
Fasteners Documentation
Release 0.17.3

Joshua Harlow

May 16, 2022

CONTENTS

1 Lock 3
1.1 Classes . 3
1.2 Decorators . 4
1.3 Helper functions . 4

2 Process lock 5
2.1 Classes . 6
2.2 Decorators . 7

3 Examples 9
3.1 Inter-process locks . 9

3.1.1 Lock API . 9
3.1.2 Reader Writer Lock API . 10

3.2 Inter-thread locks . 11
3.2.1 Lock API . 11
3.2.2 Reader Writer lock API . 12

4 Indices and tables 15

Index 17

i

ii

Fasteners Documentation, Release 0.17.3

A python package that provides useful locks.

Contents:

CONTENTS 1

https://pypi.python.org/pypi/fasteners

Fasteners Documentation, Release 0.17.3

2 CONTENTS

CHAPTER

ONE

LOCK

1.1 Classes

class fasteners.lock.ReaderWriterLock(condition_cls=<class 'threading.Condition'>, cur-
rent_thread_functor=None)

A reader/writer lock.

This lock allows for simultaneous readers to exist but only one writer to exist for use-cases where it is useful to
have such types of locks.

Currently a reader can not escalate its read lock to a write lock and a writer can not acquire a read lock while it
is waiting on the write lock.

In the future these restrictions may be relaxed.

This can be eventually removed if http://bugs.python.org/issue8800 ever gets accepted into the python standard
threading library. . .

READER = 'r'
Reader owner type/string constant.

WRITER = 'w'
Writer owner type/string constant.

property has_pending_writers
Returns if there are writers waiting to become the one writer.

is_reader()
Returns if the caller is one of the readers.

is_writer(check_pending=True)
Returns if the caller is the active writer or a pending writer.

property owner
Returns whether the lock is locked by a writer or reader.

read_lock()
Context manager that grants a read lock.

Will wait until no active or pending writers.

Raises a RuntimeError if a pending writer tries to acquire a read lock.

write_lock()
Context manager that grants a write lock.

Will wait until no active readers. Blocks readers after acquiring.

Guaranteed for locks to be processed in fair order (FIFO).

3

http://bugs.python.org/issue8800

Fasteners Documentation, Release 0.17.3

Raises a RuntimeError if an active reader attempts to acquire a lock.

1.2 Decorators

fasteners.lock.read_locked(*args, **kwargs)
Acquires & releases a read lock around call into decorated method.

NOTE(harlowja): if no attribute name is provided then by default the attribute named ‘_lock’ is looked for (this
attribute is expected to be a ReaderWriterLock) in the instance object this decorator is attached to.

fasteners.lock.write_locked(*args, **kwargs)
Acquires & releases a write lock around call into decorated method.

NOTE(harlowja): if no attribute name is provided then by default the attribute named ‘_lock’ is looked for (this
attribute is expected to be a ReaderWriterLock object) in the instance object this decorator is attached to.

fasteners.lock.locked(*args, **kwargs)
A locking method decorator.

It will look for a provided attribute (typically a lock or a list of locks) on the first argument of the function
decorated (typically this is the ‘self’ object) and before executing the decorated function it activates the given
lock or list of locks as a context manager, automatically releasing that lock on exit.

NOTE(harlowja): if no attribute name is provided then by default the attribute named ‘_lock’ is looked for (this
attribute is expected to be the lock/list of locks object/s) in the instance object this decorator is attached to.

NOTE(harlowja): a custom logger (which will be used if lock release failures happen) can be provided by
passing a logger instance for keyword argument logger.

1.3 Helper functions

fasteners.lock.try_lock(lock)
Attempts to acquire a lock, and auto releases if acquired (on exit).

4 Chapter 1. Lock

CHAPTER

TWO

PROCESS LOCK

Fasteners inter-process locks are cross-platform and are released automatically if the process crashes. They are based
on the platform specific locking mechanisms:

• fcntl for posix (Linux and OSX)

• LockFileEx (via pywin32) and _locking (via msvcrt) for Windows

The intersection of fcntl and LockFileEx features is quite small, hence you should always assume that:

• Locks are advisory. They do not prevent the modification of the locked file by other processes.

