001 /* WeakHashMap -- a hashtable that keeps only weak references
002 to its keys, allowing the virtual machine to reclaim them
003 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
004
005 This file is part of GNU Classpath.
006
007 GNU Classpath is free software; you can redistribute it and/or modify
008 it under the terms of the GNU General Public License as published by
009 the Free Software Foundation; either version 2, or (at your option)
010 any later version.
011
012 GNU Classpath is distributed in the hope that it will be useful, but
013 WITHOUT ANY WARRANTY; without even the implied warranty of
014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
015 General Public License for more details.
016
017 You should have received a copy of the GNU General Public License
018 along with GNU Classpath; see the file COPYING. If not, write to the
019 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
020 02110-1301 USA.
021
022 Linking this library statically or dynamically with other modules is
023 making a combined work based on this library. Thus, the terms and
024 conditions of the GNU General Public License cover the whole
025 combination.
026
027 As a special exception, the copyright holders of this library give you
028 permission to link this library with independent modules to produce an
029 executable, regardless of the license terms of these independent
030 modules, and to copy and distribute the resulting executable under
031 terms of your choice, provided that you also meet, for each linked
032 independent module, the terms and conditions of the license of that
033 module. An independent module is a module which is not derived from
034 or based on this library. If you modify this library, you may extend
035 this exception to your version of the library, but you are not
036 obligated to do so. If you do not wish to do so, delete this
037 exception statement from your version. */
038
039
040 package java.util;
041
042 import java.lang.ref.ReferenceQueue;
043 import java.lang.ref.WeakReference;
044
045 /**
046 * A weak hash map has only weak references to the key. This means that it
047 * allows the key to be garbage collected if it is not used otherwise. If
048 * this happens, the entry will eventually disappear from the map,
049 * asynchronously.
050 *
051 * <p>A weak hash map makes most sense when the keys doesn't override the
052 * <code>equals</code> method: If there is no other reference to the
053 * key nobody can ever look up the key in this table and so the entry
054 * can be removed. This table also works when the <code>equals</code>
055 * method is overloaded, such as String keys, but you should be prepared
056 * to deal with some entries disappearing spontaneously.
057 *
058 * <p>Other strange behaviors to be aware of: The size of this map may
059 * spontaneously shrink (even if you use a synchronized map and synchronize
060 * it); it behaves as if another thread removes entries from this table
061 * without synchronization. The entry set returned by <code>entrySet</code>
062 * has similar phenomenons: The size may spontaneously shrink, or an
063 * entry, that was in the set before, suddenly disappears.
064 *
065 * <p>A weak hash map is not meant for caches; use a normal map, with
066 * soft references as values instead, or try {@link LinkedHashMap}.
067 *
068 * <p>The weak hash map supports null values and null keys. The null key
069 * is never deleted from the map (except explictly of course). The
070 * performance of the methods are similar to that of a hash map.
071 *
072 * <p>The value objects are strongly referenced by this table. So if a
073 * value object maintains a strong reference to the key (either direct
074 * or indirect) the key will never be removed from this map. According
075 * to Sun, this problem may be fixed in a future release. It is not
076 * possible to do it with the jdk 1.2 reference model, though.
077 *
078 * @author Jochen Hoenicke
079 * @author Eric Blake (ebb9@email.byu.edu)
080 * @author Tom Tromey (tromey@redhat.com)
081 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
082 *
083 * @see HashMap
084 * @see WeakReference
085 * @see LinkedHashMap
086 * @since 1.2
087 * @status updated to 1.4 (partial 1.5)
088 */
089 public class WeakHashMap<K,V> extends AbstractMap<K,V>
090 {
091 // WARNING: WeakHashMap is a CORE class in the bootstrap cycle. See the
092 // comments in vm/reference/java/lang/Runtime for implications of this fact.
093
094 /**
095 * The default capacity for an instance of HashMap.
096 * Sun's documentation mildly suggests that this (11) is the correct
097 * value.
098 */
099 private static final int DEFAULT_CAPACITY = 11;
100
101 /**
102 * The default load factor of a HashMap.
103 */
104 private static final float DEFAULT_LOAD_FACTOR = 0.75F;
105
106 /**
107 * This is used instead of the key value <i>null</i>. It is needed
108 * to distinguish between an null key and a removed key.
