tuple of Vec 3 objects.

params (segments: int) — Iterable[float]
Yield evenly spaced parameters from O to 1 for given segment count.

reverse () — Bezier
Returns a new Bezier-curve with reversed control point order.

transform (m: Matrix44) — Bezier
General transformation interface, returns a new Bezier curve.

Parameters m — 4x4 transformation matrix (ezdxf.math.Matrix44)

approximate (segments: int = 20) — Iterable[Vec3]
Approximates curve by vertices as Vec 3 objects, vertices count = segments + 1.

6.8. Reference 459

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 0.17.2

flattening (distance: float, segments: int = 4) — Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided.

Parameters

¢ distance — maximum distance from the center of the curve (Cn) to the center of the
linear (C1) curve between two approximation points to determine if a segment should be
subdivided.

¢ segments — minimum segment count
New in version 0.15.

point (t: float) — Vec3
Returns a point for parameter ¢ in range [0, 1] as Vec 3 object.

points (1 lterable[float]) — Iterable[Vec3]
Yields multiple points for parameters in vector f as Vec 3 objects. Parameters have to be in range [0, 1].

derivative (t: float) — Tuple[Vec3, Vec3, Vec3]
Returns (point, Ist derivative, 2nd derivative) tuple for parameter ¢ in range [0, 1] as Vec 3 objects.

derivatives (1 lterable[float]) — Iterable[Tuple[Vec3, Vec3, Vec3]]
Returns multiple (point, 1st derivative, 2nd derivative) tuples for parameter vector ¢ as Vec3 objects. Pa-
rameters in range [0, 1]

BezierdP

class ezdxf.math.Bezier4P (defpoints: Sequence(Vertex])

Implements an optimized cubic Bézier curve for exact 4 control points.

A Bézier curve is a parametric curve, parameter ¢ goes from O to 1, where O is the first control point and 1 is the
fourth control point.

Special behavior:
¢ 2D control points in, returns 2D results as VecZ2 objects
* 3D control points in, returns 3D results as Vec3 objects

¢ Object is immutable.
Parameters defpoints — iterable of definition points as Vec?2 or Ve c3 compatible objects.
control_points

Control points as tuple of Vec3 or Vec?2 objects.

reverse () — Bezier4dP
Returns a new Bezier-curve with reversed control point order.

transform (m: Matrix44) — Bezierd P
General transformation interface, returns a new Bezier4p curve and it is always a 3D curve.

Parameters m — 4x4 transformation matrix (ezdxf.math.Matrix44)
New in version 0.14.

approximate (segments: int) — Iterable[Union[Vec3, Vec2]]
Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y [, z]) tuples.

460

Chapter 6. Contents

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 0.17.2

Parameters segments — count of segments for approximation

flattening (distance: float, segments: int = 4) — Iterable[Union[Vec3, Vec2]]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if

the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided.

Parameters

¢ distance — maximum distance from the center of the cubic (C3) curve to the center of

the linear (C1) curve between two approximation points to determine if a segment should be
subdivided.

* segments — minimum segment count
New in version 0.15.

approximated_length (segments: int = 128) — float
Returns estimated length of Bézier-curve as approximation by line segments.

point (#: float) — Union[Vec3, Vec2]
Returns point for location " at the Bezier-curve.

Parameters t — curve position in the range [0, 1]

tangent (#: float) — Union[Vec3, Vec2]
Returns direction vector of tangent for location ¢ at the Bezier-curve.

Parameters t — curve position in the range [0, 1]

Bezier3P

class ezdxf.math.Bezier3P (defpoints: Sequence(Vertex])
Implements an optimized quadratic Bézier curve for exact 3 control points.

Special behavior:
* 2D control points in, returns 2D results as VecZ2 objects
¢ 3D control points in, returns 3D results as Vec 3 objects

* Object is immutable.
Parameters defpoints — iterable of definition points as Vec2 or Vec3 compatible objects.
control_points

Control points as tuple of Vec3 or VecZ objects.

reverse () — Bezier3P
Returns a new Beézier-curve with reversed control point order.

transform (m: Matrix44) — Bezier3P
General transformation interface, returns a new Bezier 3P curve and it is always a 3D curve.

Parameters m — 4x4 transformation matrix (ezdxf.math.Matrix44)

approximate (segments: int) — Iterable[Union[Vec3, Vec2]]
Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y [, z]) tuples.

Parameters segments — count of segments for approximation

6.8. Reference 461

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

ezdxf Documentation, Release 0.17.2

flattening (distance: float, segments: int = 4) — Iterable[Union[Vec3, Vec2]]
Adaptive recursive flattening. The argument segments is the minimum count of approximation segments, if
the distance from the center of the approximation segment to the curve is bigger than distance the segment
will be subdivided.

Parameters

¢ distance — maximum distance from the center of the quadratic (C2) curve to the center
of the linear (C1) curve between two approximation points to determine if a segment should
be subdivided.

¢ segments — minimum segment count

approximated_length (segments: int = 128) — float
Returns estimated length of Bezier-curve as approximation by line segments.

point (¢ float) — Union[Vec3, Vec2]
Returns point for location ¢* at the Bezier-curve.

Parameters t — curve position in the range [0, 1]

tangent (t: float) — Union[Vec3, Vec2]
Returns direction vector of tangent for location ¢ at the Bézier-curve.

Parameters t — curve position in the range [0, 1]

ApproxParamT

class ezdxf.math.ApproxParamT (curve, *, max_t: float = 1.0, segments: int = 100)
Approximation tool for parametrized curves.

* approximate parameter 7 for a given distance from the start of the curve
* approximate the distance for a given parameter ¢ from the start of the curve

This approximations can be applied to all parametrized curves which provide a point () method, like
Bezier4P, Bezier3Pand BSpline.

The approximation is based on equally spaced parameters from O to max_t for a given segment count. The f1at -
tening () method can not be used for the curve approximation, because the required parameter ¢ is not logged
by the flattening process.

Parameters
* curve — curve object, requires a method point ()
* max_t — the max. parameter value
* segments — count of approximation segments
New in version 0.18.
property max_t
property polyline

param_t (distance: float)
Approximate parameter t for the given distance from the start of the curve.

distance (: float) — float
Approximate the distance from the start of the curve to the point ¢ on the curve.

462 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

BezierSurface

class ezdxf.math.BezierSurface (defpoints: List[List[Vertex]])

BezierSurface defines a mesh of m x n control points. This is a parametric surface, which means the m-

dimension goes from 0 to 1 as parameter « and the n-dimension goes from 0 to 1 as parameter v.

Parameters defpoints — matrix (list of lists) of m rows and n columns: [[mInl, mIn2, ...],

[m2n1, m2n2, ...] ...] each element is a 3D location as (x, y, z) tuple.

nrows
count of rows (m-dimension)

ncols
count of columns (n-dimension)

point (u: float, v: float) — ezdxf.math._vector.Vec3

Returns a point for location (i, v) at the Bézier surface as (x, y, z) tuple, parameters u and v in the range

of [0, 1].

approximate (usegs: int, vsegs: int) — List[List[ezdxf.math._vector.Vec3]]
Approximate surface as grid of (x, y, z) Vec3.

Parameters
* usegs — count of segments in u-direction (m-dimension)
* vsegs — count of segments in v-direction (n-dimension)

Returns list of usegs + 1 rows, each row is a list of vsegs + 1 vertices as Vec 3.

EulerSpiral

class ezdxf.math.EulerSpiral (curvature: float = 1.0)
This class represents an euler spiral (clothoid) for curvature (Radius of curvature).

This is a parametric curve, which always starts at the origin= (0, 0).
Parameters curvature - radius of curvature

radius (t: float) — float
Get radius of circle at distance t.

tangent (1 float) — Vec3
Get tangent at distance 7 as :class.”Vec3" object.

distance (radius: float) — float
Get distance L from origin for radius.

point (t: float) — Vec3
Get point at distance ¢ as :class."Vec3'.

circle_center (t: float) — Vec3
Get circle center at distance t.

approximate (length: float, segments: int) — Iterable[Vec3]

Approximate curve of length with line segments. Generates segments+1 vertices as Ve c 3 objects.

bspline (length: float, segments: int = 10, degree: int = 3, method: str = ‘uniform') — BSpline
Approximate euler spiral as B-spline.

Parameters

* length - length of euler spiral

6.8. Reference

463

ezdxf Documentation, Release 0.17.2

* segments — count of fit points for B-spline calculation
* degree — degree of BSpline
* method - calculation method for parameter vector t

Returns BSpline

Linear Algebra

Functions

ezdxf.math.gauss_jordan_solver (A: Iterable[lterable[float]], B: Iterable[lterable[float]]) — Tu-
ple[Matrix, Matrix]
Solves the linear equation system given by a nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B by
the Gauss-Jordan algorithm, which is the slowest of all, but it is very reliable. Returns a copy of the modified input
matrix A and the result matrix x.

Internally used for matrix inverse calculation.
Parameters

e A — matrix [[all, al2, ..., aln], [a21, a22, ..., a2n], [a21, a22, ..., a2n], ... [anl, an2, ...,
ann]]

e B—matrix [[bl1, bl2, ..., blm], [b21, b22, ..., b2m], ... [bnl, bn2, ..., bnm]]
Returns 2-tuple of Mat rix objects
Raises ZeroDivisionError — singular matrix

ezdxf.math.gauss_jordan_inverse (A: lterable[Iterable[float]]) — Matrix
Returns the inverse of matrix A as Mat rix object.

Hint: For small matrices (n<10) is this function faster than LUDecomposition(m).inverse() and as fast even if the
decomposition is already done.

Raises ZeroDivisionError - singular matrix

ezdxf.math.gauss_vector_solver (A: Iterable[Iterable[float]], B: Iterable[float]) — List[float]
Solves the linear equation system given by a nxn Matrix A . x = B, right-hand side quantities as vector B with
n elements by the Gauss-Elimination algorithm, which is faster than the Gauss-Jordan algorithm. The speed im-
provement is more significant for solving multiple right-hand side quantities as matrix at once.

Reference implementation for error checking.
Parameters

e A —matrix [[all, al2, ..., aln], [a21, a22, ..., a2n], [a21, a22, ..., a2n], ... [anl, an2, ...,
ann]]

e B - vector [bl, b2, ..., bn]
Returns vector as list of floats
Raises ZeroDivisionError - singular matrix

ezdxf.math.gauss_matrix_solver (A: lterable[Iterable[float]], B: Iterable[Iterable[float]]) — Matrix
Solves the linear equation system given by a nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B by
the Gauss-Elimination algorithm, which is faster than the Gauss-Jordan algorithm.

464 Chapter 6. Contents

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination

ezdxf Documentation, Release 0.17.2

Reference implementation for error checking.
Parameters

e A —matrix [[all, al2, ..., aln], [a21, a22, ..., a2n], [a21, a22, ..., a2n], ... [an], an2, ...,
ann]]

e B—matrix [[bl1, bl2, ..., blm], [b21, b22, ..., b2m], ... [bnl, bn2, ..., bnm]]
Returns matrix as Mat rix object
Raises ZeroDivisionError —singular matrix

ezdxf.math.tridiagonal_vector_solver (A: lterable[lterable[float]], B: Iterable[float]) —

List[float]
Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as vector

B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), O (b), +1 (¢)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.

If an ZeroDivisionError exception occurs, the equation system can possibly be solved by
BandedMatrixLU (A, 1, 1) .solve_vector (B)

Parameters

* A — diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]

[[O, cO, O, O, ...1,
[al, b1, c1, O, ...1,
[0, a2, b2, c2, ...]1,

]

* B —iterable of floats [[bl, bl, ..., bn]
Returns list of floats
Raises ZeroDivisionError - singular matrix
ezdxf.math.tridiagonal_matrix_solver (A: Iterable[Iterable[float]], B: Iterable[Iterable(float]])
Solves the linear equation system given by a tri-dia?o%olﬂlrllxxn Matrix A . x = B, right-hand side quantities as nxm
Matrix B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.

If an ZeroDivisionError exception occurs, the equation system can possibly be solved by
BandedMatrixLU(A, 1, 1) .solve_vector (B)

Parameters

e A — diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]

[[bO, cO, O, O, ...1,
[al, b1, c1, 0, ...1,
[0, a2, b2, c2, ...1,

]

e B—matrix [[bl1, bl2, ..., blm], [b21, b22, ..., b2m], ... [bnl, bn2, ..., bnm]]
Returns matrix as Mat rix object
Raises ZeroDivisionError — singular matrix

ezdxf.math.banded_matrix (A: Matrix, check_all=True) — Tuple[int, int]
Transform matrix A into a compact banded matrix representation. Returns compact representation as Mat rix
object and lower- and upper band count m1 and m2.

6.8. Reference 465

ezdxf Documentation, Release 0.17.2

Parameters
* A—input Matrix

* check_all - check all diagonals if True or abort testing after first all zero diagonal if
False.

ezdxf.math.detect_banded_matrix (A: Matrix, check_all=True) — Tuple[int, int]
Returns lower- and upper band count m1 and m2.

Parameters
e A—input Matrix

* check_all - check all diagonals if True or abort testing after first all zero diagonal if
False.

ezdxf.math.compact_banded_matrix (A: Matrix, ml: int, m2: int) — Matrix
Returns compact banded matrix representation as Mat rix object.

Parameters
* A — matrix to transform
* ml — lower band count, excluding main matrix diagonal
* m2 — upper band count, excluding main matrix diagonal

ezdxf.math. freeze_matrix (A: Union[MatrixData, Matrix]) — Matrix
Returns a frozen matrix, all data is stored in immutable tuples.

Matrix Class

class ezdxf.math.Matrix (items: Optional[Any] = None, shape: Optional[Tuple[int, int]] = None, matrix:
Optional[List[List[float]]| = None)
Basic matrix implementation without any optimization for speed of memory usage. Matrix data is stored in row
major order, this means in a list of rows, where each row is a list of floats. Direct access to the data is accessible
by the attribute Matrix.matrix.

The matrix can be frozen by function freeze_matrix () or method Matrix.freeze (), than the data is
stored in immutable tuples.

Initialization:
* Matrix(shape=(rows, cols)) ... new matrix filled with zeros
* Matrix(matrix[, shape=(rows, cols)]) ... from copy of matrix and optional reshape
e Matrix([[row_0], [row_1], ..., [row_n]]) ... from Iterable[Iterable[float]]
e Matrix([al, a2, ..., an], shape=(rows, cols)) ... from Iterable[float] and shape

nrows
Count of matrix rows.

ncols
Count of matrix columns.

shape
Shape of matrix as (n, m) tuple for n rows and m columns.

static reshape (items: Iterable[float], shape: Tuple[int, int]) — ezdxf.math.linalg.Matrix
Returns a new matrix for iterable ifems in the configuration of shape.

466 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

classmethod identity (shape: Tuple[int, int]) — ezdxf.math.linalg.Matrix
Returns the identity matrix for configuration shape.

row (index: int) — List[float]
Returns row index as list of floats.

iter_row (index: int) — Iterator[float]
Yield values of row index.

col (index: int) — List[float]
Return column index as list of floats.

iter_col (index: int) — Iterator[float]
Yield values of column index.

diag (index: int) — List[float]
Returns diagonal index as list of floats.

An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and
positive values specifies diagonals above the main diagonal.

e.g. given a 4x4 matrix:
e index 01is [00, 11, 22, 33],
e index -1 is [10, 21, 32] and
e index +1 is [01, 12, 23]

iter_diag (index: int) — Iterator[float]
Yield values of diagonal index, see also diag ().

rows () — List[List[float]]
Return a list of all rows.

cols () — List[List[float]]
Return a list of all columns.

set_row (index: int, items: Union[float, Sequence(float]] = 1.0) — None
Set row values to a fixed value or from an iterable of floats.

set_col (index: int, items: Union[float, Iterable[float]] = 1.0) — None
Set column values to a fixed value or from an iterable of floats.

set_diag (index: int = 0, items: Union[float, Iterable[float]] = 1.0) — None
Set diagonal values to a fixed value or from an iterable of floats.

An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and
positive values specifies diagonals above the main diagonal.

e.g. given a 4x4 matrix: index 0 is [00, 11, 22, 33], index —1 is [10, 21, 32] and index +1 is [01, 12, 23]

append_row (items: Sequence[float]) — None
Append a row to the matrix.

append_col (items: Sequence[float]) — None
Append a column to the matrix.

swap_rows (a. int, b: int) — None
Swap rows a and b inplace.

swap_cols (a: int, b: int) — None
Swap columns a and b inplace.

6.8. Reference 467

ezdxf Documentation, Release 0.17.2

transpose () — Matrix
Returns a new transposed matrix.

inverse () — Matrix
Returns inverse of matrix as new object.

determinant () — float
Returns determinant of matrix, raises ZeroDivisionError if matrix is singular.

freeze () — Matrix
Returns a frozen matrix, all data is stored in immutable tuples.

lu_decomp () — LUDecomposition
Returns the LU decomposition as LUDecomposition object, a faster linear equation solver.

__getitem__ (item: Tuple[int, int]) — float
Get value by (row, col) index tuple, fancy slicing as known from numpy is not supported.

__setitem__ (item: Tuple[int, int], value: float)
Set value by (row, col) index tuple, fancy slicing as known from numpy is not supported.

__eq__ (other: Matrix) — bool
Returns True if matrices are equal, tolerance value for comparison is adjustable by the attribute Matrix.
abs_tol.

__add___ (other: Union[Matrix, float]) — Matrix
Matrix addition by another matrix or a float, returns a new matrix.

__sub___ (other: Union[Matrix, float]) — Matrix
Matrix subtraction by another matrix or a float, returns a new matrix.

__mul__ (other: Union[Matrix, float]) — Matrix
Matrix multiplication by another matrix or a float, returns a new matrix.

LUDecomposition Class

class ezdxf.math.LUDecomposition (A: lterable[Iterable[float]])
Represents a LU decomposition matrix of A, raise ZeroDivisionError for a singular matrix.

This algorithm is a little bit faster than the Gauss-Elimination algorithm using CPython and much faster when using
pypy-

The LUDecomposition.matrix attribute gives access to the matrix data as list of rows like in the Mat rix
class, and the LUDecomposition. index attribute gives access to the swapped row indices.

Parameters A — matrix [[all, al2, ..., aln], [a21, a22, ..., a2n], [a21, a22, ..., a2n], ... [an], an2,
...,ann]]

Raises ZeroDivisionError - singular matrix

nrows
Count of matrix rows (and cols).

solve_vector (B: lterable[float]) — List[float]
Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as vector B
with n elements.

Parameters B — vector [bl, b2, ..., bn]

Returns vector as list of floats

468 Chapter 6. Contents

https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/Gaussian_elimination

ezdxf Documentation, Release 0.17.2

solve_matrix (B: lterable[Iterable[float]]) — Matrix

Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as nxm Matrix
B.

Parameters B — matrix [[bl1, bl2, ..., blm], [b21, b22, ..., b2m], ... [bnl, bn2, ..., bnm]]
Returns matrix as Mat rix object

inverse () — Matrix
Returns the inverse of matrix as Mat rix object, raise ZeroDivisionError for a singular matrix.

determinant () — float
Returns the determinant of matrix, raises ZeroDivisionError if matrix is singular.