• Locks can be unintentionally released by simply opening and closing the file descriptor, so lock files must be
accessed only using provided abstractions.

• Locks are not reentrant. An attempt to acquire a lock multiple times can result in a deadlock or a crash upon a
release of the lock.

• Reader writer locks are not upgradeable. An attempt to get a reader’s lock while holding a writer’s lock (or vice
versa) can result in a deadlock or a crash upon a release of the lock.

• There are no guarantees regarding usage by multiple threads in a single process. The locks work only between
processes.

To learn more about the complications of locking on different platforms we recommend the following resources:

• File locking in Linux (blog post)

• On the Brokenness of File Locking (blog post)

• Everything you never wanted to know about file locking (blog post)

• Record Locking (course notes)

• Windows NT Files – Locking (pywin32 docs)

• _locking (Windows Dev Center)

• LockFileEx function (Windows Dev Center)

5

https://en.wikipedia.org/wiki/Reentrant_mutex
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock#Upgradable_RW_lock\T1\textgreater {}
https://gavv.github.io/articles/file-locks/
http://0pointer.de/blog/projects/locking.html
https://chris.improbable.org/2010/12/16/everything-you-never-wanted-to-know-about-file-locking/
http://poincare.matf.bg.ac.rs/~ivana/courses/ps/sistemi_knjige/pomocno/apue/APUE/0201433079/ch14lev1sec3.html
http://timgolden.me.uk/pywin32-docs/Windows_NT_Files_.2d.2d_Locking.html
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/locking?view=vs-2019
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex

Fasteners Documentation, Release 0.17.3

2.1 Classes

fasteners.process_lock.InterProcessLock
alias of fasteners.process_lock._FcntlLock

class fasteners.process_lock._InterProcessLock(path, sleep_func=<built-in function
sleep>, logger=None)

An interprocess lock.

DELAY_INCREMENT = 0.01
Default increment we will use (up to max delay) after each attempt before next attempt to acquire the lock.
For example if 3 attempts have been made the calling thread will sleep (0.01 * 3) before the next attempt
to acquire the lock (and repeat).

MAX_DELAY = 0.1
Default maximum delay we will wait to try to acquire the lock (when it’s busy/being held by another
process).

acquire(blocking=True, delay=0.01, max_delay=0.1, timeout=None)
Attempt to acquire the given lock.

Parameters

• blocking (bool) – whether to wait forever to try to acquire the lock

• delay (int/float) – when blocking this is the delay time in seconds that will be added
after each failed acquisition

• max_delay (int/float) – the maximum delay to have (this limits the accumulated
delay(s) added after each failed acquisition)

• timeout (int/float) – an optional timeout (limits how long blocking will occur for)

Returns whether or not the acquisition succeeded

Return type bool

exists()
Checks if the path that this lock exists at actually exists.

release()
Release the previously acquired lock.

fasteners.process_lock.InterProcessReaderWriterLock
alias of fasteners.process_lock._FcntlInterProcessReaderWriterLock

class fasteners.process_lock._InterProcessReaderWriterLock(path,
sleep_func=<built-
in function sleep>,
logger=None)

An interprocess readers writer lock.

DELAY_INCREMENT = 0.01
Default increment we will use (up to max delay) after each attempt before next attempt to acquire the lock.
For example if 3 attempts have been made the calling thread will sleep (0.01 * 3) before the next attempt
to acquire the lock (and repeat).

MAX_DELAY = 0.1
Default maximum delay we will wait to try to acquire the lock (when it’s busy/being held by another
process).

acquire_read_lock(blocking=True, delay=0.01, max_delay=0.1, timeout=None)
Attempt to acquire a reader’s lock.

6 Chapter 2. Process lock

Fasteners Documentation, Release 0.17.3

Parameters

• blocking (bool) – whether to wait forever to try to acquire the lock

• delay (int/float) – when blocking this is the delay time in seconds that will be added
after each failed acquisition

• max_delay (int/float) – the maximum delay to have (this limits the accumulated
delay(s) added after each failed acquisition)

• timeout (int/float) – an optional timeout (limits how long blocking will occur for)

Returns whether or not the acquisition succeeded

Return type bool

acquire_write_lock(blocking=True, delay=0.01, max_delay=0.1, timeout=None)
Attempt to acquire a writer’s lock.

