Free Pascal
Programmer’s Guide

Programmer’s Guide for Free Pascal, Version 2.6.0
Document version 2.4
August 2012

Michaél Van Canneyt

Contents

1 Compiler directives 14
1.1 Localdirectives i e 14
I.1.L1 $Aor $ALIGN:AlignData 14
1.1.2 $A1,S$A2,8Adand SA8 e e 15
1.1.3 $ASMMODE : Assembler mode (Intel 80x86only) 15
1.1.4 $Bor $BOOLEVAL : Complete boolean evaluation 16
1.1.5 $Cor SASSERTIONS : Assertion support. 16
1.1.6 $BITPACKING : Enable bitsize packing 16
1.1.7 SCALLING : Specify calling convention. 17
1.1.8 $SCHECKPOINTER: Check pointervalues. 17
1.1.9 $CODEALIGN: Setthe code alignment 17
1.1.10 $COPERATORS : Allow C like operators 18
1.1.11 S$DEFINE or SDEFINEC : Defineasymbol 19
1.1.12 $ELSE : Switch conditional compilation 19
1.1.13 $ELSEC : Switch conditional compilation 19
1.1.14 S$ELSEIF or SELIFC : Switch conditional compilation 19
1.1.15 $ENDC : End conditional compilation 20
1.1.16 $ENDIF : End conditional compilation 20
1.1.17 $ERROR or SERRORC : Generate error message 20
1.1.18 S$EXTENDEDSYM:Ignored 20
1.1.19 $F:Farornearfunctions 20
1.1.20 $FATAL : Generate fatal error message 21
1.1.21 S$FPUTYPE : Select COpProcessor type oo oo .. 21
1.1.22 $GOTO: Support Gotoand Label, 22
1.1.23 $Hor SLONGSTRINGS : Use AnsiStrings 22
1.1.24 $HINT : Generate hint message o oo v v v .. 22
1.1.25 S$HINTS:Emithints 23
1.1.26 $SHPPEMIT:Ignored i, 23
1.1.27 $IF : Start conditional compilation 23
1.1.28 S$IFC: Start conditional compilation 23

CONTENTS

1.1.29 S$IFDEF Name : Start conditional compilation 23
1.1.30 S$IFNDEF : Start conditional compilation 23
1.1.31 $IFOPT : Start conditional compilation 23
1.1.32 $IMPLICITEXCEPTIONS : Implicit finalization code generation 24
1.1.33 S$INFO: Generateinfomessage« o v v .. 24
1.1.34 $INLINE:Allowinlinecode. 24
1.1.35 $SINTERFACES : Specify Interface type. 24
1.1.36 $I or SIOCHECKS : Input/Output checking 25
1.1.37 $Ior SINCLUDE :Includefile 25
1.1.38 $I or SINCLUDE : Include compilerinfo 26
1.1.39 $1386_XXX : Specify assembler format (Intel 80x86 only) 26
1.1.40 $J or SWRITEABLECONST : Allow assignments to typed consts 27
1.1.41 $Lor SLINK:Linkobjectfile. 27
1.1.42 $LINKFRAMEWORK : Link to a framework 27
1.1.43 SLINKLIB:Linktoalibrary 28
1.1.44 $Mor STYPEINFO: Generate typeinfo 28
1.1.45 $MACRO: Allowuseof macros. 29

1.1.46 $SMAXFPUREGISTERS : Maximum number of FPU registers for variables . 29

1.1.47 $SMESSAGE : Generate infomessage 29
1.1.48 SMINENUMSIZE : Specify minimum enumeration size 29
1.1.49 $SMINFPCONSTPREC : Specify floating point constant precision 29
1.1.50 $MMX : Intel MMX support (Intel 80x86 only) 30
1.1.51 SNODEFINE:Ignored 30
1.1.52 S$NOTE : Generate note MeSSAZE « v v v v v v v v e e e e e e 31
[.L1.53 $SNOTES :Emitnotes., 31
1.1.54 $OBJECTCHECKS :Check Object 31
1.1.55 $OPTIMIZATION : Enable Optimizations 31
1.1.56 SOUTPUT_FORMAT : Specify the output format 32
1.1.57 $PACKENUM or $Z : Minimum enumeration type size 32
1.1.58 S$PACKRECORDS : Alignment of record elements 33
1.1.59 $PACKSET :Specifysetsize 34
1.1.60 $POP : Restore compiler settings 34
1.1.61 $PUSH: Save compiler settings 34
1.1.62 $Q or SOV or SOVERFLOWCHECKS: Overflow checking 34
1.1.63 $Ror SRANGECHECKS : Rangechecking 35
1.1.64 $Ror SRESOURCE : Includeresource 35
1.1.65 $SATURATION : Saturation operations (Intel 80x86 only) 35
1.1.66 $SETC : Define and assign a valuetoasymbol 35
1.1.67 $STATIC: Allowuse of Statickeyword. 36
1.1.68 $STOP : Generate fatal error message 36

CONTENTS

1.1.69 $T or STYPEDADDRESS : Typed address operator (@) 36
1.1.70 $SUNDEF or SUNDEFC : Undefineasymbol 36
1.1.71 $V or SVARSTRINGCHECKS : Var-string checking 37
1.1.72 $Wor $STACKFRAMES : Generate stackframes 37
1.1.73 SWAIT: Waitforenterkey press 38
1.1.74 SWARNING : Generate warning message « v v o v v v v . . 38
1.1.75 $SWARNINGS :Emitwarnings 38
1.L1.76 $21,8Z2and SZ4 o o 38
1.2 Global directives e 38
1.2.1 $APPID: Specify applicationID. 38
1.2.2 $APPNAME : Specify applicationname. 39
1.2.3 SAPPTYPE : Specify type of application. 39
1.2.4 $CALLING: Default calling convention 40
1.2.5 S$CODEPAGE : Set the source codepage 40
1.2.6 $SCOPYRIGHT specify copyrightinfo 40
1.2.77 $Dor $SDEBUGINFO : Debugging symbols 40
1.2.8 S$DESCRIPTION : Application description 41
1.2.9 S$E:Emulation of coprocessoro 41
Intel 80X86 version 41
Motorola 680x0 version 41

1.2.10 $G:Generate 80286 code oo 41
1.2.11 $INCLUDEPATH : Specify includepath. 41
1.2.12 $INTERFACES : Defaultinterfacetype 42
1.2.13 $L or SLOCALSYMBOLS : Local symbol information 42
1.2.14 $LIBRARYPATH: Specify librarypath. 42
1.2.15 S$Mor SMEMORY : Memory SiZeS v v v v v v v v e i e e e 42
1.2.16 $MODE : Set compiler compatibilitymode 43
1.2.17 $MODESWITCH : Select mode features 43
1.2.18 $N:Numeric processing o vt i et 44
1.2.19 $0O:Level 2 Optimizations v v v vt i e 44
1.2.20 $OBJECTPATH : Specify objectpath. 45
1.2.21 $P or SOPENSTRINGS : Useopen strings 45
1.2.22 $PASCALMAINNAME : Setentry pointhame 45
1.2.23 $PIC:Generate PICcodeornot 45
1.224 $PROFILE:Profiling 46
1.2.25 s$s:Stackchecking 46
1.2.26 $SCREENNAME : Specify screenname 46
1.2.27 $SMARTLINK : Use smartlinking 46
1.2.28 $THREADNAME : Set thread name in Netware 47
1.2.29 $THREADING: Allowuseofthreads. 47

CONTENTS

1.2.30 SUNITPATH: Specify unitpath. 47
1.2.31 $VERSION: Specify DLL version. 47
1.2.32 SWEAKPACKAGEUNIT :ignored 47
1.2.33 $X or SEXTENDEDSYNTAX : Extended syntax 48
1.2.34 $Y or SREFERENCEINFO : Insert Browser information 48
Using conditionals, messages and macros 49
2.1 Conditionals 49
2.1.1 Predefinedsymbols 50
22 MaCIOS . . v v i i 50
2.3 Compile time variables 52
2.4 Compile time eXpressionso i e e e e e e e e e 52
24.1 Definition 52
242 Usage . . . vt e 54
2.5 MESSAZES . . . e i e e e e e e e e e e 57
Using Assembly language 59
3.1 Usingassemblerinthesources 59
3.2 Intel 80x86 Inline assembler L Lo oL 60
32.1 Imtelsyntax e e e 60
322 AT&TSyntax o oo 63
3.3 Motorola 680x0 Inline assembler 64
3.4 Signaling changed registers e e 65
Generated code 66
4.1 Units. . . .o 66
4.2 Programs i e e e e e e e e e e e e e 67
Intel MMX support 68
5.1 Whatisitabout? e 68
5.2 Saturation SUPPOIT v v v vt v e e e e e e e e e e e e e 69
5.3 Restrictions of MMX support e 69
5.4 Supported MMX operations e e e e 70
5.5 Optimizing MMX SUPPOTt v i e e e e e e e e 70
Code issues 71
6.1 Register CONventions o v vt e e e e e e e 71
6.1.1 accumulator register 71
6.1.2 accumulator 64-bitregister 71
6.1.3 floatresultregister 71
6.1.4 selfregister e e 71
6.1.5 frame pointer registero 71

CONTENTS

6.1.6 stack pointer register

6.1.7 scratchregisters

6.1.8 Processor mapping of registers

Intel 80x86 version oL

Motorola 680x0 version

6.2 Namemangling
6.2.1 Mangled names for datablocks

6.2.2 Mangled names for code blocks

6.2.3 Modifying the manglednames

6.3 Callingmechanism
6.4 Nested procedure and functions
6.5 Constructor and Destructorcalls
6.5.1 objects

6.5.2 classes

6.6 Entryandexitcode oL
6.6.1 Intel 80x86 standard routine prologue / epilogue

6.6.2 Motorola 680x0 standard routine prologue / epilogue

6.7 Parameter passing u e e e e
6.7.1 Parameter alignment
6.8 Stack limitations L

Linking issues

7.1 Using external code and variables
7.1.1 Declaring external functions or procedures

7.1.2 Declaring external variables

7.1.3 Declaring the calling convention modifier

7.1.4 Declaring the external objectcode
Linking toanobjectfile
Linkingtoalibrary

7.2 Making libraries
7.2.1 Exporting functions L.

7.2.2 Exporting variables 0oL

7.2.3 Compiling libraries

7.2.4 Unit searching strategy

7.3 Using smartlinking L

Memory issues

8.1 Thememorymodel..
82 Dataformats. e
8.2.1 Integertypes i i e
822 Chartypes i

CONTENTS

8.23 Booleantypes. 91

8.2.4 Enumeration types it i i e e e e e e e e e e e 91

8.2.5 Floating pointtypes 91
Single 91

Double e 92

Extended e 92

Compo 93

Real o 93

8.2.6 Pointertypes e e 93

8.2.7 SIINGLYPES . .« v e e e e e e e 93
ADSISting typeso 93

Shortstring types o e 93

Widestring typeso e 94

8.2.8 Settypes e e 94

8.2.9 Staticarray typeso it e e e e e 94
8.2.10 Dynamic array typeso 94
8.2.11 Recordtypes e 94
8.2.12 ODbJecttypes v v v v e e e e e e e e e 94
8.2.13 ClasStyPes . . . v v v v i i e e e e e 95
82.14 Filetypes e 96
8.2.15 Procedural types 97

8.3 Dataalignment e 97
8.3.1 Typed constants and variable alignment 97

8.3.2 Structured types alignmento oL 98

84 Theheap. e 98
8.4.1 Heap allocation Strategy v v v vt i e e e 98

84.2 Theheap grows e 99

8.4.3 Debuggingtheheap 99

8.4.4 Writing your own memory manager o.oeoa ... 99

8.5 Using DOS memory under the Go32 extender 104
8.6 When porting Turbo Pascalcode 105
8.7 Memavailand Maxavail 105
9 Resource strings 107
9.1 Introduction e 107
9.2 Theresourcestringfile 107
9.3 Updating the stringtables e 109
04 GNUGEtteXt o v vt e e e e 110
0.5 Caveat L e e e e 111
10 Thread programming 112

CONTENTS

10.1 Introduction L 112
10.2 Programming threads e 112
10.3 Critical SECtions L e 115
10.4 The Thread Manager it 116
11 Optimizations 118
11.1 Non processor specific 118
11.1.1 Constantfolding e 118
11.1.2 Constant Mmerging o v v v v v i e e e e e 118
11.1.3 Shortcutevaluation 118
11.1.4 Constantsetinlining e 118
I11.1.5 Smallsets e 119
11.1.6 Rangechecking 119
11.1.7 Andinsteadof modulo 119
11.1.8 Shifts instead of multiply ordivide 119
11.1.9 Automatic alignment 119
11.1.10 Smart linking e 119
I1.1.11 Inline routines i i 119
11.1.12 Stack frame omission 119
I1.1.13 Register variables 120

11.2 Processor specific i e e e e 120
11.2.1 Intel 80x86 specific 120
11.2.2 Motorola 680x0 specific 122

11.3 Optimization switches e 122
11.4 Tipstogetfastercode i i i i e e 123
11.5 Tipstogetsmallercode e 123
11.6 Whole Program Optimization 124
11.6.1 Overview e 124

11.7 General principles e e e e 124
1171 HOWtoUSe o v vttt e e e e e e e e e 124

Step 1: Generate WPO feedback file 124

Step 2: Use the generated WPO feedback file 125

11.7.2 Available WPO optimizations 125
11.7.3 formatofthe WPOfile 126

12 Programming shared libraries 127
12.1 Introduction oL e 127
12.2 Creatingalibrary 127
12.3 Using alibrary ina pascal program 128
12.4 Using a pascal library fromaCprogram 130
12.5 Some WIindowsS iSSUES L. e e e 131

CONTENTS

13 Using Windows resources 132
13.1 Theresource directive SR i it 132
13.2 Creatin@ reSOUICES . . .« o v v v v v e e e e e e e e e e 132
13.3 Using string tables. L 133
13.4 Inserting version information oL oL 134
13.5 Inserting an applicationicon 134
13.6 Using a Pascal preprocessor 135

A Anatomy of a unit file 136
Al Basics 136
A2 readingppufiles 136
A3 TheHeader 137
A4 Thesections o v v v it e e 138
A5 Creatingppufiles L 139

B Compiler and RTL source tree structure 142
B.1 Thecompilersourcetree 142
B.2 TheRTL sourcetree i i ittt 142

C Compiler limits 144

D Compiler modes 145
D.1 FPCmode e 145
D2 TPmode. e 145
D.3 Delphimode. 146
D4 OBJFPCmode e 146
DS MACmode 147

E Using fpcmake 148
E.1 Introduction e 148
E.2 Functionality e 148
E3 Usage e e 149
E.4 Format of the configurationfile 150

E4.l clean e 150
E4.2 compiler 150
E43 Default e 151
Ed4 Dist 151
E45 Install 0o 152
E4.6 Package 152
E47 Prerules 152
E4.8 Requires e e e 152
E49 Rules 153

CONTENTS

E4.10 Target o o e e e 153

E.5 Programs needed to use the generated makefile 154
E.6 Variables that affect the generated makefile 154
E.6.1 Directory variables 155
E.6.2 Compiler command line variables 155

E.7 Variablessetbyfpcmake 155
E.7.1 Directory variables 156
E.7.2 Targetvariables 157

E.7.3 Compiler command line variables 158

E. 7.4 Programnames it e e e e e 158
E.7.5 Fileextensions 159
E.7.6 Targetfiles 159

E.8 Rules and targets created by fpcmake 159
E.8.1 Patternrules 159
E.82 Buildrules 160
E.83 Cleaningrules 160
E.84 Archivingrules 160
E.8.5 Installationrules 160
E.8.6 Informativerules 161

F Compiling the compiler 162
F1 Introduction e 162
F2 Beforestarting 162
F3 Compilingusingmake 163
F4 Compilingbyhand 164
F4.1 Compilingthe RTL 164

F4.2 Compiling the compiler 165

G Compiler defines during compilation 167
H Stack configuration 171
H.1 DOS . 171
H2 Linux e 171
H3 Netbsd 171
H.4 Freebsd o 171
H.5 BeOS . . . 171
H.6 Windows e 171
H.7 OS/2 . o e 172
H.8 Amiga e e 172
HO Atari oo 172

CONTENTS

I Operating system specific behavior 173

10

List of Tables

1.1

2.1

6.1
6.2
6.3
6.4
6.5
6.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

12.1

Al
A2
A3
A4
A5

F.1

G.1
G.2

Formats generated by the x86 compiler. 32
Predefined macros e 51
Intel 80x86 Registertable L o 72
Motorola 680x0 Registertable 72
Calling mechanisms in Free Pascal 76
Stack frame when calling a nested procedure (32-bit processors) 77
Stack frame when calling a procedure (32-bitmodel) 79
Maximum limits for processors 80
Enumeration storage fortpmode o Lo 91
Processor mapping of real type e 93
AnsiString memory structure (32-bitmodel)o 93
Object memory layout (32-bitmodel) 95
Object Virtual Method Table memory layout (32-bitmodel) 95
Class memory layout (32-bitmodel) 95
Class Virtual Method Table memory layout (32-bitmodel) 96
Dataalignment e 97
ReturnNillfGrowHeapFails value 99
Shared library support. 127
PPUHeader 137
PPUCPU Field values ittt 137
PPU Header Flag values 138
chunk dataformat 138
Possible PPU Entry types« o e 139
Possible defines when compiling FPC 166
Possible defines when compiling using FPC o000 168
Possible CPU defines when compiling using FPC 169

11

LIST OF TABLES

G.3 Possible FPU defines when compiling using FPC 169
G.4 Possible defines when compiling using target OS 170
I.L1 Operating system specific behavior 173

12

LIST OF TABLES

About this document

This is the programmer’s manual for Free Pascal.

It describes some of the peculiarities of the Free Pascal compiler, and provides a glimpse of how
the compiler generates its code, and how you can change the generated code. It will not, however,
provide a detailed account of the inner workings of the compiler, nor will it describe how to use
the compiler (described in the User’s Guide). It also will not describe the inner workings of the
Run-Time Library (RTL). The best way to learn about the way the RTL is implemented is from the
sources themselves.

The things described here are useful when things need to be done that require greater flexibility than
the standard Pascal language constructs (described in the Reference Guide).

Since the compiler is continuously under development, this document may get out of date. Wherever

possible, the information in this manual will be updated. If you find something which isn’t correct,

or you think something is missing, feel free to contact me'.

lat michael@freepascal.org

13

file:../user/user.html
file:../ref/ref.html

Chapter 1

Compiler directives

Free Pascal supports compiler directives in the source file: Basically the same directives as in Turbo
Pascal, Delphi and Mac OS pascal compilers. Some are recognized for compatibility only, and have
no effect. There is a distinction between local and global directives:

e [ocal directives take effect from the moment they are encountered till they are changed by
another directive or the same directive with a different argument: they can be specified more
than once in a source file.

e Global directives have an effect on all of the compiled code. They can, in general, only be
specified once per source file. It also means that their effect ends when the current unit is
compiled; the effect does not propagate to another unit.

