
Bisect – version 1.1

http://bisect.x9c.fr

Copyright c© 2008-2011 Xavier Clerc – bisect@x9c.fr
Released under the GPL v3

February 12, 2011

Introduction

Bisect is a code coverage tool for the Objective Caml language1. Its name stems from the following
acronym: Bisect is an Insanely Short-sized and Elementary Coverage Tool. The shortness of the
source files can be seen as a tribute to the camlp4 tool and API bundled with the standard Objec-
tive Caml distribution.

Code coverage is a mean of software testing. Associated with for example unit or functional testing,
the goal of code coverage is to measure the portion of the application source code that has actually
been tested. To achieve this goal, the code coverage tool defines points in the source code and
memorizes at runtime (that is, when tests are run) if the execution path of the program passes
at these points. The so-called points are places of interest in the source code (as an example, the
branches of an if or match construct are interesting points), to ensure that all alternatives have
been tested. In practice, code coverage is often performed in three steps:

• first, the application is instrumented : this means that (the compiled form of) the application
is enhanced in such a way that it will count at runtime how many times the application passed
at a given point ;

• then, the tests are actually run, producing some runtime data about code coverage;

• finally, a report is generated from the data produced at the previous step; this report shows
which points were actually passed through during tests.

Bisect can be seen as an improved version of the ocamlcp/ocamlprof couple (both of these tools
being part of the standard Objective Caml distribution). In this respect, Bisect performs statement
and condition coverage, but not path coverage. This means that it only counts how many times
the application passed at each point, independently of which was the statement previously executed
(that is, the previously visited point). At the opposite, path coverage is not only interested in points
but also in paths, the goal being to ensure that every possible execution path has been followed.

Code coverage is a useful software metric but, being based on tests, it cannot ensure that a program
is correct. For program correction, one should consider more involved tools and formalisms such
as model checking, or proof systems. Code coverage is still convenient in practice because it is a

1The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

1

http://bisect.x9c.fr
mailto:bisect@x9c.fr
http://caml.inria.fr

much simpler method that require no particular knowledge from the developer. Bisect provides
several output (ranging from bare text to Hudson2-compatible xml) modes in order to allow easy
integration with an existing toolchain.

Bisect, in its 1.1 version, is designed to work with version 3.12.0 of Objective Caml. Bisect
is released under the GPL version 3. This licensing scheme should not cause any problem, as
instrumented applications are intended to be used during developement but should not be released
publicly. The GPL contamination has thus no consequence here.
Bugs should be reported at http://bugs.x9c.fr.

Building Bisect

Bolt can be built from sources using make (in its GNU Make 3.81 flavor), and Objective Caml
version 3.12.0. No other dependency is needed. Following the classical Unix convention, the build
and installation process consists in these three steps:

1. sh configure

2. make all

3. make install

During the first step, one can specify elements if they are not correctly inferred by the ./configure
script; the following switches are available:

• -ocaml-prefix to specify the prefix path to the Objective Caml installation (usually /usr/local);

• -ocamlfind to specify the path to the ocamlfind executable (notice that the presence of
ocamlfind3 is optional, and that the tool is used only at installation if present);

• -no-native-dynlink to disable dynamic linking.

One may notice that the instrument module will be compiled into Ojective Caml bytecode only,
while the other modules will be compiled into bytecode as well as native formats (and even Java
format if the ocamljava4 compiler is present).

Running Bisect

As previously stated, using a code coverage tool usually requires to follow three steps: instrumen-
tation, execution, and report. Bisect is no exception in this respect; the following sections discuss
each of these three steps.

Instrumenting the application

Bisect instruments the application at compile-time using a camlp4-based preprocessor. It allows the
user to choose exactly which module (i.e. source file) of the application should be instrumented.

2Continuous integration engine available at http://hudson-ci.org/
3Findlib, a library manager for Objective Caml, is available at http://projects.camlcity.org/projects/

findlib.html
4OCaml compiler generating Java bytecode, by the same author – http://ocamljava.x9c.fr

2

http://bugs.x9c.fr
http://hudson-ci.org/
http://projects.camlcity.org/projects/findlib.html
http://projects.camlcity.org/projects/findlib.html
http://ocamljava.x9c.fr

Code sample 1 shows how to instrument a file named source.ml during compilation (the very
same effect can be achieved using either ocamlopt or ocamljava as a replacement of ocamlc).
Code sample 2 does the same through ocamlfind. During this step, Bisect will produce a file
named source.cmp5. Files with the cmp extension contain point information for a given source
file, that is: identifiers, positions, and kinds of points. Of course, the usual cmi, cmo, cmx, and cmj
files are also produced, depending on the compiler acutally invoked. It is necessary to pass the
-I +bisect option to the compiler because instrumentation adds calls to functions defined in the
runtime modules of Bisect.