Parameters

• blocking (bool) – whether to wait forever to try to acquire the lock

• delay (int/float) – when blocking this is the delay time in seconds that will be added
after each failed acquisition

• max_delay (int/float) – the maximum delay to have (this limits the accumulated
delay(s) added after each failed acquisition)

• timeout (int/float) – an optional timeout (limits how long blocking will occur for)

Returns whether or not the acquisition succeeded

Return type bool

release_read_lock()
Release the reader’s lock.

release_write_lock()
Release the writer’s lock.

2.2 Decorators

fasteners.process_lock.interprocess_locked(path)
Acquires & releases a interprocess lock around call into decorated function.

fasteners.process_lock.interprocess_read_locked(path)
Acquires & releases an interprocess read lock around the call into the decorated function

fasteners.process_lock.interprocess_write_locked(path)
Acquires & releases an interprocess read lock around the call into the decorated function

2.2. Decorators 7

Fasteners Documentation, Release 0.17.3

8 Chapter 2. Process lock

CHAPTER

THREE

EXAMPLES

3.1 Inter-process locks

Note: Launch multiple of these at the same time to see the lock(s) in action.

Warning: There are no guarantees regarding usage by multiple threads in a single process with these locks (you
will have to ensure single process safety yourself using traditional thread based locks). In other words this lock
works only between processes.

3.1.1 Lock API

Using a decorator:

import time

import fasteners

@fasteners.interprocess_locked('/tmp/tmp_lock_file')
def test():

for i in range(10):
print('I have the lock')
time.sleep(1)

print('Waiting for the lock')
test()

Using a context manager:

import time

import fasteners

def test():
for i in range(10):

with fasteners.InterProcessLock('/tmp/tmp_lock_file'):
print('I have the lock')
time.sleep(1)

test()

9

Fasteners Documentation, Release 0.17.3

Acquiring and releasing manually:

import time

import fasteners

def test():
a_lock = fasteners.InterProcessLock('/tmp/tmp_lock_file')
for i in range(10):

gotten = a_lock.acquire(blocking=False)
try:

if gotten:
print('I have the lock')
time.sleep(0.2)

else:
print('I do not have the lock')
time.sleep(0.1)

finally:
if gotten:

a_lock.release()

test()

3.1.2 Reader Writer Lock API

Reader lock using a decorator:

import time

import fasteners

@fasteners.interprocess_read_locked('/tmp/tmp_lock_file')
def test():

for i in range(10):
print('I have the readers lock')
time.sleep(1)

print('Waiting for the lock')
test()

Writer lock using a context manager:

import time

import fasteners

def test():
for i in range(10):

with fasteners.InterProcessReaderWriterLock('/tmp/tmp_lock_file').write_
↪→lock():

print('I have the writers lock')
time.sleep(1)

test()

Acquiring and releasing manually:

10 Chapter 3. Examples

Fasteners Documentation, Release 0.17.3

import time

import fasteners

def test():
a_lock = fasteners.InterProcessReaderWriterLock('/tmp/tmp_lock_file')
for i in range(10):

gotten = a_lock.acquire_read_lock(blocking=False)
try:

if gotten:
print('I have the readers lock')
time.sleep(0.2)

else:
print('I do not have the readers lock')
time.sleep(0.1)

finally:
if gotten:

a_lock.release_read_lock()

test()

3.2 Inter-thread locks

3.2.1 Lock API

Using a decorator:

import threading

import fasteners

class NotThreadSafeThing(object):
def __init__(self):

self._lock = threading.Lock()

@fasteners.locked
def do_something(self):

print("Doing something in a thread safe manner")

o = NotThreadSafeThing()
o.do_something()

Multiple locks using a single decorator:

import threading

import fasteners

class NotThreadSafeThing(object):
def __init__(self):

self._locks = [threading.Lock(), threading.Lock()]

@fasteners.locked(lock='_locks')
def do_something(self):

(continues on next page)

