CVC3  2.4.1
Public Member Functions | Private Member Functions | Private Attributes
CVC3::TheoryArray Class Reference

This theory handles arrays. More...

#include <theory_array.h>

Inheritance diagram for CVC3::TheoryArray:
CVC3::Theory

List of all members.

Public Member Functions

 TheoryArray (TheoryCore *core)
 ~TheoryArray ()
ArrayProofRulescreateProofRules ()
void addSharedTerm (const Expr &e)
 Notify theory of a new shared term.
void assertFact (const Theorem &e)
 Assert a new fact to the decision procedure.
void checkSat (bool fullEffort)
 Check for satisfiability in the theory.
Theorem rewrite (const Expr &e)
 Theory-specific rewrite rules.
void setup (const Expr &e)
 Set up the term e for call-backs when e or its children change.
void update (const Theorem &e, const Expr &d)
 Notify a theory of a new equality.
Theorem solve (const Theorem &e)
 An optional solver.
void checkType (const Expr &e)
 Check that e is a valid Type expr.
Cardinality finiteTypeInfo (Expr &e, Unsigned &n, bool enumerate, bool computeSize)
 Compute information related to finiteness of types.
void computeType (const Expr &e)
 Compute and store the type of e.
Type computeBaseType (const Type &t)
 Compute the base type of the top-level operator of an arbitrary type.
void computeModelTerm (const Expr &e, std::vector< Expr > &v)
 Add variables from 'e' to 'v' for constructing a concrete model.
void computeModel (const Expr &e, std::vector< Expr > &vars)
 Compute the value of a compound variable from the more primitive ones.
Expr computeTCC (const Expr &e)
 Compute and cache the TCC of e.
virtual Expr parseExprOp (const Expr &e)
 Theory-specific parsing implemented by the DP.
ExprStreamprint (ExprStream &os, const Expr &e)
 Theory-specific pretty-printing.
Expr getBaseArray (const Expr &e) const
- Public Member Functions inherited from CVC3::Theory
 Theory (TheoryCore *theoryCore, const std::string &name)
 Whether theory has been used (for smtlib translator)
virtual ~Theory (void)
 Destructor.
ExprManagergetEM ()
 Access to ExprManager.
TheoryCoretheoryCore ()
 Get a pointer to theoryCore.
CommonProofRulesgetCommonRules ()
 Get a pointer to common proof rules.
const std::string & getName () const
 Get the name of the theory (for debugging purposes)
virtual void setUsed ()
 Set the "used" flag on this theory (for smtlib translator)
virtual bool theoryUsed ()
 Get whether theory has been used (for smtlib translator)
virtual Theorem theoryPreprocess (const Expr &e)
 Theory-specific preprocessing.
virtual void checkAssertEqInvariant (const Theorem &e)
 A debug check used by the primary solver.
virtual Theorem simplifyOp (const Expr &e)
 Recursive simplification step.
virtual Expr computeTypePred (const Type &t, const Expr &e)
 Theory specific computation of the subtyping predicate for type t applied to the expression e.
virtual void refineCounterExample ()
 Process disequalities from the arrangement for model generation.
virtual void computeModelBasic (const std::vector< Expr > &v)
 Assign concrete values to basic-type variables in v.
virtual void assertTypePred (const Expr &e, const Theorem &pred)
 Receives all the type predicates for the types of the given theory.
virtual Theorem rewriteAtomic (const Expr &e)
 Theory-specific rewrites for atomic formulas.
virtual void notifyInconsistent (const Theorem &thm)
 Notification of conflict.
virtual void registerAtom (const Expr &e, const Theorem &thm)
virtual void registerAtom (const Expr &e)
 Theory-specific registration of atoms.
virtual bool inconsistent ()
 Check if the current context is inconsistent.
virtual void setInconsistent (const Theorem &e)
 Make the context inconsistent; The formula proved by e must FALSE.
virtual void setIncomplete (const std::string &reason)
 Mark the current decision branch as possibly incomplete.
virtual Theorem simplify (const Expr &e)
 Simplify a term e and return a Theorem(e==e')
Expr simplifyExpr (const Expr &e)
 Simplify a term e w.r.t. the current context.
virtual void enqueueFact (const Theorem &e)
 Submit a derived fact to the core from a decision procedure.
virtual void enqueueSE (const Theorem &e)
 Check if the current context is inconsistent.
virtual void assertEqualities (const Theorem &e)
 Handle new equalities (usually asserted through addFact)
virtual Expr parseExpr (const Expr &e)
 Parse the generic expression.
virtual void assignValue (const Expr &t, const Expr &val)
 Assigns t a concrete value val. Used in model generation.
virtual void assignValue (const Theorem &thm)
 Record a derived assignment to a variable (LHS).
void registerKinds (Theory *theory, std::vector< int > &kinds)
 Register new kinds with the given theory.
void unregisterKinds (Theory *theory, std::vector< int > &kinds)
 Unregister kinds for a theory.
void registerTheory (Theory *theory, std::vector< int > &kinds, bool hasSolver=false)
 Register a new theory.
void unregisterTheory (Theory *theory, std::vector< int > &kinds, bool hasSolver)
 Unregister a theory.
int getNumTheories ()
 Return the number of registered theories.
bool hasTheory (int kind)
 Test whether a kind maps to any theory.