Code sample 1 Compiling and instrumenting a file.

ocamlc -c -I +bisect -pp ’camlp4o str.cma /path/to/bisect_pp.cmo’ source.ml

Code sample 2 Compiling and instrumenting a file through ocamlfind.

ocamlfind ocamlc -package bisect -syntax camlp4o -c source.ml

Instrumentation mode

Since version 1.1, it is possible to select an instrumentation mode through the -mode command-line
switch followed by one these values:

• safe, that will perform instrumentation as done in version 1.0;

• fast, that will perform instrumentation in order to allow instrumented code to run faster (by
approximately an order of magnitude, relatively to safe);

• faster, that will perform instrumentation in order to allow instrumented code to run even
slightly faster but will not be thread-safe, even if linked with the BisectThread module (see
below).

Controlling instrumentation

It is possible to choose which language constructs should actually be instrumented by passing
-enable and/or -disable command-line switches to bisect pp.cmo. Both switches are followed
by a string describing the kinds of points the user wants to either enable or disable. The possible
characters are:

• b for binding

• s for sequence

• f for for

• i for if/then

• t for try
5This file will be strored in the very same directory as the cmo, cmx, or cmj file produced by the compiler.

3

• w for while

• m for match/function

• c for class expression

• d for class initializer

• e for class method

• v for class value

• p for toplevel expression

• l for lazy operator

By default, all point kinds are enabled. As an example, -disable cdev will disable instrumenta-
tion of all class constructs.

Since version 1.1, another command-line switch allows to exclude top-level functions from instru-
mentation: -exclude should be followed by a comma-separated list of patterns6. Any top-level
function matching one of the patterns will not be instrumented.

Since version 1.1, it is also possible to use special comments in order to precisely control instru-
mentation on a code area basis. The following comments are recognized:

• (*BISECT-MARK*) and (*BISECT-VISIT*) allow to consider (all the points of) a line as visited
even if not at runtime7;

• (*BISECT-IGNORE*) allows to ignore the line, that is generate no point for the whole line;

• (*BISECT-IGNORE-BEGIN*) and (*BISECT-IGNORE-END*) (that should be correctly paren-
thesized) allow to exclude whole parts of the source from being instrumented (equivalent
to have the (*BISECT-IGNORE*) comment on each line from (*BISECT-IGNORE-BEGIN*) to
(*BISECT-IGNORE-END*), both inclusive).

Unsafe compilation mode

When compiling in unsafe mode8, the -unsafe switch should be passed to camlp4 instead of the
compiler. Indeed, as camlp4 is building a syntax tree that is passed to the compiler, issuing the
-unsafe switch to the compiler has no effect because it is too late: the code has been built by
camlp4 in safe mode. In such a case, the compiler warns the user with the following message:
Warning: option -unsafe used with a preprocessor returning a syntax tree. The cor-
rect command-line invocations are shown by code samples 3 and 4.

6These patterns should follow the conventions set by the Str module.
7It may be useful to avoid a lower coverage due to a line containing e.g. assert false.
8One should keep in mind that the usefulness of using the unsafe mode in an instrumented application is ques-

tionable, as the instrumentation of an application results in very degraded performances.

4

Code sample 3 Compiling and instrumenting a file using unsafe mode.

ocamlc -c -I +bisect -pp ’camlp4o str.cma -unsafe /path/to/bisect_pp.cmo’ source.ml

Code sample 4 Compiling and instrumenting a file using unsafe mode through ocamlfind.

ocamlfind ocamlc -package bisect -syntax camlp4o -ppopt -unsafe -c source.ml

Linking

Linking a program containing instrumented modules is not different from classical linking, except
that one should link the Bisect library to the produced executable. This is usually done by adding
one of the following to the linking command-line:

• -I +bisect bisect.cma (for ocamlc version);

• -I +bisect bisect.cmxa (for ocamlopt version);

• -I +bisect bisect.cmja (for ocamljava version).