Some directives can only take a boolean value, a ’+’ to switch them on, or a ’-’ to switch them off.
These directives are also known as switches. Many switches have a long form also. If they do, then
the name of the long form is given also.

For long switches, the + or - character to switch the option on or off, may be replaced by the ON or
OFF keywords.

Thus {$I+} isequivalent to { SIOCHECKS ON} or { SIOCHECKS +} and {$C-} is equivalent
to {SASSERTIONS OFF} or { SASSERTIONS -}

The long forms of the switches are the same as their Delphi counterparts.

1.1 Local directives

Local directives can occur more than once in a unit or program, If they have a command line counter-
part, the command line argument is restored as the default for each compiled file. The local directives
influence the compiler’s behaviour from the moment they’re encountered until the moment another
switch annihilates their behaviour, or the end of the current unit or program is reached.

1.1.1 $A or $ALIGN : Align Data

The { SALIGN directive can be used to select the data alignment strategy of the compiler for records.
It takes a numerical argument which can be 1, 2, 4, 8, 16 or 32, specifying the alignment boundary
in bytes. For these values, it has the same effect as the { SPACKRECORDS} directive (see section
1.1.58, page 33).

Thus, the following

14

CHAPTER 1. COMPILER DIRECTIVES

{$A 8}
is equivalent to
{SPACKRECORDS 8}

and specifies to the compiler that all data inside a record should be aligned on 8 byte boundaries.
In MACPAS mode, additionally it can have the following values:

MACG68K Specifies alignment following the m68K ABI.

POWER Specifies alignment following the PowerPC ABI.

POWERPC Specifies alignment following the PowerPC ABI.

RESET Resets the default alignment.

ON Same as specifying 4.

OFF Same as specifying 1.

These values are not available in the { SPACKRECORDS} directive.

1.1.2 $A1, $A2,5A4 and $AS8

These directives are the same as the SPACKRECORDS directive (see section 1.1.58, page 33), but
they have the alignment specifier embedded in the directive. Thus the following:

{SA8 }
is equivalent to
{$SPACKRECORDS 8}

Note that the special cases of SPACKRECORDS cannot be expressed this way.

1.1.3 $ASMMODE : Assembler mode (Intel 80x86 only)

The { SASMMODE XXX} directive informs the compiler what kind of assembler it can expect in an
asm block. The XXX should be replaced by one of the following:

att Indicates that asm blocks contain AT&T syntax assembler.
intel Indicates that asm blocks contain Intel syntax assembler.

direct Tells the compiler that asm blocks should be copied directly to the assembler file. It is not
possible to use such assembler blocks when the internal assembler of the compiler is used.

These switches are local, and retain their value to the end of the unit that is compiled, unless they are
replaced by another directive of the same type. The command line switch that corresponds to this
switch is —R.

The default assembler reader is the AT&T reader.

15

CHAPTER 1. COMPILER DIRECTIVES

1.1.4 $B or $BOOLEVAL : Complete boolean evaluation

By default, the compiler uses shortcut boolean evaluation, i.e., the evaluation of a boolean expression
is stopped once the result of the total exression is known with certainty. The { $B } switch can be
used to change this behaviour: if its argument is ON, then the compiler will always evaluate all terms
in the expression. If it is OFF (the default) then the compiler will only evaluate as many terms as are
necessary to determine the result of the complete expression.

So, in the following example, the function Bofu, which has a boolean result, will never get called.

If False and Bofu then

A consequence of this is that any additional actions that are done by Bofu are not executed. If
compiled with { SB ON}, then BoFu will be called anyway.

1.1.5 $C or $ASSERTIONS : Assertion support

The { SASSERTIONS} switch determines if assert statements are compiled into the binary or not.
If the switch is on, the statement

Assert (BooleanExpression, AssertMessage) ;

Will be compiled in the binary. If the BooleanExpression evaluates to False, the RTL
will check if the AssertErrorProc is set. If it is set, it will be called with as parameters the
AssertMessage message, the name of the file, the LineNumber and the address. If it is not set, a
runtime error 227 is generated.

The AssertErrorProc is defined as

Type
TAssertErrorProc=procedure (Const msg, fname : String;
lineno,erroraddr : Longint);
Var

AssertErrorProc = TAssertErrorProc;

This can be used mainly for debugging purposes. The system unit sets the AssertErrorProc
to a handler that displays a message on stderr and simply exits with a run-time error 227. The
sysultils unit catches the run-time error 227 and raises an EAssertionFailed exception.

1.1.6 $BITPACKING : Enable bitsize packing

The $BITPACKING directive tells the compiler whether it should use bitpacking or not when it
encounters the packed keyword for a structured type. The possible values are ON and OFF. If ON,
then the compiler will bitpack structures when it encounters the Packed keyword.

In the following example, the TMyRecord record will be bitpacked:

{SBITPACKING ON}
Type
TMyRecord = packed record
B1,B2,B3,B4 : Boolean;
end;

Note that:

16

CHAPTER 1. COMPILER DIRECTIVES

e The SBITPACKING directive is ignored in macpas mode, where packed records are always
bitpacked.

e The bitpacked keyword can always be used to force bitwise packing, regardless of the value
of the SBITPACKING directive, and regardless of the mode.

1.1.7 $CALLING : Specify calling convention

The { SCALLING } directive tells the compiler which calling convention should be used if none is
specified:

{SCALLING REGISTER}
By default it is REGISTER. The following calling conventions exist:

default
register
cdecl
pascal
safecall
stdcall

oldfpccall

For a more detailed explanation of calling conventions, see section 6.3, page 76. As a special case,
DEFAULT can be used, to restore the default calling convention.

1.1.8 $CHECKPOINTER : Check pointer values

The { SCHECKPOINTER} directive turns heap pointer checking on (value ON) or off (value OFF).
If heap pointer checking is on and the code is compiled with the —gh (heaptrace) option on, then a
check is inserted when dereferencing a pointer. The check will verify that the pointer contains a valid
value, i.e. points to a location that is reachable by the program: the stack or a location in the heap. If
not, a run-time error 216 or 204 is raised.

If the code is compiled without —gh switch, then this directive has no effect. Note that this consider-
ably slows down the code.

1.1.9 $CODEALIGN : Set the code alignment

This switch sets the code alignment. It takes an argument which is the alignment in bytes.
{SCODEALIGN 8}

There are some more arguments which can be specified, to tune the behaviour even more. The general
form is

{$SCODEALIGN PARAM=VALUE}

Where PARAM is the parameter to tune, and VAR value is a numerical value specifying an alignment.
PARAM can be one of the following strings:

17

CHAPTER 1. COMPILER DIRECTIVES

PROC Set the alignment for procedure entry points.

JUMP Set the alignment for jump destination locations.

LOOP Set alignment for loops (for, while, repeat).

CONSTMIN Minimum alignment for constants (both typed and untyped).
CONSTMAX Maximum alignment for constants (both typed and untyped).
VARMIN Minimum alignment for static and global variables.

VARMAX Maximum alignment for static and global variables.
LOCALMIN Minimum alignment for local variables.

LOCALMAX Maximum alignment for local variables.

RECORDMIN Minimum alignment for record fields.

RECORDMAX Maximum alignment for record fields.

By default the size of a data structure determines the alignment:

e A SmallInt will be aligned at 2 bytes.
e A LongInt will be aligned at 4 bytes.

e A Int64 will be aligned at 8 bytes.

With the above switches the minimum required alignment and a maximum used alignment can be
specified. The maximum allowed alignment is only meaningful if it is smaller than the natural size.
i.e. setting the maximum alignment (e.g. VARMAX) to 4, the alignment is forced to be at most 4
bytes: The Int 64 will then also be aligned at 4 bytes. The SmallInt will still be aligned at 2
bytes.

These values can also be specified on the command line as

—0aPARAM=VALUE

1.1.10 $COPERATORS : Allow C like operators

This boolean switch determines whether C like assignment operators are allowed. By default, these
assignments are not allowed. After the following statement:

{SCOPERATORS ON}
The following operators are allowed:

Var
I : Integer;

begin
I:=1;
I+=3; // Add 3 to I and assign the result to I;
I-=2; // Substract 2 from I and assign the result to I;
Ix=2; // Multiply I with 2 and assign the result to I;
I/=2; // Divide I with 2 and assign the result to I;

18

CHAPTER 1. COMPILER DIRECTIVES

1.1.11 $DEFINE or $DEFINEC : Define a symbol

The directive
{SDEFINE name}

defines the symbol name. This symbol remains defined until the end of the current module (i.e. unit
or program), or until a SUNDEF name directive is encountered.

If name is already defined, this has no effect. Name is case insensitive.

The symbols that are defined in a unit, are not saved in the unit file, so they are also not exported
from a unit.

Under Mac Pascal mode, the SDEFINEC directive is equivalent to the SDEFINE directive and is
provided for Mac Pascal compatibility.

1.1.12 $ELSE : Switch conditional compilation

The { SELSE} switches between compiling and ignoring the source text delimited by the preceding
{$IFxxx} and following { SENDIF}. Any text after the ELSE keyword but before the brace is
ignored:

{SELSE some ignored text}
is the same as
{SELSE}

This is useful for indication what switch is meant.

1.1.13 $ELSEC : Switch conditional compilation

In MACPAS mode, this directive can be used as an alternative to the SELSE directive. It is supported
for compatibility with existing Mac OS pascal compilers.

1.1.14 S$ELSEIF or $ELIFC : Switch conditional compilation

This directive can be used as a shortcut for a new {SIF } directive inside an { SELSE } clause:

{SIF XXX}

// XXX Code here
{SELSEIF YYY}

// YYY code here
{SELSE}

// And default code here
{SENDIF}

is equivalent to

{SIF XXX}

// XXX Code here
{$SELSE }
{SIF YYY}

// YYY code here

19

CHAPTER 1. COMPILER DIRECTIVES

{SELSE}

// And default code here
{SENDIF}
{$SENDIF}

The directive is followed by an expression like the ones recognized by the { SIF } directive.

The {SELIFC } variant is allowed only in MACPAS mode.

1.1.15 $ENDC : End conditional compilation

In MACPAS mode, this directive can be used as an alternative to the SENDIF directive. It is sup-
ported for compatibility with existing Mac OS pascal compilers.

1.1.16 $ENDIF : End conditional compilation

The { SENDIF} directive ends the conditional compilation initiated by the last { $IFxxx} directive.
Any text after the ENDIF keyword but before the closing brace is ignored:

{SENDIF some ignored text}
is the same as
{SENDIF}

This is useful for indication what switch is meant to be ended.

1.1.17 $ERROR or $ERRORC : Generate error message
The following code

{SERROR This code 1is erroneous !}

will display an error message when the compiler encounters it, and increase the error count of the
compiler. The compiler will continue to compile, but no code will be emitted.

The SERRORC variant is supplied for Mac Pascal compatibility.

1.1.18 S$EXTENDEDSYM: Ignored

This directive is parsed for Delphi compatibility but otherwise ignored. A warning will be displayed
when this directive is encountered.

1.1.19 S$F : Far or near functions

This directive is recognized for compatibility with Turbo Pascal. Under the 32-bit and 64-bit pro-
gramming models, the concept of near and far calls have no meaning, hence the directive is ignored.
A warning is printed to the screen, as a reminder.

As an example, the following piece of code:

{SF+}

20

CHAPTER 1. COMPILER DIRECTIVES

Procedure TestProc;

begin
Writeln (’Hello From TestProc’);
end;

begin
testProc
end.

Generates the following compiler output:

malpertuus: >pp -vw testf
Compiler: ppc386
Units are searched in: /home/michael; /usr/bin/;/usr/1lib/ppc/0.9.1/linuxunits
Target 0S: Linux
Compiling testf.pp
testf.pp(l) Warning: illegal compiler switch
7739 kB free
Calling assembler...
Assembled. ..
Calling linker...
12 lines compiled,
1.00000000000000E+0000

One can see that the verbosity level was set to display warnings.

When declaring a function as Far (this has the same effect as setting it between {SF+} ... {$SF-}
directives), the compiler also generates a warning:

testf.pp(3) Warning: FAR ignored
The same story is true for procedures declared as Near. The warning displayed in that case is:

testf.pp(3) Warning: NEAR ignored

1.1.20 S$FATAL : Generate fatal error message
The following code

{SFATAL This code 1is erroneous !}

will display an error message when the compiler encounters it, and the compiler will immediatly stop
the compilation process.

This is mainly useful in conjunction wih { SIFDEF} or { SIFOPT} statements.

1.1.21 S$FPUTYPE : Select coprocessor type

This directive selects the type of coprocessor used to do floating point calculations. The directive
must be followed by the type of floating point unit. The allowed values depend on the target CPU:

all SOFT: FPC emulates the coprocessor (not yet implemented).

21

Remark:

CHAPTER 1. COMPILER DIRECTIVES

i386 x87, SSE, SSE2: code compiled with SSE uses the sse to do calculations involving a float of
type Single. This code runs only on Pentium III and above, or AthlonXP and above. Code
compiled with SSE2 uses the Sse unit to do calculations with the single and double data type.
This code runs only on PentiumIV and above or Athlon64 and above

x86-64 SSE64
powerpc STANDARD

arm LIBGCC, FPA, FPAL1O, FPA1l,VFP.

This directive corresponds to the —~Cf command line option.

1.1.22 $GOTO : Support Goto and Label

If {SGOTO ON} is specified, the compiler will support Got o statements and Label declarations.
By default, SGOTO OFF is assumed. This directive corresponds to the —~Sg command line option.

As an example, the following code can be compiled:
{$GOTO ON}
label Theend;

begin
If ParamCount=0 then
GoTo TheEnd;
Writeln (’You specified command line options’);
TheEnd:
end.

When compiling assembler code using the inline assembler readers, any labels used in the assembler
code must be declared, and the { SGOTO ON} directive should be used.

1.1.23 $H or SLONGSTRINGS : Use AnsiStrings

If {SLONGSTRINGS ON} is specified, the keyword St ring (no length specifier) will be treated
as AnsiString, and the compiler will treat the corresponding variable as an ansistring, and will
generate corresponding code. This switch corresponds to the —Sh command line option.

By default, the use of ansistrings is off, corresponding to {$H-}. The system unit is compiled
without ansistrings, all its functions accept shortstring arguments. The same is true for all RTL units,
except the sysutils unit, which is compiled with ansistrings.

However, the {SMODE} statement influences the default value of {$H}: a {SMODE DELPHI}
directive implies a { SH+} statement, all other modes switch it off. As a result, you should always
put {SH+} after a mode directive. This behaviour has changed, in older Free Pascal versions this
was not so.

1.1.24 $HINT : Generate hint message

If the generation of hints is turned on, through the —vh command line option or the { SHINTS ON}
directive, then

{$Hint This code should be optimized }

22

CHAPTER 1. COMPILER DIRECTIVES

will display a hint message when the compiler encounters it.

By default, no hints are generated.

1.1.25 S$HINTS : Emit hints

{SHINTS ON} switches the generation of hints on. { SHINTS OFF} switches the generation of
hints off. Contrary to the command line option —vh this is a local switch, this is useful for checking
parts of the code.

1.1.26 $HPPEMIT: Ignored

This directive is parsed for Delphi compatibility but otherwise ignored.

1.1.27 $1IF : Start conditional compilation

The directive { SIF expr} will continue the compilation if the boolean expression expr evaluates
to True. If the compilation evaluates to False, then the source is skipped to the first { SELSE} or
{SENDIF} directive.

The compiler must be able to evaluate the expression at parse time. This means that variables or
constants that are defined in the source cannot be used. Macros and symbols may be used, however.

More information on this can be found in the section about conditionals.

1.1.28 $IFC : Start conditional compilation

In MACPAS mode, this directive can be used as an alternative to the $IF directive. It is supported
for compatibility with existing Mac OS pascal compilers.

1.1.29 S$IFDEF Name : Start conditional compilation

If the symbol Name is not defined then the { SIFDEF name} will skip the compilation of the text
that follows it to the first { SELSE} or { SENDIF} directive. If Name is defined, then compilation
continues as if the directive wasn’t there.

1.1.30 S$IFNDEF : Start conditional compilation

If the symbol Name is defined then the { SIFNDEF name} will skip the compilation of the text
that follows it to the first { SELSE} or { SENDIF} directive. If it is not defined, then compilation
continues as if the directive wasn’t there.

1.1.31 S$IFOPT : Start conditional compilation

The {SIFOPT switch} will compile the text that follows it if the switch switch is currently in
the specified state. If it isn’t in the specified state, then compilation continues after the corresponding
{$ELSE} or { SENDIF} directive.

As an example:
{SIFOPT M+}

Writeln ('Compiled with type information’);
{SENDIF}

23

CHAPTER 1. COMPILER DIRECTIVES

Will compile the Writeln statement only if generation of type information is on.

Remark: The { SIFOPT} directive accepts only short options, i.e. {SIFOPT TYPEINFO} will not be ac-
cepted.

1.1.32 S$IMPLICITEXCEPTIONS : Implicit finalization code generation

The compiler generates an implicit t ry...finally frame around each procedure that needs initial-
ization or finalization of variables, and finalizes the variables in the finally block. This slows
down these procedures (up to 5-10% sometimes). With this directive, the generation of such frames
can be disabled. One should be careful with this directive, because it can lead to memory leaks if an
exception occurs inside the routine. Therefore, it is set to ON by default.

1.1.33 $INFO : Generate info message

If the generation of info is turned on, through the —vi command line option, then
{$INFO This was coded on a rainy day by Bugs Bunny}

will display an info message when the compiler encounters it.

This is useful in conjunction with the { SIFDEF } directive, to show information about which part of
the code is being compiled.

1.1.34 S$INLINE : Allow inline code.

The {SINLINE ON} directive tells the compiler that the Inline procedure modifier should be
allowed. Procedures that are declared inline are copied to the places where they are called. This has
the effect that there is no actual procedure call, the code of the procedure is just copied to where the
procedure is needed, this results in faster execution speed if the function or procedure is used a lot.

By default, In1ine procedures are not allowed. This directive must be specified to use inlined code.
The directive is equivalent to the command line switch —Si. For more information on inline routines,
consult the Reference Guide.

1.1.35 S$INTERFACES : Specify Interface type.

The { SINTERFACES} directive tells the compiler what it should take as the parent interface of an
interface declaration which does not explicitly specify a parent interface. By default the Windows
COM IUnknown interface is used. Other implementations of interfaces (CORBA or Java) do not
necessarily have this interface, and for such cases, this directive can be used. It accepts the following
three values:

COM Interfaces will descend from IUnknown and will be reference counted.

CORBA Interfaces will not have a parent and are not reference counted (so the programmer is
responsible for bookkeeping). Corba interfaces are identified by a simple string so they are
assignment compatible with strings and not TGUID.

DEFAULT Currently, this is COM.

24

file:../ref/ref.html

CHAPTER 1. COMPILER DIRECTIVES

1.1.36 $I or $IOCHECKS : Input/Output checking

The {$I-} or { SIOCHECKS OFF} directive tells the compiler not to generate input/output check-
ing code in the program. By default, the compiler generates I/O checking code. This behaviour can
be controlled globally with the —Ci switch.