TheorytheoryOf (int kind)
 Return the theory associated with a kind.
TheorytheoryOf (const Type &e)
 Return the theory associated with a type.
TheorytheoryOf (const Expr &e)
 Return the theory associated with an Expr.
Theorem find (const Expr &e)
 Return the theorem that e is equal to its find.
const TheoremfindRef (const Expr &e)
 Return the find as a reference: expr must have a find.
Theorem findReduce (const Expr &e)
 Return find-reduced version of e.
bool findReduced (const Expr &e)
 Return true iff e is find-reduced.
Expr findExpr (const Expr &e)
 Return the find of e, or e if it has no find.
Expr getTCC (const Expr &e)
 Compute the TCC of e, or the subtyping predicate, if e is a type.
Type getBaseType (const Expr &e)
 Compute (or look up in cache) the base type of e and return the result.
Type getBaseType (const Type &tp)
 Compute the base type from an arbitrary type.
Expr getTypePred (const Type &t, const Expr &e)
 Calls the correct theory to compute a type predicate.
Theorem updateHelper (const Expr &e)
 Update the children of the term e.
void setupCC (const Expr &e)
 Setup a term for congruence closure (must have sig and rep attributes)
void updateCC (const Theorem &e, const Expr &d)
 Update a term w.r.t. congruence closure (must be setup with setupCC())
Theorem rewriteCC (const Expr &e)
 Rewrite a term w.r.t. congruence closure (must be setup with setupCC())
void getModelTerm (const Expr &e, std::vector< Expr > &v)
 Calls the correct theory to get all of the terms that need to be assigned values in the concrete model.
Theorem getModelValue (const Expr &e)
 Fetch the concrete assignment to the variable during model generation.
void addSplitter (const Expr &e, int priority=0)
 Suggest a splitter to the SearchEngine.
void addGlobalLemma (const Theorem &thm, int priority=0)
 Add a global lemma.
bool isLeaf (const Expr &e)
 Test if e is an i-leaf term for the current theory.
bool isLeafIn (const Expr &e1, const Expr &e2)
 Test if e1 is an i-leaf in e2.
bool leavesAreSimp (const Expr &e)
 Test if all i-leaves of e are simplified.
Type boolType ()
 Return BOOLEAN type.
const ExprfalseExpr ()
 Return FALSE Expr.
const ExprtrueExpr ()
 Return TRUE Expr.
Expr newVar (const std::string &name, const Type &type)
 Create a new variable given its name and type.
Expr newVar (const std::string &name, const Type &type, const Expr &def)
 Create a new named expression given its name, type, and definition.
Op newFunction (const std::string &name, const Type &type, bool computeTransClosure)
 Create a new uninterpreted function.
Op lookupFunction (const std::string &name, Type *type)
 Look up a function by name.
Op newFunction (const std::string &name, const Type &type, const Expr &def)
 Create a new defined function.
Expr addBoundVar (const std::string &name, const Type &type)
 Create and add a new bound variable to the stack, for parseExprOp().
Expr addBoundVar (const std::string &name, const Type &type, const Expr &def)
 Create and add a new bound named def to the stack, for parseExprOp().
Expr lookupVar (const std::string &name, Type *type)
 Lookup variable and return it and its type. Return NULL Expr if it doesn't exist yet.
Type newTypeExpr (const std::string &name)
 Create a new uninterpreted type with the given name.
Type lookupTypeExpr (const std::string &name)
 Lookup type by name. Return Null if no such type exists.
Type newTypeExpr (const std::string &name, const Type &def)
 Create a new type abbreviation with the given name.
Type newSubtypeExpr (const Expr &pred, const Expr &witness)
 Create a new subtype expression.
Expr resolveID (const std::string &name)
 Resolve an identifier, for use in parseExprOp()
void installID (const std::string &name, const Expr &e)
 Install name as a new identifier associated with Expr e.
Theorem typePred (const Expr &e)
 Return BOOLEAN type.
Theorem reflexivityRule (const Expr &a)
 ==> a == a
Theorem symmetryRule (const Theorem &a1_eq_a2)
 a1 == a2 ==> a2 == a1
Theorem transitivityRule (const Theorem &a1_eq_a2, const Theorem &a2_eq_a3)
 (a1 == a2) & (a2 == a3) ==> (a1 == a3)
Theorem substitutivityRule (const Op &op, const std::vector< Theorem > &thms)
 (c_1 == d_1) & ... & (c_n == d_n) ==> op(c_1,...,c_n) == op(d_1,...,d_n)
Theorem substitutivityRule (const Expr &e, const Theorem &t)
 Special case for unary operators.
Theorem substitutivityRule (const Expr &e, const Theorem &t1, const Theorem &t2)
 Special case for binary operators.
Theorem substitutivityRule (const Expr &e, const std::vector< unsigned > &changed, const std::vector< Theorem > &thms)
 Optimized: only positions which changed are included.
Theorem substitutivityRule (const Expr &e, int changed, const Theorem &thm)
 Optimized: only a single position changed.
Theorem iffMP (const Theorem &e1, const Theorem &e1_iff_e2)
 e1 AND (e1 IFF e2) ==> e2
Theorem rewriteAnd (const Expr &e)
 ==> AND(e1,e2) IFF [simplified expr]
Theorem rewriteOr (const Expr &e)
 ==> OR(e1,...,en) IFF [simplified expr]
Theorem rewriteIte (const Expr &e)
 Derived rule for rewriting ITE.
Theorem renameExpr (const Expr &e)
 Derived rule to create a new name for an expression.