In order, to use Bisect in multithread applications, it is necessary to also link with the BisectThread
module. This also implies to pass the -linkall option to the compiler.

Running the instrumented application

Running an instrumented application is not different from running any application compiled with
an Objective Caml compiler. However, Bisect will produce runtime data in a file each time the ap-
plication is run. A new file will be created at each invocation, the first one being bisect0001.out,
the second one bisect0002.out, and so on. It is also possible to define the scheme used for file
names by setting the BISECT FILE environment variable. If BISECT FILE is equal to file, files will
be named filen.out where n is a natural value padded with zeroes to 4 digits (i.e. “0001”, “0002”,
and so on).

Bisect can also be parametrized using another environment variable: BISECT SILENT. If this variable
is set to either “YES” or “ON” (defaulting to “OFF”, case being ignored), then Bisect will not
output any message at runtime. If not silent, Bisect will output a message on the standard error
in two situations:

• the output file for runtime data cannot be created at program initialization;

• the runtime data cannnot be written at program termination.

Generating the coverage report

In order to generate the coverage report for the instrumented application, it is sufficient to invoke
the bisect-report executable (alternatively either bisect-report.opt, or bisect-report.jar).
This program recognizes the following command-line switches:

• -csv <file> Set output to csv, data being written to given file

• -dump-dtd <file> Dump the DTD to the given file

5

• -html <dir> Set output to html, files being written in given directory

• -I <dir> Add the directory to the search path

• -no-folding Disable code folding (HTML only)

• -no-navbar Disable navigation bar (HTML only)

• -separator <string> Set the separator for generated output (CSV only)

• -tab-size <int> Set tabulation size in output (HTML only)

• -text <file> Set output to text, data being written to given file

• -title <string> Set the title for generated output (HTML only)

• -verbose Set verbose mode

• -version Print version and exit

• -xml <file> Set output to xml, data being written to given file

• -xml-emma <file> Set output to EMMA xml, data being written to given file

• -help Display this list of options

• --help Display this list of options

Wherever a destination file is waited, the use of - (i.e. minus sign) is interpreted as the standard
output. The user should also provide on the command-line the list of the runtime data files that
should be used to produce the report. As a result, a typical invocation is: bisect-report -html
report bisect*.out to process all data files in the current directory and generate an html report
into the report directory.

If relative file paths are used at the instrumentation step, the report executable should be launched
from the same directory. Another option is of course to use absolute paths. Using absolute path is
also useful when playing with the -pack option. Indeed, it is possible in this case to have several
source files with the same name in different directories and packed to different enclosing modules.
In the case of packed modules, absolute paths allows to avoid ambiguities but are not necessary.
It is in fact sufficient to have discriminating paths, that is: paths that always allow to distinguish
files packed in different enclosing modules.
It is also possible to use the -I command-line switch to specify a search path for source files.
When the html output mode is chosen, a bunch a files is produced: one index.html file, and one
html file per instrumented module. The index.html file provides application-wide statistics about
coverage, as well as links to the other files. The module files provide module-wide statistics, as well
as a duplicate of the module source, enhanced with point information. Points are represented in
the source as special comments having the form (*[n]*) where n indicates how many times the
point was passed at runtime. For easier appreciation, colors are also used to annotate source lines:

• a line will be green-colored if it contains points whose values are all strictly positive;

• a line will be red-colored if it contains points whose values are all equal to zero;

6

• a line will be yellow-colored if it contains some points whose values are all equal to zero, and
some others whose values are strictly positive;

• a line will not be colored at all if it contains no point.

When another output mode is chosen, only one file is produced (or none, if - is used) containing
the whole coverage information. The appendix details the various file formats.

Example

Code sample 5 shows the makefile used for the compilation (with instrumentation), run, and report
phases for a one-file application: source.ml. Code sample 6 shows the same information when
relying on ocamlfind.