When compiling using the —C1i compiler switch, the Free Pascal compiler inserts input/output check-
ing code after every input/output call in the code. If an error occurred during input or output, then a
run-time error will be generated. This switch can also be used to avoid this behaviour.

If no I/O checking code is generated, to check if something went wrong, the TOResult function
can be used to see if everything went without problems.

Conversely, {$I+} will turn error-checking back on, until another directive is encountered which
turns it off again.

The most common use for this switch is to check if the opening of a file went without problems, as
in the following piece of code:

assign (f,’'file.txt’);
{S$I-}
rewrite (f);
{SI+}
if IOResult<>0 then
begin
Writeln (’Error opening file: "file.txt"’);
exit
end;

See the IOResult function explanation in Reference Guide for a detailed description of the possible
errors that can occur when using input/output checking.

1.1.37 $I or SINCLUDE : Include file

The {$I filename} or {SINCLUDE filename} directive tells the compiler to read further
statements from the file £i lename. The statements read there will be inserted as if they occurred
in the current file.

The compiler will append the .pp extension to the file if no extension is given. Do not put the
filename between quotes, as they will be regarded as part of the file’s name.

Include files can be nested, but not infinitely deep. The number of files is restricted to the number of
file descriptors available to the Free Pascal compiler.

Contrary to Turbo Pascal, include files can cross blocks. I.e. a block can start in one file (with a
Begin keyword) and can end in another (with a End keyword). The smallest entity in an include
file must be a token, i.e. an identifier, keyword or operator.

The compiler will look for the file to include in the following places:

1. Tt will look in the path specified in the include file name.
2. Tt will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

Directories can be added to the include file search path with the —F i command line option.

25

file:../ref/ref.html

CHAPTER 1. COMPILER DIRECTIVES

1.1.38 $I or $INCLUDE : Include compiler info

In this form:
{SINCLUDE $%$XXX%}

the { SINCLUDE} directive inserts a string constant in the source code.

Here XXX can be one of the following:

DATE Inserts the current date.

FPCTARGET Inserts the target CPU name. (deprecated, use FPCTARGETCPU)
FPCTARGETCPU Inserts the target CPU name.

FPCTARGETOS Inserts the target OS name.

FPCVERSION Current compiler version number.

FILE Filename in which the directive is found.

LINE Linenumer on which the directive is found.

TIME Current time.

If XXX is none of the above, then it is assumed to be the name of an environment variable. Its value
will be fetched from the environment, if it exists, otherwise an empty string is inserted. As a result,
this will generate a macro with the value of the XXX specifier, as if it were a string.

For example, the following program
Program InfoDemo;
Const User = {$SI $%USER%};

begin
Write (’This program was compiled at ', {$SI STIMES%});
Writeln (’ on ', {S$SI %DATE%});
Writeln (’By ’,User);
Writeln (’Compiler version: ', {$I %FPCVERSION%});
Writeln (’Target CPU: ’, {$I S$FPCTARGETS});

end.

Creates the following output:

This program was compiled at 17:40:18 on 1998/09/09
By michael

Compiler version: 0.99.7

Target CPU: 1386

1.1.39 $1386_xxX : Specify assembler format (Intel 80x86 only)

This switch selects the assembler reader. {$I386_XXX} has the same effect as { SASMMODE
XXX}, section 1.1.3, page 15

This switch is deprecated, the { SASMMODE XXX} directive should be used instead.

26

CHAPTER 1. COMPILER DIRECTIVES

1.1.40 $Jor SWRITEABLECONST : Allow assignments to typed consts

This boolean switch tells the compiler whether or not assignments to typed constants are allowed.
The default is to allow assignments to typed constants.

The following statement will switch off assignments to typed constants:
{SWRITEABLECONST OFF}

After this switch, the following statement will no longer compile:

Const

MyString : String = 'Some nice string’;
begin

MyString:=’Some Other string’;
end.

But an initialized variable will still compile:

Var

MyString : String = ’'Some nice string’;
begin

MyString:=’'Some Other string’;
end.

1.1.41 $L or $LINK : Link object file

The {SL filename} or {SLINK filename} directive tells the compiler that the file filename
should be linked to the program. This cannot be used for libraries, see section 1.1.43, page 28 for
that.

The compiler will look for this file in the following locations:

1. In the path specified in the object file name.
2. In the directory where the current source file is.

3. In all directories specified in the object file search path.

Directories can be added to the object file search path with the —-Fo command line option.

On LINUX systems and on operating systems with case-sensitive filesystems (such as UNIX systems),
the name is case sensitive, and must be typed exactly as it appears on your system.

Remark: Take care that the object file you're linking is in a format the linker understands. Which format this
is, depends on the platform you’re on. Typing 1d or 1d —help on the command line gives a list of
formats 1d knows about.

Other files and options can be passed to the linker using the -~k command line option. More than
one of these options can be used, and they will be passed to the linker, in the order that they were
specified on the command line, just before the names of the object files that must be linked.

1.1.42 S$LINKFRAMEWORK : Link to a framework

The { SLINKFRAMEWORK name} will link to a framework named name. This switch is available
only on the Darwin platform.

27

CHAPTER 1. COMPILER DIRECTIVES

1.1.43 SLINKLIB: Link to a library

The { SLINKLIB name} will link to a library name. This has the effect of passing —1name to the
linker.

As an example, consider the following unit:
unit getlen;

interface
{SLINKLIB c}

function strlen (P : pchar) : longint;cdecl;
implementation

function strlen (P : pchar) : longint;cdecl;external;
end.

If one would issue the command
ppc386 foo.pp

where foo.pp has the above unit in its uses clause, then the compiler would link the program to the
c library, by passing the linker the —1c option.

The same can be obtained by removing the linklib directive in the above unit, and specify —~k—1c on
the command line:

ppc386 —-k-1lc foo.pp

Note that the linker will look for the library in the linker library search path: one should never specify
a complete path to the library. The linker library search path can be set with the ~F1 command line
option.

1.1.44 $Mor $TYPEINFO : Generate type info

For classes that are compiled in the { $M+} or { STYPEINFO ON} state, the compiler will generate
Run-Time Type Information (RTTI). All descendent class of a class that was compiled in the { $M+}
state will get RTTI information too. Any class that is used as a field or property in a published section
will also get RTTI information.

By default, no Run-Time Type Information is generated for published sections, making them equiv-
alent to public sections. Only when a class (or one of its parent classes) was compiled in the { $M+}
state, the compiler will generate RTTI for the methods and properties in the published section.

The TPersistent object that is present in the classes unit (part of the RTL) is generated in the
{ $M+} state. The generation of RTTI allows programmers to stream objects, and to access published
properties of objects, without knowing the actual class of the object.

The run-time type information is accessible through the TypInfo unit, which is part of the Free
Pascal Run-Time Library.

Remark: The streaming system implemented by Free Pascal requires that all streamable components be de-
scendent from TPersistent. It is possible to create classes with published sections that do not
descend from TPersistent, but those classes will not be streamed correctly by the streaming
system of the Classes unit.

28

CHAPTER 1. COMPILER DIRECTIVES

1.1.45 $MACRO : Allow use of macros.

In the {SMACRO ON} state, the compiler allows the use of C-style (although not as elaborate)
macros. Macros provide a means for simple text substitution. This directive is equivalent to the
command line option —Sm. By default, macros are not allowed.

More information on using macros can be found in section 2.2, page 50.

1.1.46 S$MAXFPUREGISTERS : Maximum number of FPU registers for
variables

The {SMAXFPUREGISTERS XXX} directive tells the compiler how much floating point variables
can be kept in the floating point processor registers on an Intel X86 processor. This switch is ignored
unless the —Or (use register variables) optimization is used.

This is quite tricky because the Intel FPU stack is limited to 8 entries. The compiler uses a heuristic
algorithm to determine how much variables should be put onto the stack: in leaf procedures it is
limited to 3 and in non leaf procedures to 1. But in case of a deep call tree or, even worse, a recursive
procedure, this can still lead to a FPU stack overflow, so the user can tell the compiler how much
(floating point) variables should be kept in registers.

The directive accepts the following arguments:

N where N is the maximum number of FPU registers to use. Currently this can be in the range 0 to
7.

Normal restores the heuristic and standard behavior.

Default restores the heuristic and standard behaviour.

Remark: This directive is valid until the end of the current procedure.

1.1.47 $MESSAGE : Generate info message

If the generation of info is turned on, through the —vi command line option, then
{SMESSAGE This was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encounters it. The effect is the same as the { SINFO}
directive.

1.1.48 S$MINENUMSIZE : Specify minimum enumeration size

This directive is provided for Delphi compatibility: it has the same effect as the $PACKENUM direc-
tive (see section 1.1.57, page 32).

1.1.49 $MINFPCONSTPREC : Specify floating point constant precision

This switch is the equivalent of the —~CF command line switch. It sets the minimal precision of
floating point constants. Supported values are 32, 64 and DEFAULT. 80 is not supported for imple-
mentation reasons.

Note that this has nothing to do with the actual precision used by calculations: there the type of the
variable will determine what precision is used. This switch determines only with what precision a
constant declaration is stored:

29

CHAPTER 1. COMPILER DIRECTIVES

{SMINFPCONSTPREC 64}
Const
MyFloat = 1.23;

Will use 64 bits precision to store the constant.

Note that a value of 80 (Extended precision) is not supported.

1.1.50 $MMX : Intel MMX support (Intel 80x86 only)

Free Pascal supports optimization for the MMX Intel processor (see also chapter 5).

This optimizes certain code parts for the MMX Intel processor, thus greatly improving speed. The
speed is noticed mostly when moving large amounts of data. Things that change are

e Data with a size that is a multiple of 8 bytes is moved using the movq assembler instruction,
which moves 8 bytes at a time

Remark: MMX support is NOT emulated on non-MMX systems, i.e. if the processor doesn’t have the MMX
extensions, the MMX optimizations cannot be used.

When MMX support is on, it is not allowed to do floating point arithmetic. It is allowed to move
floating point data, but no arithmetic can be done. If floating point math must be done anyway, first
MMX support must be switched off and the FPU must be cleared using the emms function of the
CpU unit.

The following example will make this more clear:
Program MMXDemo;

uses mmx;

var

dl : double;
a : array[0..10000] of double;

i : longint;
begin

dl:=1.0;
{Smmx+}

{ floating point data is used, but we do _no_ arithmetic }
for i:=0 to 10000 do
ali] :=d2; { this is done with 64 bit moves }
{ Smmx—}
emms; { clear fpu }
{ now we can do floating point arithmetic }

end.

See the chapter on MMX (5) for more information on this topic.

1.1.51 $NODEFINE : Ignored

This directive is parsed for Delphi compatibility but is otherwise ignored.

30

CHAPTER 1. COMPILER DIRECTIVES

1.1.52 $NOTE : Generate note message

If the generation of notes is turned on, through the —vn command line option or the { SNOTES ON}
directive, then

{SNOTE Ask Santa Claus to look at this code}

will display a note message when the compiler encounters it.

1.1.53 $NOTES : Emit notes

{SNOTES ON} switches the generation of notes on. { $NOTES OFF} switches the generation of
notes off. Contrary to the command line option —vn this is a local switch, this is useful for checking
parts of the code.

By default, { SNOTES} is off.

1.1.54 $OBJECTCHECKS : Check Object

This boolean switch determines whether code to test the SELF pointer is inserted in methods. By
default it is OFF. For example:

{SOBJECTCHECKS ON}

If the SELF pointer is NIL a run-time error 210 (range check) will be generated.

This switch is also activated by the ~CR command line option.

1.1.55 $OPTIMIZATION : Enable Optimizations

This switch enables optimization. It can have the following possible values:

ON Switches on optimizations, corresponding to level 2 optimizations.

OFF Switches of all kinds of optimizations.

DEFAULT Returns to default (i.e. command-line or config file) specified optimizations.

XYZ Parses the string and switches on the optimizations found in the string.
The following strings are supported:

LEVEL1 Level 1 optimizations

LEVEL2 Level 2 optimizations

LEVEL3 Level 3 optimizations

REGVAR Use register variables.
UNCERTAIN Use uncertain optimizations.
SIZE Optimize for size.

STACKFRAME Skip stackframes.
PEEPHOLE Peephole optimizations.

31

CHAPTER 1. COMPILER DIRECTIVES

ASMCSE Use common subexpression elimination at the assembler level.

LOOPUNROLL Unroll loops

TAILREC change tail recursion to regular while

CSE Use common subexpression elimination

DFA Use DFA.

Example:
{SO[6~PTIMIZATION ON}
is equivalent to

{SOPTIMIZATION 2}

This switch is also activated by the ~Ooxxx command line switch. Note the small ’o0’:

followed by the switch name.

it is -Oo

1.1.56 $OUTPUT_FORMAT : Specify the output format

The directive { SOUTPUT_FORMAT format} has the same functionality as the —A command line
option: it tells the compiler what kind of object file must be generated. You can specify this switch
only before the Program or Unit clause in your source file. The different kinds of formats are

shown in table (1.1).

The default output format depends on the platform the compiler was compiled on.

Table 1.1: Formats generated by the x86 compiler

Switch value

Generated format

AS
AS_AOUT
ASW

COFF
MASM
NASM
NASMCOFF
NASMELF
PECOFF
TASM

AT&T assembler file.

Go32vl assembler file.

AT&T Win32 assembler file.
Go32v2 COFF object file.

Masm assembler file.

Nasm assembler file.

Nasm assembler file (COFF format).
Nasm assembler file (ELF format).
PECOFF object file (Win32).

Tasm assembler file.

1.1.57 $PACKENUM or $Z : Minimum enumeration type size

This directive tells the compiler the minimum number of bytes it should use when storing enumerated

types. It is of the following form:

{SPACKENUM =xxX}
{SMINENUMSIZE xxx}

32

CHAPTER 1. COMPILER DIRECTIVES

Where the form with SMINENUMSIZE is for Delphi compatibility. xxx can be one of 1, 2 or 4, or
NORMAL or DEFAULT.

The default enumeration size depends on the compiler mode:

e In Delphi and TP mode, the size is 1.
e In MacPas mode, the size is 2.

e In all other modes, the default is 4.

As an alternative form one can use {$Z1}, {$22} {$Z4}. The {$Z} form takes a boolean argu-
ment, where ON is equivalent to {$Z4} and OFF is equivalent to {$z1}.

So the following code

{$PACKENUM 1}

Type
Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

will use 1 byte to store a variable of type Days, whereas it nomally would use 4 bytes. The above
code is equivalent to

{Sz21}
Type
Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

or equivalent to

{$Z OFF}

Type
Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

1.1.58 $PACKRECORDS : Alignment of record elements

This directive controls the byte alignment of the elements in a record, object or class type definition.

It is of the following form:
{SPACKRECORDS n}

Where nisone of 1, 2,4, 8, 16, C, NORMAL or DEFAULT. This means that the elements of a record
which have size greater than n will be aligned on n byte boundaries. Elements with size less than or
equal to n will be aligned to a natural boundary, i.e. to a power of two that is equal to or larger than
the element’s size. The special value C is used to specify alignment as by the GNU CC compiler. It
should be used only when making import units for C routines.

The default alignment (which can be selected with DEFAULT) is 2, contrary to Turbo Pascal, where
itis 1.

More information on this and an example program can be found in the reference guide, in the section
about record types.

The following shorthands can be used for this directive:

33

CHAPTER 1. COMPILER DIRECTIVES

{$Aal
{SA2
{SAa4
{SA8

1.1.59 $PACKSET : Specify set size

The $PACKSET directive takes a numeric argument of 1, 2, 4 or 8. This number determines the
number of bytes used to store a set: The compiler rounds the number of bytes needed to store the
set down/up to the closest multiple of the PACKSET setting, with the exception that 3-byte sets are
always rounded up to 4-byte sets.

Other allowed values are FIXED, DEFAULT, or NORMAL. With these values, the compiler stores sets
with less than 32 elements in 4 bytes, and sets with less than 256 elements in 32 bytes.

1.1.60 $POP : Restore compiler settings

The $POP directive restores the values of all local compiler directives with the last values that were
stored on the settings stack. The settings are then deleted from the stack.

The settings can be stored on the stack with the $PUSH directive (see section 1.1.61, page 34).

Note that global settings are not restored by this directive.

1.1.61 $PUSH : Save compiler settings

The $PUSH directive saves the values of all local compiler directives that were stored on the settings
stack. Up to 20 sets of settings can be stored on the stack.

The settings can be restored from the stack using the SPOP directive (see section 1.1.60, page 34).
Note that global settings (search paths etc.) are not saved by this directive.

The settings stack is preserved accross units, i.e. when the compiler starts compiling a new unit, the
stack is not emptied.

1.1.62 $Q or $OV or $OVERFLOWCHECKS: Overflow checking

The {$Q+} or {SOV+} (MACPAS mode only) or { SOVERFLOWCHECKS ON} directive turns on
integer overflow checking. This means that the compiler inserts code to check for overflow when
doing computations with integers. When an overflow occurs, the run-time library will generate a
run-time error 215: It prints a message Overflow at xxx, and exits the program with exit code
215.

Remark: Overflow checking behaviour is not the same as in Turbo Pascal since all arithmetic operations are
done via 32-bit or 64-bit values. Furthermore, the Inc () and Dec standard system procedures are
checked for overflow in Free Pascal, while in Turbo Pascal they are not.

Using the {$Q-} switch (or the {$0V-} switch in MACPAS mode) switches off the overflow
checking code generation.

The generation of overflow checking code can also be controlled using the —Co command line com-
piler option (see the User’s Guide).

In Delphi, overflow checking is only switchable on a procedure level. In Free Pascal, the {$Q }
directive can be used on an expression-level.

34

file:../user/user.html

CHAPTER 1. COMPILER DIRECTIVES

1.1.63 $R or $SRANGECHECKS : Range checking

By default, the compiler doesn’t generate code to check the ranges of array indices, enumeration
types, subrange types, etc. Specifying the { $R+} switch tells the computer to generate code to
check these indices. If, at run-time, an index or enumeration type is specified that is out of the
declared range of the compiler, then a run-time error is generated, and the program exits with exit
code 201. This can happen when doing a typecast (implicit or explicit) on an enumeration type or
subrange type.

The {SRANGECHECKS OFF} switch tells the compiler not to generate range checking code. This
may result in faulty program behaviour, but no run-time errors will be generated.

Remark: The standard functions val and Read will also check ranges when the call is compiled in { $R+}
mode.

In Delphi, range checking is only switchable on a procedure level. In Free Pascal, the { SR } direc-
tive can be used on an expression-level.

1.1.64 $R or $RESOURCE : Include resource
This directive includes a resource in the binary. The argument to this directive is the resource file to
include in the binary:

{$SR icons.res}

Will include the file icons.res as a resource in the binary. Up to version 2.2.N, resources are sup-
ported only for Windows (native resources are used) and for platforms using ELF binaries (linux,
BSD). As of version 2.3.1, resources have been implemented for all supported platforms.

The asterix can be used as a placeholder for the current unit/program filename:

unit myunit;
{SR *.res}

will include myunit.res.