BandedMatrixLU Class

class ezdxf.math.BandedMatrixLU (A: ezdxf.math.linalg. Matrix, m1: int, m2: int)
Represents a LU decomposition of a compact banded matrix.

upper
Upper triangle

lower
Lower triangle

ml
Lower band count, excluding main matrix diagonal

m2
Upper band count, excluding main matrix diagonal

index
Swapped indices

nrows
Count of matrix rows.

solve_vector (B: Iterable[float]) — List[float]
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as
vector B with n elements.

Parameters B — vector [bl, b2, ..., bn]
Returns vector as list of floats

solve_matrix (B: lterable[Iterable[float]]) — Matrix
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as nxm
Matrix B.

Parameters B — matrix [[bl1, b12, ..., blm], [b21, b22, ..., b2m], ... [bnl, bn2, ..., bnm]]
Returns matrix as Mat rix object

determinant () — float
Returns the determinant of matrix.

6.8. Reference 469

ezdxf Documentation, Release 0.17.2

6.8.8 Construction

Path

This module implements a geometric Path, supported by several render backends, with the goal to create such paths
from DXF entities like LWPOLYLINE, POLYLINE or HATCH and send them to the render backend, see ezdxr.
addons.drawing.

Minimum common interface:

¢ matplotlib: PathPatch
— matplotlib.path.Path() codes:
- MOVETO
— LINETO
— CURVES3 - quadratic Bezier-curve
— CURVEA4 - cubic Bezier-curve

¢ PyQt: QPainterPath
— moveTo()
— lineTo()
— quadTo() - quadratic Bezier-curve (converted to a cubic Beézier-curve)
— cubicTo() - cubic Bezier-curve

¢ PyCairo: Context

move_to()

line_to()

— no support for quadratic Bezier-curve

curve_to() - cubic Bezier-curve
¢ SVG: SVG-Path
— “M” - absolute move to
— “L” - absolute line to
— “Q” - absolute quadratic Bezier-curve
— “C” - absolute cubic Bezier-curve

ARC and ELLIPSE entities are approximated by multiple cubic Bézier-curves, which are close enough for display ren-
dering. Non-rational SPLINES of 3rd degree can be represented exact as multiple cubic Bézier-curves, other B-splines
will be approximated. The XLINE and the RAY entities are not supported, because of their infinite nature.

This Path class is a full featured 3D object, although the backends only support 2D paths.

Hint: A Path can not represent a point. A Path with only a start point yields no vertices!

Changed in version 0.16: Refactored the module ezdxf . render .path into the subpackage ezdxf.path.

The usability of the Path class expanded by the introduction of the reverse conversion from Path to DXF entities
(LWPOLYLINE, POLYLINE, LINE), and many other tools in ezdxf v0.16. To emphasize this new usability, the Path
class has got its own subpackage ezdxf . path.

470 Chapter 6. Contents

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch
https://doc.qt.io/qt-5/qpainterpath.html
https://pycairo.readthedocs.io/en/latest/reference/context.html
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths

ezdxf Documentation, Release 0.17.2

New in version 0.17: Added the Path.move_to () command and Multi-Path support.

Empty-Path Contains only a start point, the length of the path is 0 and the methods Path. approximate (), Path.
flattening () and Path.control_vertices () donot yield any vertices.

Single-Path The Path object contains only one path without gaps, the property Path.has_sub_pathsisFalse
and the method Path. sub_paths () yields only this one path.

Multi-Path The Path object contains more than one path, the property Path. has_sub_paths is True and the
method Path. sub_paths () yields all paths within this object as single-path objects. It is not possible to de-
tect the orientation of a multi-path object, therefore the methods Path. has_clockwise_orientation(),
Path.clockwise () and Path.counter_clockwise () raise a TypeError exception.

Warning: Always import from the top level ezdx . path, never from the sub-modules

Factory Functions

Functions to create Pat h objects from other objects.

ezdxf.path.make_path (entity: DXFEntity) — Path
Factory function to create a single Pat h object from a DXF entity. Supported DXF types:

e LINE

* CIRCLE

* ARC

* ELLIPSE

e SPLINE and HELIX

* LWPOLYLINE

e 2D and 3D POLYLINE

e SOLID, TRACE, 3DFACE

* IMAGE, WIPEOUT clipping path
* VIEWPORT clipping path

e HATCH as Multi-Path object, new in v0.17

Parameters
* entity — DXF entity

* segments — minimal count of cubic Bézier-curves for elliptical arcs like CIRCLE, ARC,
ELLIPSE, see Path.add_ellipse ()

* level - subdivide level for SPLINE approximation, see Path.add_spline ()

Raises TypeError — for unsupported DXF types

New in version 0.16.

Changed in version 0.17: support for HATCH as Multi- Path object

6.8. Reference 471

ezdxf Documentation, Release 0.17.2

ezdxf.path.from_hatch (hatch: Hatch) — Iterable[Path]
Yield all HATCH boundary paths as separated Pat h objects.

New in version 0.16.

Changed in version 17.1: Attaches the boundary state to each path as ezdxf.lldxf.const.
BoundaryPathState.

ezdxf.path. from_vertices (vertices: Iterable[Vertex], close=False) — Path
Returns a Pat h object from the given vertices.

ezdxf.path.from_matplotlib_path (mpath, curves=True) — lterable[Path]
Yields multiple Pat h objects from a Matplotlib Path (TextPath) object. (requires Matplotlib)

New in version 0.16.

ezdxf.path.multi_path_from_matplotlib_path (mpath, curves=True) — Path
Returns a Path object from a Matplotlib Path (TextPath) object. (requires Matplotlib). Returns a multi-path
object if necessary.

New in version 0.17.

ezdxf.path.from_gpainter_path (gpath) — Iterable[Path]
Yields multiple Path objects from a QPainterPath. (requires Qt bindings)

New in version 0.16.

ezdxf.path.multi_path_from_gpainter_path (gpath) — Path
Returns a Pat h objects from a QPainterPath. Returns a multi-path object if necessary. (requires Qt bindings)

New in version 0.17.

Render Functions

Functions to create DXF entities from paths and add them to the modelspace, a paperspace layout or a block definition.

ezdxf.path.render_lwpolylines (layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, seg-
ments: int = 4, extrusion: Vertex = (0, 0, 1), dxfattribs: Dict = None)
— EntityQuery
Render the given paths into layout as LWPo 1y 1 ine entities. The extrusion vector is applied to all paths, all vertices
are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The
plane elevation is the distance from the WCS origin to the start point of the first path.

Parameters
* layout — the modelspace, a paperspace layout or a block definition
* paths —iterable of Path objects
¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
* extrusion — extrusion vector for all paths
* dxfattribs — additional DXF attribs
Returns created entities in an Ent it yQuery object

New in version 0.16.

472 Chapter 6. Contents

https://matplotlib.org/3.1.1/api/path_api.html#matplotlib.path.Path
https://matplotlib.org/3.1.1/api/textpath_api.html
https://matplotlib.org/3.1.1/api/path_api.html#matplotlib.path.Path
https://matplotlib.org/3.1.1/api/textpath_api.html
https://doc.qt.io/qt-5/qpainterpath.html
https://doc.qt.io/qt-5/qpainterpath.html

ezdxf Documentation, Release 0.17.2

ezdxf.path.render_polylines2d (layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, seg-
ments: int = 4, extrusion: Vertex = (0, 0, 1), dxfattribs: Dict = None)

— EntityQuery
Render the given paths into layout as 2D Polyline entities. The extrusion vector is applied to all paths, all

vertices are projected onto the plane normal to this extrusion vector.The default extrusion vector is the WCS z-axis.
The plane elevation is the distance from the WCS origin to the start point of the first path.

Parameters
* layout — the modelspace, a paperspace layout or a block definition
* paths —iterable of Path objects
¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
* extrusion - extrusion vector for all paths
* dxfattribs — additional DXF attribs

Returns created entities in an Ent it yQuery object

New in version 0.16.

ezdxf.path.render_hatches (layout: Layout, paths: Iterable[Path], *, edge_path="True, distance: float =
0.01, segments: int = 4, gl_tol: float = le-4, extrusion: Vertex = (0, 0, 1),
dxfattribs: Dict = None) — EntityQuery
Render the given paths into layout as Hat ch entities. The extrusion vector is applied to all paths, all vertices are
projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane

elevation is the distance from the WCS origin to the start point of the first path.
Parameters
* layout — the modelspace, a paperspace layout or a block definition
* paths - iterable of Path objects

* edge_path — True for edge paths build of LINE and SPLINE edges, False for only
LWPOLYLINE paths as boundary paths

¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve to flatten polyline paths
* gl_tol —tolerance for G1 continuity check to separate SPLINE edges
* extrusion - extrusion vector for all paths
* dxfattribs — additional DXF attribs
Returns created entities in an Ent it yQuery object
New in version 0.16.

ezdxf.path.render_mpolygons (layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, seg-
ments: int = 4, extrusion: Vertex = (0, 0, 1), dxfattribs: Dict = None)

— EntityQuery
Render the given paths into layout as MPo1ygon entities. The MPOLYGON entity supports only polyline bound-

ary paths. All curves will be approximated.

The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector.
The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start
point of the first path.

Parameters

6.8. Reference 473

ezdxf Documentation, Release 0.17.2

* layout — the modelspace, a paperspace layout or a block definition
* paths —iterable of Path objects
¢ distance — maximum distance, see Path.flattening ()
* segments — minimum segment count per Bézier curve to flatten polyline paths
* extrusion - extrusion vector for all paths
* dxfattribs — additional DXF attribs
Returns created entities in an Ent it yQuery object
New in version 0.17.

ezdxf.path.render_polylines3d (layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, seg-
ments: int = 4, dxfattribs: Dict = None) — EntityQuery
Render the given paths into layout as 3D Po1y11ine entities.

Parameters
* layout - the modelspace, a paperspace layout or a block definition
» paths —iterable of Path objects
¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
e dxfattribs - additional DXF attribs

Returns created entities in an Ent it yQuery object

New in version 0.16.

ezdxf.path.render_lines (layout: Layout, paths: Iterable[Path], *, distance: float = 0.01, segments: int
= 4, dxfattribs: Dict = None) — EntityQuery
Render the given paths into layout as L 1ne entities.

Parameters
* layout — the modelspace, a paperspace layout or a block definition
* paths —iterable of Path objects
¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
* dxfattribs — additional DXF attribs

Returns created entities in an Ent it yQuery object

New in version 0.16.

ezdxf.path.render_splines_and_polylines (layout: Layout, paths: Iterable[Path], *, gI_tol: float
= le-4, dxfattribs: Dict = None) — EntityQuery
Render the given paths into layout as Spline and 3D Polyline entities.

Parameters
* layout — the modelspace, a paperspace layout or a block definition
* paths —iterable of Path objects
* gl_tol —tolerance for G1 continuity check

e dxfattribs — additional DXF attribs

474 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Returns created entities in an Ent it yQuery object

New in version 0.16.

Entity Maker

Functions to create DXF entities from paths.

ezdxf.path.to_lwpolylines (paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion:

Vertex = (0, 0, 1), dxfattribs: Dict = None) — Iterable[LWPolyline]
Convert the given paths into LiWPolyline entities. The extrusion vector is applied to all paths, all vertices are

projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane
elevation is the distance from the WCS origin to the start point of the first path.

Parameters
* paths - iterable of Path objects
e distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
* extrusion - extrusion vector for all paths
* dxfattribs - additional DXF attribs

Returns iterable of LwPoly1ine objects

New in version 0.16.

ezdxf.path.to_polylines2d (paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion:
Vertex = (0, 0, 1), dxfattribs: Dict = None) — Iterable[Polyline]
Convert the given paths into 2D Poly1ine entities. The extrusion vector is applied to all paths, all vertices are
projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis. The plane
elevation is the distance from the WCS origin to the start point of the first path.

Parameters
* paths —iterable of Path objects
¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
* extrusion - extrusion vector for all paths
* dxfattribs — additional DXF attribs

Returns iterable of 2D Poly11ine objects

New in version 0.16.

ezdxf.path.to_hatches (paths: lterable[Path], *, edge_path: True, distance: float = 0.01, segments: int =
4, gl_tol: float = le-4, extrusion: Vertex = (0, 0, 1), dxfattribs: Dict = None) —
Iterable[Hatch]
Convert the given paths into Hat ch entities. Uses LWPOLYLINE paths for boundaries without curves and edge

paths, build of LINE and SPLINE edges, as boundary paths for boundaries including curves. The extrusion vector
is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector. The default extrusion
vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start point of the first
path.

Parameters

» paths —iterable of Path objects

6.8. Reference 475

ezdxf Documentation, Release 0.17.2

* edge_path — True for edge paths build of LINE and SPLINE edges, False for only
LWPOLYLINE paths as boundary paths

¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve to flatten LWPOLYLINE paths
* gl_tol — tolerance for G1 continuity check to separate SPLINE edges
* extrusion - extrusion vector to all paths
* dxfattribs - additional DXF attribs
Returns iterable of Hat ch objects
New in version 0.16.

ezdxf.path.to_mpolygons (paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, extrusion:

Vertex = (0, 0, 1), dxfattribs: Dict = None) — Iterable[MPolygon]
Convert the given paths into MPolygon entities. In contrast to HATCH, MPOLYGON supports only polyline
boundary paths. All curves will be approximated.

The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to this extrusion vector.
The default extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start
point of the first path.

Parameters
* paths —iterable of Path objects
¢ distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve to flatten LWPOLYLINE paths
* extrusion - extrusion vector to all paths
* dxfattribs - additional DXF attribs

Returns iterable of MPolygon objects

New in version 0.17.

ezdxf.path.to_polylines3d (paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, dxfattribs:

Dict = None) — Iterable[Polyline]
Convert the given paths into 3D Poly1ine entities.

Parameters
* paths —iterable of Path objects
e distance — maximum distance, see Path. flattening ()
* segments — minimum segment count per Bézier curve
e dxfattribs - additional DXF attribs
Returns iterable of 3D Poly1ine objects
New in version 0.16.

ezdxf.path.to_lines (paths: Iterable[Path], *, distance: float = 0.01, segments: int = 4, dxfattribs: Dict =

None) — Iterable[Line]
Convert the given paths into Line entities.

Parameters
* paths —iterable of Path objects

¢ distance — maximum distance, see Path. flattening ()

476 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* segments — minimum segment count per Bézier curve
* dxfattribs — additional DXF attribs
Returns iterable of Line objects
New in version 0.16.

ezdxf.path.to_splines_and_polylines (paths: Iterable[Path], *, gl_tol: float = le-4, dxfattribs:
Dict = None) — Iterable[Union[Spline, Polyline]]
Convert the given paths into Sp1ine and 3D Polyline entities.

Parameters
* paths —iterable of Path objects
* gl_tol —tolerance for G1 continuity check
* dxfattribs — additional DXF attribs
Returns iterable of 7ine objects

New in version 0.16.

Tool Maker

Functions to create construction tools.

ezdxf.path.to_bsplines_and_vertices (path: Path, gl _tol: float = le-4) — lter-
able[Union[BSpline, List[Vec3]]]
Convert a Path object into multiple cubic B-splines and polylines as lists of vertices. Breaks adjacent Bezier
without G1 continuity into separated B-splines.

Parameters
* path — Path objects
* gl_tol - tolerance for G1 continuity check
Returns BSpline and lists of Vec3
New in version 0.16.

ezdxf.path.to_matplotlib_path (paths: Iterable[Path], extrusion=(0, 0, 1)) — matplotlib.path.Path
Convert the given paths into a single matplotlib.path.Path object. The extrusion vector is applied to all
paths, all vertices are projected onto the plane normal to this extrusion vector.The default extrusion vector is the
WCS z-axis. The Matplotlib Path is a 2D object with OCS coordinates and the z-elevation is lost. (requires
Matplotlib)

Parameters
* paths —iterable of Path objects
* extrusion - extrusion vector for all paths
Returns matplotlib Path in OCS!
New in version 0.16.

ezdxf.path.to_qgpainter_path (paths: Iterable[Path], extrusion=(0, 0, 1)) — QPainterPath
Convert the given paths into a QtGui.QPainterPath object. The extrusion vector is applied to all paths, all
vertices are projected onto the plane normal to this extrusion vector. The default extrusion vector is the WCS z-axis.
The QPainterPath is a 2D object with OCS coordinates and the z-elevation is lost. (requires Qt bindings)

Parameters

6.8. Reference 477

https://matplotlib.org/3.1.1/api/path_api.html#matplotlib.path.Path

ezdxf Documentation, Release 0.17.2

* paths —iterable of Path objects
* extrusion - extrusion vector for all paths
Returns QPainterPath in OCS!

New in version 0.16.

Utility Functions

ezdxf.path.transform_paths (paths: Iterable[Path], m: Matrix44) — List[Path]
Transform multiple Path objects at once by transformation matrix m. Returns a list of the transformed Path
objects. Warning: transformed paths looses the attached user data!

Parameters
* paths —iterable of Path objects
* m — transformation matrix of type Matrix44

ezdxf.path.transform_paths_to_ocs (paths: Iterable[Path], ocs: OCS) — List[Path)]
Transform multiple Path objects at once from WCS to OCS. Returns a list of the transformed Path objects.
Warning: transformed paths looses the attached user data!

Parameters
* paths —iterable of Path objects
* ocs — OCS transformation of type OCS

ezdxf.path.bbox (paths: Iterable[Path]) — BoundingBox
Returns the BoundingBox for the given paths.

Parameters
* paths —iterable of Path objects

e flatten - value != 0 for bounding box calculation from the flattened path and value == 0
for bounding box from the control vertices. Default value is 0.01 as max flattening distance.

* segments — minimal segment count for flattening

ezdxf.path.fit_paths_into_box (paths: Iterable[Path], size: Tuple[float, float, float], uniform=True,

source_box: BoundingBox = None) — List[Path]
Scale the given paths to fit into a box of the given size, so that all path vertices are inside this borders. If source_box

is None the default source bounding box is calculated from the control points of the paths.

Note: if the target size has a z-size of 0, the paths are projected into the xy-plane, same is true for the x-size, projects
into the yz-plane and the y-size, projects into and xz-plane.

Parameters
* paths —iterable of Path objects
* size —target box size as tuple of x-, y- ond z-size values
* uniform - True for uniform scaling

* source_box — pass precalculated source bounding box, or None to calculate the default
source bounding box from the control vertices

ezdxf.path.add_bezier3p (path: Path, curves: Iterable[Bezier3P])
Add multiple quadratic Bezier-curves to the given path.

478 Chapter 6. Contents

https://doc.qt.io/qt-5/qpainterpath.html

ezdxf Documentation, Release 0.17.2

Auto-detect the connection point to the given path, if neither the start- nor the end point of the curves is close to
the path end point, a line from the path end point to the start point of the first curve will be added automatically.

Changed in version 0.16.2: add linear Bézier curve segments as LINE_TO commands

ezdxf.path.add_bezierdp (path: Path, curves: Iterable[Bezier4P])
Add multiple cubic Bezier-curves to the given path.