Code sample 5 Example makefile.

default: clean compile run report

clean:
rm -fr report
rm -f *.cm* *.out bytecode

compile:
ocamlc -c -I +bisect \

-pp ’camlp4o str.cma path/to/bisect/bisect_pp.cmo’ source.ml
ocamlc -o bytecode -I +bisect bisect.cma source.cmo

run:
./bytecode

report:
bisect-report -html report bisect*.out

Known issues

Bisect suffers from the following issues:

• Bisect, being based on camlp4, performs a purely syntactic treatment. It can thus sometimes
produce unaccurate results due to semantics subtleties. For a concrete example consider lazy
operators: in expressions such as e1 && e2 or e1 || e2, Bisect adds points to both e1 and
e2 to allow the user to know which parts of the whole expression were actually evaluated.
However, it is possible that the programmer redefined one of these operator in such a way
that its new semantics is no more lazy (e.g. let (&&) = (+)). In this case, Bisect will still
add points to subexpressions even if they appear useless9. A dual issue would occur if a
programmer defined a new operator with lazy semantics (e.g. external (++) : bool ->

9One may notice that it could not be possible to overcome this problem by keeping track of local (i.e. file)
redefinitions, as the redefinition may occur in another module that has been opened.

7

Code sample 6 Example makefile (ocamlfind-based).

default: clean compile run report

clean:
rm -fr report
rm -f *.cm* *.out bytecode

compile:
ocamlfind ocamlc \

-package bisect -linkpkg -syntax camlp4o -o bytecode source.ml

run:
./bytecode

report:
ocamlfind bisect/bisect-report -html report bisect*.out

bool -> = "%sequor"), in this case Bisect will not define points for subexpressions while
they would clearly be of interest.

• when linking the tested application, the Bisect module should be linked as (one of) the
first ones; indeed, the Bisect runtime performs some operations at initialization, such as
determining the target file for runtime information: the current working directory should
hence not have been modified by another module or should have been modified purposely (it
is also possible to use BISECT FILE to specify an absolute path);

• for performance reasons, Objective Caml ints are used store store point data; it implies that
one should not use the report executable on a 32-bit architecture if the tested application has
been instrumented and run on a 64-bit architecture10.

10This is indeed an over-cautious recommendation, as the Objective Caml gracefully handles platforms differences;
one should only get unaccurate results (but not false results: neither an unvisited will be considered as visited, nor
the opposite) when working at the 32-bit limit.

8

Appendix: file formats

CSV file format

The CSV mode outputs statistics line by line: first for the whole application, and then for each
file. Each line has the following format: first the path of the source file (- being used for the
overall application), then 14 × 2 integer values (13 for the various point kinds, plus one for the
total). Each integer couple consists, for each point kind, of (i) the number of visited points and
(ii) the total number of points. The point kinds are output in the following order: let bindings,
sequence, for loops, if/then constructs, try/with constructs, while loops, match/function constructs,
class expressions, class initializers, class methods, class values, top level expressions, lazy operators.
Listing 7 shows such an output.

Code sample 7 CSV file format.

-;3;3;5;5;1;1;0;0;0;0;0;0;2;2;0;0;0;0;0;0;0;0;0;0;2;2;13;13
source.ml;3;3;5;5;1;1;0;0;0;0;0;0;2;2;0;0;0;0;0;0;0;0;0;0;2;2;13;13

Text file format

The text mode outputs statistics first for the overall application, and then for each file. The
statistics always take the same form, that is the ratio number of visited points over total number of
points for each point kind, followed by the ratio for all point kind. Listing 8 shows such an output.

XML file format

The xml mode outputs both statistics and information for each of the points in the source files.
Listing 9 shows the DTD for produced xml files (it can be generated using the -dump-dtd command-
line option). Statistics are output for the whole application and for each file inside <summary
elements, while information relative to each point is encoded into <point elements. Listing 10
shows an xml output.

XML EMMA-compatible format

This mode outputs only overall statistics, in a format that is compatible with EMMA11. This com-
patibility allows to use Bisect output in tools that provide support for EMMA, notably giving an
easy way to use Bisect with continuous integration servers like Hudson.

EMMA defines only four categories for coverage: classes, methods, blocks, and lines. Bisect defining
more point kinds, the following mapping is used:

• class expressions, class initializers, and class values are merged into the class category;

• class methods are mapped to the method category;

• let bindings, sequence, for loops, if/then constructs, try/with constructs, while loops, match/function
constructs, andlazy operators are merged into the block category;

11EMMA is a code coverage tool for Java - http://emma.sourceforge.net/

9

http://emma.sourceforge.net/

Code sample 8 Text file format.