1.1.65 $SATURATION : Saturation operations (Intel 80x86 only)

This works only on the intel compiler, and MMX support must be on ({ SMMX +}) for this to have
any effect. See the section on saturation support (section 5.2, page 69) for more information on the
effect of this directive.

1.1.66 $seETC : Define and assign a value to a symbol

In MAC mode, this directive can be used to define compiler symbols. It is an alternative to the
SDEFINE directive for macros. It is supported for compatibility with existing Mac OS Pascal com-
pilers. It will define a symbol with a certain value (called a compiler variable expression).

The expression syntax is similar to expressions used in macros, but the expression must be evaluated
at compile-time by the compiler. This means that only some basic arithmetic and logical operators
can be used, and some extra possibilities such as the TRUE,FALSE and UNDEF INED operators:

{$SETC TARGET_CPU_PPC := NOT UNDEFINED CPUPOWERPC}

{$SETC TARGET_CPU_68K := NOT UNDEFINED CPUM68K}

{$SETC TARGET_CPU_X86 = NOT UNDEFINED CPUI386}

{$SETC TARGET_CPU_MIPS := FALSE}

{$SETC TARGET_OS_UNIX := (NOT UNDEFINED UNIX) AND (UNDEFINED DARWIN) }

35

CHAPTER 1. COMPILER DIRECTIVES

The : = assignment symbol may be replaced with the = symbol.

Note that this command works only in MACPAS mode, but independent of the —Sm command line
option or { SMACRO } directive.

1.1.67 $STATIC : Allow use of Static keyword.

If you specify the { SSTATIC ON} directive, then Stat ic methods are allowed for objects. Static
objects methods do not require a Se1f variable. They are equivalent to C1ass methods for classes.
By default, Static methods are not allowed. Class methods are always allowed. Note that also
static fields can be defined.

This directive is equivalent to the —St command line option.

1.1.68 $sToP : Generate fatal error message
The following code

{$SSTOP This code is erroneous !}

will display an error message when the compiler encounters it. The compiler will immediatly stop
the compilation process.

It has the same effect as the { SFATAL} directive.

1.1.69 ST or $STYPEDADDRESS : Typed address operator (@)

Inthe {$T+} or { STYPEDADDRESS ON} state, the @ operator, when applied to a variable, returns
aresult of type " T, if the type of the variable is T. In the { $T—-} state, the result is always an untyped
pointer, which is assignment compatible with all other pointer types.

For example, the following code will not compile:
{ST+}
Var
I : Integer;
P : PChar;
begin
P:=@QI;
end.
The compiler will give a type mismatch error:

testt.pp(8,6) Error: Incompatible types: got ""SmallInt" expected "PChar"

By default however, the address operator returns an untyped pointer.

1.1.70 S$UNDEF or $UNDEFC : Undefine a symbol

The directive

{SUNDEF name}

36

CHAPTER 1. COMPILER DIRECTIVES

un-defines the symbol name if it was previously defined. Name is case insensitive.

In Mac Pascal mode, SUNDEFC is equivalent to SUNDEF, and is provided for Mac Pascal compati-
bility.

1.1.71 $V or $VARSTRINGCHECKS : Var-string checking

The {$VARSTRINGCHECKS } determines how strict the compiler is when checking string type
compatibility for strings passed by reference. When in the + or ON state, the compiler checks that
strings passed as parameters are of the string type as the declared parameters of the procedure.

By default, the compiler assumes that all short strings are type compatible. That is, the following
code will compile:

Procedure MyProcedure (var Arg: String[10]);

begin
Writeln(’Arg ’,Arqg);
end;

Var
S : Stringl[l2];

begin
S:='123456789012";
Myprocedure (S) ;
end.

The types of Arg and S are strictly speaking not compatible: The Arg parameter is a string of length
10, and the variable S is a string of length 12: The value will be silently truncated to a string of length
10.

In the { $V+} state, this code will trigger a compiler error:
testv.pp(l4,16) Error: string types doesn’t match, because of $V+ mode

Note that this is only for strings passed by reference, not for strings passed by value.

1.1.72 $W or $STACKFRAMES : Generate stackframes

The {$W} switch directive controls the generation of stackframes. In the on state, the compiler will
generate a stackframe for every procedure or function.

In the off state, the compiler will omit the generation of a stackframe if the following conditions are
satisfied:

The procedure has no parameters.

The procedure has no local variables.

If the procedure is not an assembler procedure, it must not have a asm .. .end; block.

it is not a constructor or destructor.

If these conditions are satisfied, the stack frame will be omitted.

37

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.73 S$WAIT : Wait for enter key press

If the compiler encounters a
{SWAIT}

directive, it will resume compiling only after the user has pressed the enter key. If the generation of
info messages is turned on, then the compiler will display the following message:

Press <return> to continue

before waiting for a keypress.

This may interfere with automatic compilation processes. It should be used only for compiler de-
bugging purposes.

1.1.74 $WARNING : Generate warning message

If the generation of warnings is turned on, through the —vw command line option or the { SWARNINGS
ON} directive, then

{SWARNING This is dubious code}

will display a warning message when the compiler encounters it.

1.1.75 S$WARNINGS : Emit warnings

{SWARNINGS ON} switches the generation of warnings on. {SWARNINGS OFF} switches the
generation of warnings off. Contrary to the command line option —vw this is a local switch, this is
useful for checking parts of your code.

By default, no warnings are emitted.

1.1.76 $z1, $z22 and $z4
This switch is an equivalent of the var{ SPACKENUM } switch (see section 1.1.57, page 32).

1.2 Global directives

Global directives affect the whole of the compilation process. That is why they also have a command
line counterpart. The command line counterpart is given for each of the directives. They must be
specified before the unit or program clause in a source file, or they will have no effect.

1.2.1 $APPID : Specify application ID.

Used on the PALM os only, it can be set to specify the application name, which can be viewed on the
Palm only. This directive only makes sense in a program source file, not in a unit.

{$APPID MyApplication}

38

CHAPTER 1. COMPILER DIRECTIVES

1.2.2 $APPNAME : Specify application name.

Used on the PALM os only, it can be set to specify the application name which can be viewed on the
Palm only. This directive only makes sense in a program source file, not in a unit.

{$SAPPNAME My Application, compiled using Free Pascal.}

1.2.3 S$APPTYPE : Specify type of application.

This directive is currently only supported on the following targets: Win32, Mac, OS2 and AmigaOS.
On other targets, the directive is ignored.

The { SAPPTYPE XXX} accepts one argument which specifies what kind of application is compiled.
It can have the following values:

CONSOLE A console application. A terminal will be created and standard input, output and stan-
dard error file descriptors will be initialized. In Windows, a terminal window will be created.
This is the default.

Note that on Mac OS such applications cannot take command line options, nor return a result
code. They will run in a special terminal window, implemented as a SIOW application, see the
MPW documentation for details.

On 0S/2, these applications can run both full-screen and in a terminal window.

LINUX applications are always console applications. The application itself can decide to close
the standard files, though.

FS Specifies a full-screen VIO application on 0S/2. These applications use a special BIOS-like API
to program the screen. 0S/2 starts these application allways in full screen.

GUI Specifying the { SAPPTYPE GUI} directive will mark the application as a graphical applica-
tion; no console window will be opened when the application is run. No standard file descrip-
tors will be initialized, using them (with e.g. writeln statements) will produce a run-time
error. If run from the command line, the command prompt will be returned immediatly after
the application was started.

On 0S/2 and Mac OS, the GUI application type creates a GUI application, as on Windows. On
0S/2, this is a real Presentation Manager application.

TOOL This is a special directive for the Mac OS. It tells the compiler to create a tool application: It
initializes Input, Output and StdErr files, it can take parameters and return a result code.
It is implemented as an MPW tool which can only be run by MPW or ToolServer.

Care should be taken when compiling GUT applications; the Input and Output files are not avail-
able in a GUI application, and attempting to read from or write to them will result in a run-time
error.

It is possible to determine the application type of a WINDOWS or AMIGA application at runtime. The
IsConsole constant, declared in the Win32 and Amiga system units as

Const
IsConsole : Boolean;

contains True if the application is a console application, False if the application is a GUI applica-
tion.

39

CHAPTER 1. COMPILER DIRECTIVES

1.2.4 $CALLING : Default calling convention

This directive allows specifying the default calling convention used by the compiler, when no calling
convention is specified for a procedure or function declaration. It can be one of the following values:

CDECL C compiler calling convention.
CPPDECL C++ compiler calling convention.
FAR16 Ignored, but parsed for Turbo Pascal compatibility reasons.

FPCCALL Older FPC (1.0.X and before) standard calling convention. If a lot of direct assembler
blocks are used, this mode should be used for maximum compatibility.

INLINE Use inline code: the code for the function is inserted whenever it is called.
PASCAL Pascal calling convention.
REGISTER Register calling convention (the default).

SAFECALL Safecall calling convention (used in COM): The called procedure/function saves all
registers.

STDCALL Windows library calling convention.
SOFTFLOAT For ARM processors.

This directive is equivalent to the —~Cc command line option.

1.2.5 $CODEPAGE : Set the source codepage

This switch sets the codepage of the rest of the source file. The codepage is only taken into account
when interpreting literal strings, the actual code must be in US-ASCII. The argument to this switch
is the name of the code page to be used.

{$CODEPAGE UTF8}

The "UTF-8’ codepage can be specified as "UTF-8" or "UTF8’. The list of supported codepages is
the list of codepages supported by the charset unit of the RTL.

1.2.6 $COPYRIGHT specify copyright info

This is intended for the NETWARE version of the compiler: it specifies the copyright information
that can be viewed on a module for a Netware OS.

For example:

{SCOPYRIGHT GNU copyleft. compiled using Free Pascal}

1.2.7 $D or $DEBUGINFO : Debugging symbols

When this switch is on, the compiler inserts GNU debugging information in the executable. The
effect of this switch is the same as the command line switch —g.

By default, insertion of debugging information is off.

40

CHAPTER 1. COMPILER DIRECTIVES

1.2.8 S$DESCRIPTION : Application description

This switch is recognised for compatibility only, but is ignored completely by the compiler. At a later
stage, this switch may be activated.

1.2.9 $E : Emulation of coprocessor

This directive controls the emulation of the coprocessor. There is no command line counterpart for
this directive.

Intel 80x86 version

When this switch is enabled, all floating point instructions which are not supported by standard
coprocessor emulators will give out a warning.

The compiler itself doesn’t do the emulation of the coprocessor.

To use coprocessor emulation under DOS (go32v2) you must use the emu387 unit, which contains
correct initialization code for the emulator.

Under LINUX and most UNIX’es, the kernel takes care of the coprocessor support, so this switch is
not necessary on those platforms.

Motorola 680x0 version

When the switch is on, no floating point opcodes are emitted by the code generator. Instead, internal
run-time library routines are called to do the necessary calculations. In this case all real types are
mapped to the single IEEE floating point type.

Remark: By default, emulation is on for non-unix targets. For unix targets, floating point emulation (if re-
quired) is handled by the operating system, and by default it is off.

1.2.10 $G: Generate 80286 code

This option is recognised for Turbo Pascal compatibility, but is ignored, since the compiler works
only on 32-bit and 64-bit processors.

1.2.11 $INCLUDEPATH : Specify include path.

This option serves to specify the include path, where the compiler looks for include files. Used as
{SINCLUDEPATH XXX}

it will add XXX to the include path. The value XXX can contain one or more paths, separated by
semi-colons or colons.

For example:

{$INCLUDEPATH ../inc;../i386}

{$I strings.inc}

will add the directories ../inc and ../i386 to the include path of the compiler. The compiler will look

for the file strings.inc in both these directories, and will include the first found file. This directive is
equivalent to the —F i command line switch.

41

CHAPTER 1. COMPILER DIRECTIVES

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid using absolute paths. Instead, one should use relative paths only,
as in the example above.

1.2.12 S$INTERFACES : Default interface type

This interface selects the style of interface that the compiler will use:

{SINTERFACES COM}

selects COM compatible interfaces (descendent from IUnknown and reference counted), while
{SINTERFACES CORBA}

selects CORBA compatible interfaces (no parent interface, and not reference counted).

This switch is equivalent to the —ST command line option.

1.2.13 $L or $LOCALSYMBOLS : Local symbol information

This switch (not to be confused with the local {$SL file} file linking directive) is recognised for
Turbo Pascal compatibility, but is ignored. Generation of symbol information is controlled by the $D
switch.

1.2.14 S$LIBRARYPATH : Specify library path.

This option serves to specify the library path, where the linker looks for static or dynamic libraries.
{SLIBRARYPATH XXX} will add XXX to the library path. XXX can contain one or more paths,
separated by semi-colons or colons.

For example:
{SLIBRARYPATH /usr/X11l/lib; /usr/local/lib}
{SLINKLIB X11}

will add the directories /usr/X11/lib and /usr/local/lib to the linker library path. The linker will
look for the library libX11.s0 in both these directories, and use the first found file. This directive is
equivalent to the —F 1 command line switch.

Caution is in order when using this directive: If you distribute files, the places of the libraries may
not be the same as on your machine; moreover, the directory structure may be different. In general it
would be fair to say that you should avoid using this directive. If you are not sure, it is better practice
to use makefiles and makefile variables.

1.2.15 $M or $SMEMORY : Memory sizes

This switch can be used to set the heap and stacksize. Its format is as follows:
{SM StackSize,HeapSize}

where StackSize and HeapSize should be two integer values, greater than 1024. The first
number sets the size of the stack, and the second the size of the heap. The stack size setting is

42

CHAPTER 1. COMPILER DIRECTIVES

ignored on Unix platforms unless stack checking is enabled: in that case the stack checking code will
use the size set here as maximum stack size.

On those systems, in addition to the stack size set here, the operating system or the run environment
may have set other (possibly more strict) limits on stack size using the OS’es ulimit system calls.

The two numbers can be set on the command line using the —Ch and —Cs switches.

1.2.16 $MODE : Set compiler compatibility mode

The { SMODE} sets the compatibility mode of the compiler. This is equivalent to setting one of the
command line options —So, —Sd, —Sp or —S2. it has the following arguments:

Default Default mode. This reverts back to the mode that was set on the command line.

Delphi Delphi compatibility mode. All object-pascal extensions are enabled. This is the same as
the command line option —Sd. Note that this also implies {$H ON} (i.e., in Delphi mode,
ansistrings are the default).

TP Turbo pascal compatibility mode. Object pascal extensions are disabled, except ansistrings,
which remain valid. This is the same as the command line option —So.

FPC FPC mode. This is the default, if no command line switch is supplied.
OBJFPC Object pascal mode. This is the same as the —S2 command line option.

MACPAS MACPAS mode. In this mode, the compiler tries to be more compatible to commonly
used pascal dialects on the Mac OS, such as Think Pascal, Metrowerks Pascal, MPW Pascal.

For an exact description of each of these modes, see appendix D, on page 145.

1.2.17 S$MODESWITCH : Select mode features

As of FPC 2.3.1, the {SMODESWITCH} directive selects some of the features that a { SMODE }
directive selects: it can be used to use features that would otherwise not be available in the current
mode. For instance, one wishes to program in TP mode, but would like to use the *Out’ parameter,
an option available only in Delphi mode. The { SMODESWITCH } directive allows to activate or
deactivate some individual mode features, while not changing the current compiler mode.

This switch is a global switch, and can be used wherever the { SMODE } switch can be used.

The syntax is as follows:

{SMODESWITCH XXX}
{SMODESWITCH XXX+}
{SMODESWITCH XXX-}

The first two will switch on feature XXX, the last one will switch it off.
The feature XXX can be one of the following:

CLASS Use object pascal classes.

OBJPAS Automatically include the ObjPas unit.

RESULT Enable the Result identifier for function results.

PCHARTOSTRING Allow automatic conversion of null-terminated strings to strings,

43

CHAPTER 1. COMPILER DIRECTIVES

CVAR Allow the use of the CVAR keyword.

NESTEDCOMMENTS Allow use of nested comments.

CLASSICPROCVARS Use classical procedural variables.

MACPROCVARS Use mac-style procedural variables.

REPEATFORWARD Implementation and Forward declaration must match completely.
POINTERTOPROCVAR Allow silent conversion of pointers to procedural variables.
AUTODEREF Automatic (silent) dereferencing of typed pointers.

INITFINAL Allow use of Initializationand Finalization
POINTERARITHMETICS Allow use of pointer arithmetic.

ANSISTRINGS Allow use of ansistrings.

OUT Allow use of the out parameter type.

DEFAULTPARAMETERS Allow use of default parameter values.
HINTDIRECTIVE Support the hint directives (deprecated, platformetc.)

DUPLICATELOCALS Allow local variables in class methods to have the same names as proper-
ties of the class.

PROPERTIES Allow use of global properties.
ALLOWINLINE Allow inline procedures.
EXCEPTIONS Allow the use of exceptions.

Hence, the following:

{$MODE TP}
{SMODESWITCH OUT}

Will switch on the support for the out parameter type in TP mode. It is equivalent to

{SMODE TP}
{SMODESWITCH OUT+}

1.2.18 $N : Numeric processing

This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored, since the compiler
always uses the coprocessor for floating point mathematics.

1.2.19 $0: Level 2 Optimizations

In earlier versions of FPC, this switch was recognised for Turbo Pascal compatibility, but was other-
wise ignored: The concept of overlay code is not needed in 32-bit or 64-bit programs.

In newer versions of FPC (certainly as of 2.0.0), this switch became a Delphi compatible switch:
it has the same meaning as the { SOPTMIZATIONS ON/OFF} switch, switching on or off level 2
optimizations.

See section 1.1.55 on page 31 for more explanations and more detailed optimization settings.

44

CHAPTER 1. COMPILER DIRECTIVES

1.2.20 S$OBJECTPATH : Specify object path.

This option serves to specify the object path, where the compiler looks for object files. { SOBJECTPATH
XXX} will add XXX to the object path. XXX can contain one or more paths, separated by semi-colons
or colons.

For example:
{$SOBJECTPATH ../inc;../1386}
{$L strings.o}

will add the directories ../inc and ../i386 to the object path of the compiler. The compiler will look
for the file strings.o in both these directories, and will link the first found file in the program. This
directive is equivalent to the —~Fo command line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid using absolute paths, instead use relative paths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

1.2.21 $P or SOPENSTRINGS : Use open strings

If this switch is on, all function or procedure parameters of type string are considered to be open
string parameters; this parameter only has effect for short strings, not for ansistrings.

When using openstrings, the declared type of the string can be different from the type of string that is
actually passed, even for strings that are passed by reference. The declared size of the string passed
can be examined with the High (P) call.

By default, the use of openstrings is off.

1.2.22 $PASCALMAINNAME : Set entry point name

The {$SPASCALMAINNAME NNN} directive sets the assembler symbol name of the program or
library entry point to NNN. This directive is the equivalent of the —XM command line switch.

Under normal circumstances, it should not be necessary to use this switch.

1.2.23 s$pIc: Generate PIC code or not

The {$PIC } directive takes a boolean argument and tells the compiler whether it should generate
PIC (Position Indepedent Code) or not. This directive is the equivalent of the ~Cg command line
switch.