Auto-detect the connection point to the given path, if neither the start- nor the end point of the curves is close to
the path end point, a line from the path end point to the start point of the first curve will be added automatically.

Changed in version 0.16.2: add linear Bézier curve segments as LINE_TO commands

ezdxf.path.add_ellipse (path: Path, ellipse: ConstructionEllipse, segments=1)
Add an elliptical arc as multiple cubic Bézier-curves to the given path, use from_arc () constructor of class
ConstructionEl]lipse toadd circular arcs.

Auto-detect the connection point to the given path, if neither the start- nor the end point of the ellipse is close
to the path end point, a line from the path end point to the ellipse start point will be added automatically (see
add_bezierdp()).

By default the start of an empty path is set to the start point of the ellipse, setting argument reset to Fa 1l se prevents
this behavior.

Parameters
* path - Path object
* ellipse —ellipse parameters as ConstructionEl]lipse object

* segments — count of Bezier-curve segments, at least one segment for each quarter (pi/2), 1
for as few as possible.

* reset - set start point to start of ellipse if path is empty

ezdxf.path.add_spline (path: Path, spline: BSpline, level=4)
Add a B-spline as multiple cubic Bezier-curves.

Non-rational B-splines of 3rd degree gets a perfect conversion to cubic bezier curves with a minimal count of curve
segments, all other B-spline require much more curve segments for approximation.

Auto-detect the connection point to the given path, if neither the start- nor the end point of the B-spline is close
to the path end point, a line from the path end point to the start point of the B-spline will be added automatically.
(see add_bezierdp()).

By default the start of an empty path is set to the start point of the spline, setting argument resef to Fal se prevents
this behavior.

Parameters
* path — Path object
* spline — B-spline parameters as BSp1 ine object
* level - subdivision level of approximation segments
* reset —set start point to start of spline if path is empty

ezdxf.path.to_multi_path (paths: Iterable[Path]) — Path
Returns a multi-path object from all given paths and their sub-paths. Ignores paths without any commands (empty
paths).

New in version 0.17.

6.8. Reference 479

ezdxf Documentation, Release 0.17.2

ezdxf.path.single_paths (paths: Iterable[Path]) — Iterable[Path]
Yields all given paths and their sub-paths as single path objects.

New in version 0.17.

ezdxf.path.have_close_control_vertices (a: Path, b: Path, *, rel_tol=1e-9, abs_tol=1e-12) —

bool
Returns True if the control vertices of given paths are close.

New in version 0.16.5.

Basic Shapes

ezdxf.path.unit_circle (start_angle: float = 0, end_angle: float = 27, segments: int = 1, transform:

Matrix44 = None) — Path
Returns an unit circle as a Pat h object, with the center at (0, 0, 0) and the radius of 1 drawing unit.

The arc spans from the start- to the end angle in counter clockwise orientation. The end angle has to be greater
than the start angle and the angle span has to be greater than 0.

Parameters
* start_angle - start angle in radians
* end_angle —end angle in radians (end_angle > start_angle!)

* segments — count of Beézier-curve segments, default is one segment for each arc quarter
(mt/2)

* transform - transformation Matrix applied to the unit circle

ezdxf .path.wedge (start_angle: float, end_angle: float, segments: int = 1, transform: Matrix44 = None) —

Path
Returns a wedge as a Pat h object, with the center at (0, 0, 0) and the radius of 1 drawing unit.

The arc spans from the start- to the end angle in counter clockwise orientation. The end angle has to be greater
than the start angle and the angle span has to be greater than 0.

Parameters
* start_angle - start angle in radians
* end_angle - end angle in radians (end_angle > start_angle!)

* segments — count of Bezier-curve segments, default is one segment for each arc quarter
(m/2)

* transform - transformation Matrix applied to the wedge

ezdxf.path.elliptic_transformation (center: Vertex = (0, 0, 0), radius: float = 1, ratio: float = 1,
rotation: float = 0) — Matrix44
Returns the transformation matrix to transform an unit circle into an arbitrary circular- or elliptic arc.

Example how to create an ellipse with an major axis length of 3, a minor axis length 1.5 and rotated about 90°:

m = elliptic_transformation(radius=3, ratio=0.5, rotation=math.pi / 2)
ellipse = shapes.unit_circle (transform=m)

Parameters
e center - curve center in WCS

* radius - radius of the major axis in drawing units

480 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

* ratio - ratio of minor axis to major axis
* rotation - rotation angle about the z-axis in radians
ezdxf.path.rect (width: float = 1, height: float = 1, transform: Matrix44 = None) — Path

Returns a closed rectangle as a Pat h object, with the center at (0, 0, 0) and the given width and height in drawing
units.

Parameters
* width — width of the rectangle in drawing units, width >0
* height - height of the rectangle in drawing units, height > 0
* transform - transformation Matrix applied to the rectangle

ezdxf.path.ngon (count: int, length: float = None, radius: float = 1.0, transform: Matrix44 = None) — Path
Returns a regular polygon a Path object, with the center at (0, 0, 0). The polygon size is determined by the edge
length or the circum radius argument. If both are given length has higher priority. Default size is a radius of 1.
The ngon starts with the first vertex is on the x-axis! The base geometry is created by function ezdxf. render.
forms.ngon ().

Parameters
* count - count of polygon corners >= 3
* length - length of polygon side
e radius - circum radius, default is 1
* transform - transformation Matrix applied to the ngon

ezdxf.path.star (count: int, ri: float, r2: float, transform: Matrix44 = None) — Path
Returns a star shape as a Path object, with the center at (0, 0, 0).

Argument count defines the count of star spikes, r/ defines the radius of the “outer” vertices and 72 defines the
radius of the “inner” vertices, but this does not mean that / has to be greater than r2. The star shape starts with
the first vertex is on the x-axis! The base geometry is created by function ezdxf. render. forms.star ().

Parameters
* count - spike count >= 3
e rl —radius 1
e r2 —radius 2
* transform - transformation Matrix applied to the star

ezdxf.path.gear (count: int, top_width: float, bottom_width: float, height: float, outside_radius: float, trans-
form: Matrix44 = None) — Path
Returns a gear (cogwheel) shape as a Path object, with the center at (0, 0, 0). The base geometry is created by

function ezdxf . render. forms.gear ().

Warning: This function does not create correct gears for mechanical engineering!

Parameters
* count - teeth count >= 3
* top_width - teeth width at outside radius

* bottom_width — teeth width at base radius

6.8. Reference 481

https://en.wikipedia.org/wiki/Regular_polygon
https://en.wikipedia.org/wiki/Star_polygon
https://en.wikipedia.org/wiki/Gear

ezdxf Documentation, Release 0.17.2

* height - teeth height; base radius = outside radius - height
* outside_radius - outside radius

* transform - transformation Matrix applied to the gear shape

The text2path add-on provides additional functions to create paths from text strings and DXF text entities.

The Path Class

class ezdxf.path.Path

property start
Pat h start point, resetting the start point of an empty path is possible.

property end
Path end point.

property is_closed
Returns True if the start point is close to the end point.

property has_lines
Returns True if the path has any line segments.

property has_curves
Returns True if the path has any curve segments.

property has_sub_paths
Returns True if the path is a Multi- Path object which contains multiple sub-paths.

New in version 0.17.

property user_data

Attach arbitrary user data to a Path object. The user data is copied by reference, no deep copy is applied

therefore a mutable state is shared between copies.

sub_paths () — Iterable[Parh]
Yield sub-path as Single-Path objects.

It is safe to call sub_paths () on any path-type: Single-Path, Multi-Path and Empty-Path.
New in version 0.17.

control_vertices ()
Yields all path control vertices in consecutive order.

has_clockwise_orientation () — bool
Returns True if 2D path has clockwise orientation, ignores z-axis of all control vertices.

Raises TypeError — can’t detect orientation of a Multi-Path object

line_to (location: Vec3)
Add a line from actual path end point to location.

move_to (location: Vec3)

Start a new sub-path at location. This creates a gap between the current end-point and the start-point of the

new sub-path. This converts the instance into a Multi-Path object.
If the move_to () command is the first command, the start point of the path will be reset to location.

New in version 0.17.

482 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

curve3_to (location: Vec3, ctrl: Vec3)
Add a quadratic Bezier-curve from actual path end point to location, ctrl is the control point for the quadratic
Bezier-curve.

curved_to (location: Vec3, ctrll: Vec3, ctrl2: Vec3)
Add a cubic Bezier-curve from actual path end point to location, ctrll and ctri2 are the control points for the
cubic Bezier-curve.

close () — None
Close path by adding a line segment from the end point to the start point.

close_sub_path () — None
Close last sub-path by adding a line segment from the end point to the start point of the last sub-path. Behaves
like close () for Single-Path instances.

New in version 0.17.

clone () — Path
Returns a new copy of Path with shared immutable data.

reversed () — Path
Returns a new Path with reversed segments and control vertices.

clockwise () — Path
Returns new Pat h in clockwise orientation.

Raises TypeError — can’t detect orientation of a Multi-Path object

counter_clockwise () — Path
Returns new Pat h in counter-clockwise orientation.

Raises TypeError — can’t detect orientation of a Multi-Path object

transform (m: Matrix44) — Path
Returns a new transformed path.

Parameters m — transformation matrix of type Mat rix44

approximate (segments: int = 20) — Iterable[Vec3]
Approximate path by vertices, segments is the count of approximation segments for each Bézier curve.

Does not yield any vertices for empty paths, where only a start point is present!
Approximation of Multi-Path objects is possible, but gaps are indistinguishable from line segments.

flattening (distance: float, segments: int = 16) — Iterable[Vec3]
Approximate path by vertices and use adaptive recursive flattening to approximate Beézier curves. The ar-
gument segments is the minimum count of approximation segments for each curve, if the distance from the
center of the approximation segment to the curve is bigger than distance the segment will be subdivided.

Does not yield any vertices for empty paths, where only a start point is present!
Flattening of Multi-Path objects is possible, but gaps are indistinguishable from line segments.
Parameters

* distance — maximum distance from the center of the curve to the center of the line seg-
ment between two approximation points to determine if a segment should be subdivided.

* segments — minimum segment count per Bézier curve

append_path (path: Path)
Append another path to this path. Addsa self.line_to (path.start) if the end of this path != the
start of appended path.

6.8.

Reference 483

ezdxf Documentation, Release 0.17.2

New in version 0.17.

extend_multi_path (path: Path)
Extend the path by another path. The source path is automatically a Multi- Path object, even if the previous
end point matches the start point of the appended path. Ignores paths without any commands (empty paths).

New in version 0.17.

all_lines_to_curve3 () — None
Inline conversion of all LINE_TO commands into CURVE3_TO commands.

all_lines_to_curve4 () — None
Inline conversion of all LINE_TO commands into CURVE4_TO commands.

Disassemble

New in version 0.16. This module provide tools for the recursive decomposition of nested block reference structures
into a flat stream of DXF entities and converting DXF entities into geometric primitives of Path and MeshBuilder
objects encapsulated into intermediate Primit ive classes.

Changed in version 0.17: The Hatch entity is no special case anymore and has regular support by the
make_primitive () function.

Warning: Do not expect advanced vectorization capabilities: Text entities like TEXT, ATTRIB, ATTDEF and
MTEXT get only a rough border box representation. The text2path add-on can convert text into paths. VIEW-
PORT, IMAGE and WIPEOUT are represented by their clipping path. Unsupported entities: all ACIS based entities,
XREF, UNDERLAY, ACAD_TABLE, RAY, XLINE. Unsupported entities will be ignored.

Text Boundary Calculation

Text boundary calculations are based on monospaced (fixed-pitch, fixed-width, non-proportional) font metrics, which do
not provide a good accuracy for text height calculation and much less accuracy for text width calculation. It is possible to
improve this results by using the font support from the optional Mazplotlib package.

Install Matplotlib from command line:

C:\> pip3 install matplotlib

The Matplotlib font support will improve the results for TEXT, ATTRIB and ATTDEF. The MTEXT entity has many
advanced features which would require a full “Rich Text Format” rendering and that is far beyond the goals and capabilities
of this library, therefore the boundary box for MTEXT will never be as accurate as in a dedicated CAD application.

Using the Matplotlib font support adds runtime overhead, therefore it is possible to deactivate the Matplotlib font support
by setting the global option:

options.use_matplotlib_font_support = False

484 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Flatten Complex DXF Entities

ezdxf.disassemble.recursive_decompose (entities: Iterablel DXFEntity]) — Iterable[DXFEntity]
Recursive decomposition of the given DXF entity collection into a flat DXF entity stream. All block references
(INSERT) and entities which provide a virtual_entities () method will be disassembled into simple DXF
sub-entities, therefore the returned entity stream does not contain any INSERT entity.

Point entities will not be disassembled into DXF sub-entities, as defined by the current point style SPDMODE.
These entity types include sub-entities and will be decomposed into simple DXF entities:
e INSERT
DIMENSION
LEADER
MLEADER
 MLINE
Decomposition of XREF, UNDERLAY and ACAD_TABLE entities is not supported.

L]

Entity Deconstruction

These functions disassemble DXF entities into simple geometric objects like meshes, paths or vertices. The Primitive
is a simplified intermediate class to use a common interface on various DXF entities.

ezdxf.disassemble.make_primitive (entity: DXFEntity, max_flattening_distance=None) — Primitive
Factory to create path/mesh primitives. The max_flattening_distance defines the max distance between the approx-
imation line and the original curve. Use max_flattening_distance to override the default value.

Returns an empty primitive for unsupported entities. The empty state of a primitive can be checked by the property
is_empty. The path and the mesh attributes of an empty primitive are None and the vertices () method
yields no vertices.

Changed in version 0.17: regular support for the Hat ch entity.

ezdxf.disassemble.to_primitives (entities: Iterable[DXFEntity], max_flattening_distance: float =

None) — Iterable[Primitive]
Yields all DXF entities as path or mesh primitives. Yields unsupported entities as empty primitives, see

make_primitive ().
Parameters
* entities —iterable of DXF entities
* max_flattening_distance - override the default value

ezdxf.disassemble.to_meshes (primitives: Iterable[Primitive]) — Iterable[MeshBuilder]
Yields all MeshBuilder objects from the given primitives. Ignores primitives without a defined mesh.

ezdxf.disassemble.to_paths (primitives: Iterable[Primitive]) — Iterable[Path]
Yields all Path objects from the given primitives. Ignores primitives without a defined path.

ezdxf.disassemble.to_vertices (primitives: lterable[Primitive]) — Iterable[Vec3]
Yields all vertices from the given primitives. Paths will be flattened to create the associated vertices. See also
to_control_vertices () to collect only the control vertices from the paths without flattening.

ezdxf.disassemble.to_control_vertices (primitives: Iterable[Primitive]) — Iterable[Vec3]
Yields all path control vertices and all mesh vertices from the given primitives. Like to_vertices (), but without
flattening.

6.8. Reference 485

ezdxf Documentation, Release 0.17.2

class ezdxf.disassemble.Primitive
Interface class for path/mesh primitives.

entity
Reference to the source DXF entity of this primitive.
max_flattening_distance

The max_flattening_distance attribute defines the max distance in drawing units between the approximation line
and the original curve. Set the value by direct attribute access. (float) default = 0.01

property path
Pat h representation or None, idiom to check if is a path representation (could be empty):

if primitive.path is not None:
process (primitive.path)

property mesh
MeshBuilder representation or None, idiom to check if is a mesh representation (could be empty):

if primitive.mesh is not None:
process (primitive.mesh)

property is_empty
Returns True if represents an empty primitive which do not yield any vertices.

abstract vertices () — Iterable[Vec3]
Yields all vertices of the path/mesh representation as Vec 3 objects.

Bounding Box

New in version 0.16. The ezdxf . bbox module provide tools to calculate bounding boxes for many DXF entities, but
not for all. The bounding box calculation is based on the ezdx . disassemble module and therefore has the same
limitation.

Warning: If accurate boundary boxes for text entities are important for you, read this first: Text Boundary Calcula-
tion. TL;DR: Boundary boxes for text entities are not accurate!

Unsupported DXF entities:
* All ACIS based types like BODY, 3DSOLID or REGION
» External references (XREF) and UNDERLAY object
¢ RAY and XRAY, extend into infinite
¢ ACAD_TABLE, no basic support - only preserved by ezdxf
Unsupported entities are silently ignored, filtering of these DXF types is not necessary.
The base type for bounding boxes is the BoundingBox class from the module ezdxf.math.
The entities iterable as input can be the whole modelspace, an entity query or any iterable container of DXF entities.

The Calculation of bounding boxes of curves is done by flattening the curve by a default flattening distance of 0.01. Set
argument flatten to 0 to speedup the bounding box calculation by accepting less precision for curved objects by using only
the control vertices.

486 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

The optional caching object Cache has to be instantiated by the user, this is only useful if the same entities will be
processed multiple times.

Example usage with caching:

from ezdxf import bbox

msp = doc.modelspace ()

cache = bbox.Cache ()

get overall bounding box

first_bbox = bbox.extents (msp, cache=cache)

bounding box of all LINE entities

second_bbox = bbox.extend (msp.query ("LINE"), cache=cache)

Functions

ezdxf .bbox.extents (entities: Iterablel DXFEntity], *, flatten=0.01, cache: Cache = None) — Bounding-

Box
Returns a single bounding box for all given entfities.

Calculate bounding boxes from flattened curves, if argument flatten is not O (max flattening distance), else from
control points.

ezdxf.bbox.multi_flat (entities: Iterable[DXFEntity], *, flatten=0.01, cache: Cache = None) — lter-

able[BoundingBox]
Yields a bounding box for each of the given entities.

Calculate bounding boxes from flattened curves, if argument flatten is not 0 (max flattening distance), else from
control points.

ezdxf.bbox.multi_recursive (entities: Iterable] DXFEntity], *, flatten=0.01, cache: Cache = None) —

Iterable[BoundingBox]
Yields all bounding boxes for the given entities or all bounding boxes for their sub entities. If an entity (INSERT)

has sub entities, only the bounding boxes of these sub entities will be yielded, not the bounding box of entity
(INSERT) itself.

Calculate bounding boxes from flattened curves, if argument flatten is not O (max flattening distance), else from
control points.

Caching Strategies

Because ezdxf is not a CAD application, ezdxf does not manage data structures which are optimized for a usage by a CAD
kernel. This means that the content of complex entities like block references or leaders has to be created on demand by
DXEF primitives on the fly. These temporarily created entities are called virtual entities and have no handle and are not
stored in the entity database.

All this is required to calculate the bounding box of complex entities, and it is therefore a very time consuming task.
By using a Cache object it is possible to speedup this calculations, but this is not a magically feature, it requires an
understanding of what is happening under the hood to achieve any performance gains.