Private Member Functions

Theorem pullIndex (const Expr &e, const Expr &index)
 Derived rule.

Private Attributes

ArrayProofRulesd_rules
CDList< Exprd_reads
 Backtracking list of array reads, for building concrete models.
ExprMap< Theoremd_renameThms
 Set of renaming theorems $\exists x. t = x$ indexed by t.
const bool & d_applicationsInModel
 Flag to include array reads to the concrete model.
const bool & d_liftReadIte
 Flag to lift ite's over reads.
CDMap< Expr, Exprd_sharedSubterms
 Backtracking database of subterms of shared terms.
CDList< Exprd_sharedSubtermsList
 Backtracking database of subterms of shared terms.
CDO< unsigned > d_index
 Used in checkSat.
CDO< size_t > d_sharedIdx1
CDO< size_t > d_sharedIdx2
int d_inCheckSat
 Flag for use in checkSat.

Additional Inherited Members

- Protected Attributes inherited from CVC3::Theory
bool d_theoryUsed

Detailed Description

This theory handles arrays.

Author: Clark Barrett

Created: Thu Feb 27 00:38:20 2003

Definition at line 50 of file theory_array.h.


Constructor & Destructor Documentation

TheoryArray::TheoryArray ( TheoryCore core)
TheoryArray::~TheoryArray ( )

Definition at line 73 of file theory_array.cpp.

References d_rules.