Summary:
- ’binding’ points: 3/3 (100.00 %)
- ’sequence’ points: 5/5 (100.00 %)
- ’for’ points: 1/1 (100.00 %)
- ’if/then’ points: none
- ’try’ points: none
- ’while’ points: none
- ’match/function’ points: 2/2 (100.00 %)
- ’class expression’ points: none
- ’class initializer’ points: none
- ’class method’ points: none
- ’class value’ points: none
- ’toplevel expression’ points: none
- ’lazy operator’ points: 2/2 (100.00 %)
- total: 13/13 (100.00 %)
File ’source.ml’:
- ’binding’ points: 3/3 (100.00 %)
- ’sequence’ points: 5/5 (100.00 %)
- ’for’ points: 1/1 (100.00 %)
- ’if/then’ points: none
- ’try’ points: none
- ’while’ points: none
- ’match/function’ points: 2/2 (100.00 %)
- ’class expression’ points: none
- ’class initializer’ points: none
- ’class method’ points: none
- ’class value’ points: none
- ’toplevel expression’ points: none
- ’lazy operator’ points: 2/2 (100.00 %)
- total: 13/13 (100.00 %)

Code sample 9 DTD for produced XML files.

<!ELEMENT bisect-report (summary,file*)>

<!ELEMENT file (summary,point*)>
<!ATTLIST file path CDATA #REQUIRED>

<!ELEMENT summary (element*)>

<!ELEMENT element EMPTY>
<!ATTLIST element kind CDATA #REQUIRED>
<!ATTLIST element count CDATA #REQUIRED>
<!ATTLIST element total CDATA #REQUIRED>

<!ELEMENT point EMPTY>
<!ATTLIST point offset CDATA #REQUIRED>
<!ATTLIST point count CDATA #REQUIRED>
<!ATTLIST point kind CDATA #REQUIRED>

10

Code sample 10 XML file format.

<?xml version="1.0" encoding="iso-8859-1"?>
<bisect-report>
<summary>
<element kind="binding" count="1" total="1"/>
<element kind="sequence" count="0" total="0"/>
<element kind="for" count="0" total="0"/>
<element kind="if/then" count="0" total="0"/>
<element kind="try" count="0" total="0"/>
<element kind="while" count="0" total="0"/>
<element kind="match/function" count="0" total="0"/>
<element kind="class expression" count="0" total="0"/>
<element kind="class initializer" count="0" total="0"/>
<element kind="class method" count="0" total="0"/>
<element kind="class value" count="0" total="0"/>
<element kind="toplevel expression" count="0" total="0"/>
<element kind="lazy operator" count="0" total="0"/>
<element kind="total" count="1" total="1"/>

</summary>
<file path="source.ml">
<summary>
<element kind="binding" count="1" total="1"/>
<element kind="sequence" count="0" total="0"/>
<element kind="for" count="0" total="0"/>
<element kind="if/then" count="0" total="0"/>
<element kind="try" count="0" total="0"/>
<element kind="while" count="0" total="0"/>
<element kind="match/function" count="0" total="0"/>
<element kind="class expression" count="0" total="0"/>
<element kind="class initializer" count="0" total="0"/>
<element kind="class method" count="0" total="0"/>
<element kind="class value" count="0" total="0"/>
<element kind="toplevel expression" count="0" total="0"/>
<element kind="lazy operator" count="0" total="0"/>
<element kind="total" count="1" total="1"/>

</summary>
<point offset="11" count="1" kind="binding"/>

</file>
</bisect-report>

11

• top level expressions are mapped to the line category.

Another point should be noted regarding this output mode: for all the categories, any 0/0 value is
replaced by a 1/1 value. This replacement is justified by the fact that 0/0 results in 0% while 1/1
results in 100%, and one would not want to have a build failure in Hudson due to low coverage.
Listing 11 shows an EMMA-compatible xml output.

Code sample 11 XML EMMA file format.

<?xml version="1.0" encoding="iso-8859-1"?>
<report>
<stats>
<packages value="1"/>
<classes value="1"/>
<methods value="1"/>
<srcfiles value="1"/>
<srclines value="1"/>

</stats>
<data>
<all name="all classes">
<coverage type="class, %" value="100% (1/1)"/>
<coverage type="method, %" value="100% (1/1)"/>
<coverage type="block, %" value="100% (1/1)"/>
<coverage type="line, %" value="100% (1/1)"/>

</all>
</data>

</report>

12