For a single bounding box calculation, without any reuse of entities it makes no sense of using a Cache object, e.g.
calculation of the modelspace extents:

from pathlib import Path
import ezdxf
from ezdxf import bbox

(continues on next page)

6.8. Reference 487

ezdxf Documentation, Release 0.17.2

(continued from previous page)

CADKitSamples = Path (ezdxf.EZDXF_TEST_FILES) / 'CADKitSamples'
doc = ezdxf.readfile (CADKitSamples / 'A_000217.dxf")
cache = bbox.Cache ()

ext = bbox.extents (doc.modelspace (), cache)

print (cache)

1226 cached objects and not a single cache hit:

’Cache(n21226, hits=0, misses=3273)

The result for using UUIDs to cache virtual entities is not better:

’Cache(n:2206, hits=0, misses=3273)

Same count of hits and misses, but now the cache also references ~1000 virtual entities, which block your memory until
the cache is deleted, luckily this is a small DXF file (~838 kB).

Bounding box calculations for multiple entity queries, which have overlapping entity results, using a Cache object may
speedup the calculation:

doc = ezdxf.readfile (CADKitSamples / 'A_000217.dxf.dxf")
msp = doc.modelspace ()
cache = bbox.Cache (uuid=False)

ext = bbox.extents (msp, cache)
print (cache)

process modelspace again
ext = bbox.extents (msp, cache)
print (cache)

Processing the same data again leads some hits:

1st run: Cache(n=1226, hits=0, misses=3273)
2nd run: Cache(n=1226, hits=1224, misses=3309)

Using uuid=True leads not to more hits, but more cache entries:

1st run: Cache (n=2206, hits=0, misses=3273)
2nd run: Cache (n=2206, hits=1224, misses=3309)

Creating stable virtual entities by disassembling the entities at first leads to more hits:

from ezdxf import disassemble

entities = list (disassemble.recursive_decompose (msp))
cache = bbox.Cache (uuid=False)

bbox.extents (entities, cache)
print (cache)

bbox.extents (entities, cache)
print (cache)

First without UUID for stable virtual entities:

488 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

1st run: Cache(n=1037, hits=0, misses=4074)
2nd run: Cache(n=1037, hits=1037, misses=6078)

Using UUID for stable virtual entities leads to more hits:

1st run: Cache (n=2019, hits=0, misses=4074)
2nd run: Cache (n=2019, hits=2018, misses=4116)

But caching virtual entities needs also more memory.

In conclusion: Using a cache is only useful, if you often process nearly the same data; only then can an increase in
performance be expected.

Cache Class

class ezdxf.bbox.Cache (uuid=False)
Caching object for ezdxf.math.BoundingBox objects.

Parameters uuid — use UUIDs for virtual entities
hits
misses

invalidate (entities: Iterable[DXFEntity]) — None
Invalidate cache entries for the given DXF entities.

If entities are changed by the user, it is possible to invalidate individual entities. Use with care - discarding
the whole cache is the safer workflow.

Ignores entities which are not stored in cache.

Upright
New in version 0.17. The functions in this module can help to convert an inverted OCS defined by an extrusion vector
(0, 0, -1) into a WCS aligned OCS defined by an extrusion vector (0, 0, 1).

This simplifies 2D entity processing for ezdxf users and creates DXF output for 3rd party DXF libraries which ignore the
existence of the OCS.

Supported DXF entities:
e CIRCLE
* ARC
o ELLIPSE (WCS entity, flips only the extrusion vector)
* SOLID
* TRACE
LWPOLYLINE
POLYLINE (only 2D entities)
HATCH
* MPOLYGON
INSERT (block references)

6.8. Reference 489

ezdxf Documentation, Release 0.17.2

Warning: The WCS representation of OCS entities with flipped extrusion vector is not 100% identical to the source
entity, curve orientation and vertex order may change, see additional explanation below. A mirrored text represented
by an extrusion vector (0, 0, -1) cannot represented by an extrusion vector (0, 0, 1), therefore this CANNOT work for
text entities or entities including text: TEXT, ATTRIB, ATTDEF, MTEXT, DIMENSION, LEADER, MLEADER

Usage

The functions can be applied to any DXF entity without expecting errors or exceptions if the DXF entity is not supported
or the extrusion vector differs from (0, 0, -1). This also means you can apply the functions multiple times to the same
entities without any problems. A common case would be to upright all entities of the model space:

import ezdxf
from ezdxf.upright import upright_all

doc = ezdxf.readfile("your.dxf")

msp = doc.modelspace ()

upright_all (msp)

doing it again is no problem but also has no further effects
upright_all (msp)

Another use case is exploding block references (INSERT) which may include reflections (= scaling by negative factors)
that can lead to inverted extrusion vectors.

for block_ref in msp.query ("INSERT") :
entities = block_ref.explode () # —> EntityQuery object
upright_all (entities)

Functions

ezdxf.upright .upright (entity: DXFGraphic) — None
Flips an inverted OCS defined by extrusion vector (0, 0, -1) into a WCS aligned OCS defined by extrusion vector (0,
0, 1). DXF entities with other extrusion vectors and unsupported DXF entities will be silently ignored. For more
information about the limitations read the documentation of the ezdxf. upright module.

ezdxf.upright .upright_all (entities: Iterablel DXFGraphic]) — None
Call function upright () for all DXF entities in iterable entities:

upright_all (doc.modelspace())

Additional Explanation

This example shows why the entities with an inverted OCS, extrusion vector is (0, 0, -1), are not exact the same as with
an WCS aligned OCS, extrusion vector is (0, 0, 1).

Note: The ARC entity represents the curve always in counter-clockwise orientation around the extrusion vector.

import ezdxf
from ezdxf.upright import upright
from ezdxf.math import Matrix44

(continues on next page)

490 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

doc = ezdxf.new/()
msp = doc.modelspace ()

arc = msp.add_arc(

(5, 0),

radius=5,

start_angle=-90,

end_angle=90,

dxfattribs={"color": ezdxf.const.RED},
)
draw lines to the start- and end point of the ARC
msp.add_line((0, 0), arc.start_point, dxfattribs={"color": ezdxf.const.GREEN})
msp.add_line((0, 0), arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})

copy arc
mirrored_arc = arc.copy ()
msp.add_entity (mirrored_arc)

mirror copy
mirrored_arc.transform(Matrix44.scale (-1, 1, 1))

This creates an Iinverted extrusion vector:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1))

draw lines to the start—- and end point of the mirrored ARC
msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}
—)

msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})

Result without applying the upright () function - true mirroring:

6.8. Reference 491

ezdxf Documentation, Release 0.17.2

This creates an i1nverted extrusion vector:

assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1))

start_point_inv = mirrored_arc.start_point
end_point_inv = mirrored_arc.end_point

upright (mirrored_arc)
OCS is al 1ed with WCS:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, 1))

start—- and end points are swapped after applying upright ()

assert mirrored_arc.start_point.isclose (end_point_inv)
assert mirrored_arc.end_point.isclose(start_point_inv)

L7

draw line t— and end point of the mirrored ARC

;

he
0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN}

03]

93]

msp.add_line ((O,
<)

msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})

Result after applying the upright () function - false mirroring:

492 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

To avoid this issue the ARC entity would have to represent the curve in clockwise orientation around the extrusion vector
(0, 0, 1), which is not possible!

Note: The shape of the mirrored arcs is the same for both extrusion vectors, but the start- and the end points are swapped
(reversed vertex order)!

6.8.9 Custom Data
Custom XDATA

The classes XDataUserList and XDataUserDict manage custom user data stored in the XDATA section of a
DXEF entity. For more information about XDATA see reference section: Extended Data (XDATA)

These classes store only a limited set of data types with fixed group codes and the types are checked by isinstance ()
s0 a Vec3 object can not be replaced by a (x, y, z)-tuple:

Group Code | Data Type

1000 str, limited to 255 characters, line breaks "\n" and "\ r" are not allowed
1010 Vec3

1040 float

1071 32-bit int, restricted by the DXF standard not by Python!

Strings are limited to 255 characters, line breaks "\n" and "\ r" are not allowed.
This classes assume a certain XDATA structure and therefore can not manage arbitrary XDATA!

This classes do not create the required ApplD table entry, only the default AppID “EZDXF” exist by default. Setup a
new AppID in the AppID table: doc.appids.add ("MYAPP").

For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files.

6.8. Reference 493

https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XDATA.py

ezdxf Documentation, Release 0.17.2

See also:
e Tutorial: Storing Custom Data in DXF Files
e Example at github
¢ XDATA reference: Extended Data (XDATA)

* XDATA management class: XData

XDataUserList

class ezdxf.entities.xdata.XDataUserList
Manage user data as a named list-like object in XDATA. Multiple user lists with different names can be stored in
a single XDat a instance for a single AppID.

Recommended usage by context manager ent ity ():

with XDataUserList.entity(entity, name="MyList", appid="MYAPP") as ul:
ul.append ("The value of PI") # str "\n" and "\r" are not allowed
ul.append(3.141592) # float
ul.append(l) # int
ul.append(Vec3 (1, 2, 3)) # Vec3

invalid data type raises DXFTypeError
ul.append((1, 2, 3)) # tuple instead of Vec3

retrieve a single value
s = ul[0]

store whole content into a Python list
data = list (ul)

Implements the Mut ableSequence interface.

xdata
The underlying XDat a instance.

__init__ (xdata: Optional[ezdxf entities.xdata. XData] = None, name='DefaultList', appid="EZDXF")
Setup a XDATA user list name for the given appid.

The data is stored in the given xdata object, or in a new created XDat a instance if None. Changes of the
content has to be committed at the end to be stored in the underlying xdata object.

Parameters
* xdata (XData)—underlying XDat a instance, if None a new one will be created
¢ name (str)—name of the user list
* appid (str) - application specific AppID
str__ ()

Return str(self).

_len__ () —int
Returns len(self).

__getitem___ (item)
Get self[item].

494 Chapter 6. Contents

https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XDATA.py

ezdxf Documentation, Release 0.17.2

__setitem___ (item, value)
Set self[item] to value.

__delitem__ (item)
Delete self[item].

classmethod entity (entity: DXFEntity, name='DefaultList’, appid='EZDXF') — lItera-

tor[XDataUserList]
Context manager to manage a XDATA list name for a given DXF entity. Appends the user list to the existing

XDat a instance or creates new XDat a instance.
Parameters
* entity (DXFEntity) - target DXF entity for the XDATA
¢ name (str)—name of the user list
* appid (str) - application specific AppID

commit () — None
Store all changes to the underlying XDat a instance. This call is not required if using the ent ity () context
manager.

Raises
¢ DXFValueError —invalid chars "\n" or "\ r" in a string

* DXFTypeError —invalid data type

XDataUserDict

class ezdxf.entities.xdata.XDataUserDict
Manage user data as a named dict-like object in XDATA. Multiple user dicts with different names can be stored in
a single XDat a instance for a single AppID. The keys have to be strings.

Recommended usage by context manager entity ():

with XDataUserDict.entity(entity, name="MyDict", appid="MYAPP") as ud:

ud["comment"] = "The value of PI" # str "\n" and "\r" are not allowed
ud["pi"] = 3.141592 # float

ud["number"] = 1 # int

ud["vertex"] = Vec3(1, 2, 3) # Vec3

invalid data type raises DXFTypeError
ud["vertex"] = (1, 2, 3) # tuple instead of Vec3

retrieve single values
s = ud["comment"]
pi = ud.get ("pi", 3.141592)

store whole content into a Python dict
data = dict (ud)

Implements the Mut ableMapping interface.

The data is stored in XDATA like a XDataUserList by (key, value) pairs, therefore a XDataUser—
Dict can also be loaded as XDataUserList. It is not possible to distinguish a XDataUserDict from a
XDataUserList except by the name of the data structure.

xdata
The underlying XDat a instance.

6.8. Reference 495

ezdxf Documentation, Release 0.17.2

__init__ (xdata: Optional[ezdxf entities.xdata.XData] = None, name="DefaultDict’, appid="EZDXF")
Setup a XDATA user dict name for the given appid.

The data is stored in the given xdata object, or in a new created XDat a instance if None. Changes of the
content has to be committed at the end to be stored in the underlying xdata object.

Parameters
* xdata (XData)—underlying XDat a instance, if None a new one will be created
¢ name (str)—name of the user list
¢ appid (str) - application specific AppID

__str__ ()
Return str(self).

_len__ ()
Returns len(self).

__getitem__ (key)
Get self[key].

__setitem__ (key, item)
Set self[key] to value, key has to be a string.

Raises DXFTypeError —key is not a string

__delitem__ (key)
Delete self[key].

discard (key)
Delete self[key], without raising a KeyError if key does not exist.

_diter__ ()
Implement iter(self).

classmethod entity (entity: DXFEntity, name="DefaultDict’, appid='EZDXF') — Itera-

tor[XData UserDict]
Context manager to manage a XDATA dict name for a given DXF entity. Appends the user dict to the existing

XDat a instance or creates new XDat a instance.
Parameters
* entity (DXFEntity) — target DXF entity for the XDATA
¢ name (str)—name of the user list
e appid (str) — application specific AppID

commit () — None
Store all changes to the underlying XDat a instance. This call is not required if using the ent ity () context

manager.
Raises
* DXFValueError —invalid chars "\n" or "\r" in a string

* DXFTypeError —invalid data type

496 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Custom XRecord

The UserRecordand BinaryRecord classes help to store custom data in DXF files in XRecord objects a simple
and safe way. This way requires DXF version R2000 or later, for DXF version R12 the only way to store custom data is
Extended Data (XDATA).

The UserRecord stores Python types and nested container types: int, float, str, Vec2, Vec3, list anddict.
Requirements for Python structures:

* The top level structure has tobe a 1ist.

* Strings has to have max. 2049 characters and can not contain line breaks "\\n" or "\\r".

¢ Dict keys have to be simple Python types: int, float, str.
DXF Tag layout for Python types and structures stored in the XRecord object:

Only for the UserRecord the first tag is (2, user record name).

Type | DXF Tag(s)

str (1, value) string with less than 2050 chars and including no line breaks
int (90, value) int 32-bit, restricted by the DXF standard not by Python!
float (40, value) “C” double

Vec2 | (10, x), (20, y)

Vec3 | (10, x) (20, y) (30, z)

list starts with (2, “[) and ends with (2, “]”)

dict starts with (2, “{“) and ends with (2, “}”)

The BinaryRecord stores arbitrary binary data as BLOB.
Storage size limits of XRECORD according the DXF reference:
“This object is similar in concept to XDATA but is not limited by size or order.”
For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files.
See also:
e Tutorial: Storing Custom Data in DXF Files
» Example at github

e ezdxf.entities.XRecord

UserRecord

class ezdxf.urecord.UserRecord

xrecord
The underlying XRecord instance

name
The name of the UserRecord, an arbitrary string with less than 2050 chars and including no line breaks.

data
The Python data. The top level structure has to be a list (MutableSequence). Inside this container the
following Python types are supported: str, int, float, Vec2, Vec3, list, dict

6.8. Reference 497

https://en.wikipedia.org/wiki/Binary_large_object
https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XRECORD.py
https://github.com/mozman/ezdxf/blob/master/examples/user_data_stored_in_XRECORD.py

ezdxf Documentation, Release 0.17.2

Nested data structures are supported list or/and dict in list or dict. Dict keys have to be simple Python types:
int, float, str.

property handle
DXEF handle of the underlying XRecord instance.

__init__ (xrecord: ezdxf.entities.dxfobj.XRecord = None, *, name: str = 'UserRecord', doc: Drawing =

None)
Setup a UserRecord with the given name.

The data is stored in the given xrecord object, or in a new created XRecord instance if None. If doc is not
None the new xrecord is added to the OBJECTS section of the DXF document.

Changes of the content has to be committed at the end to be stored in the underlying xrecord object.
Parameters
¢ xrecord (XRecord)—underlying XRecord instance, if None a new one will be created
¢ name (str)—name of the user list
¢ doc (Drawing)— DXF document or None

_str__ ()
Return str(self).

commit () — XRecord
Store data in the underlying XRecord instance. This call is not required if using the class by the with
statement.

Raises
* DXFValueError —invalid chars "\n" or "\ r" in a string

* DXFTypeError —invalid data type

BinaryRecord

class ezdxf.urecord.BinaryRecord

xrecord
The underlying XRecord instance

data
The binary data as bytes, bytearray or memoryview.

property handle
DXEF handle of the underlying XRecord instance.

__init__ (xrecord: ezdxf.entities.dxfobj. XRecord = None, *, doc: Drawing = None)
Setup a BinaryRecord.

The data is stored in the given xrecord object, or in a new created XRecord instance if None. If doc is not
None the new xrecord is added to the OBJECTS section of the DXF document.

Changes of the content has to be committed at the end to be stored in the underlying xrecord object.
Parameters
¢ xrecord (XRecord)—underlying XRecord instance, if None a new one will be created

¢ doc (Drawing)— DXF document or None

498 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

_str__ () —str
Return str(self).

commit () — XRecord
Store binary data in the underlying XRecord instance. This call is not required if using the class by the
with statement.

6.8.10 Tools

Functions

DXF Unicode Decoder

The DXF format uses a special form of unicode encoding: “\U+xxxx”.

To avoid a speed penalty such encoded characters are not decoded automatically by the regular loading func-
tion:func:ezdxf.readfile, only the recover module does the decoding automatically, because this loading mode is already
slow.

This kind of encoding is most likely used only in older DXF versions, because since DXF R2007 the whole DXF file is
encoded in ut £8 and a special unicode encoding is not necessary.

The ezdxf.has_dxf_unicode () and ezdxf.decode_dxf_unicode () are new support functions to decode
unicode characters “\U+xxxx” manually.

ezdxf.has_dxf_unicode (s: str) — bool
Detect if string s contains encoded DXF unicode characters “\U+xxxx”.

ezdxf .decode_dxf_ unicode (s: str) — str
Decode DXF unicode characters “\U+xxxx” in string s.

Tools

Some handy tool functions used internally by ezdx £.
ezdxf.tools.juliandate (date: datetime.datetime) — float
ezdxf.tools.calendardate (juliandate: float) — datetime.datetime

ezdxf.tools.set_flag_state (flags: int, flag: int, state: bool = True) — int
Set/clear binary flag in data flags.

Parameters
* flags — data value
» flag —flag to set/clear
* state — True for setting, False for clearing

ezdxf.tools.guid () — str
Returns a general unique ID, based on uuid.uuid4 ().

This function creates a GUID for the header variables $VERSIONGUID and $FINGERPRINTGUID, which
matches the AutoCAD pattern { XXXXXXXX—-XXXX-XXXX-XXXX-XXXXXXKXKXXXXX}.

ezdxf.tools.bytes_to_hexstr (data: bytes) — str
Returns data bytes as plain hex string.

6.8. Reference 499

ezdxf Documentation, Release 0.17.2

ezdxf.tools.suppress_zeros (s: str, leading: bool = False, trailing: bool = True)
Suppress trailing and/or leading 0 of string s.

Parameters
* s — data string
* leading - suppress leading 0
* trailing - suppress trailing 0

ezdxf.tools.normalize_text_angle (angle: float, fix_upside_down=True) — float
Normalizes text angle to the range from 0 to 360 degrees and fixes upside down text angles.