Member Function Documentation

Theorem TheoryArray::pullIndex ( const Expr e,
const Expr index 
)
private
ArrayProofRules * TheoryArray::createProofRules ( )

Definition at line 41 of file array_theorem_producer.cpp.

Referenced by TheoryArray().

void TheoryArray::addSharedTerm ( const Expr e)
virtual

Notify theory of a new shared term.

When a term e associated with theory i occurs as a child of an expression associated with theory j, the framework calls i->addSharedTerm(e) and j->addSharedTerm(e)

Reimplemented from CVC3::Theory.

Definition at line 78 of file theory_array.cpp.

References CVC3::Expr::addToNotify(), CVC3::Expr::arity(), CVC3::CDMap< Key, Data, HashFcn >::count(), d_sharedSubterms, d_sharedSubtermsList, CVC3::isRead(), CVC3::isWrite(), CVC3::Expr::notArrayNormalized(), CVC3::CDList< T >::push_back(), CVC3::Expr::toString(), and TRACE.

Referenced by assertFact(), setup(), and update().

void TheoryArray::assertFact ( const Theorem e)
virtual

Assert a new fact to the decision procedure.

Each fact that makes it into the core framework is assigned to exactly one theory: the theory associated with that fact. assertFact is called to inform the theory that a new fact has been assigned to the theory.

Implements CVC3::Theory.

Definition at line 106 of file theory_array.cpp.

References addSharedTerm(), CVC3::ArrayProofRules::arrayNotEq(), d_inCheckSat, d_rules, DebugAssert, CVC3::Theory::enqueueFact(), EQ, FatalAssert, CVC3::Theory::getBaseType(), CVC3::Theorem::getExpr(), CVC3::Expr::getOpKind(), CVC3::isArray(), CVC3::isWrite(), NOT, CVC3::Theory::theoryCore(), CVC3::Expr::toString(), and TRACE.

void TheoryArray::checkSat ( bool  fullEffort)
virtual

Check for satisfiability in the theory.

Parameters:
fullEffortwhen it is false, checkSat can do as much or as little work as it likes, though simple inferences and checks for consistency should be done to increase efficiency. If fullEffort is true, checkSat must check whether the set of facts given by assertFact together with the arrangement of shared terms (provided by addSharedTerm) induced by the global find database equivalence relation are satisfiable. If satisfiable, checkSat does nothing.

If satisfiability can be acheived by merging some of the shared terms, a new fact must be enqueued using enqueueFact (this fact need not be a literal). If there is no way to make things satisfiable, setInconsistent must be called.

Implements CVC3::Theory.

Definition at line 154 of file theory_array.cpp.

References CVC3::Theory::addSplitter(), CVC3::Theory::assertEqualities(), CVC3::ExprMap< Data >::begin(), Hash::hash_set< _Key, _HashFcn, _EqualKey >::begin(), CVC3::BVCONST, d_inCheckSat, d_index, d_reads, d_rules, d_sharedSubterms, d_sharedSubtermsList, DebugAssert, CVC3::ExprMap< Data >::end(), Hash::hash_set< _Key, _HashFcn, _EqualKey >::end(), CVC3::CDMap< Key, Data, HashFcn >::end(), CVC3::Theory::enqueueFact(), CVC3::Expr::eqExpr(), FatalAssert, CVC3::CDMap< Key, Data, HashFcn >::find(), CVC3::Theory::find(), findAtom(), CVC3::Theory::findExpr(), getBaseArray(), CVC3::Expr::getRep(), CVC3::Theorem::getRHS(), CVC3::Expr::getSig(), CVC3::Expr::hasFind(), CVC3::Expr::hasRep(), CVC3::Theory::iffMP(), Hash::hash_set< _Key, _HashFcn, _EqualKey >::insert(), CVC3::int2string(), CVC3::ArrayProofRules::interchangeIndices(), CVC3::Expr::isAbsAtomicFormula(), CVC3::Expr::isAtomic(), CVC3::Expr::isBoolConst(), CVC3::Expr::isFalse(), CVC3::Theorem::isNull(), CVC3::isRead(), CVC3::Theorem::isRefl(), CVC3::Expr::isTrue(), CVC3::isWrite(), CVC3::Expr::notArrayNormalized(), CVC3::ArrayProofRules::propagateIndexDiseq(), CVC3::READ, CVC3::Theory::rewriteIte(), CVC3::ArrayProofRules::rewriteReadWrite(), CVC3::ArrayProofRules::rewriteRedundantWrite1(), CVC3::Theory::simplify(), CVC3::CDList< T >::size(), CVC3::Theory::substitutivityRule(), CVC3::Expr::toString(), TRACE, and CVC3::Theory::transitivityRule().

