Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 2.6.0
Document version 2.4
August 2012

Michaél Van Canneyt

Contents

1 Pascal Tokens

1.1 Symbols
1.2 Comments o e e e e e e e
1.3 Reservedwords
1.3.1 Turbo Pascalreserved words
1.3.2 FreePascalreservedwords
1.3.3 Object Pascal reserved words
1.34 Modifiers e
1.4 Identifiers e
1.5 Hintdirectives e
1.6 Numbers e e
1.7 Labels e
1.8 Character Strings v v v v i e e e e e e e e e e e e e e e
Constants
2.1 Ordinary constantS it e e e e e e e e e e e e e e e
22 Typed conStantso i e e e e
2.3 ResourCe strings i u e e e e e e e e e e
Types
3.1 Basetypeso e
3.1.1 Ordinal types o o e e e
Integers e
Booleantypes L
Enumeration types
Subrange types e e e e
3.1.2 Realtypes. o . i e e e e e
3.2 CharaCter types v v v v v i i i e e e e e e
321 Char. e e
322 SUIINGS e e e e
323 Shortstrings e e e e e

10
10
11
12
12
13
13
13
14
14
15
17
17

19
19
20
21

CONTENTS

324 ADSISIINGS« o e e e e e e e e e 29
3.2.5 UnicodeStrings e e 31
32,6 WideStrings 31
327 Constant Stringso e e e e e e e 31
3.2.8 PChar - Null terminated strings 31

3.3 Structured TYpes o o e e e e e e 32
Packed structured types 33

330 AITaYSo e e e e 34
StaticarrayS o e e e e e e 34

Dynamic arrays e e e 35

Packing and unpacking anarrayo 37

332 Recordtypes 38
333 Settypes i e e e e 42
334 Fletypes o o i e e e e e 42

34 Pointers e 43
3.5 Forward type declarations 45
3.6 Procedural types. e e e e e 45
37 Varianttypes i e e e e e e e e e e e e e e e 47
37.1 Definitiono 47
3.7.2 Variants in assignments and expressions 48
3.7.3 Variants and interfaces oL oo 48
Variables 50
4.1 Definition e e e e e 50
4.2 Declaration L 50
4.3 SCOPE . . o 52
4.4 Initialized variables 52
4.5 Thread Variables 53
4.6 Properties i e e e e e e e e e e 53
Objects 57
5.1 Declaration e e e 57
52 Fields e 58
53 Staticfields 59
5.4 Constructors and destructorso 60
55 Methods 61
5.5.1 Declaration 61
5.5.2 Methodinvocation 62
Staticmethods 62
Virtualmethods 63
Abstractmethods 64

CONTENTS

5.6 Visibility ... 65
Classes 66
6.1 Classdefinitions e 66
6.2 Classinstantiation o 70
6.3 Methods 70
6.3.1 Declaration 70
6.3.2 invocation 71
6.3.3 Virtualmethods 71
6.34 Classmethods L 72
6.3.5 Messagemethods 73
6.3.6 Usinginherited 74
6.4 Properties e e e e e e 75
6.4.1 Definition 75
6.4.2 Indexed properties 77
6.4.3 Array propertieso e e e 78
6.4.4 Defaultproperties e 79
6.4.5 Storage informationo oL 79
6.4.6 Overriding properties 80
6.5 Nested types and variables Lo oo 81
Interfaces 82
7.1 Definition e 82
7.2 Interface identification: AGUID 83
7.3 Interface implementations Lol e 84
74 Interfacesand COM e 85
7.5 CORBA and other Interfaces 85
7.6 Referencecounting 85
Generics 87
8.1 Introduction e 87
8.2 Generic class definition 87
8.3 Generic class specialization Ll 89
84 Awordaboutscope e e e e 90
Extended records 93
9.1 Definition e e 93
9.2 Extended record enumerators ool 95
Class and record helpers 98
10.1 Definition e 98
10.2 Restrictionsonclasshelpers o 99

CONTENTS

10.3 Restrictions onrecord helpers o 100
10.4 Inheritance e 101
105 Usage o oot 101
11 Objective-Pascal Classes 104
11.1 Introductiono o e 104
11.2 Objective-Pascal class declarations 104
11.3 Formal declaration 106
11.4 Allocating and de-allocating Instances 108
11.5 Protocol definitions 109
11.6 Categories v v v vt e e e e e e e e e 110
11.7 Name scope and Identifiers 111
11.8 Selectors L e 112
119 The 1dtype o o v o e e e e 112
11.10Enumeration in Objective-C classes 112
12 Expressions 114
12.1 EXpPression Syntax oo v v vttt e e e e e e e e e e e e 115
12.2 Functioncalls 116
12.3 Setconstructors v oo i e e e e e e e e 118
12.4 Value typecasts i e e 118
12.5 Variable typecasts 119
12.6 Unaligned typecasts o v i v v i e e e e e e 120
12.7 The @ Operator v v v v e i e e e e e e e e e e e e e 120
12.8 Operators v v v v i it e e e e 121
12.8.1 Arithmetic Operators i e 121
12.8.2 Logical operators v vt i e e e e e 122
12.8.3 Boolean operators e e e e e e e e 123
12.8.4 String operators e e e e 123
12.8.5 Setoperatorso e e e 123
12.8.6 Relational operators 125
12.8.7 Class Operators v v v v v v v e e e e e e e e e e 126

13 Statements 128
13.1 Simple statements e e e e e e e e 128
13.1.1 AsSSIgNments e e e e 128
13.1.2 Procedure statementsot e e 129
13.1.3 Gotostatements e e e 130

13.2 Structured statementso e e 131
13.2.1 Compound statements 131
13.2.2 The Casestatementot inn.. 132

CONTENTS

1323 The If..then..elsestatement 133
13.2.4 The For..to/downto..dostatement 134
13.2.5 TheFor..in..dostatement. 135
13.2.6 The Repeat..untilstatement 142
13.27 TheWhile..dostatement 143
13.2.8 TheWithstatement 144
13.2.9 Exception Statements i 145

13.3 Assembler statements oL .o e e 145
14 Using functions and procedures 147
14.1 Procedure declaration L e 147
14.2 Function declaration e 148
14.3 Functionresults 148
14.4 Parameter lists L. 149
14.4.1 Value parameters 149
14.4.2 Variable parameterso e e 150
14.4.3 Out parameters v v v v v i e e e e e e e e e e e e e e 151
14.4.4 Constant parameters oo bu e e e e 152
14.4.5 Open array parameters« o v v vt et e e e e e e 153
14.4.6 Arrayofconst e 154

14.5 Function overloading e 156
14.6 Forward defined functions 157
14.7 External functions 158
14.8 Assembler functions L 159
14.9 Modifiers e 159
149.1 alias e 160
1492 cdecl 160
14.9.3 €XPOIt v v i e e e 161
1494 inline 161
1495 interrupt oL e 161
149.6 docheck 162
14.9.7 local oL 162
14.9.8 nostackframe 162
1499 overload L 162
14910pascal e 163
149.11public e 163
T4.9.121e@ISIEr o v e e e e e e e e e 164
149.13safecall 164
14.9.14 5aVeregisters oo i e e e e 165
149.15softfloat 165

CONTENTS

149.16stdcall e 165

14.9.17 varargs v v e e e e e e e e 165
14.10Unsupported Turbo Pascal modifiers 165

15 Operator overloading 166
15.1 Introduction L 166
15.2 Operator declarations e e 166
15.3 AsSignment OpPerators v v v it e e e e e e e e e e e e e 167
15.4 Arithmetic Operators v v v v i e e e e e e e e e e 169
15.5 CompariSion Operator o v v v v b e e e e e 170

16 Programs, units, blocks 172
16.1 Programs e 172
162 Units o o ot 173
16.3 Unitdependencies o . i e e 175
16.4 Blocks o o o e 176
16.5 Scope 177
16.5.1 Blockscope 177

16.5.2 Recordscope o v v i i i e e 178

16.5.3 ClasS SCOPE .« v v v v v v e e e e e e e e e e e e e 178

1654 UnitsCope o v v v it e e 178

16.6 Libraries 179

17 Exceptions 181
17.1 Theraise statement o . v v vttt e e 181
17.2 The try..except statement e 182
17.3 The try...finally statement e e 183
17.4 Exception handling nesting 184
17.5 Exceptionclasses o e e 184

18 Using assembler 185
18.1 Assembler statements oL e e 185
18.2 Assembler procedures and functions 0oL 185

List of Tables

3.1
3.2
33
34
3.5

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

13.1

14.1

Predefined integer typeso 23
Predefined integer typeso 24
Booleantypes 24
Supported Real types 27
PChar pointer arithmetic 32
Precedence of operators 114
Binary arithmetic operators e 121
Unary arithmetic Operators vt i i i 122
Logical operators e e e 122
Boolean operators e e e e 123
SELOPErators v v o i e e e e e e e e e e e e e e 124
Relational operators 125
Class Operatorso it e e e 126
Allowed C constructs in Free Pascal 129
Unsupported modifiers L 165

LIST OF TABLES

About this guide

This document serves as the reference for the Pascal langauge as implemented by the Free Pascal
compiler. It describes all Pascal constructs supported by Free Pascal, and lists all supported data
types. It does not, however, give a detailed explanation of the Pascal language: it is not a tuto-
rial. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal or Delphi implementations.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language.
The Free Pascal compiler emulates these compilers in the appropriate mode of the compiler: certain
features are available only if the compiler is switched to the appropriate mode. When required for
a certain feature, the use of the -M command-line switch or { SMODE } directive will be indicated
in the text. More information about the various modes can be found in the user’s manual and the
programmer’s manual.

Earlier versions of this document also contained the reference documentation of the system unit and
objpas unit. This has been moved to the RTL reference guide.

Notations

Throughout this document, we will refer to functions, types and variables with typewriter font.
Files are referred to with a sans font: filename.

Syntax diagrams

All elements of the Pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

»— syntactical elements are like this — —

Keywords which must be typed exactly as in the diagram:

»— keywords are like this <

When something can be repeated, there is an arrow around it:

»—f this can be repeated fl -

When there are different possibilities, they are listed in rows:
»—r First possibility J -
Second possibility —
Note, that one of the possibilities can be empty:
% First possibility ﬁ
Second possibility —

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

LIST OF TABLES

About the Pascal language

The language Pascal was originally designed by Niklaus Wirth around 1970. It has evolved sig-
nificantly since that day, with a lot of contributions by the various compiler constructors (Notably:
Borland). The basic elements have been kept throughout the years:

e Easy syntax, rather verbose, yet easy to read. Ideal for teaching.

Strongly typed.

Procedural.

e Case insensitive.

Allows nested procedures.

Easy input/output routines built-in.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language,
most notably easier string handling and object orientedness. The Free Pascal compiler initially emu-
lated most of Turbo Pascal and later on Delphi. It emulates these compilers in the appropriate mode
of the compiler: certain features are available only if the compiler is switched to the appropriate
mode. When required for a certain feature, the use of the —-M command-line switch or { SMODE }
directive will be indicated in the text. More information about the various modes can be found in the
user’s manual and the programmer’s manual.

Chapter 1

Pascal Tokens

Tokens are the basic lexical building blocks of source code: they are the *words’ of the language:
characters are combined into tokens according to the rules of the programming language. There are
five classes of tokens:

reserved words These are words which have a fixed meaning in the language. They cannot be
changed or redefined.

identifiers These are names of symbols that the programmer defines. They can be changed and
re-used. They are subject to the scope rules of the language.

operators These are usually symbols for mathematical or other operations: +, -, * and so on.
separators This is usually white-space.

constants Numerical or character constants are used to denote actual values in the source code, such
as 1 (integer constant) or 2.3 (float constant) or ’String constant’ (a string: a piece of text).

In this chapter we describe all the Pascal reserved words, as well as the various ways to denote
strings, numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special character symbols in a Pascal source file.

| |
Recognised symbols

»— letter — A...Z — -
Loz

v digit - 0...9 — —

»— hex digit 0..9 - >
\EA...Fj
a...f

The following characters have a special meaning:

10

CHAPTER 1. PASCAL TOKENS

t-x /=<>01 ., ():"@C{} s #s&5
and the following character pairs too:
<< >> xx <> >< <= >= 1= 4= —= %= /= (% %) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square bracket [.
Likewise, the character pair .) is equivalent to the right square bracket]. When used for comment
delimiters, the character pair (is equivalent to the left brace { and the character pair *) is equiva-
lent to the right brace }. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Comments are pieces of the source code which are completely discarded by the compiler. They exist
only for the benefit of the programmer, so he can explain certain pieces of code. For the compiler, it
is as if the comments were not present.

The following piece of code demonstrates a comment:

(» My beautiful function returns an interesting result x)
Function Beautiful : Integer;

The use of (* and *) as comment delimiters dates from the very first days of the Pascal language. It
has been replaced mostly by the use of { and } as comment delimiters, as in the following example:

{ My beautiful function returns an interesting result }
Function Beautiful : Integer;

The comment can also span multiple lines:

My beautiful function returns an interesting result,
but only if the argument A is less than B.
}

Function Beautiful (A,B : Integer): Integer;

Single line comments can also be made with the // delimiter:

// My beautiful function returns an interesting result
Function Beautiful : Integer;

The comment extends from the // character till the end of the line. This kind of comment was
introduced by Borland in the Delphi Pascal compiler.

Free Pascal supports the use of nested comments. The following constructs are valid comments:

(» This is an old style comment x)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

11

CHAPTER 1. PASCAL TOKENS

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 =*) }
(» Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }

(* comment 1 // Comment 2 x)
// comment 1 (% comment 2 =)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!

}
and

// Valid comment (% No longer valid comment !!
*)

The compiler will react with a invalid character’ error when it encounters such constructs, regardless
of the —Mtp switch.

Remark: In TP and Delphi mode, nested comments are not allowed, for maximum compatibility with
existing code for those compilers.

1.3 Reserved words

Reserved words are part of the Pascal language, and as such, cannot be redefined by the programmer.
Throughout the syntax diagrams they will be denoted using a bold typeface. Pascal is not case
sensitive so the compiler will accept any combination of upper or lower case letters for reserved
words.

We make a distinction between Turbo Pascal and Delphi reserved words. In TP mode, only the Turbo
Pascal reserved words are recognised, but the Delphi ones can be redefined. By default, Free Pascal
recognises the Delphi reserved words.

1.3.1 Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute file object shr
and for of string
array function on then
asm goto operator to
begin if or type
case implementation packed unit
const in procedure until
constructor inherited program uses
destructor inline record var
div interface reintroduce while
do label repeat with
downto mod self XOor
else nil set

end not shl

12

CHAPTER 1. PASCAL TOKENS

1.3.2 Free Pascal reserved words

On top of the Turbo Pascal reserved words, Free Pascal also considers the following as reserved

words:
dispose false true
exit new

1.3.3 Object Pascal reserved words

The reserved words of Object Pascal (used in Delphi or Objfpc mode) are the same as the Turbo
Pascal ones, with the following additional keywords:

as finalization library raise

class finally on resourcestring
dispinterface initialization out threadvar
except inline packed try

exports is property

1.3.4 Modifiers

The following is a list of all modifiers. They are not exactly reserved words in the sense that they can
be used as identifiers, but in specific places, they have a special meaning for the compiler, i.e., the
compiler considers them as part of the Pascal language.

absolute external nostackframe read
abstract far oldfpccall register
alias farle override reintroduce
assembler forward pascal safecall
cdecl index private softfloat
cppdecl local protected stdcall
default name public virtual
export near published write

Remark: Predefined types such as Byte, Boolean and constants such as maxint are not reserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in
other units. The programmer is however not encouraged to do this, as it will cause a lot of confusion.