Parameters
* angle — text angle in degrees

* fix upside_down - rotate upside down text angle about 180 degree

SAT Format “Encryption”

ezdxf.tools.crypt.encode (text_lines: Iterable[str]) — Iterable[str]
Encode the Standard ACIS Text (SAT) format by AutoCAD “encryption” algorithm.

ezdxf.tools.crypt.decode (text_lines: Iterable[str]) — Iterable[str]
Decode the Standard ACIS Text (SAT) format “encrypted” by AutoCAD.

GfxAttribs

New in version 0.18.

The ezdxf.gfxattribs module provides the GfxAttribs class to create valid attribute dictionaries for the most
often used DXF attributes supported by all graphical DXF entities. The advantage of using this class is auto-completion
support by IDEs and an instant validation of the attribute values.

import ezdxf
from ezdxf.gfxattribs import GfxAttribs

doc ezdxf.new()

msp = doc.modelspace ()

attribs = GfxAttribs (layer="MyLayer", color=ezdxf.colors.RED)
line = msp.add_line((0, 0), (1, 0), dxfattribs=attribs)
circle = msp.add_circle((0, 0), radius=1.0, dxfattribs=attribs)

Update DXF attributes of existing entities:
attribs = GfxAttribs (layer="MyLayer2", color=ezdxf.colors.BLUE)

Convert GfxAttribs () to dict (), but this method cannot reset
attributes to the default values like setting layer to "O0".
line.update_dxf_attribs(dict (attribs))

Using GfxAttribs.asdict (default_values=True), can reset attributes to the
default values like setting layer to "0", except for true_color and

transparency, which do not have default values, their absence is the

default value.
circle.update_dxf_attribs (attribs.asdict (default_values=True))

(continues on next page)

500 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

Remove true_color and transparency by assigning None
attribs.transparency = None # reset to transparency by layer!
attribs.rgb = None

Validation features:
* layer - string which can not contain certain characters: <>/\":; ?2*="
¢ color - AutoCAD Color Index (ACI) value as integer in the range from 0 to 257
* rgb - true color value as (red, green, blue) tuple, all channel values as integer values in the range from O to 255
* linetype - string which can not contain certain characters: <>/\":; ?*=", does not check if the linetype exists
* lineweight - integer value in the range from O to 211, see Lineweights for valid values
* transparency - float value in the range from 0.0 to 1.0 and -1.0 for transparency by block
* Itscale - float value > 0.0

class ezdxf.gfxattribs.GEfxAttribs (*, layer: str = '0', color: int = 256, rgb: Optional[Tuple[int,
int, int]] = None, linetype: str = 'ByLayer’, lineweight: int = -
1, transparency: Optional[float] = None, ltscale: float = 1.0)
Represents often used DXF attributes of graphical entities.

New in version 0.18.
Parameters
* layer (str)—layer name as string
* color (int)— AutoCAD Color Index (ACI) color value as integer

* rgb — RGB true color (red, green, blue) tuple, each channel value in the range from 0 to 255,
None for not set

* linetype (str) - linetype name, does not check if the linetype exist!
* lineweight (int) - see Lineweights documentation for valid values

* transparency (float) — transparency value in the range from 0.0 to 1.0, where 0.0 is
opaque and 1.0 if fully transparent, -1.0 for transparency by block, None for transparency by
layer

* ltscale (f1loat) - linetype scaling value > 0.0, default value is 1.0
Raises DXFValueError — invalid attribute value

property layer
layer name

property color
AutoCAD Color Index (ACI) color value

property rgb
true color value as (red, green, blue) tuple, None for not set

property linetype
linetype name

property lineweight

6.8. Reference 501

ezdxf Documentation, Release 0.17.2

property transparency
transparency value from 0.0 for opaque to 1.0 is fully transparent, -1.0 is for transparency by block and None
if for transparency by layer

property ltscale
linetype scaling factor

_str__ () —str
Return str(self).

__repr__ () —»str
Return repr(self).

__iter__ () — Iterator[Tuple[str, Any]]
Returns iter(self).

asdict (default_values=False) — Dict[str, Any]
Returns the DXF attributes as dict, returns also the default values if argument default_values is True. The
true_color and transparency attributes do not have default values, the absence of these attributes is the default
value.

items (default_values=False) — List[Tuple[str, Any]]
Returns the DXF attributes as list of name, value pairs, returns also the default values if argument de-
fault_values is True. The true_color and transparency attributes do not have default values, the absence
of these attributes is the default value.

classmethod load_from_header (doc: Drawing) — GfxAttribs
Load default DXF attributes from the HEADER section.

There is no default true color value and the default transparency is not stored in the HEADER section.
Loads following header variables:

* SCLAYER - current layer name

* $CECOLOR - current ACI color

e SCELTYPE - current linetype name

* SCELWEIGHT - current lineweight

* SCELTSCALE - current linetype scaling factor

write_to_header (doc: Drawing) — None
Write DXF attributes as default values to the HEADER section.

Writes following header variables:
* SCLAYER - current layer name, if a layer table entry exist in doc
* SCECOLOR - current ACI color
* SCELTYPE - current linetype name, if a linetype table entry exist in doc
* SCELWEIGHT - current lineweight
* SCELTSCALE - current linetype scaling factor

classmethod from_entity (entity: DXFEntity) — GfxAttribs
Get the graphical attributes of an entity as GfxAtt ribs object.

502 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Text Tools

MTextEditor

class ezdxf.tools.text.MTextEditor (text: str=")
The MTextEditorisahelper class to build MTEXT content strings with support for inline codes to change color,
font or paragraph properties. The result is always accessible by the text attribute or the magic __ str ()
function as str (MTextEditor ("text")).

All text building methods return self to implement a floating interface:

e = MTextEditor ("This example ") .color ("red") .append("switches color to red.")
mtext = msp.add_mtext (str(e))

The initial text height, color, text style and so on is determined by the DXF attributes of the MText entity.

Warning: The MTextEditor assembles just the inline code, which has to be parsed and rendered by the
target CAD application, ezdxf has no influence to that result.

Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not work across
different CAD applications and keep the formatting in a logic manner like, do not change paragraph properties
in the middle of a paragraph.

There is no official documentation for the inline codes!

Parameters text — init value of the MTEXT content string.
text
The MTEXT content as a simple string.

append (fext: str) — ezdxf.tools.text. MTextEditor
Append fext.

__dadd__ (text: str) — ezdxf.tools.text. MTextEditor
Append text:

e = MTextEditor ("First paragraph.\P")
e += "Second paragraph.\P")

_str__ () —str
Returns the MTEXT content attribute text.

clear ()
Reset the content to an empty string.

font (name: str, bold: bool = False, italic: bool = False) — ezdxf.tools.text. MTextEditor
Set the text font by the font family name. Changing the font height should be done by the height () or the
scale_height () method. The font family name is the name shown in font selection widgets in desktop
applications: “Arial”, “Times New Roman”, “Comic Sans MS”. Switching the codepage is not supported.

Parameters
* name - font family name
* bold —flag

* italic-flag

6.8. Reference 503

ezdxf Documentation, Release 0.17.2

height (height: float) — ezdxf.tools.text. MTextEditor
Set the absolute text height in drawing units.

scale_height (factor: float) — ezdxf.tools.text. MTextEditor
Scale the text height by a factor. This scaling will accumulate, which means starting at height 2.5 and scaling
by 2 and again by 3 will set the text height to 2.5 x 2 x 3 = 15. The current text height is not stored in the
MTextEditor, you have to track the text height by yourself! The initial text height is stored in the MText
entity as DXF attribute char_height.

width_factor (factor: float) — ezdxf.tools.text. MTextEditor
Set the absolute text width factor.

char_tracking_factor (factor: float) — ezdxf.tools.text. MTextEditor
Set the absolute character tracking factor.

oblique (angle: int) — ezdxf.tools.text. MTextEditor
Set the text oblique angle in degrees, vertical is 0, a value of 15 will lean the text 15 degree to the right.

color (name: str) — ezdxf.tools.text. MTextEditor

9« » «

Set the text color by color name: “red”, “yellow”, “green”, “cyan”, “blue”, “magenta” or “white”.

aci (aci: int) — ezdxf.tools.text. MTextEditor
Set the text color by AutoCAD Color Index (ACI) in range [0, 256].

rgb (rgh: Tuple[int, int, int]) — ezdxf.tools.text. MTextEditor
Set the text color as RGB value.

underline (fext: str) — ezdxf.tools.text. MTextEditor
Append text with a line below the text.

overline (text: str) — ezdxf.tools.text. MTextEditor
Append zext with a line above the text.

strike_through (fext: str) — ezdxf.tools.text. MTextEditor
Append fext with a line through the text.

group (fext: str) — ezdxf.tools.text. MTextEditor
Group fext, all properties changed inside a group are reverted at the end of the group. AutoCAD supports
grouping up to 8 levels.

stack (upr: str, wr: str, t: str = ') — ezdxf.tools.text. M TextEditor
Append stacked text upr over lwr, argument ¢ defines the kind of stacking, the space ” ” after the “*” will be
added automatically to avoid caret decoding:

nAw.,

vertical stacked without divider line, e.g. \SA" B:
A
B

"/": vertical stacked with divider line, e.g. \SX/Y:
X

Y

"#": diagonal stacked, with slanting divider line, e.g. \Sl#4:
1/4

paragraph (props: ezdxf.tools.text.ParagraphProperties) — ezdxf.tools.text. MTextEditor
Set paragraph properties by a ParagraphPropert ies object.

bullet_list (indent: float, bullets: Iterable[str], content: Iterable[str]) — ezdxf.tools.text. MTextEditor
Build bulleted lists by utilizing paragraph indentation and a tabulator stop. Any string can be used as bullet.

504 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Indentation is a multiple of the initial MTEXT char height (see also docs about ParagraphProperties),
which means indentation in drawing units is MText . dxf .char_height X indent.

Useful UTF bullets:
e “bull” U+2022 = (Alt Numpad 7)
* “circle” U+25CB = O (Alt Numpad 9)

For numbered lists just use numbers as bullets:

MTextEditor.bullet_list (
indent=2,

bulletsz[llllﬂl HZ.H]’

content=["first", "second"],
)

Parameters

* indent - content indentation as multiple of the initial MTEXT char height
* bullets —iterable of bullet strings, e.g. ["—"] * 3, for 3 dashes as bullet strings
* content - iterable of list item strings, one string per list item, list items should not contain

new line or new paragraph commands.

Constants stored in the MTextEditor class:

NEW_LINE "\P'
NEW_PARAGRAPH "\P'
NEW_COLUMN "\N

UNDERLINE_START "\L'
UNDERLINE_STOP "\1'

OVERSTRIKE_START | '\O'
OVERSTRIKE_STOP "\o'

STRIKE_START "\K'
STRIKE_STOP "\k'
ALIGN_BOTTOM "\AO; '
ALIGN_MIDDLE "\ALl; "'
ALIGN_TOP "\A2; "'
NBSP A~
TAB AT

class ezdxf.tools.text.ParagraphProperties (indent=0, left=0, right=0, align=DEFAULT,

tab_stops=[])
Stores all known MTEXT paragraph properties in a NamedTuple. Indentations and tab stops are multiples of

the default text height MText .dxf.char_height. E.g. char_height is 0.25 and indent is 4, the real
indentation is 4 x 0.25 = 1 drawing unit. The default tabulator stops are 4, 8, 12, ... if no tabulator stops are explicit
defined.

Parameters

* indent (fIoat) - left indentation of the first line, relative to 1eft, which means an in—
dent of 0 has always the same indentation as left

* left (float) - left indentation of the paragraph except for the first line

* right (float) - left indentation of the paragraph

6.8. Reference 505

ezdxf Documentation, Release 0.17.2

* align - MTextParagraphAlignment enum

* tab_stops — tuple of tabulator stops, as f1oat or as str, float values are left aligned
tab stops, strings with prefix "c" are center aligned tab stops and strings with prefix "r" are
right aligned tab stops

tostring () — str
Returns the MTEXT paragraph properties as MTEXT inline code e.g. "\pxi-2,12;".

class ezdxf.lldxf.const.MTextParagraphAlignment

DEFAULT
LEFT

RIGHT
CENTER
JUSTIFIED
DISTRIBUTED

Single Line Text

class ezdxf.tools.text.TextLine (text: str, font: ezdxf.tools.fonts. AbstractFont)
Helper class which represents a single line text entity (e.g. Text).

Parameters
* text — content string
e font — ezdxf font definition like MonospaceFont or MatplotlibFont

property width
Returns the final (stretched) text width.

property height
Returns the final (stretched) text height.

stretch (alignment: str, pl: Vec3, p2: Vec3) — None
Set stretch factors for FIT and ALIGNED alignments to fit the text between p/ and p2, only the distance
between these points is important. Other given alignment values are ignore.

font_measurements () — ezdxf.tools. fonts. FontMeasurements
Returns the scaled font measurements.

baseline_vertices (insert, halign, valign, angle, scale) — List[Vec3]
Returns the left and the right baseline vertex of the text line.

Parameters
¢ insert —insertion location
* halign - horizontal alignment left=0, center=1, right=2
e valign - vertical alignment baseline=0, bottom=1, middle=2, top=3
* angle - text rotation in radians
e scale - scale in x- and y-axis as 2-tuple of float

corner_vertices (insert, halign, valign, angle, scale, oblique) — List[Vec3]
Returns the corner vertices of the text line in the order bottom left, bottom right, top right, top left.

506 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Parameters
* insert - insertion location
* halign - horizontal alignment left=0, center=1, right=2
¢ valign - vertical alignment baseline=0, bottom=1, middle=2, top=3
* angle - text rotation in radians
* scale - scale in x- and y-axis as 2-tuple of float
* oblique - shear angle (slanting) in x-direction in radians

static transform_2d (vertices, insert, shift, rotation, scale, oblique) — List[Vec3]
Transform any vertices from the text line located at the base location at (0, 0) and alignment LEFT.

Parameters
¢ vertices - iterable of vertices
e insert —insertion location
* shift — (shift-x, shift-y) as 2-tuple of float
e rotation - text rotation in radians
¢ scale — (scale-x, scale-y) as 2-tuple of float

¢ oblique - shear angle (slanting) in x-direction in radians

Functions

ezdxf.tools.text.caret_decode (fext: str) — str
DXEF stores some special characters using caret notation. This function decodes this notation to normalise the
representation of special characters in the string.

see: https://en.wikipedia.org/wiki/Caret_notation

ezdxf.tools.text.estimate_mtext_content_extents (confent: Str, font:
ezdxf.tools.fonts. AbstractFont,
column_width: float = 0.0,

line_spacing_factor: float = 1.0)
— Tuple[float, float]
Estimate the width and height of the MText content string. The result is very inaccurate if inline codes are used

or line wrapping at the column border is involved! Column breaks \N will be ignored.
This function uses the optional Matplotlib package if available.
Parameters
* content - the MText content string
» font — font abstraction based on ezdxf.tools. fonts.AbstractFont
¢ column_width — MText .dxf.width or 0.0 for an unrestricted column width
* line_spacing_factor -MText.dxf.line_spacing_factor
Returns Tuple[width, height]

ezdxf.tools.text.estimate_mtext_extents (mtext: MText) — Tuple[float, float]
Estimate the width and height of a single column MText entity.

This function is faster than the mtext_ size () function, but the result is very inaccurate if inline codes are used
or line wrapping at the column border is involved!

6.8. Reference 507

https://en.wikipedia.org/wiki/Caret_notation

ezdxf Documentation, Release 0.17.2

This function uses the optional Matplotlib package if available.
Returns Tuple[width, height]

ezdxf.tools.text.fast_plain_mtext (text: str, split=False) — Union[List[str], str]
Returns the plain MTEXT content as a single string or a list of strings if splif is True. Replaces \P by \n and
removes other controls chars and inline codes.

This function is more than 4x faster than plain_mtext (), but does not remove single letter inline commands
with arguments without a terminating semicolon like this "\Clred text™".

Note: Well behaved CAD applications and libraries always create inline codes for commands with arguments with
a terminating semicolon like this "\C1; red text"!

Parameters
* text — MTEXT content string
e split - split content at line endings \P
ezdxf.tools.text.is_text_vertical_stacked (fext: DXFEntity) — bool
Returns True if the associated text Text st y1e is vertical stacked.

ezdxf.tools.text.is_upside_down_text_angle (angle: float, tol: float = 3.0) — bool
Returns True if the given text angle in degrees causes an upside down text in the WCS. The strict flip range is 90°
< angle < 270°, the tolerance angle ol extends this range to: 90+tol < angle < 270-tol. The angle is normalized to
[0, 360).

Parameters
* angle - text angle in degrees
* tol - tolerance range in which text flipping will be avoided

ezdxf.tools.text.leading (cap_height: float, line_spacing: float = 1.0) — float
Returns the distance from baseline to baseline.

Parameters
* cap_height — cap height of the line
* line_spacing - line spacing factor as percentage of 3-on-5 spacing

ezdxf.tools.text.plain_mtext (fext: str, split=False, tabsize: int = 4) — Union[List[str], str]
Returns the plain MTEXT content as a single string or a list of strings if split is True. Replaces \P by \n and
removes other controls chars and inline codes.

This function is much slower than fast_plain_mtext (), but removes all inline codes.
Parameters
* text — MTEXT content string
* split — split content at line endings \ P
* tabsize - count of replacement spaces for tabulators ~ I

ezdxf.tools.text.plain_text (fext: str) — str
Returns the plain text for Text, Attrib and Attdef content.

ezdxf.tools.text.safe_string (s: Optional[str], max_len: int = 255) — str
Returns a string with line breaks \n replaced by \P and the length limited to max_Ien.

508 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

ezdxf.tools.text.text_wrap (fext: str, box_width: Optional[float], get_text_width: Callable[[str],
float]) — List[str]
Wrap text at \n and given box_width. This tool was developed for usage with the MTEXT entity. This isn’t the
most straightforward word wrapping algorithm, but it aims to match the behavior of AutoCAD.

Parameters
* text — text to wrap, included \n are handled as manual line breaks
* box_width — wrapping length, None to just wrap at \n
* get_text_width — callable which returns the width of the given string

ezdxf.tools.text.upright_text_angle (angle: float, tol: float = 3.0) — float

Returns a readable (upright) text angle in the range angle <= 90+tol or angle >= 270-tol. The angle is normalized
to [0, 360).

Parameters
* angle - text angle in degrees

* tol - tolerance range in which text flipping will be avoided

Text Size Tools

class ezdxf.tools.text _size.TextSize
A frozen dataclass as return type for the text_size () function.

width
The text width in drawing units (float).

cap_height
The font cap-height in drawing units (float).

total_height
The font total-height = cap-height + descender-height in drawing units (float).

ezdxf.tools.text_size.text_size (fext: ezdxf.entities.text. Text) — ezdxf.tools.text_size. TextSize
Returns the measured text width, the font cap-height and the font total-height for a Text entity. This function
uses the optional Martplotlib package if available to measure the final rendering width and font-height for the Text
entity as close as possible. This function does not measure the real char height! Without access to the Matplotlib
package the MonospaceFont is used and the measurements are very inaccurate.

See the text2path add-on for more tools to work with the text path objects created by the Matplotlib package.

class ezdxf.tools.text_ _size.MTextSize
A frozen dataclass as return type for the mtext_size () function.

total_width
The total width in drawing units (float)

total_height
The total height in drawing units (float), same as max (column_heights).

column_width
The width of a single column in drawing units (float)

gutter_width
The space between columns in drawing units (float)

column_heights

A tuple of columns heights (float) in drawing units. Contains at least one column height and the the column
height is 0 for an empty column.

6.8. Reference 509

ezdxf Documentation, Release 0.17.2

column_count
The count of columns (int).

ezdxf.tools.text_size.mtext_size (mfext: ezdxf.entities.mtext. MText, tool: Op-
tional[ezdxf.tools.text_size. MTextSizeDetector] = None) —
ezdxf-tools.text_size. MTextSize
Returns the total-width, -height and columns information for a MText entity.

This function uses the optional Matplotlib package if available to do font measurements and the internal text layout
engine to determine the final rendering size for the MText entity as close as possible. Without access to the
Matplotlib package the MonospaceFont is used and the measurements are very inaccurate.

Attention: The required full layout calculation is slow!

The first call to this function with Matplotlib support is very slow, because Matplotlib lookup all available fonts
on the system. To speedup the calculation and accepting inaccurate results you can disable the Matplotlib support
manually:

ezdxf.option.use_matplotlib = False

ezdxf.tools.text_size.estimate_mtext_extents (mtext: MText) — Tuple[float, float]
Estimate the width and height of a single column MText entity.

This function is faster than the mt ext_ size () function, but the result is very inaccurate if inline codes are used
or line wrapping at the column border is involved!

This function uses the optional Matplotlib package if available.

Returns Tuple[width, height]

Fonts

The module ezdxf.tools. fonts manages the internal usage of fonts and has no relation how the DXF formats
manages text styles.

See also:

The Text style entity, the DXF way to define fonts.

The tools in this module provide abstractions to get font measurements with and without the optional Matplotlib package.

For a proper text rendering the font measurements are required. Ezdxf has a lean approach to package dependencies,
therefore the rendering results without support from the optional Matplotlib package are not very good.

Font Classes

ezdxf.tools.fonts.make_font (#tf_path: str, cap_height: float, width_factor: float = 1.0) —

ezdxf.tools. fonts. AbstractFont
Factory function to create a font abstraction.

Createsa MatplotlibFont if the Matplotlib font support is available and enabled or else a MonospaceFont.
Parameters
* ttf_path - raw font file name as stored in the Text sty e entity
* cap_height —desired cap height in drawing units.

e width_factor — horizontal text stretch factor

510 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

class ezdxf.tools.fonts.AbstractFont (measurements: ezdxf.tools.fonts.FontMeasurements)
The ezdxf font abstraction.

measurement
The FontMeasurement s data.

abstract text_width (fext: str) — float
abstract space_width () — float

class ezdxf.tools.fonts.MonospaceFont (cap_height: float, width_factor: float = 1.0, base-
line: float = 0, descender_factor: float = 0.333,

x_height_factor: float = 0.666)
Defines a monospaced font without knowing the real font properties. Each letter has the same cap- and descender

height and the same width. This font abstraction is used if no Matplotlib font support is available.
Use the make_ font () factory function to create a font abstraction.

text_width (fext: str) — float
Returns the text width in drawing units for the given fext based on a simple monospaced font calculation.

space_width () — float
Returns the width of a “space” char.

class ezdxf.tools.fonts.MatplotlibFont (#f_path: str, cap_height: float = 1.0, width_factor:
float = 1.0)
This class provides proper font measurement support by using the optional Matplotlib font support.

Use the make_font () factory function to create a font abstraction.

text_width (text: str) — float
Returns the text width in drawing units for the given fext string. Text rendering and width calculation is done
by the Matplotlib TextPath class.

space_width () — float
Returns the width of a “space” char.

Font Anatomy

* A Visual Guide to the Anatomy of Typography: https://visme.co/blog/type-anatomy/

¢ Anatomy of a Character: https://www.fonts.com/content/learning/fontology/level- 1/type-anatomy/anatomy

Font Properties

The default way of DXF to store fonts in the Text st y 1 e entity by using the raw TTF file name is not the way how most
render backends select fonts.

The render backends and web technologies select the fonts by their properties. This list shows the Matplotlib properties:

family List of font names in decreasing order of priority. The items may include a generic font family name, either
“serif”, “sans-serif”, “cursive”, “fantasy”, or “monospace”.

style “normal” (“regular”), “italic” or “oblique”

stretch A numeric value in the range 0-1000 or one of “ultra-condensed”, “extra-condensed”, “condensed”, “semi-
condensed”, “normal”, “semi-expanded”, “expanded”, “extra-expanded” or “ultra-expanded”

weight A numeric value in the range 0-1000 or one of “ultralight”, “light”, “normal”, “regular”, “book”, “medium”,
“roman”, “semibold”, “demibold”, “demi”, “bold”, “heavy”, “extra bold”, “black”.

6.8. Reference 511

https://visme.co/blog/type-anatomy/
https://www.fonts.com/content/learning/fontology/level-1/type-anatomy/anatomy

ezdxf Documentation, Release 0.17.2

This way the backend can choose a similar font if the original font is not available.
See also:
* Matplotlib: https://matplotlib.org/stable/api/font_manager_api.html
e PyQt: https://doc.qt.io/archives/qtforpython-5.12/PySide2/QtGui/QFont.html
e W3C: https://www.w3.org/TR/2018/REC-css-fonts-3-20180920/

class ezdxf.tools.fonts.FontFace (#tf, family, style, stretch, weight)
This is the equivalent to the Matplotlib FontProperties class.

ttf
Raw font file name as string, e.g. “arial.ttf”

family
Family name as string, the default value is “sans-serif”

style
Font style as string, the default value is “normal”

stretch
Font stretch as string, the default value is “normal”

weight
Font weight as string, the default value is “normal”

property is_italic
Returns True if font face is italic

property is_oblique
Returns True if font face is oblique

property is_bold
Returns True if font face weight > 400

class ezdxf.tools.fonts.FontMeasurements
See Font Anatomy for more information.

baseline

cap_height

x_height

descender_height

scale (factor: float = 1.0) — ezdxf.tools. fonts. FontMeasurements
scale_from_baseline (desired_cap_height: float) — ezdxf.tools.fonts. FontMeasurements
shift (distance: float = 0.0) — ezdxf.tools. fonts. FontMeasurements
property cap_top

property x_top

property bottom

property total_height

512 Chapter 6

. Contents

https://matplotlib.org/stable/api/font_manager_api.html
https://doc.qt.io/archives/qtforpython-5.12/PySide2/QtGui/QFont.html
https://www.w3.org/TR/2018/REC-css-fonts-3-20180920/

ezdxf Documentation, Release 0.17.2

Font Caching

Ezdxf uses Matplotlib to manage fonts and caches the collected information. The default installation of ezdxf provides a
basic set of font properties. It is possible to create your own font cache specific for your system: see ezdxf.options.
font_cache_directory

The font cache is loaded automatically at startup, if not disabled by setting config variable auto_load_fonts in
[core] section to False : see Environment Variables

ezdxf.tools.fonts.get_£font_Fface (#f_path: str, map_shx=True) — ezdxf.tools.fonts.FontFace
Get cached font face definition by TTF file name e.g. “Arial.ttf”.

This function translates a DXF font definition by the raw TTF font file name into a Font Face object. Fonts which
are not available on the current system gets a default font face.

Parameters
* ttf_path - raw font file name as stored in the Text sty e entity
* map_shx — maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt uf”

ezdxf.tools.fonts.get_entity font_face (enfity: DXFEntity, doc=None) —

ezdxf.tools. fonts. FontFace
Returns the Font Face defined by the associated text style. Returns the default font face if the entity does not have

or support the DXF attribute “style”. Supports the extended font information stored in Text sty le table entries.

Pass a DXF document as argument doc to resolve text styles for virtual entities which are not assigned to a DXF
document. The argument doc always overrides the DXF document to which the entity is assigned to.

ezdxf.tools.fonts.get_font_measurements (#f_path: Str, map_shx=True) —

ezdxf-tools. fonts. FontMeasurements
Get cached font measurements by TTF file name e.g. “Arial.ttf”.

Parameters
* ttf_path - raw font file name as stored in the Text sty e entity
* map_shx — maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt uf”

ezdxf.tools.fonts.build_system_font_cache (* path=None, rebuild=True) — None
Build system font cache and save it to directory path if given. Set rebuild to False to just add new fonts. Requires
the Matplotlib package!

A rebuild has to be done only after a new ezdxf installation, or new fonts were added to your system (which you
want to use), or an update of ezdxf if you don’t use your own external font cache directory.

See also: ezdxf.options. font_cache_directory

ezdxf.tools. fonts.load (path=None, reload=False)
Load all caches from given path or from default location, defined by ezdxf.options.
font_cache_directory or the default cache from the ezdxf . tools folder.

This function is called automatically at startup if not disabled by environment variable
EZDXF_AUTO_LOAD_FONTS.

ezdxf.tools. fonts.save (path=None)
Save all caches to given path or to default location, defined by options.font_cache_directory or into the ezdxf.tools
folder.

6.8. Reference 513

ezdxf Documentation, Release 0.17.2

6.8.11 Global Options
Global Options Object

The global ezdxf options are stored in the object ezdxf.options.

Recommended usage of the global options object:

import ezdxf

value = ezdxf.options.attribute

The options object uses the Standard Python class ConfigParser to manage the configuration. Shortcut attributes
like test_files are simple properties and most shortcuts are read only marked by (Read only), read and writeable
attributes are marked by (Read/Write).

To change options, especially the read only attributes, you have to edit the config file with a text editor, or set options by
the set () method and write the current configuration into a config file.

Config Files

New in version 0.16.5.

The default config files are loaded from the user home directory as “~/.config/ezdxf/ezdxf.ini”, and the current working
directory as “./ezdxf.ini”. A custom config file can be specified by the environment variable EZDXF_CONFIG_FILE.
Ezdxf follows the XDG Base Directory specification if the environment variable XDG_CONFIG_HOME is set.

The config file loading order:
1. user home directory: “~/.config/ezdxf/ezdxf.ini”
2. current working directory: “./ezdxf.ini”
3. config file specified by EZDXF_CONFIG_FILE

A configuration file that is loaded later does not replace the previously loaded ones, only the existing options in the newly
loaded file are added to the configuration and can overwrite existing options.

Configuration files are regular INI files, managed by the standard Python ConfigParser class.

File Structure:

[core]

default_dimension_text_style = OpenSansCondensed-Light
test_files = D:\Source\dxftest

font_cache_directory =

load_proxy_graphics = true
store_proxy_graphics = true
log_unprocessed_tags = false
filter_invalid_xdata_group_codes = true
write_fixed _meta_data_for_testing = false
disable_c_ext = false

[browse—command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}

514 Chapter 6. Contents

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.python.org/3/library/configparser.html

ezdxf Documentation, Release 0.17.2

Modify and Save Changes

This code shows how to get and set values of the underlying ConfigParser object, but use the shortcut attributes if
available:

Set options, value has to ba a str, use "true"/"false" for boolean values
ezdxf.options.set (section, key, value)

Get option as string
value = ezdxf.options.get (section, key, default="")

Special getter for boolean, int and float

value = ezdxf.options.get_bool (section, key, default=False)
value = ezdxf.options.get_int (section, key, default=0)
value = ezdxf.options.get_float (section, key, default=0.0)

If you set options, they are not stored automatically in a config file, you have to write back the config file manually:

write back the default user config file "ezdxf.ini" in the
user home directory
ezdxf.options.write_home_config()

write back to the default config file "ezdxf.ini" in the
current working directory
ezdxf.options.write_file()

write back to a specific config file
ezdxf.options.write_file("my_config.ini™)

which has to be loaded manually at startup
ezdxf.options.read_file("my_config.ini™)

This example shows how to change the test_ £ i 1 es path and save the changes into a custom config file “my_config.ini”:

import ezdxf

test_files = Path("~/my-dxf-test-files") .expand_user ()
ezdxf.options. set (

ezdxf.options.CORE, # section

"test_files", # key

"~/my-dxf-test-files", # value
)

ezdxf.options.write_file("my_config.ini™)

Use a Custom Config File

You can specify a config file by the environment variable EZDXF_CONFIG_FILE, which is loaded after the default
config files.

C:\> set EZDXF_CONFIG_FILE=D:\user\path\custom.ini

Custom config files are not loaded automatically like the default config files.

This example shows how to load the previous created custom config file “my_config.ini” from the current working direc-
tory:

6.8. Reference 515

ezdxf Documentation, Release 0.17.2

import ezdxf

ezdxf.options.read ("my_config.ini")

That is all and because this is the last loaded config file, it overrides all default config files and the config file specified by
EZDXF_CONFIG_FILE.

Functions

ezdxf.options.set (section: str, key: str, value: str)
Set option key in section to values as str.

ezdxf.options.get (section: str, key: str, default: str = ") — str
Get option key in section as string.

ezdxf.options.get_bool (section: str, key: str, default: bool = False) — bool
Get option key in section as bool.

ezdxf.options.get_int (section: str, key: str, default: int = 0) — int
Get option key in section as int.

ezdxf.options.get_float (section: str, key: str, default: float = 0.0) — flot
Get option key in section as £1oat.

ezdxf.options.write (fp: TextlO)
Write configuration into given file object fp, the file object must be a writeable text file with “utf8” encoding.

ezdxf.options.write_£file (filename: str = ‘ezdxf.ini")
Write current configuration into file filename, default is “ezdxf.ini” in the current working directory.

ezdxf.options.write_home_config()
Write configuration into file “~/.config/ezdxf/ezdxf.ini”, $XDG_CONF IG_HOME is supported if set.

ezdxf.options.read_£file (filename: str)
Append content from config file filename, but does not reset the configuration.

ezdxf.options.print ()
Print configuration to stdout.

ezdxf.options.reset ()
Reset options to factory default values.

ezdxf.options.delete_default_config files ()
Delete the default config files “ezdxf.ini” in the current working and in the user home directory “~/.config/ezdxf™,
$XDG_CONFIG_HOME is supported if set.

ezdxf.options.preserve_proxy_graphics (state=True)
Enable/disable proxy graphic load/store support by setting the options load_proxy_graphics and
store_proxy_graphics to state.

ezdxf.options.loaded_config files
Read only property of loaded config files as tuple for Path objects.

516 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Core Options

For all core options the section name is core.

Default Dimension Text Style

The default dimension text style is used by the DIMENSION renderer of ezdxf, if the specified text style exist in the
STYLE table. To use any of the default style of ezdxf you have to setup the styles at the creation of the DXF document:
ezdxf.new (setup=True), or setup the ezdxf default styles for a loaded DXF document:

import ezdxf
from ezdxf.tool.standard import setup_drawing

doc = ezdxf.readfile("your.dxf")
setup_drawing (doc)

Config file key: default_dimension_text_style
Shortcut attribute:

ezdxf.options.default_dimension_text_style
(Read/Write) Get/Set default text style for DIMENSION rendering, default value is OpenSansCondensed-
Light.

Font Cache Directory

Ezdxf has a bundled font cache to have faster access to font metrics. This font cache includes only fonts installed on the
developing workstation. To add the fonts of your computer to this cache, you have to create your own external font cache.
This has to be done only once after ezdxf was installed, or to add new installed fonts to the cache, and this requires the
Matplotlib package.

This example shows, how to create an external font cache in the recommended directory of the XDG Base Directory
specification: "~/ .cache/ezdxf".

import ezdxf
from ezdxf.tools import fonts

xdg_path() returns "SXDG_CACHE_HOME/ezdxf" or "~/.cache/ezdxf" if

SXDG_CACHE_HOME is not set

font_cache_dir = ezdxf.options.xdg_path ("XDG_CACHE_HOME", ".cache")
fonts.build_system_font_cache (path=font_cache_dir)
ezdxf.options.font_cache_directory = font_cache_dir

Save changes to the default config file "~/.config/ezdxf/ezdxf.ini"
to load the font cache always from the new location.
ezdxf.options.write_home_config ()

Config file key: font_cache_directory
Shortcut attribute:

ezdxf.options. font_cache_directory
(Read/Write) Get/set the font cache directory, if the directory is an empty string, the bundled font cache is used.
Expands “~” construct automatically.

6.8. Reference 517

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

ezdxf Documentation, Release 0.17.2

Load Proxy Graphic

Proxy graphics are not essential for DXF files, but they can provide a simple graphical representation for complex entities,
but extra memory is needed to store this information. You can save some memory by not loading the proxy graphic, but
the proxy graphic is lost if you write back the DXF file.

The current version of ezdxf uses this proxy graphic to render MLEADER entities by the drawing add-on.
Config file key: 1oad_proxy_graphics
Shortcut attribute:

ezdxf.options.load_proxy_graphics
(Read/Write) Load proxy graphics if True, default is True.

Store Proxy Graphic

Prevent exporting proxy graphics if set to False.
Config file key: store_proxy_graphics
Shortcut attribute:

ezdxf.options.store_proxy_graphics
(Read/Write) Export proxy graphics if True, default is True.

Debugging Options

For all debugging options the section name is core.

Test Files

Path to test files. Some of the CADK:it test files are used by the integration tests, these files should be located in the
ezdxf.options.test_files_path / "CADKitSamples" folder.

Config file key: test_files
Shortcut attributes:

ezdxf.options.test_files
(Read only) Returns the path to the ezdxf test files as st r, expands

@

construct automatically.

ezdxf.options.test_files_path
(Read only) Path to test files as pathlib.Path object.

Filter Invalid XDATA Group Codes

Only a very limited set of group codes is valid in the XDATA section and AutoCAD is very picky about that. Ezdxf
removes invalid XDATA group codes if this option is set to True, but this needs processing time, which is wasted if you
get your DXEF files from trusted sources like AutoCAD or BricsCAD.

Config file key: filter_invalid_xdata_group_codes

ezdxf.options.filter_ invalid_xdata_group_codes
(Read only) Filter invalid XDATA group codes, default value is True.

518 Chapter 6. Contents

https://cadkit.blogspot.com/p/sample-dxf-files.html?view=magazine

ezdxf Documentation, Release 0.17.2

Log Unprocessed Tags

Logs unprocessed DXF tags, this helps to find new and undocumented DXF features.
Config file key: 1og_unprocessed_tags

ezdxf.options.log_unprocessed_tags
(Read/Write) Log unprocessed DXF tags for debugging, default value is False.

Write Fixed Meta Data for Testing

Write the DXF files with fixed meta data to test your DXF files by a diff-like command, this is necessary to get always the
same meta data like the saving time stored in the HEADER section. This may not work across different ezdxf versions!

Config file key: write_fixed_meta_data_for_testing

ezdxf.options.write_fixed_meta_data_for_testing
(Read/Write) Enable this option to always create same meta data for testing scenarios, e.g. to use a diff-like tool
to compare DXF documents, default is False.

Disable C-Extension

It is possible to deactivate the optional C-extensions if there are any issues with the C-extensions. This has to be done in
a default config file or by environment variable before the first import of ezdxf. For pypy 3 the C-extensions are always
disabled, because the JIT complied Python code is much faster.