Theorem TheoryArray::rewrite ( const Expr e)
virtual

Theory-specific rewrite rules.

By default, rewrite just returns a reflexive theorem stating that the input expression is equivalent to itself. However, rewrite is allowed to return any theorem which describes how the input expression is equivalent to some new expression. rewrite should be used to perform simplifications, normalization, and any other preprocessing on theory-specific expressions that needs to be done.

Reimplemented from CVC3::Theory.

Definition at line 368 of file theory_array.cpp.

References CVC3::ARRAY_LITERAL, d_liftReadIte, d_rules, DebugAssert, EQ, FatalAssert, CVC3::Theory::findExpr(), CVC3::Theory::getBaseType(), CVC3::Theory::getCommonRules(), CVC3::Expr::getKind(), CVC3::Expr::getRep(), CVC3::Theorem::getRHS(), IF_DEBUG, CVC3::ArrayProofRules::interchangeIndices(), CVC3::isArray(), CVC3::Expr::isAtomic(), CVC3::Theorem::isNull(), CVC3::isRead(), CVC3::Theorem::isRefl(), CVC3::Expr::isVar(), CVC3::isWrite(), ITE, MiniSat::left(), CVC3::ArrayProofRules::liftReadIte(), NOT, pullIndex(), CVC3::READ, CVC3::ArrayProofRules::readArrayLiteral(), CVC3::Theory::reflexivityRule(), CVC3::ArrayProofRules::rewriteReadWrite(), CVC3::ArrayProofRules::rewriteRedundantWrite1(), CVC3::ArrayProofRules::rewriteRedundantWrite2(), CVC3::ArrayProofRules::rewriteSameStore(), CVC3::CommonProofRules::rewriteUsingSymmetry(), CVC3::ArrayProofRules::rewriteWriteWrite(), MiniSat::right(), CVC3::Expr::setRewriteNormal(), CVC3::Theory::simplify(), CVC3::Theory::substitutivityRule(), CVC3::Theory::symmetryRule(), CVC3::Theory::transitivityRule(), and CVC3::WRITE.

Referenced by computeModel().

void TheoryArray::setup ( const Expr e)
virtual
void TheoryArray::update ( const Theorem e,
const Expr d 
)
virtual

Notify a theory of a new equality.

update is a call-back used by the notify mechanism of the core theory. It works as follows. When an equation t1 = t2 makes it into the core framework, the two find equivalence classes for t1 and t2 are merged. The result is that t2 is the new equivalence class representative and t1 is no longer an equivalence class representative. When this happens, the notify list of t1 is traversed. Notify list entries consist of a theory and an expression d. For each entry (i,d), i->update(e, d) is called, where e is the theorem corresponding to the equality t1=t2.

To add the entry (i,d) to a term t1's notify list, a call must be made to t1.addNotify(i,d). This is typically done in setup.

See also:
setup

Reimplemented from CVC3::Theory.

Definition at line 550 of file theory_array.cpp.