Remark: As of version 2.5.1 it is possible to use reserved words as identifiers by escaping them with a & sign.
This means that the following is possible

var
&var : integer;

begin
&var:=1;
Writeln (&var) ;
end.

however, it is not recommended to use this feature in new code, as it makes code less readable. It

is mainly intended to fix old code when the list of reserved words changes and encompasses a word
that was not yet reserved (See also section 1.4, page 14).

13

Remark:

CHAPTER 1. PASCAL TOKENS

1.4 Identifiers

Identifiers denote programmer defined names for specific constants, types, variables, procedures
and functions, units, and programs. All programmer defined names in the source code —excluding
reserved words— are designated as identifiers.

Identifiers consist of between 1 and 127 significant characters (letters, digits and the underscore
character), of which the first must be a letter (a-z or A-Z), or an underscore (_). The following
diagram gives the basic syntax for identifiers.

f |
Identifiers

-— identifier leette\rj
_ etter
digit

Like Pascal reserved words, identifiers are case insensitive, that is, both
myprocedure;
and
MyProcedure;

refer to the same procedure.

As of version 2.5.1 it is possible to specify a reserved word as an identifier by prepending it with an
ampersand (&). This means that the following is possible:

program testdo;
procedure &do;

begin
end;

begin
&doj;

end.

The reserved word do is used as an identifier for the declaration as well as the invocation of the
procedure 'do’.

1.5 Hint directives

Most identifiers (constants, variables, functions or methods, properties) can have a hint directive
appended to their definition:

[|
Hint directives

14

CHAPTER 1. PASCAL TOKENS

»— hintdirective —
— Deprecated —
— Experimental —
—— Platform
L Unimplemented —

Whenever an identifier marked with a hint directive is later encountered by the compiler, then a
warning will be displayed, corresponding to the specified hint.

deprecated The use of this identifier is deprecated, use an alternative instead.

experimental The use of this identifier is experimental: this can be used to flag new features that
should be used with caution.

platform This is a platform-dependent identifier: it may not be defined on all platforms.

unimplemented This should be used on functions and procedures only. It should be used to signal
that a particular feature has not yet been implemented.

The following are examples:

Const
AConst = 12 deprecated;

var
p : integer platform;

Function Something : Integer; experimental;
begin
Something:=P+AConst;
end;
begin
Something;
end.
This would result in the following output:
testhd.pp(11,15) Warning: Symbol "p" is not portable
testhd.pp(l1l,22) Warning: Symbol "AConst" is deprecated

testhd.pp(15,3) Warning: Symbol "Something" is experimental

Hint directives can follow all kinds of identifiers: units, constants, types, variables, functions, proce-
dures and methods.

1.6 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e.g. 0.314E1).

For integer type constants, Free Pascal supports 4 formats:

1. Normal, decimal format (base 10). This is the standard format.

15

CHAPTER 1. PASCAL TOKENS

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with an ampersand (&). For instance 15 is specified in octal notation as
&17.

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%). Thus, 255 can be specified in binary notation as $11111111.

The following diagrams show the syntax for numbers.

[|
Numbers

»— hex digit sequence ff hex digit —

»— octal digit sequence fT octal digit —

»— bin digit sequence —— 1
[t

-— digit sequence T digit -

=— unsigned integer digit sequence -
$ — hex digit sequence —
& — octal digit sequence
% — bin digit sequence

TS ”

»— unsigned real — digit sequence

L . —digit sequence J L scale factor J

»— scale factor E digit sequence >
T e j [sign j

»— unsigned number unsigned real —
[unsigned integer J

»— signed number ﬁ unsigned number -
sign

Remark: Octal and Binary notation are not supported in TP or Delphi compatibility mode.

16

CHAPTER 1. PASCAL TOKENS

1.7 Labels

A label is a name for a location in the source code to which can be jumped to from another location
with a goto statement. A Label is a standard identifier or a digit sequence.

Label

»— label — digit sequence —
L identifier _J

Remark: The —Sg or -Mtp switches must be specified before labels can be used. By default, Free Pascal
doesn’t support 1abel and goto statements. The { SGOTO ON} directive can also be used to allow
use of labels and the goto statement.

The following are examples of valid labels:

Label
123,
abc;

1.8 Character strings

A character string (or string for short) is a sequence of zero or more characters (byte sized), enclosed
in single quotes, and on a single line of the program source code: no literal carriage return or linefeed
characters can appear in the string.

A character set with nothing between the quotes (’ /) is an empty string.

| |
Character strings

»— character string quoted string j -
[control string —

»— quoted string -’ T string character T ’ >

»— string character fT Any character except ’ or CR l >

»— control string fT # — unsigned integer 7] >

The string consists of standard, 8-bit ASCII characters or Unicode (normally UTF-8 encoded) char-
acters. The control string can be used to specify characters which cannot be typed on a
keyboard, such as #27 for the escape character.

The single quote character can be embedded in the string by typing it twice. The C construct of
escaping characters in the string (using a backslash) is not supported in Pascal.

The following are valid string constants:

17

CHAPTER 1. PASCAL TOKENS

"This is a pascal string’

rr
Ial
"A tabulator character: "#9’ is easy to embed’

The following is an invalid string:

"the string starts here
and continues here’

The above string must be typed as:

"the string starts here’ #13#10' and continues here’
or

"the string starts here’ #10' and continues here’
on unices (including Mac OS X), and as

"the string starts here’ #13’ and continues here’

on a classic Mac-like operating system.

It is possible to use other character sets in strings: in that case the codepage of the source file must
be specified with the { SCODEPAGE XXX} directive or with the —Fc command line option for the
compiler. In that case the characters in a string will be interpreted as characters from the specified
codepage.

18

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both ordinary and typed constants.

2.1 Ordinary constants

n_mn

Ordinary constants declarations are constructed using an identifier name followed by an "=" token,
and followed by an optional expression consisting of legal combinations of numbers, characters,
boolean values or enumerated values as appropriate. The following syntax diagram shows how to
construct a legal declaration of an ordinary constant.

[|
Constant declaration

»— constant declaration fT identifier — = — expression — hintdirectives — ; T—H

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators suchas+, -, %, /, not, and, or, div, mod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter 12, page 114.

Only constants of the following types can be declared:

e Ordinal types

e Set types

Pointer types (but the only allowed value is Ni1).

Real types
e Char,

e String

The following are all valid constant declarations:

19

CHAPTER 2. CONSTANTS

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c ="'4"; { Character type constant. }
s = 'This is a constant string’; {String type constant.}

sc = chr(32)

ls = SizeOf (Longint);
P = Nil;
Ss = [1,2];

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := ’"some other string’;

For string constants, the type of the string is dependent on some compiler switches. If a specific type
is desired, a typed constant should be used, as explained in the following section.

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bit
constants can be specified.

2.2 Typed constants

Sometimes it is necessary to specify the type of a constant, for instance for constants of complex
structures (defined later in the manual). Their definition is quite simple.

[1
Typed constant declaration

=typed constant declaration 7 identifier — : — type — = — typed constant — hintdirective — ; T

»— typed constant constant —~
address constant —
array constant
record constant
procedural constant —

Contrary to ordinary constants, a value can be assigned to them at run-time. This is an old concept
from Turbo Pascal, which has been replaced with support for initialized variables: For a detailed
description, see section 4.4, page 52.

Support for assigning values to typed constants is controlled by the { $J} directive: it can be switched
off, but is on by default (for Turbo Pascal compatibility). Initialized variables are always allowed.

Remark: It should be stressed that typed constants are automatically initialized at program start. This is also
true for local typed constants and initialized variables. Local typed constants are also initialized at
program start. If their value was changed during previous invocations of the function, they will retain
their changed value, i.e. they are not initialized each time the function is invoked.

20

Remark:

Remark:

CHAPTER 2. CONSTANTS

2.3 Resource strings

A special kind of constant declaration block is the Resourcestring block. Resourcestring dec-
larations are much like constant string declarations: resource strings act as constant strings, but they
can be localized by means of a set of special routines in the objpas unit. A resource string declaration
block is only allowed in the Delphi or Objfpc modes.

The following is an example of a resourcestring definition:

Resourcestring

FileMenu rgFile...’;
EditMenu = ’&Edit...’;

All string constants defined in the resourcestring section are stored in special tables. The strings in
these tables can be manipulated at runtime with some special mechanisms in the objpas unit.

Semantically, the strings act like ordinary constants; It is not allowed to assign values to them (except
through the special mechanisms in the objpas unit). However, they can be used in assignments or
expressions as ordinary string constants. The main use of the resourcestring section is to provide an
easy means of internationalization.

More on the subject of resourcestrings can be found in the Programmer’s Guide, and in the objpas
unit reference.

Note that a resource string which is given as an expression will not change if the parts of the expres-
sion are changed:

resourcestring
Partl = ’'First part of a long string.’;
Part2 = ’Second part of a long string.’;

Sentence = Partl+’ ’+Part2;

If the localization routines translate Part1l and Part2, the Sentence constant will not be trans-
lated automatically: it has a separate entry in the resource string tables, and must therefor be trans-
lated separately. The above construct simply says that the initial value of Sentence equals Part 1+’
"+Part?2.

Likewise, when using resource strings in a constant array, only the initial values of the resource
strings will be used in the array: when the individual constants are translated, the elements in the
array will retain their original value.

resourcestring
Yes = "Yes.’;
No = '"No.’;

Var
YesNo : Array[Boolean] of string = (No, Yes);
B : Boolean;

begin
Writeln (YesNo[B]);

end.

This will print *Yes.” or 'No.” depending on the value of B, even if the constants Yes and No have
been localized by some localization mechanism.

21

file:../prog/prog.html

Chapter 3
Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which is in essence defining an
identifier that can be used to denote this custom type when declaring variables further in the source
code.

[1
Type declaration

»— type declaration - identifier — = — type —; >

There are 7 major type classes :

f
Types

»— type —— simple type >
— string type —
I structured type —
— pointer type —
I procedural type —
— generic type —
+ specialized type —
L type identifier —

The last case, type identifier, is just a means to give another name to a type. This presents a way to
make types platform independent, by only using these types, and then defining these types for each
platform individually. Any programmer who then uses these custom types doesn’t have to worry
about the underlying type size: it is opaque to him. It also allows to use shortcut names for fully
qualified type names. e.g. define system.longint as Olongint and then redefine longint.

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each type separately.

22

CHAPTER 3. TYPES

| |
Simple types

»— simple type — ordinal type — —
T— real type J

=— real type — real type identifier -

3.1.1 Ordinal types

With the exception of int 64, gword and Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one by one, in a specified order. This property allows the operation of functions as Inc, Ord,
Dec on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to apply the Pred function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply the Succ function on the largest
possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined integer types is presented in table (3.1).

Table 3.1: Predefined integer types

Name
Integer
Shortint
SmallInt
Longint
Longword
Int64
Byte
Word
Cardinal
QWord
Boolean
ByteBool
WordBool
LongBool
Char

The integer types, and their ranges and sizes, that are predefined in Free Pascal are listed in table
(3.2). Please note that the qword and int 64 types are not true ordinals, so some Pascal constructs
will not work with these two integer types.

23

CHAPTER 3. TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0..255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Word 0.. 65535 2
Integer either smallint or longint size 2 or 4
Cardinal longword 4
Longint -2147483648 .. 2147483647 4
Longword 0 .. 4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0.. 18446744073709551615 8

The integer type maps to the smallint type in the default Free Pascal mode. It maps to either a
longint in either Delphi or ObjFPC mode. The cardinal type is currently always mapped to the
longword type.

Remark: All decimal constants which do no fit within the -2147483648..2147483647 range are silently and
automatically parsed as 64-bit integer constants as of version 1.9.0. Earlier versions would convert it
to a real-typed constant.

Free Pascal does automatic type conversion in expressions where different kinds of integer types are
used.

Boolean types
Free Pascal supports the Boolean type, with its two pre-defined possible values True and False.

These are the only two values that can be assigned to a Boolean type. Of course, any expression
that resolves to a boolean value, can also be assigned to a boolean type.

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool Any nonzero value

1
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

Free Pascal also supports the ByteBool, WordBool and LongBool types. These are of type
Byte, Word or Longint, but are assignment compatible with a Boolean: the value False is
equivalent to O (zero) and any nonzero value is considered True when converting to a boolean value.
A boolean value of True is converted to -1 in case it is assigned to a variable of type LongBool.

Assuming B to be of type Boolean, the following are valid assignments:

B := True;
B := False;
B := 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

24

CHAPTER 3. TYPES

Remark: In Free Pascal, boolean expressions are by default always evaluated in such a way that when the
result is known, the rest of the expression will no longer be evaluated: this is called short-cut boolean
evaluation.

In the following example, the function Func will never be called, which may have strange side-

effects.
B := False;
A := B and Func;

Here Func is a function which returns a Boolean type.

This behaviour is controllable by the { $B } compiler directive.

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

[1
Enumerated types

»— enumerated type — (— identifier list) >
[assigned enum list J

»— identifier list ff identifier —

»— assigned enum list fT identifier — := — expression — >

(see chapter 12, page 114 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

A C-style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40, fortyone);
As aresult, the ordinal number of forty is 40, and not 3, as it would be whenthe := 40’ wasn’t

present. The ordinal value of fortyone is then 41, and not 4, as it would be when the assignment
wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to the assigned
value to assign to the next enumerated value.

When specifying such an enumeration type, it is important to keep in mind that the enumerated
elements should be kept in ascending order. The following will produce a compiler error:

25

CHAPTER 3. TYPES

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keep forty and thirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. The Pred and Succ functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types are stored using a default, independent of the actual number of values:
the compiler does not try to optimize for space. This behaviour can be changed with the
{SPACKENUM n} compiler directive, which tells the compiler the minimal number of bytes
to be used for enumeration types. For instance

Type
{SPACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{SPACKENUM 1}

SmallEnum = (one, two, three);

Var S : SmallEnum;
L : LargeEnum;

begin
WritelLn (’Small enum : ' ,SizeOf (S));
WriteLn (’Large enum : ’,SizeOf(L));
end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmer’s Guide, in the compiler directives section.

Subrange types

A subrange type is a range of values from an ordinal type (the host type). To define a subrange type,
one must specify its limiting values: the highest and lowest value of the type.

| |
Subrange types

»— subrange type - constant — .. — constant -

Some of the predefined integer types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

26

file:../prog/prog.html

CHAPTER 3. TYPES

Subrange types of enumeration types can also be defined:

Type
Days = (monday, tuesday,wednesday, thursday, friday,
saturday, sunday) ;
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

3.1.2 Real types

Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependent, but it is either Single or Double. Only the IEEE floating point
types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in table (3.4).

Table 3.4: Supported Real types

Type Range Significant digits Size
Real platform dependant m 4or8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4932 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8
Currency -922337203685477.5808 .. 922337203685477.5807 19-20 8

The Comp type is, in effect, a 64-bit integer and is not available on all target platforms. To get more
information on the supported types for each platform, refer to the Programmer’s Guide.

The currency type is a fixed-point real data type which is internally used as an 64-bit integer type
(automatically scaled with a factor 10000), this minimalizes rounding errors.

3.2 Character types

3.2.1 Char

Free Pascal supports the type Char. A Char is exactly 1 byte in size, and contains one ASCII
character.

k)

A character constant can be specified by enclosing the character in single quotes, as follows : ’a’ or
A’ are both character constants.

A character can also be specified by its character value (commonly an ASCII code), by preceding the
ordinal value with the number symbol (#). For example specifying # 65 would be the same as " A" .

Also, the caret character (*) can be used in combination with a letter to specify a character with
ASCII value less than 27. Thus ~G equals #7 - G is the seventh letter in the alphabet. The compiler
is rather sloppy about the characters it allows after the caret, but in general one should assume only
letters.

When the single quote character must be represented, it should be typed two times successively, thus
7 represents the single quote character.

27

file:../prog/prog.html

Remark:

CHAPTER 3. TYPES

3.2.2 Strings

Free Pascal supports the St ring type as it is defined in Turbo Pascal: a sequence of characters with
an optional size specification. It also supports ansistrings (with unlimited length) as in Delphi.

To declare a variable as a string, use the following type specification:

[
String Type

»— string type — string »—
L [- unsigned integer —] J

If there is a size specifier, then its maximum value - indicating the maximum size of the string - is
255.

The meaning of a string declaration statement without size indicator is interpreted differently de-
pending on the {$H} switch. If no size indication is present, the above declaration can declare an
ansistring or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type conversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

3.2.3 Short strings

A string declaration declares a short string in the following cases:

1. If the switch is off: { $H-1}, the string declaration will always be a short string declaration.

2. If the switch is on { $H+}, and there is a maximum length (the size) specifier, the declaration
is a short string declaration.

The predefined type ShortString is defined as a string of size 255:
ShortString = String[255];

If the size of the string is not specified, 255 is taken as a default. The actual length of the string can
be obtained with the Length standard runtime routine. For example in

{S$H-}

Type
NameString = String[10];
StreetString = String;

NameString can contain a maximum of 10 characters. While St reet St ring can contain up to
255 characters.

Short strings have a maximum length of 255 characters: when specifying a maximum length, the
maximum length may not exceed 255. If a length larger than 255 is attempted, then the compiler will
give an error message:

Error: string length must be a value from 1 to 255

28

CHAPTER 3. TYPES

For short strings, the length is stored in the character at index 0. Old Turbo Pascal code relies on this,
and it is implemented similarly in Free Pascal. Despite this, to write portable code, it is best to set
the length of a shortstring with the Set Length call, and to retrieve it with the Length call. These
functions will always work, whatever the internal representation of the shortstrings or other strings
in use: this allows easy switching between the various string types.

3.2.4 Ansistrings

Ansistrings are strings that have no length limit. They are reference counted and are guaranteed to
be null terminated. Internally, an ansistring is treated as a pointer: the actual content of the string is
stored on the heap, as much memory as needed to store the string content is allocated.

This is all handled transparantly, i.e. they can be manipulated as a normal short string. Ansistrings
can be defined using the predefined AnsiString type.

Remark: The null-termination does not mean that null characters (char(0) or #0) cannot be used: the null-
termination is not used internally, but is there for convenience when dealing with external routines
that expect a null-terminated string (as most C routines do).

If the { $H} switch is on, then a string definition using the regular St ring keyword and that doesn’t
contain a length specifier, will be regarded as an ansistring as well. If a length specifier is present, a
short string will be used, regardless of the { $H} setting.

If the string is empty ("), then the internal pointer representation of the string pointer is Nil. If the
string is not empty, then the pointer points to a structure in heap memory.

The internal representation as a pointer, and the automatic null-termination make it possible to type-
cast an ansistring to a pchar. If the string is empty (so the pointer is Ni1) then the compiler makes
sure that the typecasted pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement
S2:=81;

results in the reference count of S2 being decreased with 1, The reference count of S1 is increased
by 1, and finally S1 (as a pointer) is copied to S2. This is a significant speed-up in the code.

If the reference count of a string reaches zero, then the memory occupied by the string is deallocated
automatically, and the pointer is set to Ni1, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be Ni1, meaning that the string is initially empty. This is true
for local and global ansistrings or ansistrings that are part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[l..100000] of string;

Will copy the value Nil 100,000 times into A. When A goes out of scope, then the reference count
of the 100,000 strings will be decreased by 1 for each of these strings. All this happens invisible to
the programmer, but when considering performance issues, this is important.

Memory for the string content will be allocated only when the string is assigned a value. If the string
goes out of scope, then its reference count is automatically decreased by 1. If the reference count
reaches zero, the memory reserved for the string is released.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

S:=T; { reference count for S and T is now 2 }

29

CHAPTER 3. TYPES

S[I]:="@Q";

then a copy of the string is created before the assignment. This is known as copy-on-write semantics.
It is possible to force a string to have reference count equal to 1 with the UniqueString call:

S:=T;

R:=T; // Reference count of T is at least 3
UniqueString (T);

// Reference count of T is quaranteed 1

It’s recommended to do this e.g. when typecasting an ansistring to a PChar var and passing it to a C
routine that modifies the string.

The Length function must be used to get the length of an ansistring: the length is not stored at
character O of the ansistring. The construct

L:=ord(S[0]);

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

To set the length of an ansistring, the Set Length function must be used. Constant ansistrings have
a reference count of -1 and are treated specially, The same remark as for Length must be given:
The construct

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecasted to PChar or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :='This is an ansistring’;
PC:=Pchar (S) ;
P :=Pointer (S);

There is a difference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer will be Ni1l. If an empty ansistring is typecasted to a PChar, then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result of
such a typecast as read-only, i.e. only suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore not advisable to typecast one of the following:

1. Expressions.

2. Strings that have reference count larger than 1. In this case you should call Uniquestring
to ensure the string has reference count 1.

30

CHAPTER 3. TYPES

3.2.5 UnicodeStrings

Unicodestrings (used to represent unicode character strings) are implemented in much the same way
as ansistrings: reference counted, null-terminated arrays, only they are implemented as arrays of
WideChars instead of regular Chars. A WideChar is a two-byte character (an element of
a DBCS: Double Byte Character Set). Mostly the same rules apply for WideStrings as for
AnsiStrings. The compiler transparantly converts WideStrings to AnsiStrings and vice versa.

Similarly to the typecast of an Ansistring to a PChar null-terminated array of characters, a Uni-
codeString can be converted to a PUnicodeChar null-terminated array of characters. Note that
the PUnicodeChar array is terminated by 2 null bytes instead of 1, so a typecast to a pchar is not
automatic.

The compiler itself provides no support for any conversion from Unicode to ansistrings or vice versa.
The system unit has a unicodestring manager record, which can be initialized with some OS-specific
unicode handling routines. For more information, see the system unit reference.

3.2.6 WideStrings

Widestrings (used to represent unicode character strings in COM applications) are implemented in
much the same way as unicodestrings. Unlike the latter, they are not reference counted, and on
Windows, they are allocated with a special windows function which allows them to be used for OLE
automation. This means they are implemented as null-terminated arrays of WideChars instead
of regular Chars. A WideChar is a two-byte character (an element of a DBCS: Double Byte
Character Set). Mostly the same rules apply for WideStrings as for AnsiStrings. Similar to
unicodestrings, the compiler transparantly converts WideStrings to AnsiStrings and vice versa.

For typecasting and conversion, the same rules apply as for the unicodestring type.

3.2.7 Constant strings

To specify a constant string, it must be enclosed in single-quotes, just as a Char type, only now more
than one character is allowed. Given that S is of type St ring, the following are valid assignments:

"This is a string.’;

"One’+’", Two’+’, Three’;

"This isn’’t difficult !'’;

"This is a weird character : ’'#145" !’;

0 n n n
|

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their character value (usually an ASCII code). The
example shows also that two strings can be added. The resulting string is just the concatenation of
the first with the second string, without spaces in between them. Strings can not be substracted,
however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{SH} switch.

3.2.8 PChar - Null terminated strings

Free Pascal supports the Delphi implementation of the PChar type. PChar is defined as a pointer to
a Char type, but allows additional operations. The PChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of type PChar is a pointer that points
to an array of type Char, which is ended by a null-character (#0). Free Pascal supports initializing

31

CHAPTER 3. TYPES

of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var P : PChar;

begin
P := 'This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;

const P : PChar = 'This is a null-terminated string.’;
begin

WriteLn (P);
end.

These examples also show that it is possible to write the contents of the string to a file of type
Text. The strings unit contains procedures and functions that manipulate the PChar type as in the
standard C library. Since it is equivalent to a pointer to a type Char variable, it is also possible to do
the following:

Program three;
Var S : String[30];

P : PChar;
begin
S := '"This is a null-terminated string.’#0;
P := @S[1];
WriteLn (P);

end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If two PChar strings must be concatenated; the functions from the unit
strings must be used.

However, it is possible to do some pointer arithmetic. The operators + and — can be used to do
operations on PChar pointers. In table (3.5), P and Q are of type PChar, and I is of type Longint.

Table 3.5: PChar pointer arithmetic

Operation Result
P+ I Adds T to the address pointed to by P.
I +P Adds T to the address pointed to by P.
P -1 Substracts I from the address pointed to by P.
P -0 Returns, as an integer, the distance between 2 addresses

(or the number of characters between P and Q)

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

32

file:../rtl/strings/index.html
file:../rtl/strings/index.html

CHAPTER 3. TYPES

Structured Types
»— structured type — array type — —
—— record type ——
—— object type
class type —

- class reference type —
—— interface type ——
set type —
file type —

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured types. In the
following sections each of the possible structured types is discussed. It will be mentioned when a
type supports the packed keyword.

Packed structured types

When a structured type is declared, no assumptions should be made about the internal position of the
elements in the type. The compiler will lay out the elements of the structure in memory as it thinks
will be most suitable. That is, the order of the elements will be kept, but the location of the elements
are not guaranteed, and is partially governed by the SPACKRECORDS directive (this directive is
explained in the Programmer’s Guide).

However, Free Pascal allows controlling the layout with the Packed and Bitpacked keywords.
The meaning of these words depends on the context:

Bitpacked In this case, the compiler will attempt to align ordinal types on bit boundaries, as ex-
plained below.

Packed The meaning of the Packed keyword depends on the situation:

1. In MACPAS mode, it is equivalent to the Bitpacked keyword.

2. In other modes, with the SBITPACKING directive set to ON, it is also equivalent to the
Bitpacked keyword.

3. In other modes, with the SBITPACKING directive set to OFF, it signifies normal packing
on byte boundaries.

Packing on byte boundaries means that each new element of a structured type starts on a byte
boundary.

The byte packing mechanism is simple: the compiler aligns each element of the structure on the first
available byte boundary, even if the size of the previous element (small enumerated types, subrange
types) is less than a byte.

When using the bit packing mechanism, the compiler calculates for each ordinal type how many bits
are needed to store it. The next ordinal type is then stored on the next free bit. Non-ordinal types
- which include but are not limited to - sets, floats, strings, (bitpacked) records, (bitpacked) arrays,
pointers, classes, objects, and procedural variables, are stored on the first available byte boundary.

Note that the internals of the bitpacking are opaque: they can change at any time in the future. What
is more: the internal packing depends on the endianness of the platform for which the compilation is
done, and no conversion between platforms are possible. This makes bitpacked structures unsuitable
for storing on disk or transport over networks. The format is however the same as the one used by
the GNU Pascal Compiler, and the Free Pascal team aims to retain this compatibility in the future.

33

file:../prog/prog.html

CHAPTER 3. TYPES

There are some more restrictions to elements of bitpacked structures:

e The address cannot be retrieved, unless the bit size is a multiple of 8 and the element happens
to be stored on a byte boundary.

e An element of a bitpacked structure cannot be used as a var parameter, unless the bit size is a
multiple of 8 and the element happens to be stored on a byte boundary.

To determine the size of an element in a bitpacked structure, there is the BitSizeOf function. It
returns the size - in bits - of the element. For other types or elements of structures which are not
bitpacked, this will simply return the size in bytes multiplied by 8, i.e., the return value is then the
same as 8xSizeOf.

The size of bitpacked records and arrays is limited:

e On 32 bit systems the maximal size is 22 bytes (512 MB).

e On 64 bit systems the maximal size is 2°! bytes.

The reason is that the offset of an element must be calculated with the maximum integer size of the
system.

3.3.1 Arrays

Free Pascal supports arrays as in Turbo Pascal. Multi-dimensional arrays and (bit)packed arrays are
also supported, as well as the dynamic arrays of Delphi:

f 1
Array types

=— array type ﬁ array L J of —type ———<
packed — [— ordinal type — 1 -
bitpacked — L , fJ

Static arrays

When the range of the array is included in the array definition, it is called a static array. Trying to
access an element with an index that is outside the declared range will generate a run-time error (if
range checking is on). The following is an example of a valid array declaration:

Type
RealArray = Array [1..100] of Real;

Valid indexes for accessing an element of the array are between 1 and 100, where the borders 1 and
100 are included. As in Turbo Pascal, if the array component type is in itself an array, it is possible
to combine the two arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[l..100] of Array[l..3] of Real;

is equivalent to the declaration:

Type
APoints

array[1..100,1..3] of Real;

34

CHAPTER 3. TYPES

The functions High and Low return the high and low bounds of the leftmost index type of the array.
In the above case, this would be 100 and 1. You should use them whenever possible, since it improves
maintainability of your code. The use of both functions is just as efficient as using constants, because
they are evaluated at compile time.

When static array-type variables are assigned to each other, the contents of the whole array is copied.
This is also true for multi-dimensional arrays:

program testarrayl;

Type
TA = Array[0..9,0..9] of Integer;

var

A,B : TA;

I,J : Integer;
begin

For I:=0 to 9 do
For J:=0 to 9 do
A[I,J]:=1I%J;

For I:=0 to 9 do
begin
For J:=0 to 9 do
Write(A[I,J]1:2," ');
Writeln;
end;
B:=A;
Writeln;
For I:=0 to 9 do
For J:=0 to 9 do
A[9-I,9-J]:=1I%J;
For I:=0 to 9 do
begin
For J:=0 to 9 do
Write(B[I,J1:2," ");
Writeln;
end;
end.

The output of this program will be 2 identical matrices.

Dynamic arrays

As of version 1.1, Free Pascal also knows dynamic arrays: In that case the array range is omitted, as
in the following example:

Type
TByteArray = Array of Byte;

When declaring a variable of a dynamic array type, the initial length of the array is zero. The actual
length of the array must be set with the standard SetLength function, which will allocate the
necessary memory to contain the array elements on the heap. The following example will set the
length to 1000:

Var

35

CHAPTER 3. TYPES

A : TByteArray;

begin
SetLength (A,1000);

After a call to SetLength, valid array indexes are 0 to 999: the array index is always zero-based.

Note that the length of the array is set in elements, not in bytes of allocated memory (although these
may be the same). The amount of memory allocated is the size of the array multiplied by the size
of 1 element in the array. The memory will be disposed of at the exit of the current procedure or
function.

It is also possible to resize the array: in that case, as much of the elements in the array as will fit in
the new size, will be kept. The array can be resized to zero, which effectively resets the variable.

At all times, trying to access an element of the array with an index that is not in the current length of
the array will generate a run-time error.

Dynamic arrays are reference counted: assignment of one dynamic array-type variable to another
will let both variables point to the same array. Contrary to ansistrings, an assignment to an element
of one array will be reflected in the other: there is no copy-on-write. Consider the following example:

Var
A,B : TByteArray;

begin
SetLength (A, 10);
A[0]:=33;
B:=A;
A[0]:=31;

After the second assignment, the first element in B will also contain 31.

It can also be seen from the output of the following example:
program testarrayl;

Type
TA = Array of array of Integer;

var
A,B : TA;
I,J : Integer;
begin

Setlength(A,10,10);
For I:=0 to 9 do
For J:=0 to 9 do
A[I,J]:=IxJ;
For I:=0 to 9 do
begin
For J:=0 to 9 do
Write(A[I,J]1:2," ');
Writeln;
end;
B:=A;
Writeln;
For I:=0 to 9 do

36

CHAPTER 3. TYPES

For J:=0 to 9 do

A[9-I,9-J]:=1IxJ;
For I:=0 to 9 do

begin

For J:=0 to 9 do
Write(B[I,J]1:2," ');

Writeln;

end;

end.

The output of this program will be a matrix of numbers, and then the same matrix, mirrorred.

As remarked earlier, dynamic arrays are reference counted: if in one of the previous examples A goes
out of scope and B does not, then the array is not yet disposed of: the reference count of A (and B) is
decreased with 1. As soon as the reference count reaches zero the memory, allocated for the contents
of the array, is disposed of.

It is also possible to copy and/or resize the array with the standard Copy function, which acts as the
copy function for strings:

program testarray3;

Type
TA = array of Integer;

var
A,B : TA;
I : Integer;

begin
Setlength (A, 10);
For I:=0 to 9 do
A[I]:=I;
B:=Copy (A, 3,0);
For I:=0 to 5 do
Writeln(B[I]);
end.

The Copy function will copy 6 elements of the array to a new array. Starting at the element at index
3 (i.e. the fourth element) of the array.

The Length function will return the number of elements in the array. The Low function on a
dynamic array will always return 0, and the High function will return the value Length-1, i.e., the
value of the highest allowed array index.

Packing and unpacking an array

Arrays can be packed and bitpacked. 2 array types which have the same index type and element type,
but which are differently packed are not assignment compatible.

However, it is possible to convert a normal array to a bitpacked array with the pack routine. The
reverse operation is possible as well; a bitpacked array can be converted to a normally packed array
using the unpack routine, as in the following example:

Var
foo : array [’'a’..’"f’] of Boolean

37

CHAPTER 3. TYPES

= (false, false, true, false, false, false);
bar : packed array [42..47] of Boolean;
baz : array ['0"..’5"] of Boolean;

begin
pack (foo,"a’ ,bar);
unpack (bar,baz,’0");
end.

More information about the pack and unpack routines can be found in the System unit reference.

3.3.2 Record types

Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

i |
Record types

=»— record type record L J end >
F packed f% field list —
bitpacked —

»— field list — fixed fields — .
744444447 AJ variantpart~J L;AJ

Lfixed fields —;

»— fixed fields 7? identifier list — : — type fl >

»— variant part — case — ordinal type identifier — of — variant —
[idenﬁﬂerf::] T;A,-4;4j444*<

»— variant — constant —, — : — (—)—
7 [field tist -
eld list

So the following are valid record type declarations:

Type

Point = Record
X,Y,Z : Real;
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of

False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

38

Remark:

CHAPTER 3. TYPES

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time!. In effect, it introduces a new field in the record.

It is possible to nest variant parts, as in:

Type
MyRec = Record
X : Longint;
Case byte of
2 : (Y : Longint;

case byte of
3 : (Z : Longint);
) ;i

end;

By default the size of a record is the sum of the sizes of its fields, each size of a field is rounded up
to a power of two. If the record contains a variant part, the size of the variant part is the size of the
biggest variant, plus the size of the tag field type if an identifier was declared for it. Here also, the
size of each part is first rounded up to two. So in the above example:

e SizeOf would return 24 for Point,
e It would result in 24 for RPoint
o Finally, 26 would be the size of BetterRPoint.

e For MyRec, the value would be 12.

If a typed file with records, produced by a Turbo Pascal program, must be read, then chances are that
attempting to read that file correctly will fail. The reason for this is that by default, elements of a
record are aligned at 2-byte boundaries, for performance reasons.

This default behaviour can be changed with the { SPACKRECORDS N} switch. Possible values for
Nare 1, 2,4, 16 or Default. This switch tells the compiler to align elements of a record or object
or class that have size larger than n on n byte boundaries.

Elements that have size smaller or equal than n are aligned on natural boundaries, i.e. to the first
power of two that is larger than or equal to the size of the record element.

The keyword Default selects the default value for the platform that the code is compiled for (cur-
rently, this is 2 on all platforms) Take a look at the following program:

Program PackRecordsDemo;
type
{SPackRecords 2}
Trecl = Record
A : byte;
B : Word;
end;

{$PackRecords 1}
Trec2 = Record
A : Byte;
B : Word;
end;

"However, it is up to the programmer to maintain this field.

39

{$PackRecords 2}

Trec3 = Record
A,B byte;
end;

{$PackRecords 1}

Trec4 = Record
A,B Byte;
end;

{SPackRecords 4}

Trec5 = Record
A : Byte;

B : Array[l..3]
C : byte;
end;

{$PackRecords 8}

Trec6 = Record
A : Byte;
B : Array[l..3]
C : byte;
end;
{SPackRecords 4}
Trec’7 = Record
A : Byte;
B : Array[l..7]
C : byte;
end;

{$PackRecords 8}

Trec8 = Record
A : Byte;
B : Array[l..7]
C : byte;
end;

Var recl Trecl;
rec?2 Trec2;
rec3 TRec3;
rec4 TRec4;
recS Trech;
recb6t TRecb;
rec’ TRec7;
rec8 TRec8;

begin

Write (’Size Trecl
Writeln (' Offset B
Write (’Size Trec2
Writeln (' Offset B
Write (’Size Trec3
Writeln (' Offset B
Write (’Size Trecid
Writeln (' Offset B
Write (’Size TrecbS

of byte;

of byte;

of byte;

of byte;

",S1izeOf (Trecl));

’,Longint (@recl.B)-Longint (@recl));

",SizeOf (Trec2));

' ,Longint (@rec2.B)-Longint (Rrec2));

’,381ze0f (Trec3));

" ,Longint (@rec3.B)-Longint (Rrec3));

’,SizeOf (Trecd));

' ,Longint (@rec4.B)-Longint (Rrecd));

",S1ze0f (Trecb));

40

CHAPTER 3. TYPES

CHAPTER 3. TYPES

Wr

Wr
Wr

Wr
Wr

Wr
Wr

end.

iteln (' Offset B : ’,Longint (@rec5.B)-Longint (@rech),
" Offset C : ’,Longint (Qrec5.C)-Longint (Rrecb));

ite ('Size Trec6 : ’,SizeOf (Trech));

iteln (' Offset B : ’,Longint (@rec6.B)-Longint (Qrecb),
" Offset C : ’,Longint (@rec6.C)-Longint (Rrecb)) ;

ite (’Size Trec7 : ',SizeQOf (Trec?));

iteln (' Offset B : ’',Longint (@rec7.B)-Longint (Grec?),
" Offset C : ’,Longint (Qrec7.C)-Longint (Rrec7));

ite ('Size Trec8 : ’,SizeOf (Trec8));

iteln (' Offset B : ’,Longint (@rec8.B)-Longint (@rec8),
" Offset C : ’,Longint (@rec8.C)-Longint (Rrec8));

The output of this program will be :

Size
Size
Size
Size
Size
Size
Size
Size

Trecl 4 Offset B : 2
Trec?2 3 Offset B : 1
Trec3 2 Offset B : 1
Trec4d 2 Offset B : 1
Trec5 : 8 Offset B : 4 Offset C : 7
Trec6 : 8 Offset B : 4 Offset C : 7

Trec7 : 12 Offset B : 4 Offset C : 11
Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected:

In Trecl, since B has size 2, it is aligned on a 2 byte boundary, thus leaving an empty byte
between A and B, and making the total size 4. In Trec?2, B is aligned on a 1-byte boundary,
right after A, hence, the total size of the record is 3.

For Trec3, the sizes of A, B are 1, and hence they are aligned on 1 byte boundaries. The same
is true for Trec4.

For Trec5, since the size of B — 3 — is smaller than 4, B will be on a 4-byte boundary, as this
is the first power of two that is larger than its size. The same holds for Trec6.

For Trec7, B is aligned on a 4 byte boundary, since its size — 7 — is larger than 4. However, in
Trecs, itis aligned on a 8-byte boundary, since 8 is the first power of two that is greater than
7, thus making the total size of the record 16.

Free Pascal supports also the ’packed record’, this is a record where all the elements are byte-aligned.
Thus the two following declarations are equivalent:

and

{$PackRecords 1}
Trec2 = Record

A : Byte;

B : Word;

end;
{$PackRecords 2}

Trec2 = Packed Record
A : Byte;
B : Word;
end;

Note the { SPackRecords 2} after the first declaration !

41

CHAPTER 3. TYPES

3.3.3 Set types

Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

[1
Set Types

»— set type — set — of — ordinal type — >

Each of the elements of Set Type must be of type Target Type. Target Type can be any ordinal
type with a range between 0 and 255. A set can contain at most 255 elements. The following are
valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

Given these declarations, the following assignment is legal:
WorkDays := [Mon, Tue, Wed, Thu, Fri]l;
The compiler stores small sets (less than 32 elements) in a Longint, if the type range allows it. This

allows for faster processing and decreases program size. Otherwise, sets are stored in 32 bytes.

Several operations can be done on sets: taking unions or differences, adding or removing elements,
comparisons. These are documented in section 12.8.5, page 123

3.3.4 File types

File types are types that store a sequence of some base type, which can be any type except another file
type. It can contain (in principle) an infinite number of elements. File types are used commonly to
store data on disk. However, nothing prevents the programmer, from writing a file driver that stores
its data for instance in memory.

Here is the type declaration for a file type:

[[
File types

»— file type - file — I -
of — type J

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on them (see Blockread, Blockwrite).
The following declaration declares a file of records:

Type
Point = Record
X,Y,72 : real;
end;

PointFile = File of Point;

42

Remark:

CHAPTER 3. TYPES

Internally, files are represented by the FileRec record, which is declared in the Dos or SysUtils
units.

A special file type is the Text file type, represented by the TextRec record. A file of type Text
uses special input-output routines. The default Input, Output and StdErr file types are defined
in the system unit: they are all of type Text, and are opened by the system unit initialization code.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored. A pointer type can be defined as follows:

f 1
Pointer types

=— pointer type — " — type identifier —

As can be seen from this diagram, pointers are typed, which means that they point to a particular
kind of data. The type of this data must be known at compile time.

Dereferencing the pointer (denoted by adding ~ after the variable name) behaves then like a variable.
This variable has the type declared in the pointer declaration, and the variable is stored in the address
that is pointed to by the pointer variable. Consider the following example:

Program pointers;
type
Buffer String[255];
BufPtr = "Buffer;
Var B : Buffer;
BP : BufPtr;
PP : Pointer;
etc..

In this example, BP is a pointer to a Buf fer type; while B is a variable of type Buf fer. B takes
256 bytes memory, and BP only takes 4 (or 8) bytes of memory: enough memory to store an address.

The expression
BP”

is known as the dereferencing of BP. The result is of type Buffer, so
BP"[23]

Denotes the 23-rd character in the string pointed to by BP.

Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type.

From this point of view, the pointer then points to the zeroeth element of this array. Thus the follow-
ing pointer declaration

Var p : “Longint;

43

CHAPTER 3. TYPES

can be considered equivalent to the following array declaration:
Var p : array[0..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using the Getmem function. The reference P ~ is then the same as p [0] .
The following program illustrates this maybe more clear:

program PointerArray;
var i1 : Longint;
p : "“Longint;
pp : arrayl[0..100] of Longint;

begin
for i := 0 to 100 do ppli] := 1i; { Fill array }
p := @ppl0]; { Let p point to pp }
for i := 0 to 100 do

if pl[i]l<>ppl[i] then
WriteLn (’Ohoh, problem !’)
end.

Free Pascal supports pointer arithmetic as C does. This means that, if P is a typed pointer, the
instructions

Inc (P);
Dec (P);

Will increase, respectively decrease the address the pointer points to with the size of the type P is a
pointer to. For example

Var P : "“Longint;
Inc (p);

will increase P with 4, because 4 is the size of a longint. If the pointer is untyped, a size of 1 byte is
assumed (i.e. as if the pointer were a pointer to a byte: “byte.)

Normal arithmetic operators on pointers can also be used, that is, the following are valid pointer
arithmetic operations:

var pl,p2 : “Longint;
L : Longint;

begin
Pl := @P2;
P2 := Q@QL;
L := P1-P2;
Pl := P1-4;
P2 := P2+4;
end.

Here, the value that is added or substracted is multiplied by the size of the type the pointer points to.
In the previous example P 1 will be decremented by 16 bytes, and P2 will be incremented by 16.

44

CHAPTER 3. TYPES

3.5 Forward type declarations

Programs often need to maintain a linked list of records. Each record then contains a pointer to the
next record (and possibly to the previous record as well). For type safety, it is best to define this
pointer as a typed pointer, so the next record can be allocated on the heap using the New call. In
order to do so, the record should be defined something like this:

Type
TListItem = Record
Data : Integer;
Next : "TListItem;
end;

When trying to compile this, the compiler will complain that the TList Item type is not yet defined
when it encounters the Next declaration: This is correct, as the definition is still being parsed.

To be able to have the Next element as a typed pointer, a "Forward type declaration” must be intro-
duced:

Type
PListItem = "TListItem;
TListItem = Record

Data : Integer;
Next : PTListItem;
end;

When the compiler encounters a typed pointer declaration where the referenced type is not yet known,
it postpones resolving the reference till later. The pointer definition is a ’Forward type declaration’.

The referenced type should be introduced later in the same Type block. No other block may come
between the definition of the pointer type and the referenced type. Indeed, even the word Type
itself may not re-appear: in effect it would start a new type-block, causing the compiler to resolve all
pending declarations in the current block.

In most cases, the definition of the referenced type will follow immediatly after the definition of
the pointer type, as shown in the above listing. The forward defined type can be used in any type
definition following its declaration.

Note that a forward type declaration is only possible with pointer types and classes, not with other
types.

3.6 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal or Del-
phi implementation of them. The type declaration remains the same, as can be seen in the following
syntax diagram:

| |
Procedural types

»— procedural type function header
Tprocedure header J L of — object J L ; — call modifiers J

»— function header — function - formal parameter list — : — result type -

»— procedure header — procedure - formal parameter list — >

45

CHAPTER 3. TYPES

»— call modifiers register -
cdecl -
pascal —
stdcall
safecall -
inline —

For a description of formal parameter lists, see chapter 14, page 147. The two following examples
are valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Nil, for both normal procedure pointers and method pointers.
2. A variable reference of a procedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.

Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin
WritelLn (Xx);
end;
Proc := (@printit;
Func := @Pi;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t necessary to
use the address operator (@) when assigning a procedural type variable, whereas in Free Pascal it is
required. In case the -MDelphi or —-MTP switches are used, the address operator can be dropped.

Remark: The modifiers concerning the calling conventions must be the same as the declaration; i.e. the
following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;

var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin
WriteLn (Xx);
end;
begin
Proc := (@printit;
end.

Because the TOneArgCcall type is a procedure that uses the cdecl calling convention.

46

CHAPTER 3. TYPES

3.7 Variant types

3.7.1 Definition

As of version 1.1, FPC has support for variants. For maximum variant support it is recommended to
add the variants unit to the uses clause of every unit that uses variants in some way: the variants
unit contains support for examining and transforming variants other than the default support offered
by the System or ObjPas units.

The type of a value stored in a variant is only determined at runtime: it depends what has been
assigned to the variant. Almost any simple type can be assigned to variants: ordinal types, string
types, int64 types.

Structured types such as sets, records, arrays, files, objects and classes are not assignment-compatible
with a variant, as well as pointers. Interfaces and COM or CORBA objects can be assigned to a
variant (basically because they are simply a pointer).

This means that the following assignments are valid:

Type
TMyEnum = (One,Two, Three);

Var

Variant;
Integer;
Byte;

Word;

Int64;
Extended;

: Double;

En : TMyEnum;

AS : AnsiString;
WS : WideString;

OO =3 oHI

<< << << <<
|
=
3

end;

And of course vice-versa as well.

A variant can hold an array of values: All elements in the array have the same type (but can be of
type ’variant’). For a variant that contains an array, the variant can be indexed:

Program testv;
uses variants;

Var
A : Variant;

47

Remark:

CHAPTER 3. TYPES

I : integer;

begin
A:=VarArrayCreate([1,10],varInteger);
For I:=1 to 10 do
A[I]:=I;
end.

For the explanation of VarArrayCreate, see Unit Reference.

Note that when the array contains a string, this is not considered an ’array of characters’, and so the
variant cannot be indexed to retrieve a character at a certain position in the string.

3.7.2 \Variants in assignments and expressions

As can be seen from the definition above, most simple types can be assigned to a variant. Likewise,
a variant can be assigned to a simple type: If possible, the value of the variant will be converted to
the type that is being assigned to. This may fail: Assigning a variant containing a string to an integer
will fail unless the string represents a valid integer. In the following example, the first assignment
will work, the second will fail:

program testv3;
uses Variants;
Var

V : Variant;
I : Integer;

begin
V:="100";
I1:=V;

Writeln('I : ’',I);
V:='Something else’;

I1:=V;
Writeln('I : ',1I);
end.

The first assignment will work, but the second will not, as Something else cannot be converted
to a valid integer value. An EConvertError exception will be the result.

The result of an expression involving a variant will be of type variant again, but this can be assigned
to a variable of a different type - if the result can be converted to a variable of this type.

Note that expressions involving variants take more time to be evaluated, and should therefore be used
with caution. If a lot of calculations need to be made, it is best to avoid the use of variants.

When considering implicit type conversions (e.g. byte to integer, integer to double, char to string)
the compiler will ignore variants unless a variant appears explicitly in the expression.

3.7.3 Variants and interfaces
Dispatch interface support for variants is currently broken in the compiler.

Variants can contain a reference to an interface - a normal interface (descending from IInterface)
or a dispatchinterface (descending from IDispatch). Variants containing a reference to a dispatch

48

file:../rtl/index.html

CHAPTER 3. TYPES

interface can be used to control the object behind it: the compiler will use late binding to perform
the call to the dispatch interface: there will be no run-time checking of the function names and
parameters or arguments given to the functions. The result type is also not checked. The compiler
will simply insert code to make the dispatch call and retrieve the result.

This means basically, that you can do the following on Windows:

Var
W : Variant;
V : String;

begin
W:=CreateOleObject (' Word.Application’);
V:=W.Application.Version;
Writeln ('’ Installed version of MS Word is : ',V);
end;
The line

V:=W.Application.Version;

is executed by inserting the necessary code to query the dispatch interface stored in the variant W, and
execute the call if the needed dispatch information is found.

49

Chapter 4

Variables

4.1 Definition

Variables are explicitly named memory locations with a certain type. When assigning values to
variables, the Free Pascal compiler generates machine code to move the value to the memory location
reserved for this variable. Where this variable is stored depends on where it is declared:

e Global variables are variables declared in a unit or program, but not inside a procedure or func-
tion. They are stored in fixed memory locations, and are available during the whole execution
time of the program.

e [ocal variables are declared inside a procedure or function. Their value is stored on the pro-
gram stack, i.e. not at fixed locations.

The Free Pascal compiler handles the allocation of these memory locations transparantly, although
this location can be influenced in the declaration.

The Free Pascal compiler also handles reading values from or writing values to the variables transparantly.
But even this can be explicitly handled by the programmer when using properties.

Variables must be explicitly declared when they are needed. No memory is allocated unless a variable
is declared. Using a variable identifier (for instance, a loop variable) which is not declared first, is an
error which will be reported by the compiler.

4.2 Declaration

The variables must be declared in a variable declaration section of a unit or a procedure or function.
It looks as follows:

[|
Variable declaration

=— variable declaration — identifier — : — type L J >
= — expression —
- hintdirective — ; — >
L variable modifiers J

50

CHAPTER 4.

VARIABLES

=variable modifiers

absolute —- integer expression
L identifier Q

; export —

- ; external — L

; cvar

string constant J L name - string constant J
hintdirective

This means that the following are valid variable declarations:

Var
curterml : integer;
curterm?2 : integer; cvar;
curterm3 : integer; cvar; external;
curtermd4 : integer; external name ’'curterm3’;
curtermb5 : integer; external ’libc’ name ’'curterm9’;
curterm6 : integer absolute curterml;
curterm7 : integer; cvar; export;
curterm8 : integer; cvar; public;
curterm9 : integer; export name ’'me’;
curtermlO : integer; public name ’'ma’;
curtermll : integer = 1 ;

The difference between these declarations is as follows:

. The first form (curterml) defines a regular variable. The compiler manages everything by
itself.

. The second form (curterm?2) declares also a regular variable, but specifies that the assembler
name for this variable equals the name of the variable as written in the source.

. The third form (curterm3) declares a variable which is located externally: the compiler will
assume memory is located elsewhere, and that the assembler name of this location is specified
by the name of the variable, as written in the source. The name may not be specified.

. The fourth form is completely equivalent to the third, it declares a variable which is stored
externally, and explicitly gives the assembler name of the location. If cvar is not used, the
name must be specified.

. The fifth form is a variant of the fourth form, only the name of the library in which the memory
is reserved is specified as well.

. The sixth form declares a variable (curterm6), and tells the compiler that it is stored in the
same location as another variable (curterml).

. The seventh form declares a variable (curterm?7), and tells the compiler that the assembler
label of this variable should be the name of the variable (case sensitive) and must be made
public. i.e. it can be referenced from other object files.

51

CHAPTER 4. VARIABLES

8. The eighth form (curterm8) is equivalent to the seventh: *public’ is an alias for "export’.
9. The ninth and tenth form are equivalent: they specify the assembler name of the variable.

10. the elevents form declares a variable (curterml1) and initializes it with a value (1 in the
above case).

Note that assembler names must be unique. It’s not possible to declare or export 2 variables with the
same assembler name.

4.3 Scope

Variables, just as any identifier, obey the general rules of scope. In addition, initialized variables are
initialized when they enter scope:

e Global initialized variables are initialized once, when the program starts.

e [ocal initialized variables are initialized each time the procedure is entered.

Note that the behaviour for local initialized variables is different from the one of a local typed con-
stant. A local typed constant behaves like a global initialized variable.

4.4 Initialized variables

By default, variables in Pascal are not initialized after their declaration. Any assumption that they
contain O or any other default value is erroneous: They can contain rubbish. To remedy this, the
concept of initialized variables exists. The difference with normal variables is that their declaration
includes an initial value, as can be seen in the diagram in the previous section.

Given the declaration:

Var
S : String = 'This is an initialized string’;

The value of the variable following will be initialized with the provided value. The following is an
even better way of doing this:

Const
SDefault = ’'This is an initialized string’;

Var
S : String = SDefault;

Initialization is often used to initialize arrays and records. For arrays, the initialized elements must
be specified, surrounded by round brackets, and separated by commas. The number of initialized
elements must be exactly the same as the number of elements in the declaration of the type. As an
example:

Var
tt : array [1..3] of string[20] = (’"ikke’, 'gij’, "hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of the record should be specified, in the form Field: Value,
separated by semicolons, and surrounded by round brackets. As an example:

52

CHAPTER 4. VARIABLES

Type
Point = record
X,Y : Real
end;
Var

Origin : Point = (X:0.0; Y:0.0);

The order of the fields in a constant record needs to be the same as in the type declaration, otherwise
a compile-time error will occur.

Remark: It should be stressed that initialized variables are initialized when they come into scope, in difference
with typed constants, which are initialized at program start. This is also true for local initialized
variables. Local initialized are initialized whenever the routine is called. Any changes that occurred
in the previous invocation of the routine will be undone, because they are again initialized.

4.5 Thread Variables

For a program which uses threads, the variables can be really global, i.e. the same for all threads, or
thread-local: this means that each thread gets a copy of the variable. Local variables (defined inside
a procedure) are always thread-local. Global variables are normally the same for all threads. A
global variable can be declared thread-local by replacing the var keyword at the start of the variable
declaration block with Threadvar:

Threadvar
IOResult : Integer;

If no threads are used, the variable behaves as an ordinary variable. If threads are used then a copy is
made for each thread (including the main thread). Note that the copy is made with the original value
of the variable, not with the value of the variable at the time the thread is started.

Threadvars should be used sparingly: There is an overhead for retrieving or setting the variable’s
value. If possible at all, consider using local variables; they are always faster than thread variables.

Threads are not enabled by default. For more information about programming threads, see the chapter
on threads in the Programmer’s Guide.

4.6 Properties

A global block can declare properties, just as they could be defined in a class. The difference is that
the global property does not need a class instance: there is only 1 instance of this property. Other
than that, a global property behaves like a class property. The read/write specifiers for the global
property must also be regular procedures, not methods.

The concept of a global property is specific to Free Pascal, and does not exist in Delphi. ObjFPC
mode is required to work with properties.

The concept of a global property can be used to "hide’ the location of the value, or to calculate the
value on the fly, or to check the values which are written to the property.

The declaration is as follows:

| |
Properties

=— property definition — identifier — L J property specifiers ——

property interface

53

file:../prog/prog.html

CHAPTER 4. VARIABLES

»— property interface : — type identifier —

L property parameter list J

L index — integerconstant J

=— property parameter list — [fT parameter declaration fT 1- —

ki

=— property specifiers — L J L J L J -
read specifier — L write specifier - L default specifier —

»— read specifier — read — field or function »—

»— write specifier — write — field or procedure — >

»— default specifier — default — L J
constant

nodefault —

»— field or procedure field identifier -
[procedure identifier J

»— field or function T field identifier >
function identifier J

The following is an example:

{Smode objfpc}
unit testprop;

Interface

Function GetMyInt : Integer;
Procedure SetMyInt (Value : Integer);

Property
MyProp : Integer Read GetMyInt Write SetMyInt;

Implementation
Uses sysutils;

Var
FMyInt : Integer;

Function GetMyInt : Integer;
begin

Result:=FMyInt;
end;

Procedure SetMyInt (Value : Integer);

begin

54

CHAPTER 4. VARIABLES

If ((Value mod 2)=1) then
Raise Exception.Create ('MyProp can only contain even value’);

FMyInt:=Value;
end;
end.
The read/write specifiers can be hidden by declaring them in another unit which must be in the uses
clause of the unit. This can be used to hide the read/write access specifiers for programmers, just as
if they were in a private section of a class (discussed below). For the previous example, this could

look as follows:

{Smode objfpc}
unit testrw;

Interface

Function GetMyInt : Integer;
Procedure SetMyInt (Value : Integer);

Implementation
Uses sysutils;

Var
FMyInt : Integer;

Function GetMyInt : Integer;
begin
Result:=FMyInt;
end;
Procedure SetMyInt (Value : Integer);
begin
If ((Value mod 2)=1) then
Raise Exception.Create(’Only even values are allowed’);
FMyInt:=Value;
end;
end.

The unit testprop would then look like:

{Smode objfpc}
unit testprop;

Interface
uses testrw;

Property
MyProp : Integer Read GetMyInt Write SetMyInt;

55

CHAPTER 4. VARIABLES

Implementation
end.

More information about properties can be found in chapter 6, page 66.

56

Chapter 5

Objects

5.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal.

Objects should be treated as a special kind of record. The record contains all the fields that are
declared in the objects definition, and pointers to the methods that are associated to the objects’ type.

An object is declared just as a record would be declared; except that now, procedures and functions
can be declared as if they were part of the record. Objects can “inherit” fields and methods from
“parent” objects. This means that these fields and methods can be used as if they were included in
the objects declared as a “child” object.

Furthermore, a concept of visibility is introduced: fields, procedures and functions can be declared as
public, protectedor private. By default, fields and methods are public, and are exported
outside the current unit.

Fields or methods that are declared private are only accessible in the current unit: their scope is
limited to the implementation of the current unit.

The prototype declaration of an object is as follows:

| |
object types

»—ﬁ object — component list —— end — —
packed [heritageJ T

=— heritage — (— object type identifier —) >

»— component list

L object visibility specifier J field definition

Lf method definition TJ

»— field definition — identifier list — : — type —;

L static; J

57

CHAPTER 5. OBJECTS

=— object visibility specifier private >
{ protected j
public -

As can be seen, as many private and public blocks as needed can be declared.

The following is a valid definition of an object:

Type
TObj = object
Private
Caption : ShortString;
Public

Constructor init;
Destructor done;

Procedure SetCaption (AValue : String);
Function GetCaption : String;
end;

It contains a constructor/destructor pair, and a method to get and set a caption. The Caption field
is private to the object: it cannot be accessed outside the unit in which TOb j is declared.

Remark: In MacPas mode, the Ob ject keyword is replaced by the class keyword for compatibility with
other pascal compilers available on the Mac. That means that objects cannot be used in MacPas
mode.

Remark: Free Pascal also supports the packed object. This is the same as an object, only the elements (fields)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record :

Type
TObj = packed object
Constructor init;
end;
Pobj = "~TObj;

Var PP : Pobij;

Similarly, the { $PackRecords } directive acts on objects as well.

5.2 Fields

Object Fields are like record fields. They are accessed in the same way as a record field would be
accessed : by using a qualified identifier. Given the following declaration:

Type TAnObject = Object
AField : Longint;
Procedure AMethod;

end;
Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

58

CHAPTER 5. OBJECTS

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

AField := 0;
end;
Or, one can use the self identifier. The self identifier refers to the current instance of the object:

Procedure TAnObject.AMethod;
begin

Self.AField := O;
end;
One cannot access fields that are in a private or protected sections of an object from outside the ob-

jects” methods. If this is attempted anyway, the compiler will complain about an unknown identifier.

It is also possible to use the with statement with an object instance, just as with a record:

With AnObject do
begin
Afield := 12;
AMethod;
end;

In this example, between the begin and end, it is as if AnObject was prepended to the Afield
and Amethod identifiers. More about this in section 13.2.8, page 144.

5.3 Static fields

When the { $SSTATIC ON} directive is active, then an object can contain static fields: these fields
are global to the object type, and act like global variables, but are known only as part of the object.
They can be referenced from within the objects methods, but can also be referenced from outside the
object by providing the fully qualified name.

For instance, the output of the following program:

{Sstatic on}

type

cl=object
1 : longint;static;

end;

var
cll,clz2 : cl;

begin
cll.l:=2;
writeln(cl2.1);
cl2.1:=3;

writeln(cll.l);
Writeln(cl.1l);
end.

59

CHAPTER 5. OBJECTS

will be the following

2
3
3

Note that the last line of code references the object type itself (c 1), and not an instance of the object
(cllorcl2).

5.4 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. The programmer is responsible for calling the constructor and the destructor explicitly
when using objects.

The declaration of a constructor or destructor is as follows:

[|
Constructors and destructors

»— constructor declaration — constructor header — ; — subroutine block —<
»— destructor declaration — destructor header — ; — subroutine block —<
»— constructor header — constructor identifier —J>
[qualified method identifier
—— formal parameter list -
»— destructor header — destructor identifier —J>
[qualified method identifier
—— formal parameter list -

A constructor/destructor pair is required if the object uses virtual methods. The reason is that for an
object with virtual methods, some internal housekeeping must be done: this housekeeping is done by
the constructor!.

In the declaration of the object type, a simple identifier should be used for the name of the constuctor
or destructor. When the constructor or destructor is implemented, a qualified method identifier should
be used, i.e. an identifier of the form objectidentifier.methodidentifier.

Free Pascal supports also the extended syntax of the New and Dispose procedures. In case a
dynamic variable of an object type must be allocated the constructor’s name can be specified in the
call to New. The New is implemented as a function which returns a pointer to the instantiated object.
Consider the following declarations:

Type
TObj = obiject;
Constructor init;

end;
Pobj = "TObj;
Var PP : Pobij;

!'A pointer to the VMT must be set up.

60

CHAPTER 5. OBJECTS

Then the following 3 calls are equivalent:
pp := new (Pobj,Init);
and

new (pp, init) ;

and also
new (pp);
pp”.init;

In the last case, the compiler will issue a warning that the extended syntax of new and dispose
must be used to generate instances of an object. It is possible to ignore this warning, but it’s better
programming practice to use the extended syntax to create instances of an object. Similarly, the
Dispose procedure accepts the name of a destructor. The destructor will then be called, before
removing the object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

5.5 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra pa-
rameter : self. Self points to the object with which the method was invoked. When implementing
methods, the fully qualified identifier must be given in the function header. When declaring methods,
a normal identifier must be given.

5.5.1 Declaration

The declaration of a method is much like a normal function or procedure declaration, with some ad-
ditional specifiers, as can be seen from the following diagram, which is part of the object declaration:

[|
methods

constructor header

»— method definition function header ; — method directives ———————»<
E procedure header %
desctuctor header

»— method directives l
L call modifiers —; J

L virtual - ; -
L abstract —; J

from the point of view of declarations, Method definitions are normal function or procedure
declarations. Contrary to TP and Delphi, fields can be declared after methods in the same block, i.e.
the following will generate an error when compiling with Delphi or Turbo Pascal, but not with FPC:

61

CHAPTER 5. OBJECTS

Type
MyObj = Object
Procedure Doit;
Field : Longint;
end;

5.5.2 Method invocation

Methods are called just as normal procedures are called, only they have an object instance identifier
prepended to them (see also chapter 13, page 128). To determine which method is called, it is
necessary to know the type of the method. We treat the different types in what follows.

Static methods
Static methods are methods that have been declared without a abstract or virtual keyword.

When calling a static method, the declared (i.e. compile time) method of the object is used. For
example, consider the following declarations:

Type
TParent = Obiject

procedure Doit;

end;
PParent = “TParent;
TChild = Obiject (TParent)

procedure Doit;

end;
PChild = "TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls:

Var
ParentA,ParentB : PParent;
Child : PChild;
begin
ParentA := New (PParent, Init);
ParentB := New (PChild, Init);
Child := New(PChild, Init);

ParentA”.Doit;
ParentB”.Doit;
Child”.Doit;

Of the three invocations of Doit, only the last one will call TChild.Doit, the other two calls will
call TParent .Doit. This is because for static methods, the compiler determines at compile time
which method should be called. Since ParentB is of type TParent, the compiler decides that
it must be called with TParent .Doit, even though it will be created as a TChild. There may
be times when the method that is actually called should depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

62

CHAPTER 5. OBJECTS

Virtual methods

To remedy the situation in the previous section, virtual methods are created. This is simply done
by appending the method declaration with the virtual modifier. The descendent object can then
override the method with a new implementation by re-declaring the method (with the same parameter
list) using the virtual keyword.

Going back to the previous example, consider the following alternative declaration:

Type
TParent = Obiject

procedure Doit;virtual;
end;
PParent = “TParent;
TChild = Obiject (TParent)

procedure Doit;virtual;

end;
PChild = "TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls :

Var
ParentA,ParentB : PParent;
Child : PChild;
begin
ParentA := New (PParent, Init);
ParentB := New (PChild, Init);
Child := New(PChild, Init);

ParentA”.Doit;
ParentB”.Doit;
Child”.Doit;

Now, different methods will be called, depending on the actual run-time type of the object. For
ParentA, nothing changes, since it is created as a TParent instance. For Child, the situation
also doesn’t change: it is again created as an instance of TChild.

For ParentB however, the situation does change: Even though it was declared as a TParent, itis
created as an instance of TChild. Now, when the program runs, before calling Doit, the program
checks what the actual type of ParentB is, and only then decides which method must be called.
Seeing that ParentBis of type TChild, TChild.Doit will be called. The code for this run-time
checking of the actual type of an object is inserted by the compiler at compile time.

The TChild.Doit issaid to override the TParent .Doit. Itispossibletoaccesthe TParent.Doit
from within the varTChild.Doit, with the inherited keyword:

Procedure TChild.Doit;
begin

inherited Doit;

end;

63

CHAPTER 5. OBJECTS

In the above example, when TChild.Doit is called, the first thing it does is call TParent . Doit.
The inherited keyword cannot be used in static methods, only on virtual methods.

To be able to do this, the compiler keeps - per object type - a table with virtual methods: the VMT
(Virtual Method Table). This is simply a table with pointers to each of the virtual methods: each
virtual method has its fixed location in this table (an index). The compiler uses this table to look
up the actual method that must be used. When a descendent object overrides a method, the entry
of the parent method is overwritten in the VMT. More information about the VMT can be found in
Programmer’s Guide.

As remarked earlier, objects that have a VMT must be initialized with a constructor: the object
variable must be initialized with a pointer to the VMT of the actual type that it was created with.

Abstract methods

An abstract method is a special kind of virtual method. A method that is declared abstract does
not have an implementation for this method. It is up to inherited objects to override and implement
this method.

From this it follows that a method can not be abstract if it is not virtual (this can be seen from the
syntax diagram). A second consequence is that an instance of an object that has an abstract method
cannot be created directly.

The reason is obvious: there is no method where the compiler could jump to ! A method that is
declared abstract does not have an implementation for this method. It is up to inherited objects
to override and implement this method. Continuing our example, take a look at this:

Type
TParent = Object

procedure Doit;virtual;abstract;
end;
PParent="TParent;
TChild = Obiject (TParent)
procedure Doit;virtual;
end;
PChild = ~TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls :

Var
ParentA,ParentB : PParent;
Child : PChild;
begin
ParentA := New (PParent, Init);
ParentB := New (PChild, Init);
Child := New (PChild, Init);

ParentA”.Doit;
ParentB”.Doit;
Child”.Doit;

64

file:../prog/prog.html

CHAPTER 5. OBJECTS

First of all, Line 3 will generate a compiler error, stating that one cannot generate instances of objects
with abstract methods: The compiler has detected that PParent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

Remark: If an abstract method is overridden, the parent method cannot be called with inherited, since
there is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

5.6 Visibility

For objects, 3 visibility specifiers exist : private, protected and public. If a visibility speci-
fier is not specified, public is assumed. Both methods and fields can be hidden from a programmer
by putting them in a private section. The exact visibility rule is as follows:

Private All fields and methods that are in a private block, can only be accessed in the module
(i.e. unit or program) that contains the object definition. They can be accessed from inside the
object’s methods or from outside them e.g. from other objects’ methods, or global functions.

Protected Is the same as Private, except that the members of a Protected section are also
accessible to descendent types, even if they are implemented in other modules.

Public fields and methods are always accessible, from everywhere. Fields and methods inapublic
section behave as though they were part of an ordinary record type.

65

Remark:

Chapter 6

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept
of "Classes’. A class can be seen as a pointer to an object, or a pointer to a record, with methods
associated with it.

The difference between objects and classes is mainly that an object is allocated on the stack, as
an ordinary record would be, and that classes are always allocated on the heap. In the following
example:

Var
A : TSomeObject; // an Object
B : TSomeClass; // a Class

The main difference is that the variable A will take up as much space on the stack as the size of the
object (TSomeOb ject). The variable B, on the other hand, will always take just the size of a pointer
on the stack. The actual class data is on the heap.

From this, a second difference follows: a class must always be initialized through its constructor,
whereas for an object, this is not necessary. Calling the constructor allocates the necessary memory
on the heap for the class instance data.

In earlier versions of Free Pascal it was necessary, in order to use classes, to put the objpas unit in the
uses clause of a unit or program. This is no longer needed as of version 0.99.12. As of this version,
the unit will be loaded automatically when the -MOb jfpc or -MDelphi options are specified, or
their corresponding directives are used:

{Smode objfpc}
{$mode delphi}

In fact, the compiler will give a warning if it encounters the objpas unit in a uses clause.

6.1 Class definitions

The prototype declaration of a class is as follows:

|
Class types

»—ﬁ class L J end -
packed — heritage Lf component list TJ

66

CHAPTER 6. CLASSES

»— heritage — (— class type identifier

[T’
implemented interfaces

»— implemented interfaces fT , — interface identifier 71 >

»— component list — -
Lvisibility specifier J field definition

‘ const declaration part ‘
—— type declaration part
—— variable declaration part ——
 class variable declaration part —
method definition
property definition —

=— class variable declaration part — class — variable declaration part — <

»— field definition — identifier list — : — type — ; — L J >
static;

»— method definition — function header —— ; —
[class j [procedure header j

constructor header

desctuctor header —

LT virtual - J L J ;J LcaII modifiers — ; J

dynamic — L ; - abstract -

————— override

L message fIinteger constant
string constant —

»— class visibility specifier -

ﬁ private —|
strict

—— protected
——— public -
L— published

Remark: In MacPas mode, the Ob ject keyword is replaced by the class keyword for compatibility with
other pascal compilers available on the Mac. That means that in MacPas mode, the reserved word
“class’ in the above diagram may be replaced by the reserved word ’object’.

In a class declaration, as many private, protected, published and public blocks as
needed can be used: the various blocks can be repeated, and there is no special order in which
they must appear.

Methods are normal function or procedure declarations. As can be seen, the declaration of a class is
almost identical to the declaration of an object. The real difference between objects and classes is in
the way they are created (see further in this chapter).

The visibility of the different sections is as follows:
Private All fields and methods that are in a private block, can only be accessed in the module

(i.e. unit) that contains the class definition. They can be accessed from inside the classes’
methods or from outside them (e.g. from other classes’ methods)

67

CHAPTER 6. CLASSES

Strict Private All fields and methods that areina strict private block, can only be accessed
from methods of the class itself. Other classes or descendent classes (even in the same unit)
cannot access strict private members.

Protected Is the same as Private, except that the members of a Protected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible.

Published Is the same as a Public section, but the compiler generates also type information that
is needed for automatic streaming of these classes if the compiler is in the { SM+} state. Fields
defined in a published section must be of class type. Array properties cannot be in a
published section.

In the syntax diagram, it can be seen that a class can list implemented interfaces. This feature will be
discussed in the next chapter.

Classes can contain Class methods: these are functions that do not require an instance. The Self
identifier is valid in such methods, but refers to the class pointer (the VMT).

Similar to objects, if the { SSTATIC ON} directive is active, then a class can contain static fields:
these fields are global to the class, and act like global variables, but are known only as part of the
class. They can be referenced from within the classes’ methods, but can also be referenced from
outside the class by providing the fully qualified name.

For instance, the output of the following program:

{Smode objfpc}
{$static on}

type
cl=class
1 : longint;static;
end;
var
cll,cl2 : cl;
begin

cll:=cl.create;
cl2:=cl.create;

cll.1l:=2;
writeln(cl2.1);
cl2.1:=3;

writeln(cll.l);
Writeln(cl.l);
end.

will be the following

2
3
3

Note that the last line of code references the class type itself (c1), and not an instance of the class
(cllorcl2).

It is also possible to define class reference types:

[1
Class reference type

68

CHAPTER 6. CLASSES

»— class of - classtype —

Class reference types are used to create instances of a certain class, which is not yet known at compile
time, but which is specified at run time. Essentially, a variable of a class reference type contains a
pointer to the definition of the speficied class. This can be used to construct an instance of the class
corresponding to the definition, or to check inheritance. The following example shows how it works:

Type
TComponentClass = Class of TComponent;

Function CreateComponent (AClass: TComponentClass;

AOwner: TComponent): TComponent;
begin
//
Result:=AClass.Create (AOwner) ;
//
end;

This function can be passed a class reference of any class that descends from TComponent. The
following is a valid call:

Var
C : TComponent;

begin
C:=CreateComponent (TEdit,Forml) ;
end;

On return of the CreateComponent function, C will contain an instance of the class TEdit. Note
that the following call will fail to compile:

Var
C : TComponent;

begin
C:=CreateComponent (TStream, Forml) ;
end;

because TSt ream does not descend from TComponent, and AClass refers to a TComponent
class. The compiler can (and will) check this at compile time, and will produce an error.
References to classes can also be used to check inheritance:

TMinClass = Class of TMyClass;
TMaxClass Class of TMyClassChild;

Function CheckObjectBetween (Instance : TObject) : boolean;

begin
If not (Instance is TMinClass)
or ((Instance is TMaxClass)
and (Instance.ClassType<>TMaxClass)) then
Raise Exception.Create (SomeError)
end;

69

CHAPTER 6. CLASSES

The above example will raise an exception if the passed instance is not a descendent of TMinClass
or a descendent if TMaxClass.

More about instantiating a class can be found in the next section.

6.2 Class instantiation

Classes must be created using one of their constructors (there can be multiple constructors). Remem-
ber that a class is a pointer to an object on the heap. When a variable of some class is declared, the
compiler just allocates room for this pointer, not the entire object. The constructor of a class returns a
pointer to an initialized instance of the object on the heap. So, to initialize an instance of some class,
one would do the following :

ClassVar := ClassType.ConstructorName;

The extended syntax of new and dispose can not be used to instantiate and destroy class instances.
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
getmenm, to allocate enough space to hold the class instance data. After that, the constuctor’s code
is executed. The constructor has a pointer to its data, in Self.

Remark:

e The {$PackRecords } directive also affects classes, i.e. the alignment in memory of the
different fields depends on the value of the { SPackRecords } directive.

e Just as for objects and records, a packed class can be declared. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries, i.e. as close
as possible.

e SizeOf (class) will return the same as SizeOf (Pointer), since a class is a pointer
to an object. To get the size of the class instance data, use the TObject.InstanceSize
method.

6.3 Methods

6.3.1 Declaration

Declaration of methods in classes follows the same rules as method declarations in objects:

f |
methods

»— method definition —— function header — ; — method directives —————————»<
procedure header
constructor header
desctuctor header —

»— method directives — L J <
— virtual — ; — L call modifiers — ; —

abstract - ; J
reintroduce — ; —
L message - constant expression —

70

CHAPTER 6. CLASSES

6.3.2 invocation

Method invocation for classes is no different than for objects. The following is a valid method
invocation:

Var AnObject : TAnObiject;
begin
AnObject := TAnObject.Create;
ANobject .AMethod;

6.3.3 Virtual methods

Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is sufficient to redeclare the same method in a descendent object with the keyword
virtual to override it. For classes, the situation is different: virtual methods must be overridden
with the override keyword. Failing to do so, will start a new batch of virtual methods, hiding the
previous one. The Inherited keyword will not jump to the inherited method, if Virtual was
used.

The following code is wrong:
Type

ObjParent = Class
Procedure MyProc; virtual;

end;

ObjChild = Class (ObjPArent)
Procedure MyProc; virtual;

end;

The compiler will produce a warning:
Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but using Inherited can produce strange effects.
The correct declaration is as follows:
Type

ObjParent = Class
Procedure MyProc; virtual;

end;

ObjChild = Class(ObjPArent)
Procedure MyProc; override;

end;

This will compile and run without warnings or errors.

If the virtual method should really be replaced with a method with the same name, then the reint roduce
keyword can be used:

Type
ObjParent = Class
Procedure MyProc; virtual;

end;

ObjChild = Class (ObjPArent)
Procedure MyProc; reintroduce;

end;

71

CHAPTER 6. CLASSES

This new method is no longer virtual.

To be able to do this, the compiler keeps - per class type - a table with virtual methods: the VMT
(Virtual Method Table). This is simply a table with pointers to each of the virtual methods: each
virtual method has its fixed location in this table (an index). The compiler uses this table to look
up the actual method that must be used at runtime. When a descendent object overrides a method,
the entry of the parent method is overwritten in the VMT. More information about the VMT can be
found in Programmer’s Guide.

Remark: The keyword ’virtual’ can be replaced with the ’dynamic’ keyword: dynamic methods behave the
same as virtual methods. Unlike in Delphi, in FPC the implementation of dynamic methods is equal
to the implementation of virtual methods.

6.3.4 Class methods

Class methods are identified by the keyword Class in front of the procedure or function declaration,
as in the following example:

Class Function ClassName : String;
Class methods are methods that do not have an instance (i.e. Self does not point to a class instance)
but which follow the scoping and inheritance rules of a class. They can be used to return information

about the current class, for instance for registration or use in a class factory. Since no instance is
available, no information available in instances can be used.

Class methods can be called from inside a regular method, but can also be called using a class
identifier:

Var
AClass : TClass;

begin

if CompareText (AClass.ClassName,’ TCOMPONENT’)=0 then

But calling them from an instance is also possible:

Var
MyClass : TObiject;

begin
if MyClass.ClassNameis (/ TCOMPONENT’) then
The reverse is not possible: Inside a class method, the Self identifier points to the VMT table of

the class. No fields, properties or regular methods are available inside a class method. Accessing a
regular property or method will result in a compiler error.

Note that class methods can be virtual, and can be overridden.

Class methods cannot be used as read or write specifiers for a property.

72

file:../prog/prog.html

CHAPTER 6. CLASSES

6.3.5 Message methods

New in classes are message methods. Pointers to message methods are stored in a special table,
together with the integer or string constant that they were declared with. They are primarily intended
to ease programming of callback functions in several GUI toolkits, such as Win32 or GTK. In dif-
ference with Delphi, Free Pascal also accepts strings as message identifiers. Message methods are
always virtual.

As can be seen in the class declaration diagram, message methods are declared with a Message
keyword, followed by an integer constant expression.

Additionally, they can take only one var argument (typed or not):
Procedure TMyObject.MyHandler (Var Msg); Message 1;

The method implementation of a message function is not different from an ordinary method. It is also
possible to call a message method directly, but this should not be done. Instead, the TObject .Dispatch
method should be used. Message methods are automatically virtual, i.e. they can be overridden in
descendent classes.

The TObject .Dispatch method can be used to call a message handler. It is declared in the
system unit and will accept a var parameter which must have at the first position a cardinal with the
message ID that should be called. For example:

Type
TMsg = Record
MSGID : Cardinal;
Data : Pointer;
Var
Msg : TMSg;

MyObject .Dispatch (Msqg);

In this example, the Dispatch method will look at the object and all its ancestors (starting at the
object, and searching up the inheritance class tree), to see if a message method with message MSGID
has been declared. If such a method is found, it is called, and passed the Msg parameter.

If no such method is found, DefaultHandler is called. DefaultHandler is a virtual method
of TObject that doesn’t do anything, but which can be overridden to provide any processing that
might be needed. DefaultHandler is declared as follows:

procedure DefaultHandler (var message);virtual;

In addition to the message method with a Integer identifier, Free Pascal also supports a message
method with a string identifier:

Procedure TMyObject.MyStrHandler (Var Msg); Message 'OnClick’;

The working of the string message handler is the same as the ordinary integer message handler:

The TObject .DispatchStr method can be used to call a message handler. It is declared in
the system unit and will accept one parameter which must have at the first position a short string
with the message ID that should be called. For example:

Type
TMsg = Record
MsgStr : String[10]; // Arbitrary length up to 255 characters.
Data : Pointer;

73

CHAPTER 6. CLASSES

Var
Msg : TMSg;

MyObject .DispatchStr (Msqg);

In this example, the DispatchStr method will look at the object and all its ancestors (starting at
the object, and searching up the inheritance class tree), to see if a message method with message
MsgStr has been declared. If such a method is found, it is called, and passed the Msg parameter.

If no such method is found, DefaultHandlerStriscalled. DefaultHandlerStr is a virtual
method of TOb ject that doesn’t do anything, but which can be overridden to provide any processing
that might be needed. DefaultHandlerStr is declared as follows:

procedure DefaultHandlerStr (var message);virtual;
In addition to this mechanism, a string message method accepts a self parameter:

Procedure StrMsgHandler (Data: Pointer;
Self: TMyObject); Message ’'OnClick’;

When encountering such a method, the compiler will generate code that loads the Self parameter
into the object instance pointer. The result of this is that it is possible to pass Self as a parameter to
such a method.

Remark: The type of the Self parameter must be of the same class as the class the method is defined in.

6.3.6 Using inherited

In an overridden virtual method, it is often necessary to call the parent class’ implementation of
the virtual method. This can be done with the inherited keyword. Likewise, the inherited
keyword can be used to call any method of the parent class.

The first case is the simplest:

Type
TMyClass = Class (TComponent)
Constructor Create (AOwner : TComponent); override;
end;

Constructor TMyClass.Create (AOwner : TComponent);

begin

Inherited;

// Do more things
end;

In the above example, the Inherited statement will call Create of TComponent, passing it
AOwner as a parameter: the same parameters that were passed to the current method will be passed
to the parent’s method. They must not be specified again: if none are specified, the compiler will
pass the same arguments as the ones received.

The second case is slightly more complicated:
Type

TMyClass = Class (TComponent)
Constructor Create (AOwner : TComponent); override;

74

CHAPTER 6. CLASSES

Constructor CreateNew (AOwner : TComponent; DoExtra : Boolean);
end;

Constructor TMyClass.Create (AOwner : TComponent);
begin

Inherited;
end;

Constructor TMyClass.CreateNew (AOwner : TComponent; DoExtra : Boolean);
begin

Inherited Create (AOwner) ;

// Do stuff
end;

The CreateNew method will first call TComponent .Create and will pass it AOwner as a
parameter. It will not call TMyClass.Create.

Although the examples were given using constructors, the use of inherited is not restricted to
constructors, it can be used for any procedure or function or destructor as well.

6.4 Properties

6.4.1 Definition

Classes can contain properties as part of their fields list. A property acts like a normal field, i.e. its
value can be retrieved or set, but it allows to redirect the access of the field through functions and
procedures. They provide a means to associate an action with an assignment of or a reading from
a class ’field’. This allows e.g. checking that a value is valid when assigning, or, when reading, it
allows to construct the value on the fly. Moreover, properties can be read-only or write only. The
prototype declaration of a property is as follows:

| |
Properties

»— property definition —- class — property — identifier — -
T—T L property interface J
~—— property specifiers — hintdirective — -

»— property interface

L J : — type identifier —
property parameter list

L index — integerconstant J

»— property parameter list — [7 parameter declaration T] -

=— property specifiers — L J
read specifier — % write specifier fﬂ
implements specifier

L default specifier J L stored specifier J L defaultarraypropertyspecifier J

»— read specifier — read — field or method >

»— write specifier — write — field or method — —

75

CHAPTER 6. CLASSES

»— implements specifier — implements — identifier >

»— default specifier — default — L J
constant

nodefault —

»— stored specifier — stored T constant J >
identifier —

»— field or method T field identifier >
method identifier J

=— defaultarraypropertyspecifier — ; — default - —

A read specifier is either the name of a field that contains the property, or the name of a
method function that has the same return type as the property type. In the case of a simple type, this
function must not accept an argument. In case of an array property, the function must accept a single
argument of the same type as the index. In case of an indexed property, it must accept a integer as an
argument.

A read specifier is optional, making the property write-only. Note that class methods cannot
be used as read specifiers.

Awrite specifier isoptional: If there isno write specifier, the property is read-only.
A write specifier is either the name of a field, or the name of a method procedure that accepts as a sole
argument a variable of the same type as the property. In case of an array property, the procedure must
accept 2 arguments: the first argument must have the same type as the index, the second argument
must be of the same type as the property. Similarly, in case of an indexed property, the first parameter
must be an integer.

The section (private, published) in which the specified function or procedure resides is irrel-
evant. Usually, however, this will be a protected or private method.

For example, given the following declaration:

Type
MyClass = Class
Private
Fieldl : Longint;
Field2 : Longint;
Field3 : Longint;

Procedure Sety (value : Longint);
Function Gety : Longint;

Function Getz : Longint;

Public

Property X : Longint Read Fieldl write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;

end;

Var
MyClass : TMyClass;

The following are valid statements:

76

CHAPTER 6. CLASSES

Writeln (X : ’,MyClass.X);
Writeln ('Y : ’,MyClass.Y);
Writeln ('Z : ’",MyClass.Z);
MyClass.X := 0;
MyClass.Y := 0;

But the following would generate an error:
MyClass.Z := 0;

because Z is a read-only property.

What happens in the above statements is that when a value needs to be read, the compiler inserts a call
to the various ge t NNN methods of the object, and the result of this call is used. When an assignment
is made, the compiler passes the value that must be assigned as a paramater to the various set NNN
methods.

Because of this mechanism, properties cannot be passed as var arguments to a function or procedure,
since there is no known address of the property (at least, not always).

6.4.2 Indexed properties

If the property definition contains an index, then the read and write specifiers must be a function and
a procedure. Moreover, these functions require an additional parameter : An integer parameter. This
allows to read or write several properties with the same function. For this, the properties must have
the same type. The following is an example of a property with an index:

{Smode objfpc}

Type
TPoint = Class (TObject)
Private
FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);
Public

Property X : Longint index 1 read GetCoord Write SetCoord;

Property Y : Longint index 2 read GetCoord Write SetCoord;

Property Coords[Index : Integer]:Longint Read GetCoord;
end;

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin
Case Index of
1 : FX := Value;
2 : FY := Value;
end;
end;
Function TPoint.GetCoord (INdex : Integer) : Longint;
begin
Case Index of
1 : Result := FX;
2 : Result := FY;
end;
end;

77

CHAPTER 6. CLASSES

Var
P : TPoint;

begin
P := TPoint.create;
P.X := 2;
P.Y := 3;
With P do
WriteLn ('X=',X,’" Y=",Y);
end.

When the compiler encounters an assignment to X, then SetCoord is called with as first parameter
the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value of X, the compiler calls GetCoord and passes it index 1. Indexes can only be
integer values.

6.4.3 Array properties

Array properties also exist. These are properties that accept an index, just as an array does. Only
now the index doesn’t have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the same return
type as the property type. The function must accept as a sole arguent a variable of the same type as
the index type. For an array property, one cannot specify fields as read specifiers.

A write specifier for an array property is the name of a method procedure that accepts two
arguments: the first argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type
TIntList = Class
Private
Function GetInt (I : Longint) : longint;
Function GetAsString (A : String) : String;
Procedure SetInt (I : Longint; Value : Longint;);

Procedure SetAsString (A : String; Value : String);
Public

Property Items [1 : Longint] : Longint Read GetInt
Write SetInt;
Property StrItems [S : String] : String Read GetAsString
Write SetAsstring;
end;
Var

AIntList : TIntList;
Then the following statements would be valid:
AIntList.Items[26] := 1;
AIntList.StrItems|[’twenty-five’] := 'zero’;
WriteLn (’'Item 26 : ’,AIntList.Items[26]);
Writeln (’Item 25 : ’,AIntList.StrItems[’twenty-five’]);

While the following statements would generate errors:

78

CHAPTER 6. CLASSES

AIntList.Items[’twenty-five’] := 1;
AIntList.StrItems[26] := 'zero’;

Because the index types are wrong.

6.4.4 Default properties

Array properties can be declared as default properties. This means that it is not necessary to
specify the property name when assigning or reading it. In the previous example, if the definition of
the items property would have been

Property Items[i : Longint]: Longint Read GetInt
Write SetInt; Default;

Then the assignment

AIntList.Items[26] := 1;

Would be equivalent to the following abbreviation.
AIntList [26] := 1;

Only one default property per class is allowed, and descendent classes cannot redeclare the default
property.

6.4.5 Storage information

The stored specifier should be either a boolean constant, a boolean field of the class, or a parameter-
less function which returns a boolean result. This specifier has no result on the class behaviour. It
is an aid for the streaming system: the stored specifier is specified in the RTTI generated for a class
(it can only be streamed if RTTI is generated), and is used to determine whether a property should
be streamed or not: it saves space in a stream. It is not possible to specify the ’Stored’ directive for
array properties.

The default specifier can be specified for ordinal types and sets. It serves the same purpose as the
stored specifier: properties that have as value their default value, will not be written to the stream by
the streaming system. The default value is stored in the RTTI that is generated for the class. Note
that

1. When the class is instantiated, the default value is not automatically applied to the property, it
is the responsability of the programmer to do this in the constructor of the class.

2. The value 2147483648 cannot be used as a default value, as it is used internally to denote
nodefault.

3. Itis not possible to specify a default for array properties.

The nodefault specifier (node fault) must be used to indicate that a property has no default value.
The effect is that the value of this property is always written to the stream when streaming the

property.

79

CHAPTER 6. CLASSES

6.4.6 Overriding properties

Properties can be overridden in descendent classes, just like methods. The difference is that for
properties, the overriding can always be done: properties should not be marked ’virtual’ so they can
be overridden, they are always overridable (in this sense, properties are always ’virtual’). The type
of the overridden property does not have to be the same as the parents class property type.

Since they can be overridden, the keyword ’inherited’ can also be used to refer to the parent definition
of the property. For example consider the following code:

type
TAncestor = class
private
FP1 : Integer;
public
property P: integer Read FPl write FP1;
end;

TClassA = class (TAncestor)
private
procedure SetP (const AValue: char);
function getP : Char;
public
constructor Create;
property P: char Read GetP write SetP;
end;

procedure TClassA.SetP (const AValue: char);

begin
Inherited P:=0rd(AValue) ;
end;

procedure TClassA.GetP : char;

begin
Result:=Char ((Inherited P) and SFF);
end;

TClassA redefines P as a character property instead of an integer property, but uses the parents P
property to store the value.

Care must be taken when using virtual get/set routines for a property: setting the inherited property
still observes the normal rules of inheritance for methods. Consider the following example:

type
TAncestor = class
private
procedure SetPl (const AValue: integer); virtual;
public
property P: integer write SetPl;
end;
TClassA = class (TAncestor)
private

procedure SetPl (const AValue: integer); override;

80

CHAPTER 6. CLASSES

procedure SetP2 (const AValue: char);
public

constructor Create;

property P: char write SetP2;
end;

constructor TClassA.Create;
begin

inherited P:=3;
end;

In this case, when setting the inherited property P, the implementation TClassA.SetP1 will be
called, because the SetP1 method is overridden.

If the parent class implementation of SetP 1 must be called, then this must be called explicitly:
constructor TClassA.Create;
begin

inherited SetP1l(3);
end;

6.5 Nested types and variables

81

Chapter 7

Interfaces

7.1 Definition

As of version 1.1, FPC supports interfaces. Interfaces are an alternative to multiple inheritance
(where a class can have multiple parent classes) as implemented for instance in C++. An interface
is basically a named set of methods and properties: a class that implements the interface provides
all the methods as they are enumerated in the Interface definition. It is not possible for a class to
implement only part of the interface: it is all or nothing.

Interfaces can also be ordered in a hierarchy, exactly as classes: an interface definition that inherits
from another interface definition contains all the methods from the parent interface, as well as the
methods explicitly named in the interface definition. A class implementing an interface must then
implement all members of the interface as well as the methods of the parent interface(s).

An interface can be uniquely identified by a GUID. GUID is an acronym for Globally Unique Iden-
tifier, a 128-bit integer guaranteed always to be unique'. Especially on Windows systems, the GUID
of an interface can and must be used when using COM.

The definition of an Interface has the following form:

| |
Interface type

»— Interface

end -
LheritageJ L[’ -GUID '] J Lcomponent IistJ

=— heritage — (— interface type identifier —) — —

»— component list — method definition fJ —
T[property definition —

Along with this definition the following must be noted:

e Interfaces can only be used in DELPHI mode or in OBJFPC mode.

e There are no visibility specifiers. All members are public (indeed, it would make little sense
to make them private or protected).

n theory, of course.

82

CHAPTER 7. INTERFACES

e The properties declared in an interface can only have methods as read and write specifiers.

e There are no constructors or destructors. Instances of interfaces cannot be created directly:
instead, an instance of a class implementing the interface must be created.

e Only calling convention modifiers may be present in the definition of a method. Modifiers
as virtual, abstract or dynamic, and hence also override cannot be present in the
interface definition.

The following are examples of interfaces:

IUnknown = interface [’ {00000000-0000-0000-C000-000000000046}"]

function QueryInterface (const iid : tguid;out obj) : longint;
function _AddRef : longint;
function _Release : longint;
end;
IInterface = IUnknown;
IMyInterface = Interface
Function MyFunc : Integer;
Function MySecondFunc : Integer;
end;

As can be seen, the GUID identifying the interface is optional.

7.2 Interface identification: A GUID

An interface can be identified by a GUID. This is a 128-bit number, which is represented in a text
representation (a string literal):

[/ {HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH} ']

Each H character represents a hexadecimal number (0-9,A-F). The format contains §8-4-4-4-12 num-
bers. A GUID can also be represented by the following record, defined in the objpas unit (included
automatically when in DELPHT or OBJFPC mode):

PGuid = "TGuid;
TGuid = packed record
case integer of

1 |
Datal : DWord;
Data2 : word;
Data3 : word;
Datad4 : array[0..7] of byte;
)
2

D1 : DWord;

D2 : word;

D3 : word;

D4 : array([0..7] of byte;
)

end;

A constant of type TGUID can be specified using a string literal:

83

CHAPTER 7. INTERFACES

{Smode objfpc}
program testuid;

Const
MyGUID : TGUID = ’{10101010-1010-0101-1001-1101101101101}";

begin
end.

Normally, the GUIDs are only used in Windows, when using COM interfaces. More on this in the

next section.

7.3 Interface implementations

When a class implements an interface, it should implement all methods of the interface. If a method
of an interface is not implemented, then the compiler will give an error. For example:

Type
IMyInterface = Interface
Function MyFunc : Integer;
Function MySecondFunc : Integer;
end;

TMyClass = Class (TInterfacedObject, IMyInterface)

Function MyFunc : Integer;
Function MyOtherFunc : Integer;
end;

Function TMyClass.MyFunc : Integer;

begin
Result:=23;
end;

Function TMyClass.MyOtherFunc : Integer;
begin

Result:=24;
end;

will result in a compiler error:

Error: No matching implementation for interface method
"IMyInterface.MySecondFunc:LongInt" found

Normally, the names of the methods that implement an interface, must equal the names of the meth-
ods in the interface definition.

However, it is possible to provide aliases for methods that make up an interface: that is, the compiler
can be told that a method of an interface is implemented by an existing method with a different name.
This is done as follows:

Type

84

CHAPTER 7. INTERFACES

IMyInterface = Interface
Function MyFunc : Integer;
end;

TMyClass = Class (TInterfacedObject, IMyInterface)
Function MyOtherFunction : Integer;
// The following fails in FPC.
Function IMyInterface.MyFunc = MyOtherFunction;
end;

This declaration tells the compiler that the MyFunc method of the IMyInterface interface is
implemented in the MyOtherFunct ion method of the TMyClass class.

7.4 Interfaces and COM

When using interfaces on Windows which should be available to the COM subsystem, the calling
convention should be stdcall - this is not the default Free Pascal calling convention, so it should
be specified explicitly.

COM does not know properties. It only knows methods. So when specifying property definitions
as part of an interface definition, be aware that the properties will only be known in the Free Pascal
compiled program: other Windows programs will not be aware of the property definitions.

7.5 CORBA and other Interfaces

COM is not the only architecture where interfaces are used. CORBA knows interfaces, UNO (the
OpenOffice API) uses interfaces, and Java as well. These languages do not know the TUnknown
interface used as the basis of all interfaces in COM. It would therefore be a bad idea if an inter-
face automatically descended from IUnknown if no parent interface was specified. Therefore, a
directive { SINTERFACES} was introduced in Free Pascal: it specifies what the parent interface is
of an interface, declared without parent. More information about this directive can be found in the
Programmer’s Guide.

Note that COM interfaces are by default reference counted, because they descend from IUnknown.

Corba interfaces are identified by a simple string so they are assignment compatible with strings
and not with TGUID. The compiler does not do any automatic reference counting for the CORBA
interfaces, so the programmer is responsible for any reference bookkeeping.

7.6 Reference counting

All COM interfaces use reference counting. This means that whenever an interface is assigned to
a variable, it’s reference count is updated. Whenever the variable goes out of scope, the reference
count is automatically decreased. When the reference count reaches zero, usually the instance of the
class that implements the interface, is freed.

Care must be taken with this mechanism. The compiler may or may not create temporary variables
when evaluating expressions, and assign the interface to a temporary variable, and only then assign
the temporary variable to the actual result variable. No assumptions should be made about the number
of temporary variables or the time when they are finalized - this may (and indeed does) differ from
the way other compilers (e.g. Delphi) handle expressions with interfaces. E.g. a type cast is also an
expression:

85

file:../prog/prog.html

CHAPTER 7. INTERFACES

Var
B : AClass;

begin
//
AInterface (B.Intf) .testproc;
//

end;

Assume the interface int f is reference counted. When the compiler evaluates B. Int £, it creates a
temporary variable. This variable may be released only when the procedure exits: it is therefor invalid
to e.g. free the instance B prior to the exit of the procedure, since when the temporary variable is
finalized, it will attempt to free B again.

86

Chapter 8

Generics

8.1 Introduction

Generics are templates for generating classes. It is a concept that comes from C++, where it is deeply
integrated in the language. As of version 2.2, Free Pascal also officially has support for templates or
Generics. They are implemented as a kind of macro which is stored in the unit files that the compiler
generates, and which is replayed as soon as a generic class is specialized.

Currently, only generic classes can be defined. Later, support for generic records, functions and
arrays may be introduced.

Creating and using generics is a 2-phase process.

1. The definition of the generic class is defined as a new type: this is a code template, a macro
which can be replayed by the compiler at a later stage.

2. A generic class is specialized: this defines a second class, which is a specific implementation
of the generic class: the compiler replays the macro which was stored when the generic class
was defined.

8.2 Generic class definition

A generic class definition is much like a class definition, with the exception that it contains a list of
placeholders for types, and can contain a series of local variable blocks or local type blocks, as can
be seen in the following syntax diagram:

[[
Generic class types

»— generic type — generic — identifier — < template list— > =-generic class — ; —

»— template list ff identifier —

»— generic class

class
J LheritageJ | local type block
- local variable block —
— component list —

L packed

87

CHAPTER 8. GENERICS

»— local type block — type T visibility specifier 7—{ type declaration —; T—H

»— local variable block — var fT visibility specifier 7_f variable declaration — ; T—N

The generic class declaration should be followed by a class implementation. It is the same as a
normal class implementation with a single exception, namely that any identifier with the same name
as one of the template identifiers must be a type identifier.

The generic class declaration is much like a normal class declaration, except for the local variable
and local type block. The local type block defines types that are type placeholders: they are not
actualized until the class is specialized.

The local variable block is just an alternate syntax for ordinary class fields. The reason for introducing
is the introduction of the Type block: just as in a unit or function declaration, a class declaration can
now have a local type and variable block definition.

The following is a valid generic class definition:

Type
generic TList<_T>=class (TObject)
type public
TCompareFunc = function(const Iteml, Item2: _T): Integer;
var public
data : _T;
procedure Add(item: _T);
procedure Sort (compare: TCompareFunc) ;
end;

This class could be followed by an implementation as follows:

procedure TList.Add(item: _T);
begin

data:=item;
end;

procedure TList.Sort (compare: TCompareFunc);
begin
if compare (data, 20) <= 0 then
halt (1);
end;
There are some noteworthy things about this declaration and implementation:
1. There is a single placeholder _T. It will be substituted by a type identifier when the generic
class is specialized. The identifier _T may not be used for anything else than a placehoder.
This means that the following would be invalid:

procedure TList.Sort (compare: TCompareFunc);

Var
_t : integer;

begin

88

CHAPTER 8. GENERICS

// do something.
end;

2. The local type block contains a single type TCompareFunc. Note that the actual type is not
yet known inside the generic class definition: the definition contains a reference to the place-
holder _T. All other identifier references must be known when the generic class is defined, not
when the generic class is specialized.

3. The local variable block is equivalent to the following:

generic TList<_T>=class (TObject)
type public

TCompareFunc = function(const Iteml, Item2: _T): Integer;
Public
data : _T;

procedure Add(item: _T);
procedure Sort (compare: TCompareFunc);
end;

4. Both the local variable block and local type block have a visibility specifier. This is optional,
if it is omitted, the current visibility is used.

8.3 Generic class specialization

Once a generic class is defined, it can be used to generate other classes: this is like replaying the
definition of the class, with the template placeholders filled in with actual type definitions.

This can be done in any Type definition block. The specialized type looks as follows:

[
Specialized type

=»— specialized type — specialize - identifier - < type identifier list - >———»«

=— type identifier list 7{ identifier —

Which is a very simple definition. Given the declaration of TList in the previous section, the
following would be a valid type definition:

Type
TPointerList = specialize TList<Pointer>;
TIntegerList = specialize TList<Integer>;

The following is not allowed:

Var
P : specialize TList<Pointer>;

that is, a variable cannot be directly declared using a specialization.

The type in the specialize statement must be known. Given the 2 generic class definitions:

&9

Remark:

CHAPTER 8. GENERICS

type
Generic TMyFirstType<Tl> = Class (TMyObject);
Generic TMySecondType<T2> = Class (TMyOtherObiject);

Then the following specialization is not valid:

type
TMySpecialType = specialize TMySecondType<TMyFirstType>;

because the type TMyFirstType is a generic type, and thus not fully defined. However, the fol-
lowing is allowed:

type
TA = specialize TMyFirstType<Atype>;
TB = specialize TMySecondType<TA>;

because TA is already fully defined when TB is specialized.

Note that 2 specializations of a generic type with the same types in a placeholder are not assignment
compatible. In the following example:

type
TA = specialize TList<Pointer>;
TB specialize TList<Pointer>;

variables of types TA and TB cannot be assigned to each other, i.e the following assignment will be
invalid:

Var
A : TA;
B : TB;
begin
A:=B;

It is not possible to make a forward definition of a generic class. The compiler will generate an error
if a forward declaration of a class is later defined as a generic specialization.

8.4 A word about scope

It should be stressed that all identifiers other than the template placeholders should be known when
the generic class is declared. This works in 2 ways. First, all types must be known, that is, a type
identifier with the same name must exist. The following unit will produce an error:

unit myunit;
interface

type
Generic TMyClass<T> = Class (TObject)
Procedure DoSomething(A : T; B : TSomeType);
end;

90

CHAPTER 8. GENERICS

Type

TSomeType = Integer;

TSomeTypeClass = specialize TMyClass<TSomeType>;
Implementation
Procedure TMyClass.DoSomething(A : T; B : TSomeType);
begin

// Some code.
end;

end.

The above code will result in an error, because the type TSomeType is not known when the decla-
ration is parsed:

home: >fpc myunit.pp
myunit.pp(8,47) Error: Identifier not found "TSomeType"
myunit.pp(l1l,1) Fatal: There were 1 errors compiling module, stopping

The second way in which this is visible, is the following. Assume a unit

unit mya;

interface
type
Generic TMyClass<T> = Class (TObject)
Procedure DoSomething (A : T);
end;
Implementation

Procedure DoLocalThings;
begin
Writeln ('mya.DoLocalThings’);
end;
Procedure TMyClass.DoSomething(A : T);
begin
DoLocalThings;
end;
end.

and a program

program myb;

91

CHAPTER 8. GENERICS

uses mya;
procedure DoLocalThings;

begin
Writeln ('myb.DoLocalThings’);
end;

Type
TB = specialize TMyClass<Integer>;

Var
B : TB;

begin
B:=TB.Create;
B.DoSomething (1) ;
end.

Despite the fact that generics act as a macro which is replayed at specialization time, the reference
to DoLocalThings is resolved when TMyClass is defined, not when TB is defined. This means
that the output of the program is:

home: >fpc -S2 myb.pp
home: >myb
mya.DoLocalThings

This is dictated by safety and necessity:

1. A programmer specializing a class has no way of knowing which local procedures are used, so
he cannot accidentally ’override’ it.

2. A programmer specializing a class has no way of knowing which local procedures are used, so
he cannot implement it either, since he does not know the parameters.

3. If implementation procedures are used as in the example above, they cannot be referenced from
outside the unit. They could be in another unit altogether, and the programmer has no way of
knowing he should include them before specializing his class.

92

Chapter 9

Extended records

9.1 Definition

Extended records are in many ways equivalent to objects and to a lesser extent to classes: they are
records which have methods associated with them, and properties. Like objects, when defined as a
variable they are allocated on the stack. They do not need to have a constructor. Extended records
have limitations over objects and classes in that they do not allow inheritance and polymorphism. It
is impossible to create a descendant record of a record’.

Why then introduce extended records ? They were introduced by Delphi 2005 to support one of
the features introduced by .NET. Delphi no longer supports the old TP style of objects, and so re-
introduced the features of .NET as extended records. Free Pascal aims to be Delphi compatible, so
extended records are allowed in Free Pascal as well, but only in Delphi mode.

If extended records are desired in ObjFPC mode, then a mode switch must be used:

{Smode objfpc}
{Smodeswitch advancedrecords}

Compatibility is not the only reason for introducing extended records. There are some practical
reasons for using methods or properties in records:

1. It is more in line with an object-oriented approach to programming: the type also contains any
methods that work on it.

2. In contrast with a procedural ap