Important: This option works only in the default config files, user config files which are loaded by ezdxf. options.
read_file () cannot disable the C-Extensions, because at this point the setup process of ezdxf is already finished!

Config file key: disable_c_ext

ezdxf.options.disable_c_ext
(Read only) This option disables the C-extensions if True. This can only be done before the first import of ezdxf
by using a config file or the environment variable EZDXF_DISABLE_C_EXT.

Use C-Extensions

ezdxf.options.use_c_ext
(Read only) Shows the actual state of C-extensions usage.

Use Matplotlib

This option can deactivate Matplotlib support for testing. This option is not stored in the ConfigParser object and is
therefore not supported by config files!

Only attribute access is supported:

ezdxf.options.use_matplotlib
(Read/Write) Activate/deactivate Matplotlib support (e.g. for testing) if Matplotlib is installed, else
use_matplotlibisalways False.

6.8. Reference 519

ezdxf Documentation, Release 0.17.2

Environment Variables

Some feature can be controlled by environment variables. Command line example for disabling the optional C-extensions
on Windows:

C:\> set EZDXF_DISABLE_C_EXT=1

Important: If you change any environment variable, you have to restart the Python interpreter!

EZDXF_DISABLE_C_EXT Set environment variable EZDXF_DISABLE_C_EXT to 1 or True to disable the usage
of the C-extensions.

EZDXF_TEST_FILES Path to the ezdxf test files required by some tests, for instance the CADKit sample files should
be located in the EZDXF_TEST_FILES/CADKitSamples folder. See also option ezdxf.options.
test_files.

EZDXF_CONFIG_FILE Specifies a user config file which will be loaded automatically after the default config files at
the first import of ezdxf.

6.8.12 Miscellaneous

Zoom Layouts

New in version 0.16.
These functions mimic the ZOOM commands in CAD applications.

Zooming means resetting the current viewport limits to new values. The coordinates for the functions center () and
window () are drawing units for the model space and paper space units for paper space layouts. The modelspace units
inDrawing.units are ignored.

The extents detection for the functions entities () and extents () is done by the ezdxf. bbox module. Read
the associated documentation to understand the limitations of the ezdx . bbox module. Tl;dr The extents detection is
slow and not accurate.

Because the ZOOM operations in CAD applications are not that precise, then zoom functions of this module uses the fast
bounding box calculation mode of the bbox module, which means the argument flatten is always False for extents ()
function calls.

The region displayed by CAD applications also depends on the aspect ratio of the application window, which is not
available to ezdxf, therefore the viewport size is just an educated guess of an aspect ratio of 2:1 (16:9 minus top toolbars
and the bottom status bar).

Warning: All zoom functions replace the current viewport configuration by a single window configuration.

Example to reset the main CAD viewport of the model space to the extents of its entities:

import ezdxf
from ezdxf import zoom

doc = ezdxf.new()
msp doc.modelspace ()
add your DXF entities

H

(continues on next page)

520 Chapter 6. Contents

https://cadkit.blogspot.com/p/sample-dxf-files.html?view=magazine

ezdxf Documentation, Release 0.17.2

(continued from previous page)

zoom.extents (msp)
doc.saveas ("your.dxf")

ezdxf.zoom.center (layout: Layout, point: Vertex, height: float)
Resets the active viewport center of layout to the given point, argument size defines the width and height of the
viewport. Replaces the current viewport configuration by a single window configuration.

ezdxf.zoom.objects (layout: Layout, entities: Iterablel DXFEntity], factor: float = 1)
Resets the active viewport limits of layout to the extents of the given entities. Only entities in the given layout are
taken into account. The argument factor scales the viewport limits. Replaces the current viewport configuration by
a single window configuration.

ezdxf.zoom.extents (layout: Layout, factor: float = 1)
Resets the active viewport limits of layout to the extents of all entities in this layout. The argument factor scales
the viewport limits. Replaces the current viewport configuration by a single window configuration.

ezdxf.zoom.window (layout: Layout, pl: Vertex, p2: Vertex)
Resets the active viewport limits of layout to the lower left corner p/ and the upper right corner p2. Replaces the
current viewport configuration by a single window configuration.

Load DXF Comments
ezdxf.comments.from_stream (stream: TextlO, codes: Set[int] = None) — Iterable[DXFTag]
Yields comment tags from text stream as DXF Tag objects.
Parameters
* stream - input text stream

* codes - set of group codes to yield additional DXF tags e.g. {5, 0} to also yield handle and
structure tags

ezdxf.comments.from_£ile (filename: str, codes: Set[int] = None) — Iterable[DXFTag]
Yields comment tags from file filename as DXF Tag objects.

Parameters
» filename —filename as string

* codes - yields also additional tags with specified group codes e.g. {5, 0} to also yield handle
and structure tags

Reorder

Tools to reorder DXF entities by handle or a special sort handle mapping.

Such reorder mappings are stored only in layouts as Modelspace, Paperspace or BlockLayout, and can be
retrieved by the method get_redraw_order ().

Each entry in the handle mapping replaces the actual entity handle, where the “0” handle has a special meaning, this
handle always shows up at last in ascending ordering.

ezdxf.reorder.ascending (entities: Iterablel DXFGraphic], mapping: Union[Dict, Iterable[Tuple/str,

str]]] = None) — Iterable[DXFGraphic]
Yields entities in ascending handle order.

The sort handle doesn’t have to be the entity handle, every entity handle in mapping will be replaced by the given
sort handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle) or a dict (entity_handle, sort_handle).
Entities with equal sort handles show up in source entities order.

6.8. Reference 521

ezdxf Documentation, Release 0.17.2

Parameters
* entities —iterable of DXFGraphic objects
* mapping — iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict.

ezdxf.reorder.descending (entities: Iterablel DXFGraphic], mapping: Union[Dict, Iterable[Tuple/str,

str]]] = None) — Iterable[DXFGraphic]
Yields entities in descending handle order.

The sort handle doesn’t have to be the entity handle, every entity handle in mapping will be replaced by the given
sort handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle) or a dict (entity_handle, sort_handle).
Entities with equal sort handles show up in reversed source entities order.

Parameters
* entities —iterable of DXFGraphic objects

* mapping - iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict.

6.9 Launcher

The command line script ezdxf launches various sub-commands:

j9e) DXEF pretty printer, replacement for the previous dxfpp command
audit Audit and repair DXF files

draw Draw and convert DXF files by the Matplotlib backend

view PyQt DXF file viewer

browse | PyQt DXF structure browser for DXF debugging and curious people
strip Strip comments and THUMBNAILIMAGE section from DXF files
config | Manage config files

info Show information and optional stats of DXF files as loaded by ezdxf

The help option —h is supported by the main script and all sub-commands:

C:\> ezdxf -h
usage: ezdxf [-h] [-V] [-v] [--config CONFIG] [--log LOG]
{pp,audit,draw,view, browse, strip, config}

Command launcher for the Python package "ezdxf":
https://pypi.org/project/ezdxf/

positional arguments:
{pp,audit, draw,view, browse, strip}

PP pretty print DXF files as HTML file

audit audit and repair DXF files

draw draw and convert DXF files by Matplotlib

view view DXF files by the PyQt viewer

browse browse DXF file structure

strip strip comments from DXF files

config manage config files

info show information and optional stats of DXF files loaded by.
—ezdxf,

this may not represent the original content of the file, use.
—the
browse command to see the original content

(continues on next page)

522 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

optional arguments:

-h, --help

-V, —--version
-v, ——-verbose
——config CONFIG
--log LOG

show
show
give
path
path

this help message and exit
version and exit

more output

to a config file

to a verbose appending log

Note: The ezdxf script is the only executable script installed on the user system, if installed by pip, the dxfpp script

is not included anymore.

6.9.1 Pretty Printer

Pretty print the DXF text content as HTML file and open the file in the default web browser:

C:\> ezdxf pp -o gear.dxf

6.9. Launcher

523

ezdxf Documentation, Release 0.17.2

gear.dxf
| HEADER | CLASSES | TABLES | BLOCKS | ENTITIES | OBJECTS

SECTION: HEADER

previous next top

9 <str> SACADVER
1 <str> AC1027
9 <str> SACADMAINTVER
70 <int> 185, b81161661
<s5tr> $SDWGCODEPAGE
<str> ANSI 1252
<str> SLASTSAVEDBY
<str> ezdxf
<str> SREQUIREDVERSIONS
168 <int> @
9 <str> SINSBASE
10 <point> (0.0, 0.0, 0.0)
9 <str> SEXTMIN
10 <point> (le+20, le+20, 1le+20)
9 <str> SEXTMAX
10 <point> (-1le+20, -l1le+20, -le+20)
9 <str> SLIMMIN
10 <point> (0.0, 0.0)
9 <str> SLIMMAX
10 <point> (420.0, 297.0)

Print help:

C:\> ezdxf pp -h
usage: ezdxf pp [-h] [-o] [-r] [-x] [-1] [-s SECTIONS] FILE [FILE ...]

positional arguments:
FILE DXF files pretty print

optional arguments:

-h, --help show this help message and exit

-0, ——open open generated HTML file by the default web browser

-r, —-raw raw mode, no DXF structure interpretation

-x, ——nocompile don't compile points coordinates into single tags (only in.
—raw mode)

-1, —--legacy legacy mode, reorder DXF point coordinates

(continues on next page)

524 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

-s SECTIONS, —-sections SECTIONS
choose sections to include and their order, h=HEADER, .
—c=CLASSES,
t=TABLES, b=BLOCKS, e=ENTITIES, o0=0BJECTS

6.9.2 Auditor

Audit and recover the DXF file “gear.dxf” and save the recovered version as “gear.rec.dxf”:

C:\> ezdxf audit -s gear.dxf

auditing file: gear.dxf
No errors found.
Saved recovered file as: gear.rec.dxf

Print help:

C:\> ezdxf audit -h
usage: ezdxf audit [-h] [-s] FILE [FILE ...]

positional arguments:
FILE audit DXF files

optional arguments:
-h, —--help show this help message and exit
-s, ——-save save recovered files with extension ".rec.dxf"

6.9.3 Draw

Convert the DXF file “gear.dxf” into a SVG file by the Matplotlib backend:

C:\> ezdxf draw -o gear.pdf gear.dxf

The “gear.pdf” created by the Matplotlib backend:

6.9. Launcher 525

ezdxf Documentation, Release 0.17.2

Show all output formats supported by the Matplotlib backend on your system. This output may vary:

C:\> ezdxf draw --formats

eps: Encapsulated Postscript

jpg: Joint Photographic Experts Group
jpeg: Joint Photographic Experts Group
pdf: Portable Document Format

pgf: PGF code for LaTeX

png: Portable Network Graphics

ps: Postscript

raw: Raw RGBA bitmap

rgba: Raw RGBA bitmap

svg: Scalable Vector Graphics

svgz: Scalable Vector Graphics

tif: Tagged Image File Format

tiff: Tagged Image File Format

Print help:

C:\> ezdxf draw -h

usage: ezdxf draw [-h] [--formats] [-—-layout LAYOUT] [--all-layers-visible]
[-—all-entities-visible] [-o OUT] [--dpi DPI]
[-—1ltype {approximate,accurate}]
[FILE]

positional arguments:

(continues on next page)

526 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

FILE

optional arguments:
-h, —-help
—-—formats
—-—layout LAYOUT
--all-layers-visible
——all-entities-visible

-o OUT, —--out OUT
——-dpi DPI
—-—-ltype {approximate,a

DXF file to view or convert

show this help message and exit

show all supported export formats and exit

select the layout to draw

draw all layers including the ones marked as invisible

draw all entities including the ones marked as
invisible (some entities are individually marked as
invisible even if the layer is visible)

output filename for export

target render resolution, default is 300

ccurate}

select the line type rendering method, default is
approximate. Approximate uses the closest
approximation available to the backend, the accurate
method renders as accurately as possible but this
approach is slower.

6.9.4 View

View the DXEF file “gear.dxf” by

the PyQt backend:

C:\> ezdxf view gear.dxf

6.9. Launcher

527

ezdxf Documentation, Release 0.17.2

Print help:

C:\> ezdxf view -h

usage: ezdxf view [-h] [--layout LAYOUT]
[--1ltype {approximate,accurate}] [-—-lwscale LWSCALE]
[FILE]

positional arguments:
FILE DXF file to view

optional arguments:
-h, --help show this help message and exit

(continues on next page)

528 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

——layout LAYOUT select the layout to draw

-—-ltype {approximate,accurate}
select the line type rendering method, default
is approximate. Approximate uses the closest
approximation available to the backend, the
accurate method renders as accurately as
possible but this approach is slower.

—-—lwscale LWSCALE set custom line weight scaling, default is 0 to
disable line weights at all

6.9.5 Browse

Browse the internal structure of a DXF file like a file system:

C:\> ezdxf browse gear.dxf

f F Structure Browser - C\Users\manfred\Desktop\Outbox\ gear.dxf — O
= = [P e P oI +x +A A I
v gear.dxf Group Code Data Type Content 2
HEADER
CLASSES (15) 029 0 Zctrl> LWPOLYLINE
v TABLES (31) 2031 5 <handle> 2F
<8> VPORT (2) 2033 330 <refs 17
<2» LTYPE (4)
<1= LAYER (3) 2035 100 <ctrl> AcDbEntity
<5 STYLE (2} 2037 8 <str» 0
<T= VIEW 1) _
6> UCS (1) 2039 100 <ctrl» AcDbPolyline
<3= APPID (4) 2041 90 <int> 64
<4> DIMSTYLE (2) 2043 70 <int> 1
<9> BLOCK_RECORD (3)
v BLOCKS (4) 2045 10 <point> (9.99687255538428, -0.25007821057531726)
18> *Model_Space (2) 2049 10 <points (9,99687255538428, 0.25007821057531726)
=1C> *Paper_Space (2) .
v EMTITIES (1) 2053 10 <point> (7.964450219004663, 0.7333476680766843)
<2F= LWPOLYLINE 2057 10 <point> (7.646486216427265, 2.3518606553084402)
OBJECTS (23) .
2061 10 <point> (9.331606731026024, 3.5945953621332354)
2065 10 <point> (9.14020515506066, 4.0566796426884055)
2069 10 <point> (7.069898873650621, 3.74386563811073)
2073 10 <point> (6.164414002968977, 5.0990195135927245)
2077 10 <point> (7.24568837300472, £.852024376045111)
2081 10 <point> (6.892024376045111, 7.24568837309472)
2085 10 <point> (5.0990195135927243, 6.164414002968977)
2089 10 <point> (3.7438656381107513, 7.069898873659621) v

C:\> ezdxf browse -h
usage: ezdxf browse [-h] [-1 LINE] [-g HANDLE] [FILE]

positional arguments:
FILE DXF file to browse

optional arguments:
-h, —--help show this help message and exit

(continues on next page)

6.9. Launcher 529

ezdxf Documentation, Release 0.17.2

(continued from previous page)

-1 LINE, —--line LINE go to line number

—g HANDLE, --handle HANDLE
go to entity by HANDLE, HANDLE has to be a hex value without
any prefix like 'fefe'

The browse command stores options in the config file, e.g. for the Notepad++ on Windows:

[browse—command]

text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}
icon_size = 32

text_editor is a simple format string: text_editor.format (filename="test.dxf", num=100)
Quote commands including spaces and always quote the filename argument!

For gedit on Linux use (untested):

[browse—command]

text_editor = gedit +{num} "{filename}"
icon_size = 32

The browse command opens a DXF structure browser to investigate the internals of a DXF file without interpreting the
content. The functionality of the DXF browser is similar to the DXF Pretty Printer (pp command), but without the
disadvantage of creating giant HTML files. The intended usage is debugging invalid DXF files, which can not be loaded
by the ezdxf.readfile () orthe ezdxf.recover.readfile () functions.

Line Numbers

The low level tag loader ignores DXF comments (group code 999). If there are comments in the DXF file the line numbers
displayed in the DXF browser are not synchronized, use the sfrip command beforehand to remove all comments from the
DXF file in order to keep the line numbers synchronized.

GUI Features

The tree view on the left shows the outline of the DXF file. The number in round brackets on the right side of each item
shows the count of structure entities within the structure layer, the value in angle brackets on the left side is the entity
handle.

The right list view shows the entity content as DXF tags. Structure tags (data type <ctrl>) are shown in blue, a double
click on a reference handle (datatype <ref>) jumps to the referenced entity, reference handles of non-existent targets are
shown in red.

Clicking on the first structure tag in the list opens the DXF reference provided by Autodesk in the standard web browser.

530 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

Auto Reload

The browser automatically displays a dialog for reloading DXF files if they have been modified by an external application.

Menus and Shortcuts

¢ File Menu
— Open DXF file... Ctrl+0O
— Reload DXF file Ctri+R

Open in Text Editor Cirl+T, open the DXF file in the associated text editor at the current location

Export DXF Entity... Ctrl+E, export the current DXF entity shown in the list view as text file

Copy DXF Entity to Clipboard Crri+C, copy the current DXF entity shown in the list view into the
clipboard

— Quit Crrl+Q

* Navigate Menu
— Go to Handle... Ctrl+G
— Go to Line... Ctrl+L

Find Text... Ctrl+F, opens the find text dialog

Next Entity Crri+Right, go to the next entity in the DXF structure

Previous Entity Ctrl+Right, go to the previous entity in the DXF structure

Show Entity in TreeView Ctrl+Down, expand the left tree view to the currently displayed entity in the
list view - this does not happen automatically for performance reasons

Entity History Back Alt+Left

Entity History Forward Alr+Right
Go to HEADERS Section Shift+H
Go to BLOCKS Section Shift+B
Go to ENTITIES Section Shift+E
— Go to OBJECTS Section Shift+0

¢ Bookmarks Menu
— Store Bookmark... Ctrl+Shift+B, store current location as named bookmark

— Go to Bookmark... Crri+B, go to stored location

6.9. Launcher 531

ezdxf Documentation, Release 0.17.2

6.9.6 Strip

Strip comment tags (group code 999) from ASCII DXF files and can remove the THUMBNAILIMAGE section. Binary
DXEF files are not supported.

C:\> ezdxf strip -h
usage: ezdxf strip [-h] [-b] [-v] FILE [FILE ...]

positional arguments:
FILE DXF file to process, wildcards "*" and "?" are supported

optional arguments:
-h, —-help show this help message and exit
-b, —--backup make a backup copy with extension ".bak" from the DXF file,
overwrites existing backup files
-t, ——thumbnail strip THUMBNAILIMAGE section
-v, ——verbose give more output

6.9.7 Config

Manage config files.

C:\> ezdxf config -h
usage: ezdxf config [-h] [-p] [-—home] [--reset]

optional arguments:
-h, —--help show this help message and exit

-p, ——print print configuration, to store the configuration use:
"ezdxf config -p > my.ini"
——home create config file 'ezdxf.ini' in the user home directory

'~/.config/ezdxf', $XDG_CONFIG_HOME is supported if set

—--reset factory reset, delete default config files 'ezdxf.ini'

To create a new config file “my.ini” by printing the configuration into a file:

C:\> ezdxf config -p > my.ini

6.9.8 Info

Show information and optional stats of DXF files as loaded by ezdxf, this may not represent the original content of the
file, use the browse command to see the original content. The upgrade is necessary for very old DXF versions prior to
R12 and for the “special” versions R13 and R14. The -s option shows some statistics about the DXF content like entity
count or table count. Use the -v option show more of everything.

C:\> ezdxf info -h
usage: ezdxf info [-h] [-v] [-s] FILE [FILE ...]

positional arguments:

FILE DXF file to process, wildcards "*" and "?" are supported
options:
-h, —-help show this help message and exit

(continues on next page)

532 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

-v, ——-verbose give more output
-s, ——stats show content stats

This is the verbose output for an old DXF R10 file and shows that the loading process created some required structures
which do not exist in DXF R10 files, like the BLOCK_RECORD table or the OBJECTS section:

C:\> ezdxf info -v -s test_R10.dxf

Filename: "test_R10.dxf"
Loaded content was upgraded from DXF Version AC1006 (R10)
Release: R12
DXF Version: AC1009
Maintenance Version: <undefined>
Codepage: ANSI_1252
Encoding: cpl252
Unit system: Imperial
Modelspace units: Unitless
SLASTSAVEDBY: <undefined>
SHANDSEED: 0
SFINGERPRINTGUID: {9EADDC7C-5982-4C68-B770-8A62378C2B90}
SVERSIONGUID: {49336E63-D99B-45EC-803C-4D2BD03A7DEO}
SUSERI1=0
SUSERI2=0
SUSERI3=0
SUSERI4=0
SUSERI5=0
SUSERR1=0.
SUSERR2=0.
SUSERR3=0.
SUSERR4=0.
SUSERR5=0.0
File was not created by ezdxf >= 0.16.4
File was not written by ezdxf >= 0.16.4
Content stats:
LAYER table entries: 18

0

Defpoints

LYR_00

LYR_01

LYR_02

LYR_03

LYR_04

LYR_05

LYR_06

LYR_07

LYR_08

LYR_09

LYR_10

LYR 11

LYR_12

LYR_13

LYR 14

LYR_15
LTYPE table entries: 13

BORDER

ByBlock

O O O O

(continues on next page)

6.9. Launcher 533

ezdxf Documentation, Release 0.17.2

(continued from previous page)

ByLayer
CENTER
CONTINUOQOUS
CUTTING
DASHDOT
DASHED
DIVIDE
DOT
HIDDEN
PHANTOM
STITCH
STYLE table entries: 1
STANDARD
DIMSTYLE table entries: 1
Standard
APPID table entries: 1
ACAD
UCS table entries: 0
VIEW table entries: 0
VPORT table entries: 1
*Active
BLOCK_RECORD table entries: 2
*Model_Space
*Paper_Space
Entities in modelspace: 78

ARC (2)
CIRCLE (2)
LINE (74)

Entities in OBJECTS section: 20
ACDBDICTIONARYWDEFLT (1)
ACDBPLACEHOLDER (1)
DICTIONARY (11)

LAYOUT (2)
MATERIAL (3)
MLEADERSTYLE (1)
MLINESTYLE (1)

6.9.9 Show Version & Configuration

Show the ezdxf version and configuration:

C:\> ezdxf -Vv

ezdxf v0.16.5b0 @ d:\source\ezdxf.git\src\ezdxf

Python version: 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) [MSC v.1929 64 bit.
— (AMD64)]

using C-extensions: yes

using Matplotlib: yes

Configuration:

[core]

default_dimension_text_style = OpenSansCondensed-Light
test_files = D:\Source\dxftest

font_cache_directory =

load_proxy_graphics = true

(continues on next page)

534 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

(continued from previous page)

store_proxy_graphics = true
log_unprocessed_tags = false
filter_invalid_xdata_group_codes = true
write_fixed_meta_data_for_testing = false
disable_c_ext = false

[browse—command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}

Environment Variables:
EZDXF_DISABLE_C_EXT=
EZDXF_TEST_FILES=D:\Source\dxftest
EZDXF_CONFIG_FILE=

Existing Configuration Files:
C:\Users\manfred\.config\ezdxf\ezdxf.ini

See also:

Documentation of the ezdxr . options module and the Environment Variables.

6.10 Rendering

The ezdxf. render subpackage provides helpful utilities to create complex forms.
e create complex meshes as Me sh entity.
« render complex curves like bezier curves, euler spirals or splines as Po1y11ine entity

* vertex generators for simple and complex forms like circle, ellipse or euler spiral

Content

6.10.1 Spline

class ezdxf.render.Spline (points: Iterable[Vertex] = None, segments: int = 100)
This class can be used to render B-splines into DXF R12 files as approximated Po1y11ine entities. The advantage
of this class over the R12Sp1 ine class is, that this is a real 3D curve, which means that the B-spline vertices do
have to be located in a flat plane, and no UCS class is needed to place the curve in 3D space.

See also:
The newer BSp1ine class provides the advanced vertex interpolation method flattening ().
__init__ (points: Iterable[Vertex] = None, segments: int = 100)
Parameters
* points - spline definition points
* segments — count of line segments for approximation, vertex count is segments + 1

subdivide (segments: int = 4) — None
Calculate overall segment count, where segments is the sub-segment count, segments = 4, means 4 line seg-
ments between two definition points e.g. 4 definition points and 4 segments = 12 overall segments, useful
for fit point rendering.

6.10. Rendering 535

ezdxf Documentation, Release 0.17.2

Parameters segments — sub-segments count between two definition points

render_as_fit_points (layout: BaseLayout, degree: int = 3, method: str = 'chord’, dxfattribs: dict =

None) — None
Render a B-spline as 2D/3D Poly1ine, where the definition points are fit points.

* 2D spline vertices uses: add_polyline2d ()

* 3D spline vertices uses: add_polyline3d ()

Parameters
e layout — BaseLayout object
* degree —degree of B-spline (order = degree + 1)

* method - “uniform”, “distance”/”chord”, “centripetal”/’sqrt_chord” or “arc” calculation
method for parameter t

e dxfattribs — DXF attributes for Polyline
render_open_bspline (layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) — None
Render an open uniform B-spline as 3D Poly1ine. Definition points are control points.
Parameters
e layout — BaseLayout object
* degree — degree of B-spline (order = degree + 1)
e dxfattribs — DXF attributes for Polyline

render_uniform_bspline (layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) — None
Render a uniform B-spline as 3D Poly11ine. Definition points are control points.

Parameters
¢ layout — BaseLayout object
* degree — degree of B-spline (order = degree + 1)
e dxfattribs — DXF attributes for Polyline

render_closed_bspline (layout: BaseLayout, degree: int = 3, dxfattribs: dict = None) — None
Render a closed uniform B-spline as 3D Poly1ine. Definition points are control points.

Parameters
e layout — BaseLayout object
* degree — degree of B-spline (order = degree + 1)
e dxfattribs — DXF attributes for Polyline

render_open_rbspline (layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs: dict

) = None) — None o))
Render a rational open uniform BSpline as 3D Poly1ine. Definition points are control points.

Parameters
e layout — BaseLayout object
* weights - list of weights, requires a weight value (float) for each definition point.
* degree — degree of B-spline (order = degree + 1)

e dxfattribs — DXF attributes for Polyline

536 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

render_uniform_rbspline (layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs:

dict = None) — None
Render a rational uniform B-spline as 3D Poly11ine. Definition points are control points.

Parameters
¢ layout — BaselLayout object
* weights - list of weights, requires a weight value (float) for each definition point.
* degree — degree of B-spline (order = degree + 1)
e dxfattribs — DXF attributes for Polyline

render_closed_rbspline (layout: BaseLayout, weights: Iterable[float], degree: int = 3, dxfattribs:

)) dict = None) — None))
Render a rational B-spline as 3D Po1y1ine. Definition points are control points.

Parameters
e layout — BaseLayout object
* weights - list of weights, requires a weight value (float) for each definition point.
* degree — degree of B-spline (order = degree + 1)

e dxfattribs — DXF attributes for Polyline

6.10.2 R12Spline

class ezdxf.render.R12Spline (control_points: Iterable[Vertex], degree: int = 2, closed: bool = True)
DXF R12 supports 2D B-splines, but Autodesk do not document the usage in the DXF Reference. The base entity
for splines in DXF R12 is the POLYLINE entity. The spline itself is always in a plane, but as any 2D entity, the
spline can be transformed into the 3D object by elevation and extrusion (OCS, UCS).

This way it was possible to store the spline parameters in the DXF R12 file, to allow CAD applications to modify
the spline parameters and rerender the B-spline afterward again as polyline approximation. Therefore the result is
not better than an approximation by the Sp1ine class, it is also just a POLYLINE entity, but maybe someone
need exact this tool in the future.

__init__ (control_points: Iterable[Vertex], degree: int = 2, closed: bool = True)
Parameters
e control_points — B-spline control frame vertices
* degree - degree of B-spline, only 2 and 3 is supported
* closed - True for closed curve

render (layout: BaseLayout, segments: int = 40, ucs: UCS = None, dxfattribs: dict = None) — Polyline
Renders the B-spline into layout as 2D Polyline entity. Use an UCS to place the 2D spline in the 3D
space, see approximate () for more information.

Parameters
* layout — BaseLayout object
* segments — count of line segments for approximation, vertex count is segments + 1
* ucs — UCS definition, control points in ucs coordinates.

e dxfattribs — DXF attributes for Polyline

6.10. Rendering 537

ezdxf Documentation, Release 0.17.2

approximate (segments: int = 40, ucs: UCS = None) — List[Vertex]
Approximate the B-spline by a polyline with segments line segments. If ucs is not None, ucs defines an
UCS, to transformed the curve into OCS. The control points are placed xy-plane of the UCS, don’t use z-axis
coordinates, if so make sure all control points are in a plane parallel to the OCS base plane (UCS xy-plane),
else the result is unpredictable and depends on the CAD application used to open the DXF file - it may crash.

Parameters
* segments — count of line segments for approximation, vertex count is segments + 1
* ucs — UCS definition, control points in ucs coordinates

Returns list of vertices in OCS as Vec 3 objects

6.10.3 Bezier

class ezdxf.render.Bezier
Render a bezier curve as 2D/3D Polyline.

The Bezier class is implemented with multiple segments, each segment is an optimized 4 point bezier curve, the
4 control points of the curve are: the start point (1) and the end point (4), point (2) is start point + start vector and
point (3) is end point + end vector. Each segment has its own approximation count.

See also:

The new ezdxf. path package provides many advanced construction tools based on the Path class.

start (point: Vertex, tangent: Vertex) — None
Set start point and start tangent.

Parameters
e point - start point

* tangent - start tangent as vector, example: (5, 0, 0) means a horizontal tangent with a
length of 5 drawing units

append (point: Vertex, tangentl: Vertex, tangent2: Vertex = None, segments: int = 20)
Append a control point with two control tangents.

Parameters
* point - control point
* tangent1 —first tangent as vector “left” of the control point

tangent2 - second tangent as vector “right” of the control point, if omitted tangent2 =
-tangentl

segments — count of line segments for the polyline approximation, count of line segments
from the previous control point to the appended control point.

render (layout: BaseLayout, force3d: bool = False, dxfattribs: dict = None) — None
Render bezier curve as 2D/3D Polyline.

Parameters
* layout — BaseLayout object
¢ force3d - force 3D polyline rendering

e dxfattribs — DXF attributes for Polyline

538 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

6.10.4 EulerSpiral

class ezdxf.render.EulerSpiral (curvature: float = 1)
Render an euler spiral as a 3D Polyline ora Spline entity.

This is a parametric curve, which always starts at the origin (0, 0).
__init__ (curvature: float = 1)
Parameters curvature — Radius of curvature

render_polyline (layout: BaseLayout, length: float = 1, segments: int = 100, matrix: Matrix44 = None,
dxfattribs: dict = None)
Render curve as Polyline.

Parameters
e layout — BaseLayout object
* length - length measured along the spiral curve from its initial position
¢ segments — count of line segments to use, vertex count is segments + 1
* matrix — transformation matrix as Matrix44
e dxfattribs — DXF attributes for Polyline

Returns Polyline

render_spline (layout: BaseLayout, length: float = 1, fit_points: int = 10, degree: int = 3, matrix:
Matrix44 = None, dxfattribs: dict = None)
Render curve as Spline.

Parameters
* layout — BaseLayout object
¢ length - length measured along the spiral curve from its initial position
e fit_points — count of spline fit points to use
* degree — degree of B-spline
¢ matrix — transformation matrix as Matrix44
e dxfattribs — DXF attributes for Sp1ine

Returns Spline

6.10.5 Random Paths

Random path generators for testing purpose.

ezdxf.render.random_2d_path (steps=100, max_step_size=1, max_heading=pi / 2, retarget=20) — It-

erable[Vec2]
Returns a random 2D path as iterable of Vec?2 objects.

Parameters
» steps - count of vertices to generate
* max_step_size — max step size
* max_heading - limit heading angle change per step to + max_heading/2 in radians

* retarget - specifies steps before changing global walking target

6.10. Rendering 539

https://en.wikipedia.org/wiki/Euler_spiral

ezdxf Documentation, Release 0.17.2

ezdxf.render.random_3d_path (steps=100, max_step_size=1, max_heading=pi / 2, max_pitch=pi / 8,

retarget=20) — Iterable[Vec3]
Returns a random 3D path as iterable of Vec3 objects.

Parameters
* steps — count of vertices to generate
* max_step_size — max step size

* max_heading - limit heading angle change per step to + max_heading/2, rotation about the
z-axis in radians

* max_pitch - limit pitch angle change per step to + max_pitch/2, rotation about the x-axis
in radians

* retarget - specifies steps before changing global walking target

6.10.6 Forms

This module provides functions to create 2D and 3D forms as vertices or mesh objects.
2D Forms
e circle()
e square ()
* box ()
e ellipse()
e culer_spiral/()
* ngon()
e star()
* gear()
3D Forms
e cube ()
e cylinder()
e cylinder_2p()
e cone ()
e cone_2p()
e sphere()
3D Form Builder
e extrude()
e from profiles_linear ()
e from profiles_spline()

e rotation_form()

540 Chapter 6. Contents

ezdxf Documentation, Release 0.17.2

2D Forms

Basic 2D shapes as iterable of Vec3.

ezdxf.render.forms.circle (count: int, radius: float = 1, elevation: float = 0, close: bool = False) —

Iterable[Vec3]
Create polygon vertices for a circle with the given radius and approximated by count vertices, elevation is the z-axis

for all vertices.
Parameters
* count - count of polygon vertices
* radius - circle radius
* elevation - z-axis for all vertices
* close - yields first vertex also as last vertex if True.
Returns vertices in counter clockwise orientation as Vec 3 objects

ezdxf.render.forms.square (size: float = 1.) — Tuple[Vec3, Vec3, Vec3, Vec3]
Returns 4 vertices for a square with a side length of the given size, lower left corneris (0, 0), upper right corner
is (size, size).

ezdxf.render. forms.box (sx: float = 1., sy: float = 1.) — Tuple[Vec3, Vec3, Vec3, Vec3]
Returns 4 vertices for a box with a width of sx by and a height of sy, lower left corner is (0, 0), upper right
corner is (sx, sy).

ezdxf.render. forms.ellipse (count: int, rx: float = 1, ry: float = 1, start_param: float = 0, end_param:

float = 2 * pi, elevation: float = 0) — Iterable[Vec3]
Create polygon vertices for an ellipse with given rx as x-axis radius and ry as y-axis radius approximated by count

vertices, elevation is the z-axis for all vertices. The ellipse goes from start_param to end_param in counter clockwise
orientation.

Parameters
* count - count of polygon vertices
* rx — ellipse x-axis radius
» ry - ellipse y-axis radius
» start_param - start of ellipse in range [0, 2]
* end_param - end of ellipse in range [0, 2]
* elevation - z-axis for all vertices
Returns vertices in counter clockwise orientation as Vec 3 objects

ezdxf.render.forms.euler_spiral (count: int, length: float = 1, curvature: float = 1, elevation: float

= 0) — Iterable[Vec3]
Create polygon vertices for an euler spiral of a given length and radius of curvature. This is a parametric curve,

which always starts at the origin (0, 0).
Parameters
e count - count of polygon vertices
* length — length of curve in drawing units
* curvature - radius of curvature
* elevation - z-axis for all vertices

Returns vertices as Vec 3 objects

6.10. Rendering 541

https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Euler_spiral

ezdxf Documentation, Release 0.17.2

ezdxf.render. forms.ngon (count: int, length: float = None, radius: float = None, rotation: float = 0.,

elevation: float = 0., close: bool = False) — Iterable[Vec3]
Returns the corner vertices of a regular polygon. The polygon size is determined by the edge length or the circum

radius argument. If both are given length has the higher priority.

Parameters

* count - count of polygon corners >= 3

* length - length of polygon side

* radius - circum radius

* rotation - rotation angle in radians

* elevation - z-axis for all vertices

* close - yields first vertex also as last vertex if True.
Returns vertices as Vec 3 objects

ezdxf.render. forms.star (count: int, rl: float, r2: float, rotation: float = 0., elevation: float = 0., close:

bool = False) — Iterable[Vec3]
Returns the corner vertices for a star shape.

The shape has count spikes, rI defines the radius of the “outer” vertices and 2 defines the radius of the “inner”
vertices, but this does not mean that r/ has to be greater than r2.

Parameters

* count - spike count >= 3

e rl —radius 1

e r2 —radius 2

* rotation - rotation angle in radians

* elevation - z-axis for all vertices

* close - yields first vertex also as last vertex if True.
Returns vertices as Vec3 objects

ezdxf.render. forms.gear (count: int, top_width: float, bottom_width: float, height: float, outside_radius:

float, elevation: float = 0, close: bool = False) — Iterable[Vec3]
Returns the corner vertices of a gear shape (cogwheel).

Warning: This function does not create correct gears for mechanical engineering!

Parameters
* count - teeth count >= 3
* top_width — teeth width at outside radius
* bottom_width — teeth width at base radius
* height - teeth height; base radius = outside radius - height
e outside_radius - outside radius
* elevation - z-axis for all vertices

* close - yields first vertex also as last vertex if True.

542 Chapter 6. Contents

https://en.wikipedia.org/wiki/Regular_polygon
https://en.wikipedia.org/wiki/Star_polygon
https://en.wikipedia.org/wiki/Gear

ezdxf Documentation, Release 0.17.2

Returns vertices in counter clockwise orientation as Vec 3 objects

3D Forms

Create 3D forms as MeshTransformer objects.

ezdxf.render.forms.cube (center: bool = True) — MeshTransformer
Create a cube as MeshTransformer object.

Parameters center — ‘mass’ center of cube, (0, 0, 0) if True, else first cornerat (0, 0, O0)
Returns: MeshTransformer

ezdxf.render. forms.ecylinder (count: int, radius: float = 1., top_radius: float = None, top_center: Ver-

tex = (0, 0, 1), caps=True, ngons=True) — MeshTransformer
Create a cylinder as MeshTransf