3.2. Inter-thread locks 11

Fasteners Documentation, Release 0.17.3

(continued from previous page)

print("Doing something in a thread safe manner")

o = NotThreadSafeThing()
o.do_something()

Manual lock without blocking:

import threading

import fasteners

t = threading.Lock()
with fasteners.try_lock(t) as gotten:

if gotten:
print("I got the lock")

else:
print("I did not get the lock")

3.2.2 Reader Writer lock API

Using a context manager:

import random
import threading
import time

import fasteners

def read_something(ident, rw_lock):
with rw_lock.read_lock():

print("Thread %s is reading something" % ident)
time.sleep(1)

def write_something(ident, rw_lock):
with rw_lock.write_lock():

print("Thread %s is writing something" % ident)
time.sleep(2)

rw_lock = fasteners.ReaderWriterLock()
threads = []
for i in range(0, 10):

is_writer = random.choice([True, False])
if is_writer:

threads.append(threading.Thread(target=write_something,
args=(i, rw_lock)))

else:
threads.append(threading.Thread(target=read_something,

args=(i, rw_lock)))

try:
for t in threads:

t.start()
finally:

while threads:

(continues on next page)

12 Chapter 3. Examples

Fasteners Documentation, Release 0.17.3

(continued from previous page)

t = threads.pop()
t.join()

3.2. Inter-thread locks 13

Fasteners Documentation, Release 0.17.3

14 Chapter 3. Examples

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

15

Fasteners Documentation, Release 0.17.3

16 Chapter 4. Indices and tables

INDEX

Symbols
_InterProcessLock (class in fasten-

ers.process_lock), 6
_InterProcessReaderWriterLock (class in fas-

teners.process_lock), 6

A
acquire() (fasteners.process_lock._InterProcessLock

method), 6
acquire_read_lock() (fasten-

ers.process_lock._InterProcessReaderWriterLock
method), 6

acquire_write_lock() (fasten-
ers.process_lock._InterProcessReaderWriterLock
method), 7

D
DELAY_INCREMENT (fasten-

ers.process_lock._InterProcessLock attribute),
6

DELAY_INCREMENT (fasten-
ers.process_lock._InterProcessReaderWriterLock
attribute), 6

E
exists() (fasteners.process_lock._InterProcessLock

method), 6

H
has_pending_writers() (fasten-

ers.lock.ReaderWriterLock property), 3

I
interprocess_locked() (in module fasten-

ers.process_lock), 7
interprocess_read_locked() (in module fasten-

ers.process_lock), 7
interprocess_write_locked() (in module fas-

teners.process_lock), 7
InterProcessLock (in module fasten-

ers.process_lock), 6

InterProcessReaderWriterLock (in module fas-
teners.process_lock), 6

is_reader() (fasteners.lock.ReaderWriterLock
method), 3

is_writer() (fasteners.lock.ReaderWriterLock
method), 3

L
locked() (in module fasteners.lock), 4

M
MAX_DELAY (fasteners.process_lock._InterProcessLock

attribute), 6
MAX_DELAY (fasteners.process_lock._InterProcessReaderWriterLock

attribute), 6

O
owner() (fasteners.lock.ReaderWriterLock property), 3

R
read_lock() (fasteners.lock.ReaderWriterLock

method), 3
read_locked() (in module fasteners.lock), 4
READER (fasteners.lock.ReaderWriterLock attribute), 3
ReaderWriterLock (class in fasteners.lock), 3
release() (fasteners.process_lock._InterProcessLock

method), 6
release_read_lock() (fasten-

ers.process_lock._InterProcessReaderWriterLock
method), 7

release_write_lock() (fasten-
ers.process_lock._InterProcessReaderWriterLock
method), 7

T
try_lock() (in module fasteners.lock), 4

W
write_lock() (fasteners.lock.ReaderWriterLock

method), 3
write_locked() (in module fasteners.lock), 4
WRITER (fasteners.lock.ReaderWriterLock attribute), 3

17

	Lock
	Classes
	Decorators
	Helper functions

	Process lock
	Classes
	Decorators

	Examples
	Inter-process locks
	Lock API
	Reader Writer Lock API

	Inter-thread locks
	Lock API
	Reader Writer lock API

	Indices and tables
	Index