References addSharedTerm(), CVC3::Expr::addToNotify(), CVC3::Expr::arity(), CVC3::Theory::assertEqualities(), CVC3::CDMap< Key, Data, HashFcn >::count(), d_rules, d_sharedSubterms, d_sharedSubtermsList, DebugAssert, CVC3::CDMap< Key, Data, HashFcn >::end(), CVC3::Theory::enqueueFact(), CVC3::CDMap< Key, Data, HashFcn >::find(), CVC3::Theory::find(), CVC3::Theory::findRef(), CVC3::Theory::getEM(), CVC3::Theorem::getLHS(), CVC3::Expr::getRep(), CVC3::Theorem::getRHS(), CVC3::Expr::getSig(), CVC3::Expr::hasFind(), CVC3::Theory::inconsistent(), CVC3::ArrayProofRules::interchangeIndices(), CVC3::ExprManager::invalidateSimpCache(), CVC3::Expr::isAtomic(), CVC3::Theorem::isNull(), CVC3::Expr::isNull(), CVC3::isRead(), CVC3::Theorem::isRefl(), CVC3::isWrite(), CVC3::Expr::notArrayNormalized(), pullIndex(), CVC3::CDList< T >::push_back(), CVC3::READ, CVC3::Theory::renameExpr(), CVC3::ArrayProofRules::rewriteReadWrite(), CVC3::ArrayProofRules::rewriteRedundantWrite1(), CVC3::ArrayProofRules::rewriteRedundantWrite2(), CVC3::Expr::setNotArrayNormalized(), CVC3::Expr::setRep(), CVC3::Expr::setSig(), CVC3::Theory::simplify(), CVC3::Theory::substitutivityRule(), CVC3::Theory::symmetryRule(), CVC3::Expr::toString(), CVC3::Theory::transitivityRule(), and CVC3::Theory::updateHelper().

Theorem TheoryArray::solve ( const Theorem e)
virtual

An optional solver.

The solve method can be used to implement a Shostak-style solver. Since solvers do not in general combine, the following technique is used. One theory is designated as the primary solver (in our case, it is the theory of arithmetic). For each equation that enters the core framework, the primary solver is called to ensure that the equation is in solved form with respect to the primary theory.

After the primary solver, the solver for the theory associated with the equation is called. This solver can do whatever it likes, as long as the result is still in solved form with respect to the primary solver. This is a slight generalization of what is described in my (Clark)'s PhD thesis.

Reimplemented from CVC3::Theory.

Definition at line 718 of file theory_array.cpp.

References DebugAssert, CVC3::Theorem::getExpr(), CVC3::Expr::isEq(), CVC3::isWrite(), CVC3::Theory::symmetryRule(), and CVC3::Expr::toString().

void TheoryArray::checkType ( const Expr e)
virtual

Check that e is a valid Type expr.

Reimplemented from CVC3::Theory.

Definition at line 731 of file theory_array.cpp.

References CVC3::Expr::arity(), CVC3::ARRAY, DebugAssert, CVC3::Theory::getEM(), CVC3::Expr::getKind(), CVC3::Type::isBool(), and CVC3::Type::isFunction().

Cardinality TheoryArray::finiteTypeInfo ( Expr e,
Unsigned n,
bool  enumerate,
bool  computeSize 
)
virtual

Compute information related to finiteness of types.

Used by the TypeComputer defined in TheoryCore (theories should not call this funtion directly – they should use the methods in Type instead). Each theory should implement this if it contains any types that could be non-infinite.

  1. Returns Cardinality of the type (finite, infinite, or unknown)
  2. If cardinality = finite and enumerate is true, sets e to the nth element of the type if it can sets e to NULL if n is out of bounds or if unable to compute nth element
  3. If cardinality = finite and computeSize is true, sets n to the size of the type if it can sets n to 0 otherwise

Reimplemented from CVC3::Theory.

Definition at line 757 of file theory_array.cpp.

References CVC3::ARRAY, CVC3::arrayLiteral(), CVC3::Type::card(), CVC3::CARD_FINITE, CVC3::CARD_INFINITE, CVC3::Type::enumerateFinite(), CVC3::Theory::getEM(), CVC3::Expr::getKind(), and CVC3::Type::sizeFinite().

void TheoryArray::computeType ( const Expr e)
virtual

Compute and store the type of e.

Parameters:
eis the expression whose type is computed.

This function computes the type of the top-level operator of e, and recurses into children using getType(), if necessary.

Reimplemented from CVC3::Theory.

Definition at line 810 of file theory_array.cpp.