109 */
110 // Package visible for use by nested classes.
111 static final Object NULL_KEY = new Object()
112 {
113 /**
114 * Sets the hashCode to 0, since that's what null would map to.
115 * @return the hash code 0
116 */
117 public int hashCode()
118 {
119 return 0;
120 }
121
122 /**
123 * Compares this key to the given object. Normally, an object should
124 * NEVER compare equal to null, but since we don't publicize NULL_VALUE,
125 * it saves bytecode to do so here.
126 * @return true iff o is this or null
127 */
128 public boolean equals(Object o)
129 {
130 return null == o || this == o;
131 }
132 };
133
134 /**
135 * The reference queue where our buckets (which are WeakReferences) are
136 * registered to.
137 */
138 private final ReferenceQueue queue;
139
140 /**
141 * The number of entries in this hash map.
142 */
143 // Package visible for use by nested classes.
144 int size;
145
146 /**
147 * The load factor of this WeakHashMap. This is the maximum ratio of
148 * size versus number of buckets. If size grows the number of buckets
149 * must grow, too.
150 */
151 private float loadFactor;
152
153 /**
154 * The rounded product of the capacity (i.e. number of buckets) and
155 * the load factor. When the number of elements exceeds the
156 * threshold, the HashMap calls <code>rehash()</code>.
157 */
158 private int threshold;
159
160 /**
161 * The number of structural modifications. This is used by
162 * iterators, to see if they should fail. This doesn't count
163 * the silent key removals, when a weak reference is cleared
164 * by the garbage collection. Instead the iterators must make
165 * sure to have strong references to the entries they rely on.
166 */
167 // Package visible for use by nested classes.
168 int modCount;
169
170 /**
171 * The entry set. There is only one instance per hashmap, namely
172 * theEntrySet. Note that the entry set may silently shrink, just
173 * like the WeakHashMap.
174 */
175 private final class WeakEntrySet extends AbstractSet
176 {
177 /**
178 * Non-private constructor to reduce bytecode emitted.
179 */
180 WeakEntrySet()
181 {
182 }
183
184 /**
185 * Returns the size of this set.
186 *
187 * @return the set size
188 */
189 public int size()
190 {
191 return size;
192 }
193
194 /**
195 * Returns an iterator for all entries.
196 *
197 * @return an Entry iterator
198 */
199 public Iterator iterator()
200 {
201 return new Iterator()
202 {
203 /**
204 * The entry that was returned by the last
205 * <code>next()</code> call. This is also the entry whose
206 * bucket should be removed by the <code>remove</code> call. <br>
207 *
208 * It is null, if the <code>next</code> method wasn't
209 * called yet, or if the entry was already removed. <br>
210 *
211 * Remembering this entry here will also prevent it from
212 * being removed under us, since the entry strongly refers
213 * to the key.
214 */
215 WeakBucket.WeakEntry lastEntry;
216
217 /**
218 * The entry that will be returned by the next
219 * <code>next()</code> call. It is <code>null</code> if there
220 * is no further entry. <br>
221 *
222 * Remembering this entry here will also prevent it from
223 * being removed under us, since the entry strongly refers
224 * to the key.
225 */
226 WeakBucket.WeakEntry nextEntry = findNext(null);
227
228 /**
229 * The known number of modification to the list, if it differs
230 * from the real number, we throw an exception.
231 */
232 int knownMod = modCount;
233
234 /**
235 * Check the known number of modification to the number of
236 * modifications of the table. If it differs from the real
237 * number, we throw an exception.
238 * @throws ConcurrentModificationException if the number
239 * of modifications doesn't match.
240 */
241 private void checkMod()
242 {
243 // This method will get inlined.
244 cleanQueue();
245 if (knownMod != modCount)
246 throw new ConcurrentModificationException(knownMod + " != "
247 + modCount);
248 }
249
250 /**
251 * Get a strong reference to the next entry after
252 * lastBucket.
253 * @param lastEntry the previous bucket, or null if we should
254 * get the first entry.
255 * @return the next entry.
256 */
257 private WeakBucket.WeakEntry findNext(WeakBucket.WeakEntry lastEntry)
258 {
259 int slot;
260 WeakBucket nextBucket;
261 if (lastEntry != null)
262 {
263 nextBucket = lastEntry.getBucket().next;
264 slot = lastEntry.getBucket().slot;
265 }
266 else
267 {
268 nextBucket = buckets[0];
269 slot = 0;
270 }
271
272 while (true)
273 {
274 while (nextBucket != null)
275 {
276 WeakBucket.WeakEntry entry = nextBucket.getEntry();
277 if (entry != null)
278 // This is the next entry.
279 return entry;
280
281 // Entry was cleared, try next.
282 nextBucket = nextBucket.next;
283 }
284
285 slot++;
286 if (slot == buckets.length)
287 // No more buckets, we are through.
288 return null;
289
290 nextBucket = buckets[slot];
291 }
292 }
293
294 /**
295 * Checks if there are more entries.
296 * @return true, iff there are more elements.
297 */
298 public boolean hasNext()
299 {
300 return nextEntry != null;
301 }
302
303 /**
304 * Returns the next entry.
305 * @return the next entry.
306 * @throws ConcurrentModificationException if the hash map was
307 * modified.
308 * @throws NoSuchElementException if there is no entry.
309 */
310 public Object next()
311 {
312 checkMod();
313 if (nextEntry == null)
314 throw new NoSuchElementException();
315 lastEntry = nextEntry;
316 nextEntry = findNext(lastEntry);
317 return lastEntry;
318 }
319
320 /**
321 * Removes the last returned entry from this set. This will
322 * also remove the bucket of the underlying weak hash map.
323 * @throws ConcurrentModificationException if the hash map was
324 * modified.
325 * @throws IllegalStateException if <code>next()</code> was
326 * never called or the element was already removed.
327 */
328 public void remove()
329 {
330 checkMod();
331 if (lastEntry == null)
332 throw new IllegalStateException();
333 modCount++;
334 internalRemove(lastEntry.getBucket());
335 lastEntry = null;
336 knownMod++;
337 }
338 };
339 }
340 }
341
342 /**
343 * A bucket is a weak reference to the key, that contains a strong
344 * reference to the value, a pointer to the next bucket and its slot
345 * number. <br>
346 *
347 * It would be cleaner to have a WeakReference as field, instead of
348 * extending it, but if a weak reference gets cleared, we only get
349 * the weak reference (by queue.poll) and wouldn't know where to
350 * look for this reference in the hashtable, to remove that entry.
351 *
352 * @author Jochen Hoenicke
353 */
354 private static class WeakBucket<K, V> extends WeakReference<K>
355 {
356 /**
357 * The value of this entry. The key is stored in the weak
358 * reference that we extend.
359 */
360 V value;
361
362 /**
363 * The next bucket describing another entry that uses the same
364 * slot.
365 */
366 WeakBucket<K, V> next;
367
368 /**
369 * The slot of this entry. This should be
370 * <code>Math.abs(key.hashCode() % buckets.length)</code>.
371 *
372 * But since the key may be silently removed we have to remember
373 * the slot number.
374 *
375 * If this bucket was removed the slot is -1. This marker will
376 * prevent the bucket from being removed twice.
377 */
378 int slot;
379
380 /**
381 * Creates a new bucket for the given key/value pair and the specified
382 * slot.
383 * @param key the key
384 * @param queue the queue the weak reference belongs to
385 * @param value the value
386 * @param slot the slot. This must match the slot where this bucket
387 * will be enqueued.
388 */
389 public WeakBucket(K key, ReferenceQueue queue, V value,
390 int slot)
391 {
392 super(key, queue);
393 this.value = value;
394 this.slot = slot;
395 }
396
397 /**
398 * This class gives the <code>Entry</code> representation of the
399 * current bucket. It also keeps a strong reference to the
400 * key; bad things may happen otherwise.
401 */
402 class WeakEntry implements Map.Entry<K, V>
403 {
404 /**
405 * The strong ref to the key.
406 */
407 K key;
408
409 /**
410 * Creates a new entry for the key.
411 * @param key the key
412 */
413 public WeakEntry(K key)
414 {
415 this.key = key;
416 }
417
418 /**
419 * Returns the underlying bucket.
420 * @return the owning bucket
421 */
422 public WeakBucket getBucket()
423 {
424 return WeakBucket.this;
425 }
426
427 /**
428 * Returns the key.
429 * @return the key
430 */
431 public K getKey()
432 {
433 return key == NULL_KEY ? null : key;
434 }
435
436 /**
437 * Returns the value.
438 * @return the value
439 */
440 public V getValue()
441 {
442 return value;
443 }
444
445 /**
446 * This changes the value. This change takes place in
447 * the underlying hash map.
448 * @param newVal the new value
449 * @return the old value
450 */
451 public V setValue(V newVal)
452 {
453 V oldVal = value;
454 value = newVal;
455 return oldVal;
456 }
457
458 /**
459 * The hashCode as specified in the Entry interface.
460 * @return the hash code
461 */
462 public int hashCode()
463 {
464 return key.hashCode() ^ WeakHashMap.hashCode(value);
465 }
466
467 /**
468 * The equals method as specified in the Entry interface.
469 * @param o the object to compare to
470 * @return true iff o represents the same key/value pair
471 */
472 public boolean equals(Object o)
473 {
474 if (o instanceof Map.Entry)
475 {
476 Map.Entry e = (Map.Entry) o;
477 return WeakHashMap.equals(getKey(), e.getKey())
478 && WeakHashMap.equals(value, e.getValue());
479 }
480 return false;
481 }
482
483 public String toString()
484 {
485 return getKey() + "=" + value;
486 }
487 }
488
489 /**
490 * This returns the entry stored in this bucket, or null, if the
491 * bucket got cleared in the mean time.
492 * @return the Entry for this bucket, if it exists
493 */
494 WeakEntry getEntry()
495 {
496 final K key = this.get();
497 if (key == null)
498 return null;
499 return new WeakEntry(key);
500 }
501 }
502
503 /**
504 * The entry set returned by <code>entrySet()</code>.
505 */
506 private final WeakEntrySet theEntrySet;
507
508 /**
509 * The hash buckets. These are linked lists. Package visible for use in
510 * nested classes.
511 */
512 WeakBucket[] buckets;
513
514 /**
515 * Creates a new weak hash map with default load factor and default
516 * capacity.
517 */
518 public WeakHashMap()
519 {
520 this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
521 }
522
523 /**
524 * Creates a new weak hash map with default load factor and the given
525 * capacity.
526 * @param initialCapacity the initial capacity
527 * @throws IllegalArgumentException if initialCapacity is negative
528 */
529 public WeakHashMap(int initialCapacity)
530 {
531 this(initialCapacity, DEFAULT_LOAD_FACTOR);
532 }
533
534 /**
535 * Creates a new weak hash map with the given initial capacity and
536 * load factor.
537 * @param initialCapacity the initial capacity.
538 * @param loadFactor the load factor (see class description of HashMap).
539 * @throws IllegalArgumentException if initialCapacity is negative, or
540 * loadFactor is non-positive
541 */
542 public WeakHashMap(int initialCapacity, float loadFactor)
543 {
544 // Check loadFactor for NaN as well.
545 if (initialCapacity < 0 || ! (loadFactor > 0))
546 throw new IllegalArgumentException();
547 if (initialCapacity == 0)
548 initialCapacity = 1;
549 this.loadFactor = loadFactor;
550 threshold = (int) (initialCapacity * loadFactor);
551 theEntrySet = new WeakEntrySet();
552 queue = new ReferenceQueue();
553 buckets = new WeakBucket[initialCapacity];
554 }
555
556 /**
557 * Construct a new WeakHashMap with the same mappings as the given map.
558 * The WeakHashMap has a default load factor of 0.75.
559 *
560 * @param m the map to copy
561 * @throws NullPointerException if m is null
562 * @since 1.3
563 */
564 public WeakHashMap(Map<? extends K, ? extends V> m)
565 {
566 this(m.size(), DEFAULT_LOAD_FACTOR);
567 putAll(m);
568 }
569
570 /**
571 * Simply hashes a non-null Object to its array index.
572 * @param key the key to hash
573 * @return its slot number
574 */
575 private int hash(Object key)
576 {
577 return Math.abs(key.hashCode() % buckets.length);
578 }
579
580 /**
581 * Cleans the reference queue. This will poll all references (which
582 * are WeakBuckets) from the queue and remove them from this map.
583 * This will not change modCount, even if it modifies the map. The
584 * iterators have to make sure that nothing bad happens. <br>
585 *
586 * Currently the iterator maintains a strong reference to the key, so
587 * that is no problem.
588 */
589 // Package visible for use by nested classes.
590 void cleanQueue()
591 {
592 Object bucket = queue.poll();
593 while (bucket != null)
594 {
595 internalRemove((WeakBucket) bucket);
596 bucket = queue.poll();
597 }
598 }
599
600 /**
601 * Rehashes this hashtable. This will be called by the
602 * <code>add()</code> method if the size grows beyond the threshold.
603 * It will grow the bucket size at least by factor two and allocates
604 * new buckets.
605 */
606 private void rehash()
607 {
608 WeakBucket[] oldBuckets = buckets;
609 int newsize = buckets.length * 2 + 1; // XXX should be prime.
610 threshold = (int) (newsize * loadFactor);
611 buckets = new WeakBucket[newsize];
612
613 // Now we have to insert the buckets again.
614 for (int i = 0; i < oldBuckets.length; i++)
615 {
616 WeakBucket bucket = oldBuckets[i];
617 WeakBucket nextBucket;
618 while (bucket != null)
619 {
620 nextBucket = bucket.next;
621
622 Object key = bucket.get();
623 if (key == null)
624 {
625 // This bucket should be removed; it is probably
626 // already on the reference queue. We don't insert it
627 // at all, and mark it as cleared.
628 bucket.slot = -1;
629 size--;
630 }
631 else
632 {
633 // Add this bucket to its new slot.
634 int slot = hash(key);
635 bucket.slot = slot;
636 bucket.next = buckets[slot];
637 buckets[slot] = bucket;
638 }
639 bucket = nextBucket;
640 }
641 }
642 }
643
644 /**
645 * Finds the entry corresponding to key. Since it returns an Entry
646 * it will also prevent the key from being removed under us.
647 * @param key the key, may be null
648 * @return The WeakBucket.WeakEntry or null, if the key wasn't found.
649 */
650 private WeakBucket.WeakEntry internalGet(Object key)
651 {
652 if (key == null)
653 key = NULL_KEY;
654 int slot = hash(key);
655 WeakBucket bucket = buckets[slot];
656 while (bucket != null)
657 {
658 WeakBucket.WeakEntry entry = bucket.getEntry();
659 if (entry != null && equals(key, entry.key))
660 return entry;
661
662 bucket = bucket.next;
663 }
664 return null;
665 }
666
667 /**
668 * Adds a new key/value pair to the hash map.
669 * @param key the key. This mustn't exists in the map. It may be null.
670 * @param value the value.
671 */
672 private void internalAdd(Object key, Object value)
673 {
674 if (key == null)
675 key = NULL_KEY;
676 int slot = hash(key);
677 WeakBucket bucket = new WeakBucket(key, queue, value, slot);
678 bucket.next = buckets[slot];
679 buckets[slot] = bucket;
680 size++;
681 }
682
683 /**
684 * Removes a bucket from this hash map, if it wasn't removed before
685 * (e.g. one time through rehashing and one time through reference queue).
686 * Package visible for use in nested classes.
687 *
688 * @param bucket the bucket to remove.
689 */
690 void internalRemove(WeakBucket bucket)
691 {
692 int slot = bucket.slot;
693 if (slot == -1)
694 // This bucket was already removed.
695 return;
696
697 // Mark the bucket as removed. This is necessary, since the
698 // bucket may be enqueued later by the garbage collection, and
699 // internalRemove will be called a second time.
700 bucket.slot = -1;
701
702 WeakBucket prev = null;
703 WeakBucket next = buckets[slot];
704 while (next != bucket)
705 {
706 if (next == null) throw new InternalError("WeakHashMap in incosistent state");
707 prev = next;
708 next = prev.next;
709 }
710 if (prev == null)
711 buckets[slot] = bucket.next;
712 else
713 prev.next = bucket.next;
714
715 size--;
716 }
717
718 /**
719 * Returns the size of this hash map. Note that the size() may shrink
720 * spontaneously, if the some of the keys were only weakly reachable.
721 * @return the number of entries in this hash map.
722 */
723 public int size()
724 {
725 cleanQueue();
726 return size;
727 }
728
729 /**
730 * Tells if the map is empty. Note that the result may change
731 * spontanously, if all of the keys were only weakly reachable.
732 * @return true, iff the map is empty.
733 */
734 public boolean isEmpty()
735 {
736 cleanQueue();
737 return size == 0;
738 }
739
740 /**
741 * Tells if the map contains the given key. Note that the result
742 * may change spontanously, if the key was only weakly
743 * reachable.
744 * @param key the key to look for
745 * @return true, iff the map contains an entry for the given key.
746 */
747 public boolean containsKey(Object key)
748 {
749 cleanQueue();
750 return internalGet(key) != null;
751 }
752
753 /**
754 * Gets the value the key is mapped to.
755 * @return the value the key was mapped to. It returns null if
756 * the key wasn't in this map, or if the mapped value was
757 * explicitly set to null.
758 */
759 public V get(Object key)
760 {
761 cleanQueue();
762 WeakBucket<K, V>.WeakEntry entry = internalGet(key);
763 return entry == null ? null : entry.getValue();
764 }
765
766 /**
767 * Adds a new key/value mapping to this map.
768 * @param key the key, may be null
769 * @param value the value, may be null
770 * @return the value the key was mapped to previously. It returns
771 * null if the key wasn't in this map, or if the mapped value
772 * was explicitly set to null.
773 */
774 public V put(K key, V value)
775 {
776 cleanQueue();
777 WeakBucket<K, V>.WeakEntry entry = internalGet(key);
778 if (entry != null)
779 return entry.setValue(value);
780
781 modCount++;
782 if (size >= threshold)
783 rehash();
784
785 internalAdd(key, value);
786 return null;
787 }
788
789 /**
790 * Removes the key and the corresponding value from this map.
791 * @param key the key. This may be null.
792 * @return the value the key was mapped to previously. It returns
793 * null if the key wasn't in this map, or if the mapped value was
794 * explicitly set to null.
795 */
796 public V remove(Object key)
797 {
798 cleanQueue();
799 WeakBucket<K, V>.WeakEntry entry = internalGet(key);
800 if (entry == null)
801 return null;
802
803 modCount++;
804 internalRemove(entry.getBucket());
805 return entry.getValue();
806 }
807
808 /**
809 * Returns a set representation of the entries in this map. This
810 * set will not have strong references to the keys, so they can be
811 * silently removed. The returned set has therefore the same
812 * strange behaviour (shrinking size(), disappearing entries) as
813 * this weak hash map.
814 * @return a set representation of the entries.
815 */
816 public Set<Map.Entry<K,V>> entrySet()
817 {
818 cleanQueue();
819 return theEntrySet;
820 }
821
822 /**
823 * Clears all entries from this map.
824 */
825 public void clear()
826 {
827 super.clear();
828 }
829
830 /**
831 * Returns true if the map contains at least one key which points to
832 * the specified object as a value. Note that the result
833 * may change spontanously, if its key was only weakly reachable.
834 * @param value the value to search for
835 * @return true if it is found in the set.
836 */
837 public boolean containsValue(Object value)
838 {
839 cleanQueue();
840 return super.containsValue(value);
841 }
842
843 /**
844 * Returns a set representation of the keys in this map. This
845 * set will not have strong references to the keys, so they can be
846 * silently removed. The returned set has therefore the same
847 * strange behaviour (shrinking size(), disappearing entries) as
848 * this weak hash map.
849 * @return a set representation of the keys.
850 */
851 public Set<K> keySet()
852 {
853 cleanQueue();
854 return super.keySet();
855 }
856
857 /**
858 * Puts all of the mappings from the given map into this one. If the
859 * key already exists in this map, its value is replaced.
860 * @param m the map to copy in
861 */
862 public void putAll(Map<? extends K, ? extends V> m)
863 {
864 super.putAll(m);
865 }
866
867 /**
868 * Returns a collection representation of the values in this map. This
869 * collection will not have strong references to the keys, so mappings
870 * can be silently removed. The returned collection has therefore the same
871 * strange behaviour (shrinking size(), disappearing entries) as
872 * this weak hash map.
873 * @return a collection representation of the values.
874 */
875 public Collection<V> values()
876 {
877 cleanQueue();
878 return super.values();
879 }
880 } // class WeakHashMap