This directive is only useful on Unix platforms: Units should be compiled using PIC code if they are
supposed to be in a library. For programs, using PIC code is not needed, but it doesn’t hurt either
(although PIC code is slower).

The following

{$PIC ON}
unit MyUnit;

tells the compiler to compile myunit using PIC code.

45

CHAPTER 1. COMPILER DIRECTIVES

1.2.24 $PROFILE : Profiling

This directive turns the generation of profiling code on (or off). It is equivalent to the —gp command
line option. Default is OFF. This directive only makes sense in a program source file, not in a unit.

1.2.25 $s : Stack checking

The {$S+} directive tells the compiler to generate stack checking code. This generates code to
check if a stack overflow occurred, i.e. to see whether the stack has grown beyond its maximally
allowed size. If the stack grows beyond the maximum size, then a run-time error is generated, and
the program will exit with exit code 202.

Specifying { $S—} will turn generation of stack-checking code off.
The command line compiler switch —Ct has the same effect as the { $S+} directive.
By default, no stack checking is performed.

Remark: Stack checking can only be used to provide help during debugging, to try and track routines that use
an excessive amount of local memory. It is not intended and cannot be used to actually safely handle
such errors. It does not matter whether the error handling is through exception handling or otherwise.

When a stack error occurs, this is a fatal error and the application cannot be kept running correctly,
neither in a production environment, nor under debugging.

1.2.26 $SCREENNAME : Specify screen name

This directive can be used for the Novell netware targets to specify the screen name. The argument
is the screen name to be used.

{$SCREENNAME My Nice Screen}

Will set the screenname of the current application to "My Nice Screen’.

1.2.27 $SMARTLINK : Use smartlinking

A unit that is compiled in the { SSMARTLINK ON} state will be compiled in such a way that it can
be used for smartlinking. This means that the unit is chopped in logical pieces: each procedure is put
in its own object file, and all object files are put together in a big archive. When using such a unit,
only the pieces of code that you really need or call will be linked in your program, thus reducing the
size of your executable substantially.

Beware: using smartlinked units slows down the compilation process, because a separate object file
must be created for each procedure. If you have units with many functions and procedures, this can
be a time consuming process, even more so if you use an external assembler (the assembler is called
to assemble each procedure or function code block separately).

The smartlinking directive should be specified before the unit declaration part:
{$SMARTLINK ON}
Unit MyUnit;

Interface

This directive is equivalent to the —~CX command line switch.

46

CHAPTER 1. COMPILER DIRECTIVES

1.2.28 S$THREADNAME : Set thread name in Netware

This directive can be set to specify the thread name when compiling for Netware.

1.2.29 S$THREADING : Allow use of threads.

This directive is obsolete. It is no longer used, and is recognized for backwards compatibility only.
The compiler will write a warning when it is encountered.

1.2.30 S$UNITPATH : Specify unit path.

This option serves to specify the unit path, where the compiler looks for unit files. { SUNITPATH
XXX} will add XXX to the unit path. XXX can contain one or more paths, separated by semi-colons
or colons.

For example:

{SUNITPATH ../units;../i386/units}

Uses strings;

will add the directories ../units and ../i386/units to the unit path of the compiler. The compiler will
look for the file strings.ppu in both these directories, and will link the first found file in the program.
This directive is equivalent to the —Fu command line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid using absolute paths, instead use relative paths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

Note that this switch does not propagate to other units, i.e. it’s scope is limited to the current unit.

1.2.31 $VERSION : Specify DLL version.

On WINDOWS, this can be used to specify a version number for a library. This version number
will be used when the library is installed, and can be viewed in the Windows Explorer by opening
the property sheet of the DLL and looking on the tab *Version’. The version number consists of
minimally one, maximum 3 numbers:

{SVERSION 1}

Or:

{SVERSION 1.1}
And even:
{SVERSION 1.1.1}

This cannot yet be used for executables on Windows, but may be activated in the future.

1.2.32 S$SWEAKPACKAGEUNIT : ignhored

This switch is parsed for Delphi compatibility but is otherwise ignored. The compiler will write a
warning when it is encountered.

47

CHAPTER 1. COMPILER DIRECTIVES

1.2.33 $X or SEXTENDEDSYNTAX : Extended syntax

Extended syntax allows you to drop the result of a function. This means that you can use a function
call as if it were a procedure. By default this feature is on. You can switch it off using the { $X—} or
{SEXTENDEDSYNTAX OFF }directive.

The following, for instance, will not compile:

function Func (var Arg : sometype) : longint;
begin
{ declaration of Func }
end;
{$X-}
Func (A);

The reason this construct is supported is that you may wish to call a function for certain side-effects
it has, but you don’t need the function result. In this case you don’t need to assign the function result,
saving you an extra variable.

The command line compiler switch —Sal has the same effect as the { $X+} directive.

By default, extended syntax is assumed.

1.2.34 $Y or SREFERENCEINFO : Insert Browser information

This switch controls the generation of browser information. It is recognized for compatibility with
Turbo Pascal and Delphi only, as Browser information generation is not yet fully supported.

48

Chapter 2

Using conditionals, messages and
macros

The Free Pascal compiler supports conditionals as in normal Turbo Pascal, Delphi or Mac OS Pascal.
It does, however, more than that. It allows you to make macros which can be used in your code, and it
allows you to define messages or errors which will be displayed when compiling. It also has support
for compile-time variables and compile-time expressions, as commonly found in Mac OS compilers.

The various conditional compilation directives ($IF, SIFDEF, SIFOPT are used in combination
with $SDEFINE to allow the programmer to choose at compile time which portions of the code
should be compiled. This can be used for instance

e To choose an implementation for one operating system over another.
e To choose a demonstration version or a full version.

e To distinguish between a debug version and a version for shipping.
These options are then chosen when the program is compiled, including or excluding parts of the

code as needed. This is opposed to using normal variables and running through selected portions of
code at run time, in which case extra code is included in the executable.

2.1 Conditionals

The rules for using conditional symbols are the same as under Turbo Pascal or Delphi. Defining a
symbol goes as follows:

{$define Symbol}

From this point on in your code, the compiler knows the symbol Symbol. Symbols are, like the
Pascal language, case insensitive.

You can also define a symbol on the command line. the ~dSymbol option defines the symbol
Symbol. You can specify as many symbols on the command line as you want.

Undefining an existing symbol is done in a similar way:

{Sundef Symbol}

49

Remark:

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

If the symbol didn’t exist yet, this doesn’t do anything. If the symbol existed previously, the symbol
will be erased, and will not be recognized any more in the code following the {$undef ...}
statement.

You can also undefine symbols from the command line with the —u command line switch.
To compile code conditionally, depending on whether a symbol is defined or not, you can enclose

the codeina {$ifdef Symbol} ...{S$endif} pair. For instance the following code will never
be compiled:

{Sundef MySymbol}
{$ifdef Mysymbol}
DoSomething;

{Sendif}
Similarly, you can enclose your code in a {$ifndef Symbol} ...{$endif} pair. Then the

code between the pair will only be compiled when the used symbol doesn’t exist. For example, in
the following code, the call to the DoSomething will always be compiled:

{Sundef MySymbol}
{$ifndef Mysymbol}
DoSomething;

{Sendif}
You can combine the two alternatives in one structure, namely as follows

{$ifdef Mysymbol}
DoSomething;
{Selse}
DoSomethingElse
{Sendif}

In this example, if My Symbol exists, then the call to DoSomething will be compiled. If it doesn’t
exist, the call to DoSomethingElse is compiled.

2.1.1 Predefined symbols

The Free Pascal compiler defines some symbols before starting to compile your program or unit.
You can use these symbols to differentiate between different versions of the compiler, and between
different compilers. To get all the possible defines when starting compilation, see appendix G

Symbols, even when they’re defined in the interface part of a unit, are not available outside that unit.

2.2 Macros

Macros are very much like symbols or compile-time variables in their syntax, the difference is that
macros have a value whereas a symbol simply is defined or is not defined. Furthermore, following
the definition of a macro, any occurrence of the macro in the pascal source will be replaced with the
value of the macro (much like the macro support in the C preprocessor). If macro support is required,
the —Sm command line switch must be used to switch it on, or the directive must be inserted:

{$MACRO ON}

50

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

otherwise macros will be regarded as a symbol.

Defining a macro in a program is done in the same way as defining a symbol; in a { $define}
preprocessor statement':

{Sdefine ident:=expr}

If the compiler encounters ident in the rest of the source file, it will be replaced immediately by
expr. This replacement works recursive, meaning that when the compiler expanded one macro, it
will look at the resulting expression again to see if another replacement can be made. This means
that care should be taken when using macros, because an infinite loop can occur in this manner.

Here are two examples which illustrate the use of macros:
{$define sum:=a:=a+b;}

sum { will be expanded to ’'a:=a+b;’
remark the absence of the semicolon}

{Sdefine b:=100}
sum { Will be expanded recursively to a:=a+100; }

The previous example could go wrong:
{Sdefine sum:=a:=a+b;}

sum { will be expanded to ’'a:=a+b;’
remark the absence of the semicolon}

{Sdefine b=sum} { DON’T do this !!!}
sum { Will be infinitely recursively expanded... }

On my system, the last example results in a heap error, causing the compiler to exit with a run-time
error 203.

Remark: Macros defined in the interface part of a unit are not available outside that unit! They can just be
used as a notational convenience, or in conditional compiles.

By default the compiler predefines three macros, containing the version number, the release number
and the patch number. They are listed in table (2.1).

Table 2.1: Predefined macros

Symbol Contains

FPC_FULLVERSION An integer version number of the compiler.
FPC_VERSION The version number of the compiler.
FPC_RELEASE The release number of the compiler.
FPC_PATCH The patch number of the compiler.

The FPC_FULLVERSION macro contains a version number which always uses 2 digits for the
RELEASE and PATCH version numbers. This means that version 2.3.1 will resultin FPC_FULLVERSION=20301.
This number makes it easier to determine minimum versions.

!In compiler versions older than 0.9.8, the assignment operator for a macros wasn’t : = but =

51

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

Remark: Don’t forget that macro support isn’t on by default. It must be turned on with the —Sm command line
switch or using the { SMACRO ON} directive.

2.3 Compile time variables

In MacPas mode, compile time variables can be defined. They are distinct from symbols in that they
have a value, and they are distinct from macros, in that they cannot be used to replace portions of the
source text with their value. Their behaviour are compatible with compile time variables found in
popular pascal compilers for Macintosh.

A compile time variable is defined like this:
{SSETC ident:= expression}

The expression is a so-called compile time expression, which is evaluated once, at the point where
the {SSETC } directve is encountered in the source. The resulting value is then assigned to the
compile time variable.

A second {$SETC } directive for the same variable overwrites the previous value.

Contrary to macros and symbols, compile time variables defined in the Interface part of a unit are
exported. This means their value will be available in units which uses the unit in which the variable
is defined. This requires that both units are compiled in macpas mode.

The big difference between macros and compile time variables is that the former is a pure text sub-
stitution mechanism (much like in C), where the latter resemble normal programming language vari-
ables, but they are available to the compiler only.

In mode MacPas, compile time variables are always enabled.

2.4 Compile time expressions

2.4.1 Definition

Except for the regular Turbo Pascal constructs for conditional compilation, the Free Pascal compiler
also supports a stronger conditional compile mechanism: The { $SIF} construct, which can be used
to evaluate compile-time expressions.

The prototype of this construct is as follows:

{Sif expr}
CompileTheselines;
{Selse}
BetterCompileTheselines;
{$endif}

The content of an expression is restricted to what can be evaluated at compile-time:

e Constants (strings, numbers)
e Macros
e Compile time variables (mode MacPas only)

e Pascal constant expression (mode Delphi only)

52

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

The symbols are replaced with their value. For macros recursive substitution might occur.

The following boolean operators are available:

=, <>, >, <, >=, <=, BAND, NOT, OR, IN

The IN operator tests for presence of a compile-time variable in a set.

The following functions are also available:

TRUE Defined in MacPas mode only, it evaluates to True. In other modes, 1 can be used.
FALSE Defined in MacPas mode only, it evaluates to False. In other modes, O can be used.

DEFINED(sym) will evaluate to TRUE if a compile time symbol is defined. In MacPas mode, the
parentheses are optional, i.e.

{$IF DEFINED (MySym) }
is equivalent to
{$IF DEFINED MySym}

UNDEFINED sym will evaluate to TRUE if a compile time symbol is not defined, and FALSE
otherwise (mode MacPas only).

OPTION(opt) evaluates to TRUE if a compiler option is set (mode MacPas only). It is equivalent
tothe {SIFOPT } directive.

SIZEOF(passym) Evaluates to the size of a pascal type, variable or constant.

DECLARED(passym) Evaluates to TRUE if the pascal symbol is declared at this point in the
sources, or FALSE if it is not yet defined.

In expressions, the following rules are used for evaluation:

o If all parts of the expression can be evaluated as booleans (with 1 and O representing TRUE and
FALSE), the expression is evaluated using booleans.

e If all parts of the expression can be evaluated as nuumbers, then the expression is evaluated
using numbers.

e In all other cases, the expression is evaluated using strings.

If the complete expression evaluates to * 0/, then it is considered False and rejected. Otherwise it
is considered True and accepted. This may have unexpected consequences:

{Sif 0}
will evaluate to False and be rejected, while
{$Sif 00}

will evaluate to True.

53

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

2.4.2 Usage

The basic usage of compile time expressions is as follows:

{$Sif expr}
CompileTheselines;
{Sendif}

If expr evaluates to TRUE, then CompileTheseLines will be included in the source.

Like in regular pascal, it is possible to use { SELSE }:

{Sif expr}
CompileTheselines;
{Selse}
BetterCompileTheselines;
{Sendif}

If expr evaluates to True, CompileTheseLines will be compiled. Otherwise, BetterCompileTheselLines
will be compiled.

Additionally, it is possible to use var{ $ELSEIF}

{SIF expr}
//

{SELSEIF expr}
//

{$SELSEIF expr}
//

{SELSE}
//

{SENDIF}

In addition to the above constructs, which are also supported by Delphi, the above is completely
equivalent to the following construct in MacPas mode:

{SIFC expr}
/]
{SELIFC expr}
{SELIFC expr}
{SELSEC}
{SENDC}
that is, IFC corresponds to IF, ELIFC corresponds to ELSEIF, ELSEC is equivalent with ELSE
and ENDC is the equivalent of ENDIF. Additionally, IFEND is equivalent to ENDIF
{$IF EXPR}
CompileThis;

{SENDIF}

In MacPas mode it is possible to mix these constructs.

The following example shows some of the possibilities:

54

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$ifdef fpc}

var
y : longint;
{Selse fpc}

var
z : longint;

{$Sendif fpc}

var
x : longint;

begin

{$IF (FPC_VERSION > 2)
((FPC_VERSION

or

2)

and ((FPC_RELEASE > 0) or
((FPC_RELEASE = 0) and (FPC_PATCH >= 1))))}
{$DEFINE FPC_VER_201_PLUS}

{SENDIF}

{$ifdef FPC_VER_201_PLUS}
{$info At least this is version 2.0.1}

{Selse}

{Sfatal Problem with version check}

{$endif}

{Sdefine x:=1234}

{$1if x=1234}
{Sinfo x=1234}
{Selse}

{$fatal x should be 1234}

{Sendif}

{$if 12asdf and 1l2asdf}
{Sinfo $if 12asdf and 1l2asdf is ok}

{Selse}

{$fatal $if 12asdf and 12asdf rejected}

{Sendif}

{$if 0 or 1}

{$info $if 0 or 1 1is ok}

{$Selse}

{$fatal $if 0 or 1 rejected}

{Sendif}

{$if 0}

{$fatal $if 0 accepted}

{Selse}

{$info $if 0 is ok}

{$Sendif}

(Sif 12=12}

{$info $if 12=12 is ok}

55

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{Selse}
{S$fatal $if 12=12 rejected}
{$Sendif}

{$if 12<>312}

{$info $if 12<>312 1is ok}
{Selse}

{Sfatal $if 12<>312 rejected}
{Sendif}

{$if 12<=312}

{$Sinfo $if 12<=312 is ok}
{Selse}

{$fatal $if 12<=312 rejected}
{Sendif}

{Sif 12<312}

{$info S$if 12<312 is ok}
{Selse}

{$fatal $if 12<312 rejected}
{Sendif}

{$if al2=al2}

{Sinfo $if al2=al2 is ok}
{Selse}

{$fatal $if al2=al2 rejected}
{$endif}

{Sif al2<=z312}

{Sinfo $if al2<=z312 is ok}
{Selse}

{$fatal $if al2<=z312 rejected}
{Sendif}

($1if al2<z312}

{$info $if al2<z312 is ok}
{Selse}

{$fatal $if al2<z312 rejected}
{Sendif}

{$if not (0)}

{$info $if not (0) is OK}
{Selse}

{$fatal $if not (0) rejected}
{Sendif}

{$IF NOT UNDEFINED FPC}
// Detect FPC stuff when compiling on MAC.
{SSETC TARGET_RT_MAC_68881:= FALSE}
{$SETC TARGET_OS_MAC (NOT UNDEFINED MACOS)
OR (NOT UNDEFINED DARWIN) }
{$SETC TARGET_OS_WIN32 := NOT UNDEFINED WIN32}

56

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$SETC TARGET_OS_UNIX (NOT UNDEFINED UNIX)
AND (UNDEFINED DARWIN) }
{$SETC TYPE_EXTENDED := TRUE}

{$SETC TYPE_LONGLONG FALSE}

{$SETC TYPE_BOOL FALSE}

{SENDIF}

{$info *************k*k***********k*‘k**********************}

{$info » Now have to follow at least 2 error messages: =}

{$i1’]fo ***}

{$if not (0}
{Sendif}

{$if not (<}
{$endif}

end.

As you can see from the example, this construct isn’t useful when used with normal symbols, only if
you use macros, which are explained in section 2.2, page 50. They can be very useful. When trying
this example, you must switch on macro support, with the —Sm command line switch.

The following example works only in MacPas mode:

{$SETC TARGET_OS_MAC := (NOT UNDEFINED MACOS) OR (NOT UNDEFINED DARWIN) }
{$SETC DEBUG := TRUE}

{$SETC VERSION := 4}

{$SETC NEWMODULEUNDERDEVELOPMENT := (VERSION >= 4) OR DEBUG}

{$IFC NEWMODULEUNDERDEVELOPMENT}
{SIFC TARGET_OS_MAC}
new mac code
{SELSEC}
new other code
{SENDC}
{$SELSEC}
old code
{SENDC}

2.5 Messages

Free Pascal lets you define normal, warning and error messages in your code. Messages can be used
to display useful information, such as copyright notices, a list of symbols that your code reacts on
etc.

Warnings can be used if you think some part of your code is still buggy, or if you think that a certain
combination of symbols isn’t useful.

Error messages can be useful if you need a certain symbol to be defined, to warn that a certain
variable isn’t defined, or when the compiler version isn’t suitable for your code.

The compiler treats these messages as if they were generated by the compiler. This means that if you
haven’t turned on warning messages, the warning will not be displayed. Errors are always displayed,

57

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

and the compiler stops if 50 errors have occurred. After a fatal error, the compiler stops at once.

For messages, the syntax is as follows:
{SMessage Message text}

or

{SInfo Message text}

For notes:

{SNote Message text}

For warnings:

{$Warning Warning Message text}
For hints:

{$Hint Warning Message text}
For errors:

{$Error Error Message text}
Lastly, for fatal errors:

{$Fatal Error Message text}
or

{$Stop Error Message text}

The difference between SError and $FatalError or $Stop messages is that when the compiler
encounters an error, it still continues to compile. With a fatal error, the compiler stops.

Remark: You cannot use the ’}’ character in your message, since this will be treated as the closing brace of
the message.

As an example, the following piece of code will generate an error when neither of the symbols
RequiredVarl or RequiredVar?2 are defined

{SIFNDEF RequiredvVarl}

{SIFNDEF RequiredvVar2}

{$Error One of Requiredvarl or Requiredvar2 must be defined}
{$SENDIF}

{SENDIF}

But the compiler will continue to compile. It will not, however, generate a unit file or a program
(since an error occurred).

58

Chapter 3

Using Assembly language

Free Pascal supports inserting assembler statements in between Pascal code. The mechanism for this
is the same as under Turbo Pascal and Delphi. There are, however some substantial differences, as
will be explained in the following sections.

3.1 Using assembler in the sources

There are essentially 2 ways to embed assembly code in the pascal source. The first one is the
simplest, by using an asm block:

Var
I : Integer;
begin
I:=3;
asm
movl I, %eax
end;
end;

Everything between the asm and end block is inserted as assembler in the generated code. Depend-
ing on the assembler reader mode, the compiler performs substitution of certain names with their
addresses.

The second way is implementing a complete procedure or function in assembler. This is done by
adding a assembler modifier to the function or procedure header:

function geteipasebx : pointer;assembler;

asm
movl (%esp), %ebx
ret

end;

It’s still possible to declare variables in an assembler procedure:

procedure Move (const source;var dest;count:Sizelnt);assembler;
var

saveesi, saveedi : longint;
asm

59

CHAPTER 3. USING ASSEMBLY LANGUAGE

movl %edi, saveedi
end;

The compiler will reserve space on the stack for these variables, it inserts some commands for this.

Note that the assembler name of an assembler function will still be *mangled’ by the compiler, i.e.
the label for this function will not be the name of the function as declared. To change this, an Alias
modifier can be used:

function geteipasebx : pointer;assembler; [alias:’FPC_GETEIPINEBX'];
asm

movl (%esp), %ebx

ret
end;

To make the function available in assembler code outside the current unit, the Publ ic modifier can
be added:

function geteipasebx : pointer;assembler; [public,alias:’FPC_GETEIPINEBX'];
asm

movl (%esp), %ebx

ret
end;

3.2 Intel 80x86 Inline assembler

3.2.1 Intel syntax
Free Pascal supports Intel syntax for the Intel family of Ix86 processors in its asm blocks.

The Intel syntax in your asm block is converted to AT&T syntax by the compiler, after which it
is inserted in the compiled source. The supported assembler constructs are a subset of the normal
assembly syntax. In what follows we specify what constructs are not supported in Free Pascal, but
which exist in Turbo Pascal:

e The TBYTE qualifier is not supported.

e The & identifier override is not supported.
e The HIGH operator is not supported.

e The LOW operator is not supported.

e The OFFSET and SEG operators are not supported. Use LEA and the various Lxx instructions
instead.

e Expressions with constant strings are not allowed.
e Access to record fields via parenthesis is not allowed

e Typecasts with normal pascal types are not allowed, only recognized assembler typecasts are
allowed. Example:

mov al, byte ptr MyWord -— allowed,
mov al, byte (MyWord) -- allowed,
mov al, shortint (MyWord) —-— not allowed.

60

CHAPTER 3. USING ASSEMBLY LANGUAGE

e Pascal type typecasts on constants are not allowed. Example:
const s= 10; const t = 32767;
in Turbo Pascal:

mov al, byte(s) —-— useless typecast.
mov al, byte(t) -— syntax error!

In this parser, either of those cases will give out a syntax error.

e Constant references expressions with constants only are not allowed (in all cases they do not
work in protected mode, e.g. under LINUX 1386). Examples:

mov al,byte ptr ['c’] -— not allowed.
mov al,byte ptr [100h] —-— not allowed.

(This is due to the limitation of the GNU Assembler).
e Brackets within brackets are not allowed

e Expressions with segment overrides fully in brackets are currently not supported, but they can
easily be implemented in BuildReference if requested. Example:

mov al, [ds:bx] —-— not allowed
use instead:
mov al,ds: [bx]

e Possible allowed indexing are as follows:

— Sreg: [REG+REG*SCALING+/—-disp]
— SReqg: [REG+/-disp]

— SReg: [REG]

— SReg: [REG+REG+/-disp]

— SReg: [REGH+REG*SCALING]

Where Sreg is optional and specifies the segment override. Notes:

1. The order of terms is important contrary to Turbo Pascal.

2. The Scaling value must be a value, and not an identifier to a symbol. Examples:

const myscale = 1;
mov al,byte ptr [esi+tebxxmyscale] —-- not allowed.
use:

mov al, byte ptr [esit+ebxxl]

e Possible variable identifier syntax is as follows: (Id = Variable or typed constant identifier.)

61

CHAPTER 3. USING ASSEMBLY LANGUAGE

4. ID[expr]
Possible fields are as follow:

1. ID.subfield.subfield
2. [ref].ID.subfield.subfield
3. [ref].typename.subfield

e Local labels: Contrary to Turbo Pascal, local labels, must at least contain one character after
the local symbol indicator. Example:

@: —— not allowed
use instead:
@1: —— allowed

e Contrary to Turbo Pascal, local references cannot be used as references, only as displacements.
Example:

lds si,Cmylabel —-— not allowed

e Contrary to Turbo Pascal, SEGCS, SEGDS, SEGES and SEGSS segment overrides are presently
not supported. (This is a planned addition though).

o Contrary to Turbo Pascal where memory sizes specifiers can be practically anywhere, the Free
Pascal Intel inline assembler requires memory size specifiers to be outside the brackets. Ex-

ample:

mov al, [byte ptr myvar] —-— not allowed.
use:

mov al,byte ptr [myvar] -— allowed.

e Base and Index registers must be 32-bit registers. (limitation of the GNU Assembler).
e XLAT is equivalent to XLATB.
e Only Single and Double FPU opcodes are supported.

e Floating point opcodes are currently not supported (except those which involve only floating
point registers).

The Intel inline assembler supports the following macros:

@Result represents the function result return value.

Self represents the object method pointer in methods.

62

CHAPTER 3. USING ASSEMBLY LANGUAGE

3.2.2 AT&T Syntax

In earlier versions, Free Pascal used only the GNU as assembler to generate its object files for the
Intel x86 processors. Only after some time, an internal assembler was created, which wrote directly
to an object file.

Since the GNU assembler uses AT&T assembly syntax, the code you write should use the same
syntax. The differences between AT&T and Intel syntax as used in Turbo Pascal are summarized in
the following:

e The opcode names include the size of the operand. In general, one can say that the AT&T

5 99

opcode name is the Intel opcode name, suffixed with a ’1’°, *w’ or 'b’ for, respectively, longint
(32 bit), word (16 bit) and byte (8 bit) memory or register references. As an example, the Intel
construct ‘'mov al bl is equivalent to the AT&T style ‘'movb %$bl, $al’ instruction.

e AT&T immediate operands are designated with *$’, while Intel syntax doesn’t use a prefix for
immediate operands. Thus the Intel construct ‘'mov ax, 2’ becomes 'movb $2, %al’in
AT&T syntax.

309

o AT&T register names are preceded by a ’$’ sign. They are undelimited in Intel syntax.

e AT&T indicates absolute jump/call operands with ’»’, Intel syntax doesn’t delimit these ad-
dresses.

e The order of the source and destination operands are switched. AT&T syntax uses ’Source,
Dest’, while Intel syntax features 'Dest, Source’. Thus the Intel construct ’add eax,
4’ transforms to ’addl $4, %eax’ inthe AT&T dialect.

e Immediate long jumps are prefixed with the *1° prefix. Thus the Intel 'call/jmp section:offset’
istransformedto’lcall/ljmp S$section, Soffset’. Similarly, the farreturnis’lret’,
instead of the Intel 'ret far’.

e Memory references are specified differently in AT&T and Intel assembly. The Intel indirect
memory reference

Section: [Base + IndexxScale + Offs]
is written in AT&T syntax as:
Section:0ffs (Base, Index, Scale)

Where Base and Index are optional 32-bit base and index registers, and Scale is used to
multiply Index. It can take the values 1,2,4 and 8. The Section is used to specify an
optional section register for the memory operand.

More information about the AT&T syntax can be found in the as manual, although the following
differences with normal AT&T assembly must be taken into account:

e Only the following directives are presently supported:

.byte
-word
Jong
.ascii
.asciz
.globl

e The following directives are recognized but are not supported:

63

CHAPTER 3. USING ASSEMBLY LANGUAGE

.align

Jcomm
Eventually they will be supported.
e Directives are case sensitive, other identifiers are not case sensitive.
o Contrary to gas, local labels/symbols must start with . L.
e The not operator ’ !’ is not supported.
e String expressions in operands are not supported.
e CBTW,CWTL,CWTD and CLTD are not supported, use the normal Intel equivalents instead.

o Constant expressions which represent memory references are not allowed, even though con-
stant immediate value expressions are supported. Examples:

const myid = 10;

movl S$myid, $eax —-— allowed
movl myid(%esi), %$eax —- not allowed.

e When the . globl directive is found, the symbol immediatly following it is made public and
is immediately emitted. Therefore label names with this name will be ignored.

e Only Single and Double FPU opcodes are supported.
The AT&T inline assembler supports the following macros:

__RESULT represents the function result return value.
__SELF represents the object method pointer in methods.

__OLDEBP represents the old base pointer in recusrive routines.

3.3 Motorola 680x0 Inline assembler

The inline assembler reader for the Motorola 680x0 family of processors uses the Motorola Assem-
bler syntax (q.v). A few differences do exist:

e Local labels start with the @ character, such as
@MyLabel:

e The XDEF directive in an assembler block will make the symbol available publicly with the
specified name (this name is case sensitive)

e The DB, DW, DD directives can only be used to declare constants which will be stored in the
code segment.

e The Align directive is not supported.

e Arithmetic operations on constant expression use the same operands as the intel version, e.g,
AND, XOR ...

e Segment directives are not supported

64

CHAPTER 3. USING ASSEMBLY LANGUAGE

e Only 68000 and a subset of 68020 opcodes are currently supported.

The inline assembler supports the following macros:

@Result represents the function result return value.

Self represents the object method pointer in methods.

3.4 Signaling changed registers

When the compiler uses variables, it sometimes stores them, or the result of some calculations, in
the processor registers. If you insert assembler code in your program that modifies the processor
registers, then this may interfere with the compiler’s idea about the registers. To avoid this problem,
Free Pascal allows you to tell the compiler which registers have changed in an asm block. The
compiler will then save and reload these registers if it was using them. Telling the compiler which
registers have changed is done by specifying a set of register names behind an assembly block, as
follows:

asm
end ['R1", ... ,’Rn’];

Here R1 to Rn are the names of the registers you modify in your assembly code.

As an example:

asm
movl BP, %eax
movl 4 (%eax), %eax
movl %eax,_ RESULT
end ['EAX'];

This example tells the compiler that the EAX register was modified.

For assembler routines, i.e., routines that are written completely in assembler, the ABI of the pro-
cessor & platform must be respected, i.e. the routine itself must know what registers to save and
what not, but it can tell the compiler using the same method what registers were changed or not. The
compiler will save specified registers to the stack on entry and restore them on routine exit.

The only thing the compiler normally does, is create a minimal stack frame if needed (e.g. when
variables are declared). All the rest is up to the programmer.

65

Chapter 4

Generated code

As noted in the previous chapter, older Free Pascal compilers relied on the GNU assembler to make
object files. The compiler only generated an assembly language file which was then passed on to the
assembler. In the following two sections, we discuss what is generated when you compile a unit or a
program.

4.1 Units

When you compile a unit, the Free Pascal compiler generates 2 files:

1. A unit description file.

2. An assembly language file.

The assembly language file contains the actual source code for the statements in your unit, and the
necessary memory allocations for any variables you use in your unit. This file is converted by the
assembler to an object file (with extension .0) which can then be linked to other units and your
program, to form an executable.

By default, the assembly file is removed after it has been compiled. Only in the case of the -s
command line option, the assembly file will be left on disk, so the assembler can be called later. You
can disable the erasing of the assembler file with the —a switch.

The unit file contains all the information the compiler needs to use the unit:
1. Other used units, both in interface and implementation.
2. Types and variables from the interface section of the unit.
3. Function declarations from the interface section of the unit.

4. Some debugging information, when compiled with debugging.

The detailed contents and structure of this file are described in the first appendix. You can examine a
unit description file using the ppudump program, which shows the contents of the file.

If you want to distribute a unit without source code, you must provide both the unit description file
and the object file.

You can also provide a C header file to go with the object file. In that case, your unit can be used by
someone who wishes to write his programs in C. However, you must make this header file yourself
since the Free Pascal compiler doesn’t make one for you.

66

CHAPTER 4. GENERATED CODE

4.2 Programs

When you compile a program, the compiler produces again 2 files:

1. An assembly language file containing the statements of your program, and memory allocations
for all used variables.

2. A linker response file. This file contains a list of object files the linker must link together.

The link response file is, by default, removed from the disk. Only when you specify the —s command
line option or when linking fails, then the file is left on the disk. It is named link.res.

The assembly language file is converted to an object file by the assembler, and then linked together
with the rest of the units and a program header, to form your final program.

The program header file is a small assembly program which provides the entry point for the program.
This is where the execution of your program starts, so it depends on the operating system, because
operating systems pass parameters to executables in wildly different ways.

By default, its name is prt0.0, and the source file resides in prt0.as or some variant of this name:
Which file is actually used depends on the system, and on LINUX systems, whether the C library is
used or not.

It usually resides where the system unit source for your system resides. Its main function is to save
the environment and command line arguments and set up the stack. Then it calls the main program.

67

Chapter 5

Intel MMX support

5.1 Whatis it about?

Free Pascal supports the new MMX (Multi-Media extensions) instructions of Intel processors. The
idea of MMX is to process multiple data with one instruction, for example the processor can add
simultaneously 4 words. To implement this efficiently, the Pascal language needs to be extended. So
Free Pascal allows to add for example two array [0..3] of word, if MMX support is switched
on. The operation is done by the MMX unit and allows people without assembler knowledge to take
advantage of the MMX extensions.

Here is an example:

uses
MMX; { include some predefined data types }

const
{ tmmxword = array[0..3] of word;, declared by unit MMX }
wl : tmmxword = (111,123,432,4356);
w2 : tmmxword (4213,63456,756,4) ;

var
w3 : tmmxword;
1 : longint;

begin
if is_mmx_cpu then { is_mmx_cpu is exported from unit mmx }
begin
{ Smmx+} { turn mmx on }
w3:=wl+w2;
{ Smmx—}
end
else
begin
for 1:=0 to 3 do
w3[i]:=wl[i]+w2([i];
end;
end.

68

CHAPTER 5. INTEL MMX SUPPORT

5.2 Saturation support

One important point of MMX is the support of saturated operations. If a operation would cause
an overflow, the value stays at the highest or lowest possible value for the data type: If you use
byte values you get normally 250412=6. This is very annoying when doing color manipulations or
changing audio samples, when you have to do a word add and check if the value is greater than 255.
The solution is saturation: 250+12 gives 255. Saturated operations are supported by the MMX unit. If
you want to use them, you have simple turn the switch saturation on: $saturation+

Here is an example:

Program SaturationDemo;

{
example for saturation, scales data (for example audio)
with 1.5 with rounding to negative infinity

}

uses mmx;

var
audiol : tmmxword;
i: smallint;

const
helpdatal : tmmxword
helpdata2 : tmmxword

($c000, $c000, $c000, $c000) ;
($8000,$8000,$8000,$8000) ;

begin
{ audiol contains four 16 bit audio samples }
{Smmx+}
{ convert it to $8000 is defined as zero, multiply data with 0.75 }
audiol:=(audiol+helpdata?2) = (helpdatal) ;
{$saturation+}
{ avoid overflows (all values>Sffff becomes Sffff) }
audiol:=(audiol+helpdata2)-helpdataZz;
{$Ssaturation-}
{ now mupltily with 2 and change to integer }
for i:=0 to 3 do

audiol[i] := audiol[i] shl 1;
audiol:=audiol-helpdata?2;
{ $mmx—}

end.

5.3 Restrictions of MMX support

In the beginning of 1997 the MMX instructions were introduced in the Pentium processors, so mul-
titasking systems wouldn’t save the newly introduced MMX registers. To work around that problem,
Intel mapped the MMX registers to the FPU register.

The consequence is that you can’t mix MMX and floating point operations. After using MMX
operations and before using floating point operations, you have to call the routine EMMS of the MMX
unit. This routine restores the FPU registers.

Careful: The compiler doesn’t warn if you mix floating point and MMX operations, so be careful.

The MMX instructions are optimized for multimedia operations (what else?). So it isn’t possible

69

CHAPTER 5. INTEL MMX SUPPORT

to perform all possible operations: some operations give a type mismatch, see section 5.4 for the
supported MMX operations.

An important restriction is that MMX operations aren’t range or overflow checked, even when you
turn range and overflow checking on. This is due to the nature of MMX operations.

The MMX unit must always be used when doing MMX operations because the exit code of this unit
clears the MMX unit. If it wouldn’t do that, other program will crash. A consequence of this is that
you can’t use MMX operations in the exit code of your units or programs, since they would interfere
with the exit code of the MMX unit. The compiler can’t check this, so you are responsible for this!

5.4 Supported MMX operations

The following operations are supported in the compiler when MMX extensions are enabled:

e addition (+)

e subtraction (-)

e multiplication(*)

e logical exclusive or (xor)
e logical and (and)

e logical or (or)

e sign change (-)

5.5 Optimizing MMX support

Here are some helpful hints to get optimal performance:

e The EMMS call takes a lot of time, so try to seperate floating point and MMX operations.

e Use MMX only in low level routines because the compiler saves all used MMX registers when
calling a subroutine.

e The NOT-operator isn’t supported natively by MMX, so the compiler has to generate a workaround
and this operation is inefficient.

e Simple assignements of floating point numbers don’t access floating point registers, so you
need no call to the EMMS procedure. Only when doing arithmetic, you need to call the EMMS
procedure.

70

Chapter 6

Code issues

This chapter gives detailed information on the generated code by Free Pascal. It can be useful to
write external object files which will be linked to Free Pascal created code blocks.

6.1 Register Conventions

The compiler has different register conventions, depending on the target processor used; some of the
registers have specific uses during the code generation. The following section describes the generic
names of the registers on a platform per platform basis. It also indicates what registers are used as
scratch registers, and which can be freely used in assembler blocks.

6.1.1 accumulator register

The accumulator register is at least a 32-bit integer hardware register, and is used to return results of
function calls which return integral values.

6.1.2 accumulator 64-bit register

The accumulator 64-bit register is used in 32-bit environments and is defined as the group of registers
which will be used when returning 64-bit integral results in function calls. This is a register pair.

6.1.3 float result register

This register is used for returning floating point values from functions.

6.1.4 self register

The self register contains a pointer to the actual object or class. This register gives access to the data
of the object or class, and the VMT pointer of that object or class.

6.1.5 frame pointer register

The frame pointer register is used to access parameters in subroutines, as well as to access local
variables. References to the pushed prameters and local variables are constructed using the frame

71

CHAPTER 6. CODE ISSUES

pointer. !.

6.1.6 stack pointer register

The stack pointer is used to give the address of the stack area, where the local variables and parame-
ters to subroutines are stored.

6.1.7 scratch registers

Scratch registers are those which can be used in assembler blocks, or in external object files without
requiring any saving before usage.

6.1.8 Processor mapping of registers

This indicates what registers are used for what purposes on each of the processors supported by Free
Pascal. It also indicates which registers can be used as scratch registers.

Intel 80x86 version

Table 6.1: Intel 80x86 Register table

Generic register name CPU Register name
accumulator EAX

accumulator (64-bit) high /low EDX:EAX

float result FP(0)

self ESI

frame pointer EBP

stack pointer ESP

scratch regs. N/A

Motorola 680x0 version

Table 6.2: Motorola 680x0 Register table

Generic register name CPU Register name
accumulator D0’

accumulator (64-bit) high /low DO0:D1

float result FPO*

self A5

frame pointer A6

stack pointer A7

scratch regs. DO, D1, A0, A1, FPO, FP1

I The frame pointer is not available on all platforms

72

CHAPTER 6. CODE ISSUES

6.2 Name mangling

Contrary to most C compilers and assemblers, all labels generated to pascal variables and routines
have mangled names*. This is done so that the compiler can do stronger type checking when parsing
the Pascal code. It also permits function and procedure overloading.

6.2.1 Mangled names for data blocks

The rules for mangled names for variables and typed constants are as follows:

e All variable names are converted to upper case

Variables in the main program or private to a unit have an underscore (_) prepended to their
names.

Typed constants in the main program have a TC__ prepended to their names

Public variables in a unit have their unit name prepended to them : U_UNITNAME_

Public and private typed constants in a unit have their unit name prepended to them : TC__UNITNAME$$

Examples:
unit testvars;
interface

const

publictypedconst : integer = 0;
var

publicvar : integer;

implementation

const

privatetypedconst : integer = 1;
var

privatevar : integer;

end.

Will result in the following assembler code for the GNU assembler :
.file "testvars.pas"

.text

.data

[6] publictypedconst : integer = 0;

.globl TC__TESTVARSSS_PUBLICTYPEDCONST
TC___TESTVARSSS_PUBLICTYPEDCONST:

2For compatibility with some C compilers, when the function result is a pointer and is declared with the cdecl convention,
the result is also stored in the AO register

30n simulated FPU’s the result is returned in DO

“4This can be avoided by using the alias or cdecl modifiers

73

CHAPTER 6. CODE ISSUES

.short 0

[12] privatetypedconst : integer

TC__ _TESTVARSSS_ _PRIVATETYPEDCONST:
.short 1

.bss

[8] publicvar : integer;
.comm U_TESTVARS_PUBLICVAR, 2
[14] privatevar : integer;

.lcomm _PRIVATEVAR, 2

6.2.2 Mangled names for code blocks

The rules for mangled names for routines are as follows:

o All routine names are converted to upper case.

e Routines in a unit have their unit name prepended to them : _UNITNAMES$$_

e All Routines in the main program have a _ prepended to them.

e All parameters in a routine are mangled using the type of the parameter (in uppercase) prepended
by the $ character. This is done in left to right order for each parameter of the routine.

e Objects and classes use special mangling : The class type or object type is given in the mangled
name; The mangled name is as follows: _$$_TYPEDECL_$$ optionally preceded by mangled
name of the unit and finishing with the method name.

The following constructs
unit testman;

interface
type
myobject = object
constructor init;
procedure mymethod;
end;

implementation

constructor myobject.init;
begin
end;

procedure myobject.mymethod;
begin
end;

function myfunc: pointer;
begin
end;

procedure myprocedure (var x: integer;

y: longint; z : pchar);

CHAPTER 6. CODE ISSUES

begin
end;

end.
will result in the following assembler file for the Intel 80x86 target:
.file "testman.pas"

.text

.balign 16

.globl _TESTMANSS_$$ _MYOBJECT_$$_INIT
TESTMANSS$$_MYOBJECT_S$$_INIT:

pushl %ebp

movl %esp, %ebp

subl $4,%esp

movl $0, %$edi

call FPC_HELP_CONSTRUCTOR

jz .L5
Jmp . L7
.L5:

movl 12 (%ebp), %$esi

movl $0, %$edi

call FPC_HELP_FAIL

L7

movl %esi, %$eax

testl %esi, %esi

leave

ret $8

.balign 16

.globl _TESTMANSS_S$S_MYOBJECT_S$S_MYMETHOD
_TESTMANSS_SSS_MYOBJECT_S$$_MYMETHOD :
pushl %ebp

movl %esp, sebp

leave

ret $4

.balign 16

_TESTMANSS_MYFUNC:

pushl %ebp

movl %esp, %$ebp

subl $4,%esp

movl —4 (%ebp), $eax

leave

ret

.balign 16
_TESTMANSS_MYPROCEDURESINTEGERSLONGINTSPCHAR:
pushl %ebp

movl %esp, %ebp

leave

ret $12

75

CHAPTER 6. CODE ISSUES

6.2.3 Modifying the mangled names

To make the symbols externally accessible, it is possible to give nicknames to mangled names, or to
change the mangled name directly. Two modifiers can be used:

public: For a function that has a public modifier, the mangled name will be the name exactly as
it is declared.

alias: The alias modifier can be used to assign a second assembler label to your function. This
label has the same name as the alias name you declared. This doesn’t modify the calling
conventions of the function. In other words, the alias modifier allows you to specify another
name (a nickname) for your function or procedure.

The prototype for an aliased function or procedure is as follows:

Procedure AliasedProc; alias "AliasName’ ;

The procedure AliasedProc will also be known as AliasName. Take care, the name you
specify is case sensitive (as C is).

Furthermore, the export s section of a library is also used to declare the names that will be exported
by the shared library. The names in the exports section are case-sensitive (while the actual declaration
of the routine is not). For more information on the creating shared libraries, chapter 12, page 127.

6.3 Calling mechanism

By default, the calling mechanism the compiler uses is register, that is, the compiler will try
to pass as much parameters as posible by storing them in a free register. Not all registers are used,
because some registers have a special meaning, but this depends on the CPU.

Function results are returned in the accumulator (first register), if they fit in the register. Methods
calls (from either objects or clases) have an additional invisible parameter which is self. This
parameter is the leftmost parameter within a method call (it is therefore the last parameter passed to
the method).

When the procedure or function exits, it clears the stack.

Other calling methods are available for linking with external object files and libraries, these are
summarized in table (6.3). The first column lists the modifier you specify for a procedure declaration.
The second one lists the order the paramaters are pushed on the stack. The third column specifies
who is responsible for cleaning the stack: the caller or the called function. The alignment column
indicates the alignment of the parameters sent to the stack area. Finally, the fifth column indicates if
any registers are saved in the entry code of the subroutine.

Table 6.3: Calling mechanisms in Free Pascal

Modifier =~ Pushing order ~ Stack cleaned by alignment registers saved
<none> Left-to-right ~ Function default None

register Left-to-right Function default None

cdecl Right-to-left Caller GCC alignment GCC registers
interrupt Right-to-left ~ Function default all registers
pascal Left-to-right ~ Function default None

safecall Right-to-left ~ Function default GCC registers
stdcall Right-to-left ~ Function GCC alignment GCC registers
oldfpccall Right-to-left Callee default None

76

Remark:

CHAPTER 6. CODE ISSUES

Note that the o1dfpccall calling convention equals the default calling convention on processors
other than 32-bit Intel 386 or higher.

More about this can be found in chapter 7, page 81 on linking. Information on GCC registers saved,
GCC stack alignment and general stack alignment on an operating system basis can be found in
Appendix H. As of version 2.0 (actually, in 1.9.x somewhere) , the register modifier is the default
calling convention, prior to that, it was the oldfpccall convention.

The default calling convention, i.e., the calling convention used when none is specified explicitly, can
be set using the { Scalling } directive, section 1.1.7, page 17. The default calling convention for
the current platform can be specified with

{$CALLING DEFAULT}

The popstack modifier is no longer supported as of version 2.0, but has been renamed to o1dfpccall.
The saveregisters modifier can no longer be used.

6.4 Nested procedure and functions

When a routine is declared within the scope of a procedure or function, it is said to be nested. In this
case, an additional invisible parameter is passed to the nested routine. This additional parameter is
the frame pointer address of the parent routine. This permits the nested routine to access the local
variables and parameters of the calling routine.

The resulting stack frame after the entry code of a simple nested procedure has been executed is
shown in table (6.4).

Table 6.4: Stack frame when calling a nested procedure (32-bit processors)

Offset from frame pointer ~What is stored

+X parameters

+8 Frame pointer of parent routine
+4 Return address

+0 Saved frame pointer

6.5 Constructor and Destructor calls

Constructor and destructors have special invisible parameters which are passed to them. These invis-
ible parameters are used internally to instantiate the objects and classes.

6.5.1 objects

The actual invisible declaration of an object constructor is as follows:
constructor init (_vmt : pointer; _self : pointer ...);

Where _vmt is a pointer to the virtual method table for this object. This value is nil if a constructor
is called within the object instance (such as calling an ihnerited constructor).

_self is either nil if the instance must be allocated dynamically (object is declared as pointer), or

the address of the object instance if the object is declared as a normal object (stored in the data area)
or if the object instance has already been allocated.

77

CHAPTER 6. CODE ISSUES

The allocated instance (if allocated via new) (self) is returned in the accumulator.

The declaration of a destructor is as follows:
destructor done(_vmt : pointer; _self : pointer ...);

Where _vmt is a pointer to the virtual method table for this object. This value is nil if a destructor is
called within the object instance (such as calling an ihnerited constructor), or if the object instance is
a variable and not a pointer.

_self is the address of the object instance.

6.5.2 classes

The actual invisible declaration of a class constructoir is as follows:
constructor init(_vmt: pointer; flag : longint; ..);

_vmt is either nil if called from the instance or if calling an inherited constructor, otherwise it points
to the address of the virtual method table.

Where f1ag is zero if the constructor is called within the object instance or with an instance qualifier
otherwise this flag is set to one.

The allocated instance (self) is returned in the accumulator.

The declaration of a destructor is as follows:
destructor done(_self : pointer; flag : longint ...);

_self is the address of the object instance.

flag is zero if the destructor is called within the object instance or with an instance qualifier other-
wise this flag is set to one.

6.6 Entry and exit code

Each Pascal procedure and function begins and ends with standard epilogue and prologue code.

6.6.1 Intel 80x86 standard routine prologue / epilogue

Standard entry code for procedures and functions is as follows on the 80x86 architecture:

pushl %ebp
movl %esp, sebp

The generated exit sequence for procedure and functions looks as follows:

leave
ret $xx

Where xx is the total size of the pushed parameters.

To have more information on function return values take a look at section 6.1, page 71.

78

CHAPTER 6. CODE ISSUES

6.6.2 Motorola 680x0 standard routine prologue / epilogue

Standard entry code for procedures and functions is as follows on the 680x0 architecture:

move.l a6,-(sp)
move.l sp,ab

The generated exit sequence for procedure and functions looks as follows (in the default processor
mode):

unlk a6
rtd #xx

Where xx is the total size of the pushed parameters.

To have more information on function return values take a look at section 6.1, page 71.

6.7 Parameter passing

When a function or procedure is called, then the following is done by the compiler:

1. If there are any parameters to be passed to the procedure, they are stored in well-known regis-
ters, and if there are more parameters than free registers, they are pushed from left to right on
the stack.

2. If a function is called that returns a variable of type String, Set, Record, Object or
Array, then an address to store the function result in, is also passed to the procedure.

3. If the called procedure or function is an object method, then the pointer to self is passed to
the procedure.

4. If the procedure or function is nested in another function or procedure, then the frame pointer
of the parent procedure is passed to the stack.

5. The return address is pushed on the stack (This is done automatically by the instruction which
calls the subroutine).

The resulting stack frame upon entering looks as in table (6.5).

Table 6.5: Stack frame when calling a procedure (32-bit model)

Offset What is stored Optional?
+X extra parameters Yes
+12 function result Yes
+8 self Yes
+4 Return address No
+0 Frame pointer of parent procedure Yes

6.7.1 Parameter alignment

Each parameter passed to a routine is guaranteed to decrement the stack pointer by a certain minimum
amount. This behavior varies from one operating system to another. For example, passing a byte
as a value parameter to a routine could either decrement the stack pointer by 1, 2, 4 or even 8§ bytes

79

CHAPTER 6. CODE ISSUES

depending on the target operating system and processor. The minimal default stack pointer decrement
value is given in Appendix H.

For example, on FREEBSD, all parameters passed to a routine guarantee a minimal stack decrease of
four bytes per parameter, even if the parameter actually takes less then 4 bytes to store on the stack
(such as passing a byte value parameter to the stack).

6.8 Stack limitations

Certain processors have limitations on the size of the parameters and local variables in routines. This
is shown in table (6.6).

Table 6.6: Maximum limits for processors

Processor Parameters Local variables
Intel 80x86 (all) 64K No limit
Motorola 68020 (default) 32K No limit
Motorola 68000 32K 32K

Furthermore, the m68k compiler, in 68000 mode, limits the size of data elements to 32K (arrays,
records, objects, etc.). This restriction does not exist in 68020 mode.

80

Chapter 7
Linking issues

When you only use Pascal code, and Pascal units, then you will not see much of the part that the
linker plays in creating your executable. The linker is only called when you compile a program.
When compiling units, the linker isn’t invoked.

However, there are times that linking to C libraries, or to external object files created by other compil-
ers, may be necessary. The Free Pascal compiler can generate calls to a C function, and can generate
functions that can be called from C (exported functions).

7.1 Using external code and variables

In general, there are 3 things you must do to use a function that resides in an external library or object
file:

1. You must make a pascal declaration of the function or procedure you want to use.
2. You must declare the correct calling convention to use.

3. You must tell the compiler where the function resides, i.e. in what object file or what library,
so the compiler can link the necessary code in.

The same holds for variables. To access a variable that resides in an external object file, you must
declare it, and tell the compiler where to find it. The following sections attempt to explain how to do
this.

7.1.1 Declaring external functions or procedures

The first step in using external code blocks is declaring the function you want to use. Free Pascal
supports Delphi syntax, i.e. you must use the external directive. The external directive
replaces, in effect, the code block of the function.

The external directive doesn’t specify a calling convention; it just tells the compiler that the code for
a procedure or function resides in an external code block. A calling convention modifier should be
declared if the external code blocks does not have the same calling conventions as Free Pascal. For
more information on the calling conventions section 6.3, page 76.

There exist four variants of the external directive:

1. A simple external declaration:

81

CHAPTER 7. LINKING ISSUES

Procedure ProcName (Args : TPRocArgs); external;

The external directive tells the compiler that the function resides in an external block of
code. You can use this together with the { $SL} or { $LinkLib} directives to link to a function
or procedure in a library or external object file. Object files are looked for in the object search
path (set by ~Fo) and libraries are searched for in the linker path (set by -F1).

2. You can give the external directive a library name as an argument:
Procedure ProcName (Args : TPRocArgs); external ’Name’;

This tells the compiler that the procedure resides in a library with name ’ Name’ . This method
is equivalent to the following:

Procedure ProcName (Args : TPRocArgs) ;external;
{$LinkLib ’Name’}

3. The external can also be used with two arguments:

Procedure ProcName (Args : TPRocArgs); external ’'Name’
name ’'OtherProcName’;

This has the same meaning as the previous declaration, only the compiler will use the name
"OtherProcName’ when linking to the library. This can be used to give different names to
procedures and functions in an external library. The name of the routine is case-sensitive and
should match exactly the name of the routine in the object file.

This method is equivalent to the following code:

Procedure OtherProcName (Args : TProcArgs); external;
{$LinkLib ’Name’}

Procedure ProcName (Args : TPRocArgs);

begin
OtherProcName (Args);
end;

4. Lastly, onder WINDOWS and 0S/2, there is a fourth possibility to specify an external function:
In .DLL files, functions also have a unique number (their index). It is possible to refer to these
fuctions using their index:

Procedure ProcName (Args : TPRocArgs); external ’Name’
Index Somelndex;

This tells the compiler that the procedure ProcName resides in a dynamic link library, with
index SomeIndex.

Remark: Note that this is only available under WINDOWS and 0S/2.

7.1.2 Declaring external variables

Some libaries or code blocks have variables which they export. You can access these variables much
in the same way as external functions. To access an external variable, you declare it as follows:

82

CHAPTER 7. LINKING ISSUES

Var
MyVar : MyType; external name 'varname’;

The effect of this declaration is twofold:

1. No space is allocated for this variable.

2. The name of the variable used in the assembler code is varname. This is a case sensitive
name, so you must be careful.

The variable will be accessible with its declared name, i.e. MyVar in this case.

A second possibility is the declaration:

Var
varname : MyType; cvar; external;

The effect of this declaration is twofold as in the previous case:

1. The external modifier ensures that no space is allocated for this variable.

2. The cvar modifier tells the compiler that the name of the variable used in the assembler code
is exactly as specified in the declaration. This is a case sensitive name, so you must be careful.

The first possibility allows you to change the name of the external variable for internal use.

As an example, let’s look at the following C file (in extvar.c):

/ *

Declare a variable, allocate storage
*/

int extvar = 12;

And the following program (in extdemo.pp):

Program ExtDemo;
{SL extvar.o}

Var { Case sensitive declaration !! }
extvar : longint; cvar;external;
I : longint; external name ’'extvar’;
begin
{ Extvar can be used case insensitive !! }
Writeln (’Variable ’’'extvar’’ has wvalue: ' ,ExtVar);
Writeln (’Variable "7'1I'’ has value: ’,1i);
end.

Compiling the C file, and the pascal program:

gcc —c -0 extvar.o extvar.c
ppc386 —-Sv extdemo

Will produce a program extdemo which will print

Variable ’'extvar’ has value: 12
Variable "I’ has value: 12

on your screen.

83

CHAPTER 7. LINKING ISSUES

7.1.3 Declaring the calling convention modifier

To make sure that all parameters are correctly passed to the external routines, you should declare it
with the correct calling convention modifier. When linking with code blocks compiled with standard
C compilers (such as GCC), the cdecl modifier should be used so as to indicate that the external
routine uses C type calling conventions. For more information on the supported calling conventions,
see section 6.3, page 76.