References CVC3::Type::anyType(), CVC3::Expr::arity(), CVC3::ARRAY_LITERAL, CVC3::arrayType(), DebugAssert, CVC3::Theory::getBaseType(), CVC3::Expr::getBody(), CVC3::Theory::getEM(), CVC3::Expr::getKind(), CVC3::Expr::getType(), CVC3::Expr::getVars(), CVC3::isArray(), CVC3::Expr::isClosure(), CVC3::READ, CVC3::Expr::setType(), CVC3::Type::toString(), CVC3::Expr::toString(), and CVC3::WRITE.

Type TheoryArray::computeBaseType ( const Type tp)
virtual

Compute the base type of the top-level operator of an arbitrary type.

Reimplemented from CVC3::Theory.

Definition at line 887 of file theory_array.cpp.

References CVC3::Expr::arity(), CVC3::ARRAY, CVC3::Expr::begin(), DebugAssert, CVC3::Expr::end(), CVC3::Theory::getBaseType(), CVC3::Type::getExpr(), CVC3::Expr::getKind(), CVC3::Expr::getOp(), and CVC3::Type::toString().

void TheoryArray::computeModelTerm ( const Expr e,
std::vector< Expr > &  v 
)
virtual

Add variables from 'e' to 'v' for constructing a concrete model.

If e is already of primitive type, do NOT add it to v.

Reimplemented from CVC3::Theory.

Definition at line 899 of file theory_array.cpp.

References CVC3::ARRAY, CVC3::CDList< T >::begin(), d_reads, DebugAssert, CVC3::CDList< T >::end(), CVC3::Type::getExpr(), CVC3::Expr::getKind(), CVC3::Expr::getType(), CVC3::isRead(), CVC3::READ, and CVC3::WRITE.

void TheoryArray::computeModel ( const Expr e,
std::vector< Expr > &  vars 
)
virtual

Compute the value of a compound variable from the more primitive ones.

The more primitive variables for e are already assigned concrete values, and are available through getModelValue().

The new value for e must be assigned using assignValue() method.

Parameters:
eis the compound type expression to assign a value;
varsare the variables actually assigned. Normally, 'e' is the only element of vars. However, e.g. in the case of uninterpreted functions, assigning 'f' means assigning all relevant applications of 'f' to constant values (f(0), f(5), etc.). Such applications might not be known before the model is constructed (they may be of the form f(x), f(y+z), etc., where x,y,z are still unassigned).

Populating 'vars' is an opportunity for a DP to change the set of top-level "variables" to assign, if needed. In particular, it may drop 'e' from the model entirely, if it is already a concrete value by itself.

Reimplemented from CVC3::Theory.

Definition at line 939 of file theory_array.cpp.

References CVC3::ARRAY, CVC3::arrayLiteral(), CVC3::Theory::assignValue(), CVC3::CDList< T >::begin(), CVC3::ExprHashMap< Data >::begin(), d_applicationsInModel, d_reads, DebugAssert, CVC3::CDList< T >::end(), CVC3::ExprHashMap< Data >::end(), CVC3::Expr::eqExpr(), CVC3::Theory::getBaseType(), CVC3::Theory::getEM(), CVC3::Expr::getKind(), CVC3::Theorem::getLHS(), CVC3::Theory::getModelValue(), CVC3::Theorem::getRHS(), CVC3::Expr::getType(), CVC3::int2string(), CVC3::isArray(), CVC3::Expr::isNull(), CVC3::isRead(), CVC3::Expr::iteExpr(), CVC3::READ, CVC3::Theory::reflexivityRule(), rewrite(), CVC3::Expr::setType(), CVC3::ExprHashMap< Data >::size(), CVC3::Theory::substitutivityRule(), CVC3::Theory::symmetryRule(), CVC3::Expr::toString(), TRACE, CVC3::Theory::transitivityRule(), and CVC3::WRITE.

Expr TheoryArray::computeTCC ( const Expr e)
virtual

Compute and cache the TCC of e.

Parameters:
eis an expression (term or formula). This function computes the TCC of e which is true iff the expression is defined.

This function computes the TCC or predicate of the top-level operator of e, and recurses into children using getTCC(), if necessary.

The default implementation is to compute TCCs recursively for all children, and return their conjunction.

Reimplemented from CVC3::Theory.

Definition at line 1041 of file theory_array.cpp.