As might be expected, external variable declarations do not require any calling convention modifier.

7.1.4 Declaring the external object code
Linking to an object file

Having declared the external function or variable that resides in an object file, you can use it as if it
was defined in your own program or unit. To produce an executable, you must still link the object
file in. This can be done with the {SL. file.o} directive.

This will cause the linker to link in the object file file.0. On most systems, this filename is case
sensitive. The object file is first searched in the current directory, and then the directories specified
by the ~Fo command line.

You cannot specify libraries in this way, it is for object files only.

Here we present an example. Consider that you have some assembly routine which uses the C calling
convention that calculates the nth Fibonacci number:

.text
.align 4
.globl Fibonacci
.type Fibonacci, @function
Fibonacci:
pushl %ebp
movl %esp, sebp
movl 8 (%ebp), $edx
xorl %ecx, %$ecx
xorl %eax, %$eax
movl $1, %ebx
incl %edx
loop:
decl %edx
je endloop
movl %ecx, %$eax
addl %ebx, $eax
movl %ebx, %ecx
movl %eax, %ebx
Jmp loop
endloop:
movl %ebp, $esp
popl %ebp
ret

Then you can call this function with the following Pascal Program:
Program FibonacciDemo;

var 1 : longint;

84

CHAPTER 7. LINKING ISSUES

Function Fibonacci (L : longint) :longint;cdecl;external;
{SL fib.o}
begin
For I:=1 to 40 do
writeln ('Fib(’,i,’) : ’,Fibonacci (1i));
end.

With just two commands, this can be made into a program:

as -o fib.o fib.s
ppc386 fibo.pp

This example supposes that you have your assembler routine in fib.s, and your Pascal program in

fibo.pp.

Linking to a library

To link your program to a library, the procedure depends on how you declared the external procedure.

In case you used the following syntax to declare your procedure:
Procedure ProcName (Args : TPRocArgs); external ’Name’;
You don’t need to take additional steps to link your file in, the compiler will do all that is needed

for you. On WINDOWS it will link to name.dll, on LINUX and most UNIX’es your program will be
linked to library libname, which can be a static or dynamic library.

In case you used
Procedure ProcName (Args : TPRocArgs); external;
You still need to explicity link to the library. This can be done in 2 ways:

1. You can tell the compiler in the source file what library to link to using the {$LinkLib
"Name’ } directive:

{S$LinkLib ’gpm’}
This will link to the gpm library. On UNIX systems (such as LINUX), you must not specify the

extension or ’lib’ prefix of the library. The compiler takes care of that. On other systems (such
as WINDOWS), you need to specify the full name.

2. You can also tell the compiler on the command line to link in a library: The —k option can be
used for that. For example

ppc386 —-k’-lgpm’ myprog.pp
Is equivalent to the above method, and tells the linker to link to the gpm library.

As an example, consider the following program:

85

CHAPTER 7. LINKING ISSUES

program printlength;
{$1linklib ¢} { Case sensitive }

{ Declaration for the standard C function strlen }

Function strlen (P : pchar) : longint; cdecl;external;
begin

Writeln (strlen(’Programming is easy !’));
end.

This program can be compiled with:
ppc386 prlen.pp

Supposing, of course, that the program source resides in prlen.pp.

To use functions in C that have a variable number of arguments, you must compile your unit or
program in objfpc mode or Delphi mode, and use the Array of const argument, as in the
following example:

program testaocc;

{Smode objfpc}

Const
P : Pchar
= "example’;
F : Pchar

= "This %s uses printf to print numbers (%d) and strings.’#10;
procedure printf (fm: pchar;args: array of const);cdecl;external 'c’;

begin

printf(F, [P,123]1);

end.

The output of this program looks like this:

This example uses printf to print numbers (123) and strings.

As an alternative, the program can be constructed as follows:

program testaocc;

Const
P : Pchar
= "example’;
F : Pchar

= 'This %s uses printf to print numbers (%d) and strings.’#10;
procedure printf (fm: pchar);cdecl;varargs;external ’'c’;
begin

printf (F,P,123);
end.

86

CHAPTER 7. LINKING ISSUES

The varargs modifier signals the compiler that the function allows a variable number of arguments
(the ellipsis notation in C).

7.2 Making libraries

Free Pascal supports making shared or static libraries in a straightforward and easy manner. If you
want to make static libraries for other Free Pascal programmers, you just need to provide a command
line switch. To make shared libraries, refer to the chapter 12, page 127. If you want C programmers
to be able to use your code as well, you will need to adapt your code a little. This process is described
first.

7.2.1 Exporting functions

When exporting functions from a library, there are 2 things you must take in account:

1. Calling conventions.

2. Naming scheme.

The calling conventions are controlled by the modifiers cdecl, popstack, pascal, safecall,
stdcall and register. See section 6.3, page 76 for more information on the different kinds of
calling scheme.

The naming conventions can be controlled by 2 modifiers in the case of static libraries:

e cdecl

e alias

For more information on how these different modifiers change the name mangling of the routine
section 6.2, page 73.

Remark: If in your unit, you use functions that are in other units, or system functions, then the C program will
need to link in the object files from these units too.

7.2.2 Exporting variables

Similarly as when you export functions, you can export variables. When exporting variables, one
should only consider the names of the variables. To declare a variable that should be used by a C
program, one declares it with the cvar modifier:

Var MyVar : MyTpe; cvar;

This will tell the compiler that the assembler name of the variable (the one which is used by C
programs) should be exactly as specified in the declaration, i.e., case sensitive.

It is not allowed to declare multiple variables as cvar in one statement, i.e. the following code will
produce an error:

var 721,722 : longint;cvar;

87

CHAPTER 7. LINKING ISSUES

7.2.3 Compiling libraries

Once you have your (adapted) code, with exported and other functions, you can compile your unit,
and tell the compiler to make it into a library. The compiler will simply compile your unit, and
perform the necessary steps to transform it into a static or shared (dynamic) library.

You can do this as follows, for a dynamic library:
ppc386 —-CD myunit

On UNIX systems, such as LINUX, this will leave you with a file libmyunit.so. On WINDOWS and
08/2, this will leave you with myunit.dll. An easier way to create shared libraries is to use the
library keyword. For more information on creating shared libraries, chapter 12, page 127.

If you want a static library, you can do
ppc386 —-CS myunit

This will leave you with libomyunit.a and a file myunit.ppu. The myunit.ppu is the unit file needed
by the Free Pascal compiler.

The resulting files are then libraries. To make static libraries, you need the ranlib or ar program on
your system. It is standard on most UNIX systems, and is provided with the gcc compiler under DOS.
For the dos distribution, a copy of ar is included in the file gnuutils.zip.

Remark: This command doesn’t include anything but the current unit in the library. Other units are
left out, so if you use code from other units, you must deploy them together with your library.

7.2.4 Unit searching strategy
When you compile a unit, the compiler will by default always look for unit files.

To be able to differentiate between units that have been compiled as static or dynamic libraries, there
are 2 switches:

-XD: This will define the symbol FPC_LINK_DYNAMIC

-XS: This will define the symbol FPC_LINK_STATIC

Definition of one symbol will automatically undefine the other.

These two switches can be used in conjunction with the configuration file fpc.cfg. The existence of
one of these symbols can be used to decide which unit search path to set. For example, on LINUX:

Set unit paths

#IFDEF FPC_LINK_STATIC
-Up/usr/lib/fpc/linuxunits/staticunits
#ENDIF

#IFDEF FPC_LINK_DYNAMIC
-Up/usr/lib/fpc/linuxunits/sharedunits
#ENDIF

With such a configuration file, the compiler will look for its units in different directories, depending
on whether —XD or —-XS is used.

88

CHAPTER 7. LINKING ISSUES

7.3 Using smart linking

You can compile your units using smart linking. When you use smartlinking, the compiler creates a
series of code blocks that are as small as possible, i.e. a code block will contain only the code for
one procedure or function.

When you compile a program that uses a smart-linked unit, the compiler will only link in the code
that you actually need, and will leave out all other code. This will result in a smaller binary, which is
loaded in memory faster, thus speeding up execution.

To enable smartlinking, one can give the smartlink option on the command line: —~Cx, or one can put
the { SSMARTLINK ON} directive in the unit file:

Unit Testunit

{SMARTLINK ON}
Interface

Smartlinking will slow down the compilation process, especially for large units.
When a unit f00.pp is smartlinked, the name of the codefile is changed to libfoo.a.

Technically speaking, the compiler makes small assembler files for each procedure and function in
the unit, as well as for all global defined variables (whether they’re in the interface section or not). It
then assembles all these small files, and uses ar to collect the resulting object files in one archive.

Smartlinking and the creation of shared (or dynamic) libraries are mutually exclusive, that is, if you
turn on smartlinking, then the creation of shared libraries is turned of. The creation of static libraries
is still possible. The reason for this is that it has little sense in making a smartlinked dynamical
library. The whole shared library is loaded into memory anyway by the dynamic linker (or the
operating system), so there would be no gain in size by making it smartlinked.

&9

Chapter 8

Memory issues

8.1 The memory model.

The Free Pascal compiler issues 32-bit or 64-bit code. This has several consequences:

e You need a 32-bit or 64-bit processor to run the generated code.

e You don’t need to bother with segment selectors. Memory can be addressed using a single
32-bit (on 32-bit processors) or 64-bit (on 64-bit processors with 64-bit addressing) pointer.
The amount of memory is limited only by the available amount of (virtual) memory on your
machine.

e The structures you define are unlimited in size. Arrays can be as long as you want. You can
request memory blocks from any size.

8.2 Data formats

This section gives information on the storage space occupied by the different possible types in Free
Pascal. Information on internal alignment will also be given.

8.2.1 Integer types

The storage size of the default integer types are given in Reference Guide. In the case of user defined-
types, the storage space occupied depends on the bounds of the type:

e If both bounds are within range -128..127, the variable is stored as a shortint (signed 8-bit
quantity).

e If both bounds are within the range 0..255, the variable is stored as a byte (unsigned 8-bit
quantity).

e If both bounds are within the range -32768..32767, the variable is stored as a smallint (signed
16-bit quantity).

e If both bounds are within the range 0..65535, the variable is stored as a word (unsigned 16-bit
quantity)

e [f both bounds are within the range 0..4294967295, the variable is stored as a longword (un-
signed 32-bit quantity).

90

file:../ref/ref.html

CHAPTER 8. MEMORY ISSUES

e Otherwise the variable is stored as a longint (signed 32-bit quantity).

8.2.2 Char types

A char, or a subrange of the char type, is stored as a byte. A WideChar is stored as a word, i.e. 2
bytes.

8.2.3 Boolean types
The Boolean type is stored as a byte and can take a value of t rue or false.

A ByteBool is stored as a byte, a WordBool type is stored as a word, and a Longbool is stored
as a longint.

8.2.4 Enumeration types

By default all enumerations are stored as a longword (4 bytes), which is equivalent to specifying the
{$74}, {SPACKENUM 4} or { SPACKENUM DEFAULT} switches.

This default behavior can be changed by compiler switches, and by the compiler mode.

In the tp compiler mode, or while the {$Z1} or { SPACKENUM 1} switches are in effect, the
storage space used is shown in table (8.1).

Table 8.1: Enumeration storage for t p mode

Of Elements in Enum. Storage space used

0..255 byte (1 byte)
256..65535 word (2 bytes)
> 65535 longword (4 bytes)

When the {$Z2} or { SPACKENUM 2} switches are in effect, the value is stored in 2 bytes (a word),
if the enumeration has less or equal than 65535 elements. If there are more elements, the enumeration
value is stored as a 4 byte value (a longword).

8.2.5 Floating point types

Floating point type sizes and mapping vary from one processor to another. Except for the Intel
80x86 architecture, the extended type maps to the IEEE double type if a hardware floating point
coprocessor is present.

Floating point types have a storage binary format divided into three distinct fields : the mantissa, the
exponent and the sign bit which stores the sign of the floating point value.

Single

The single type occupies 4 bytes of storage space, and its memory structure is the same as the
IEEE-754 single type. This type is the only type which is guaranteed to be available on all platforms
(either emulated via software or directly via hardware).

The memory format of the single format looks like what is shown in figure (8.1).

91

CHAPTER 8. MEMORY ISSUES

Figure 8.1: The single format

width in bit=
1 2 23
= exponent mantizsa
m=b I=b
Double

The double type occupies 8 bytes of storage space, and its memory structure is the same as the
IEEE-754 double type.

The memory format of the double format looks like like what is shown in figure (8.2).

Figure 8.2: The double format

width in bit=s
1 11 52
= exponent mantiz=a
Ish mz=h

On processors which do not support co-processor operations (and which have the {$E+} switch), the
double type does not exist.

Extended

For Intel 80x86 processors, the extended type has takes up 10 bytes of memory space. For more
information on the extended type consult the Intel Programmer’s reference.

For all other processors which support floating point operations, the extended type is a nickname
for the type which supports the most precision, this is usually the double type. On processors
which do not support co-processor operations (and which have the {$E+} switch), the extended
type usually maps to the single type.

92

CHAPTER 8. MEMORY ISSUES

Comp

For Intel 80x86 processors, the comp type contains a 63-bit integral value, and a sign bit (in the MSB
position). The comp type uses 8 bytes of storage space.

On other processors, the comp type is not supported.

Real

Contrary to Turbo Pascal, where the real type had a special internal format, under Free Pascal the
real type simply maps to one of the other real types. It maps to the double type on processors
which support floating point operations, while it maps to the single type on processors which do
not support floating point operations in hardware. See table (8.2) for more information on this.

Table 8.2: Processor mapping of real type

Processor Real type mapping
Intel 80x86 double
Motorola 680x0 (with {$E-} switch) double
Motorola 680x0 (with {$E+} switch) single

8.2.6 Pointer types

A pointer type is stored as a longword (unsigned 32-bit value) on 32-bit processors, and is stored
as a 64-bit unsigned value' on 64-bit processors.

8.2.7 String types
Ansistring types

The ansistring is a dynamically allocated string which has no length limitation. When the string is
no longer being referenced (its reference count reaches zero), its memory is automatically freed.

If the ansistring is a constant, then its reference count will be equal to -1, indicating that it should
never be freed. The structure in memory for an ansistring is shown in table (8.3).

Table 8.3: AnsiString memory structure (32-bit model)

Offset Contains
-8 Longint with reference count.
-4 Longint with actual string size.
0 Actual array of char, null-terminated.

Shortstring types

A shortstring occupies as many bytes as its maximum length plus one. The first byte contains the
current dynamic length of the string. The following bytes contain the actual characters (of type
char) of the string. The maximum size of a short string is the length byte followed by 255 characters.

Ithis is actually the qword type, which is not supported in Free Pascal v1.0

93

CHAPTER 8. MEMORY ISSUES

Widestring types

A widestring is allocated on the heap, much like an ansistring. Unlike the ansistring, a widestring
takes 2 bytes per character, and is terminated with a double null.

8.2.8 Set types

A set is stored as an array of bits, where each bit indicates if the element is in the set or excluded
from the set. The maximum number of elements in a set is 256.

If a set has less than 32 elements, it is coded as an unsigned 32-bit value. Otherwise it is coded as an
array of 8 unsigned 32-bit values (longwords), and hence has a size of 256 bytes.

The longword number of a specific element E is given by :
LongwordNumber = (E div 32);

and the bit number within that 32-bit value is given by:

BitNumber = (E mod 32);

8.2.9 Static array types

A static array is stored as a contiguous sequence of variables of the components of the array. The
components with the lowest indexes are stored first in memory. No alignment is done between each
element of the array. A multi-dimensional array is stored with the rightmost dimension increasing
first.

8.2.10 Dynamic array types

A dynamic array is stored as a pointer to a block of memory on the heap. The memory on the heap
is a contiguous sequence of variables of the components of the array, just as for a static array. The
reference count and memory size are stored in memory just before the actual start of the array, at a
negative offset relative to the address the pointer refers to. It should not be used.

8.2.11 Record types

Each field of a record is stored in a continguous sequence of variables, where the first field is stored
at the lowest address in memory. In case of variant fields in a record, each variant starts at the same
address in memory. Fields of record are usually aligned, unless the packed directive is specified
when declaring the record type.

For more information on field alignment, consult section 8.3.2, page 98.

8.2.12 Obiject types

Objects are stored in memory just as ordinary records with an extra field: a pointer to the Virtual
Method Table (VMT). This field is stored first, and all fields in the object are stored in the order
they are declared (with possible alignment of field addresses, unless the object was declared as being
packed).

The VMT is initialized by the call to the object’s Const ructor method. If the new operator was
used to call the constructor, the data fields of the object will be stored in heap memory, otherwise
they will directly be stored in the data section of the final executable.

94

CHAPTER 8. MEMORY ISSUES

If an object doesn’t have virtual methods, no pointer to a VMT is inserted.

The memory allocated looks as in table (8.4).

Table 8.4: Object memory layout (32-bit model)

Offset What
+0 Pointer to VMT (optional).
+4 Data. All fields in the order they’ve been declared.

The Virtual Method Table (VMT) for each object type consists of 2 check fields (containing the size
of the data), a pointer to the object’s ancestor’s VMT (Nil if there is no ancestor), and then the
pointers to all virtual methods. The VMT layout is illustrated in table (8.5). The VMT is constructed
by the compiler.

Table 8.5: Object Virtual Method Table memory layout (32-bit model)

Offset What

+0 Size of object type data

+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMT, Ni1 if no ancestor available.

+12 Pointers to the virtual methods.

8.2.13 Class types

Just like objects, classes are stored in memory just as ordinary records with an extra field: a pointer
to the Virtual Method Table (VMT). This field is stored first, and all fields in the class are stored in
the order they are declared.

Contrary to objects, all data fields of a class are always stored in heap memory.

The memory allocated looks as in table (8.6).

Table 8.6: Class memory layout (32-bit model)

Offset What
+0 Pointer to VMT.
+4 Data. All fields in the order they’ve been declared.

The Virtual Method Table (VMT) of each class consists of several fields, which are used for runtime
type information. The VMT layout is illustrated in table (8.7). The VMT is constructed by the
compiler.

95

CHAPTER 8. MEMORY ISSUES

Table 8.7: Class Virtual Method Table memory layout (32-bit model)

Offset What
+0 Size of object type data
+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMT, Ni1 if no ancestor available.
+12 Pointer to the class name (stored as a shortstring).
+16 Pointer to the dynamic method table (using me ssage with integers).
+20 Pointer to the method definition table.
+24 Pointer to the field definition table.
+28 Pointer to type information table.
+32 Pointer to instance initialization table.
+36 Reserved.
+40 Pointer to the interface table.
+44 Pointer to the dynamic method table (using message with strings).
+48 Pointer to the Dest roy destructor.
+52 Pointer to the NewInstance method
+56 Pointer to the FreeInstance method.
+60 Pointer to the SafeCallException method.
+64 Pointer to the DefaultHandler method.
+68 Pointer to the AfterConstruction method.
+72 Pointer to the B