References CVC3::Expr::andExpr(), CVC3::andExpr(), CVC3::Expr::arity(), CVC3::ARRAY_LITERAL, CVC3::Theory::computeTCC(), DebugAssert, CVC3::Expr::getKind(), CVC3::Theorem::getRHS(), CVC3::Expr::getType(), CVC3::Theory::getTypePred(), CVC3::READ, CVC3::Theory::rewriteAnd(), CVC3::Expr::toString(), and CVC3::WRITE.

Expr TheoryArray::parseExprOp ( const Expr e)
virtual
ExprStream & TheoryArray::print ( ExprStream os,
const Expr e 
)
virtual

Theory-specific pretty-printing.

By default, print the top node in AST, and resume pretty-printing the children. The same call e.print(os) can be used in DP-specific printers to use AST printing for the given node. In fact, it is strongly recommended to add e.print(os) as the default for all the cases/kinds that are not handled by the particular pretty-printer.

Reimplemented from CVC3::Theory.

Definition at line 1072 of file theory_array.cpp.

References CVC3::Expr::arity(), CVC3::ARRAY, CVC3::ARRAY_LITERAL, CVC3::Theory::d_theoryUsed, debug_write, CVC3::Expr::getBody(), CVC3::Expr::getKind(), IF_DEBUG, CVC3::ExprStream::lang(), CVC3::LISP_LANG, CVC3::pop(), CVC3::popdag(), CVC3::PRESENTATION_LANG, CVC3::Expr::printAST(), CVC3::push(), CVC3::pushdag(), CVC3::READ, CVC3::SMTLIB_LANG, CVC3::SMTLIB_V2_LANG, CVC3::space(), CVC3::Theory::theoryCore(), and CVC3::WRITE.

Expr TheoryArray::getBaseArray ( const Expr e) const

Definition at line 1254 of file theory_array.cpp.

References CVC3::Expr::getKind(), and CVC3::WRITE.

Referenced by checkSat().


Member Data Documentation

ArrayProofRules* CVC3::TheoryArray::d_rules
private

Definition at line 51 of file theory_array.h.

Referenced by assertFact(), checkSat(), pullIndex(), rewrite(), TheoryArray(), update(), and ~TheoryArray().

CDList<Expr> CVC3::TheoryArray::d_reads
private

Backtracking list of array reads, for building concrete models.

Definition at line 54 of file theory_array.h.

Referenced by checkSat(), computeModel(), computeModelTerm(), and setup().

ExprMap<Theorem> CVC3::TheoryArray::d_renameThms
private

Set of renaming theorems $\exists x. t = x$ indexed by t.

Definition at line 56 of file theory_array.h.

const bool& CVC3::TheoryArray::d_applicationsInModel
private

Flag to include array reads to the concrete model.

Definition at line 58 of file theory_array.h.

Referenced by computeModel().

const bool& CVC3::TheoryArray::d_liftReadIte
private

Flag to lift ite's over reads.

Definition at line 60 of file theory_array.h.

Referenced by rewrite().

CDMap<Expr,Expr> CVC3::TheoryArray::d_sharedSubterms
private

Backtracking database of subterms of shared terms.

Definition at line 63 of file theory_array.h.

Referenced by addSharedTerm(), checkSat(), setup(), and update().

CDList<Expr> CVC3::TheoryArray::d_sharedSubtermsList
private

Backtracking database of subterms of shared terms.

Definition at line 65 of file theory_array.h.

Referenced by addSharedTerm(), checkSat(), setup(), and update().

CDO<unsigned> CVC3::TheoryArray::d_index
private

Used in checkSat.

Definition at line 67 of file theory_array.h.

Referenced by checkSat().

CDO<size_t> CVC3::TheoryArray::d_sharedIdx1
private

Definition at line 69 of file theory_array.h.

CDO<size_t> CVC3::TheoryArray::d_sharedIdx2
private

Definition at line 69 of file theory_array.h.

int CVC3::TheoryArray::d_inCheckSat
private

Flag for use in checkSat.

Definition at line 72 of file theory_array.h.

Referenced by assertFact(), and checkSat().


The documentation for this class was generated from the following files: