
A User’s Guide for LattE integrale v1.5

(Linux Release) ∗

Jesús A. De Loera Brandon Dutra Matthias Köppe

Stanislav Moreinis Gregory Pinto Jianqiu Wu

July 2011

∗Research supported by NSF grants DMS-0309694, NSF grants DMS-0073815, DMS-

0914107 and DMS-0914873. Most of the students were supported by those grants and by

summer fellowships provided through the UC Davis VIGRE grants DMS-0135345 and DMS-

0636297. c� Department of Mathematics, University of California, Davis, 2011. This software

is released under the GNU license agreement

1

Contents

1 Introduction 4

1.1 What is LattE? . 4

1.1.1 Counting lattice points: Barvinok’s Rational Functions . 4

1.1.2 Integration . 5

1.2 What can LattE compute? . 6

2 Input Files 7

2.1 LattE h-representation . 7

2.1.1 Inequality Description . 7

2.1.2 Equality Constraints . 8

2.1.3 Nonnegativity Constraints 8

2.1.4 Cost Vector . 9

2.2 LattE v-representation . 9

2.3 CDD Input Files . 10

2.4 Non-full dimensional polytopes 11

2.5 LattE vs. CDD file formats . 11

2.6 Polynomials and linear forms . 11

3 Running LattE 12

3.1 How to use count . 12

3.2 How to use integrate . 15

3.3 Options common to both count and integrate 16

3.4 Optimization . 17

4 Downloading and Installing LattE 17

2

5 A Brief Tutorial 17

5.1 Counting Magic Squares . 17

5.2 Counting Lattice Points in the 24-Cell 20

5.3 Integrating over a polytope . 22

5.4 Example of Optimization with LattE 24

6 Release Information 25

6.1 System Requirements . 25

6.1.1 Platform . 25

6.1.2 Memory Requirements . 25

6.2 Additional Maple Connection . 26

6.3 File Descriptions . 26

6.4 License Agreement . 27

6.5 How to Cite LattE . 27

6.6 The LattE Team . 27

6.7 Acknowledgments . 28

7 The GNU General Public License 29

3

1 Introduction

1.1 What is LattE?

The name “LattE” is an abbreviation for “Lattice point Enumeration.” LattE

was developed in 2001 to count lattice points contained in convex polyhedra
defined by linear equations and inequalities with integer coefficients. The poly-
hedra can be of any (reasonably small) dimension. In 2007, LattE macchiato

was released and contained many algorithmic improvements. The newest edi-
tion, LattE integrale, developed in 2010 can compute integrals of polynomials
and volumes of rational polytopes. All these algorithms run in polynomial time
for fixed dimension. To learn more about the exact details of our implementa-
tion for lattice point enumeration, the interested reader can consult [7, 9] and
the references listed therein. For learning the algorithmic details of integration,
see [2, 8]. Here we give a rather short description of the mathematical objects
used by LattE. Note that all our computations are done over the integers or the
rationals exactly. LattE cannot compute with floating-point numbers.

1.1.1 Counting lattice points: Barvinok’s Rational Functions

Given a convex polyhedron P = {u ∈ R
d : Au ≤ b}, where A and b are integral,

the fundamental object that we compute is a short representation of the infinite
power series:

f(P ;x) =
�

α∈P∩Zd

xα1

1 xα2

2 . . . xαd

d .

Here each lattice point is given by one monomial. Note that this can be a rather
long sum, in fact for a polyhedral cone it can be infinite, but the good news is
that it admits short representations.

Example: Let P be the quadrangle with vertices V1 = (0, 0), V2 = (5, 0),
V3 = (4, 2), and V4 = (0, 2), see Figure 1.

f(P ;x, y) = x5+x4y+x4+x4y2+yx3+x3+x3y2+yx2+x2+x2y2+xy+x+xy2+y+1+y2

The fundamental theorem of Barvinok (circa 1993, see [3]) says that you can
write f(P ;x) as a sum of short rational functions, in polynomial time when the
dimension of the polyhedron is fixed. In our running example we easily see that
the 16 monomial polynomial can be written as shorter rational function sum:

f(P ;x, y) = f(KV1
;x, y) + f(KV2

;x, y) + f(KV3
;x, y) + f(KV4

;x, y)

where

f(KV1
;x, y) = 1

(1−x)(1−y) f(KV2
;x, y) = (x5+x4y)

(1−x−1)(1−y2x−1)

f(KV3
;x, y) = (x4y2+x4)

(1−x−1)(1−xy−2) f(KV4
;x, y) = y2

(1−y−1)(1−x)

4

Figure 1: Quadrangle with vertices V1 = (0, 0), V2 = (5, 0), V3 = (4, 2), and
V4 = (0, 2).

f(P ; 1, 1) = 16

Counting the lattice points in convex polyhedra is a powerful tool which allows
many applications in areas such as Combinatorics, Statistics, Optimization, and
Number Theory.

Fore details of how the computations are done, see [7, 9] .

1.1.2 Integration

LattE integrale has two different integration algorithms for integrating a ra-
tional polynomial p ∈ R[x1, . . . , xd] over a d dimensional rational polytope. The
first one, called the triangulation method, triangulates the polytope into sim-
plices and integrates over each simplex. The other method, called the cone
decomposition method, integrates over each tangent cone of the polytope. In
order to do this, each tangent cone is triangulated into simple cones. This is the
main trade off between the two integration algorithms: you can do one (possibly)
large triangulation, or (possibly) many small tangent cone triangulations.

We decompose polynomials into finite sums of powers of linear forms because
integrating powers of linear forms can be done in polynomial time [2]. A de-
composition of a polynomial as a sum of powers of linear forms is known as the
polynomial Waring problem.

5

See [8] for a detailed explanation on why the next example gives the correct
integral.

As an example, let us integrate the polynomial x1 + x2 over the unit square
with vertices (0, 0), (1, 0), (0, 1) and (1, 1). The polynomial is already a power
of a linear form so let � = (1, 1). To integrate

�
(x1 + x2)

Mdx over the square,
we need to compute

M !

(M + d)!
| det(u1, . . . , ud)|

(��, s�)M+d

�d

i=1�−�, ui�

at each vertex s where the ui are the rays from the tangent cone at s, and d is
the dimension of the polytope.

Vertex s1 = (0, 0): Because ��, s1�
1+2 = 0 the valuation on this cone is zero.

Vertex s2 = (1, 1):

M !

(M + d)!
| det(u1, . . . , ud)|

(2)1+2

(−1)(−1)
=

1!

(1 + 2)!
× 1× 8 = 4/3

Vertex s3 = (1, 0):

M !

(M + d)!
| det(u1, . . . , ud)|

(1)1+2

(1)(−1)
=

1!

(1 + 2)!
× 1×−1 = −1/6

Vertex s4 = (0, 1) :

M !

(M + d)!
| det(u1, . . . , ud)|

(1)1+2

(1)(−1)
=

1!

(1 + 2)!
× 1×−1 = −1/6

The integral
� x1=1

x1=0

� x2=1

x2=0
x1+x2 dx1 dx2 = 0+4/3− 1/6− 1/6 = 1 as it should

be.

1.2 What can LattE compute?

LattE contains three key executables:

count counts lattice points, computes Ehrhart polynomials and Ehrhart series
of polytopes. This executable has replaced ehrhart, but ehrhart is still
included for backwards compatibility.

integrate integrates polynomials over polytopes.

max/minimize perform linear integer optimization.

The other executables in latte are drivers, converters, and other small utility
function described in Section 6.3.

6

2 Input Files

A polytope can be defined from a list of vertices (a v-representation) or a list
of hyperplane inequalities (h-representation) and so LattE can start from either
representation in different formats. Here are four common file formats:

1. LattE style vertex file

2. LattE style hyperplane file

3. CDD style vertex file

4. CDD style hyperplane file

Users of Polymake will notice that Polymake’s facets and vertices are printed in
a format that is easily converted to a LattE style h- or v-representation.

We now explore the file syntax of each.

2.1 LattE h-representation

2.1.1 Inequality Description

Let P be a polytope described by a system of inequalities Ax ≤ b, where A ∈
Z
m×d, A = (aij), and b ∈ Z

m. Note that any hyperplane representation with
rational coefficients can be brought into this form; for example x+ 1/2y ≤ 5/9
should be written as 18x+ 9y ≤ 10. With P = {x : Ax ≤ b}, the input file is;

m d+1

b -A

Example: Let P = {(x, y) : x ≤ 1, y ≤ 1, x+ y ≤ 1, x ≥ 0, y ≥ 0}. Thus

A =









1 0
0 1
1 1

−1 0
0 −1









, b =









1
1
1
0
0









and the LattE input file would be

5 3

1 -1 0

1 0 -1

1 -1 -1

0 1 0

0 0 1

7

2.1.2 Equality Constraints

By default, a constraint is an inequality of type aTx ≤ b. But to input an
equality constraint aTx = b we need to add a keyword.

Example: Let P be as in the previous example, but require x+ y = 1 instead
of x+ y ≤ 1, thus, P = {(x, y) : x ≤ 1, y ≤ 1, x+ y = 1, x ≥ 0, y ≥ 0}. Then the
LattE input file that describes P would be as such:

5 3

1 -1 0

1 0 -1

1 -1 -1

0 1 0

0 0 1

linearity 1 3

The last line states that among the 5 inequalities one is to be considered an
equality, the third one.

In general, the linearity syntax is :

linearity <number of equations> <row index of constraint, start counting from 1>

2.1.3 Nonnegativity Constraints

For bigger examples it quickly becomes cumbersome to state all nonnegativity
constraints for the variables one by one. Instead, you may use another short-
hand.

Example: Let P be as in the previous example, then the LattE input file that
describes P could also be described as such:

3 3

1 -1 0

1 0 -1

1 -1 -1

linearity 1 3

nonnegative 2 1 2

The last line states that there are two nonnegativity constraints and that the
first and second variables are required to be nonnegative. NOTE that the first
line reads “3 3” and not “5 3” as above!

In general, the nonnegative syntax is :

nonnegative <number of variables in list> <variable index, start counting from 1>

8

2.1.4 Cost Vector

The functions maximize and minimize solve the integer linear programs

max{c�x : x ∈ P ∩ Z
d}

and
min{c�x : x ∈ P ∩ Z

d}.

Besides a description of the polyhedron P , these functions need a linear objective
function given by a certain cost vector c ∈ Z

d, where the input style is very
similar to a LattE h-representation file.

Example: If the polyhedron is given in the file “fileName”

4 4

1 -1 0 0

1 0 -1 0

1 0 0 -1

1 -1 -1 -1

linearity 1 4

nonnegative 3 1 2 3

the cost vector must be given in the file “fileName.cost”, as for example in the
following three-dimensional problem:

1 3

2 4 7

The first two entries state the size of a 1× n matrix (encoding the cost vector),
followed by the 1×n matrix itself. Assuming that we call maximize, this whole
data encodes the integer program

max{2x1 + 4x2 + 7x3 : x1 + x2 + x3 = 1, x1, x2, x3 ∈ {0, 1}}.

2.2 LattE v-representation

LattE can start from a homogenized v-representation of the polytope. To ho-
mogenize a vertex, simply add an leading 1 to the vertex. This has the effect
of lifting the polytope to a cone in one dimension higher such that the original
polytope can be extracted by intersecting the cone with the x1 = 1 plane. For
example, take a triangle in the plane, then Figure 2 shows the resulting cone.

Let v1, . . . , vk be the vertices of a polytope P ⊆ R
n, then the LattE v-representation

file format is:

9

Figure 2: Homogenized triangule.

k (n+ 1)

1 v1

...

1 vk

Example: Note, like LattE h-representations files, a rational-vertex polytope
with can be written with integer data by scaling each homogenized vertex. Below
are the vertices of a rectangle (0, 0), (2/3, 0), (0, 1/4), (2/3, 1/4):

4 3

1 0 0

3 2 0

4 0 1

12 8 3

2.3 CDD Input Files

In addition to the formats described above, LattE can also accept input files in
standard CDD format. Below is an example of CDD input that is readable into
LattE.

10

H-representation

begin

4 4 integer

2 -2 4 -1

3 -2 -2 3

6 2 -4 -3

1 2 2 1

end

For a complete description of CDD file syntax, see the CDD manual [6].

2.4 Non-full dimensional polytopes

When the input polytope is not full dimensional, LattE projects that polytope
such that it becomes full dimensional. This transformation preserves the lattice
count and volume of the input polytope. The current LattE integrale cannot
integrate non-full dimensional polytopes.

2.5 LattE vs. CDD file formats

There are a few key differences between LattE and CDD file formats.

1. CDD used the file extension *.ine for h-representation files, and *.ext for
v-representation files. However, LattE makes no assumption on the file
extensions of files. We recommend *.vrep.latte and *.hrep.latte for LattE
style files, but you are free to name your files anything.

2. CDD also requires “H-representation” or “V-representation” keywords in
the file. Forgetting about the “linearity” and “nonnegative” keywords,
there is no difference between a LattE v- and h-representation file.

2.6 Polynomials and linear forms

LattE integrale can also integrate polynomials and in particular sums of pow-
ers of linear forms. Powers of linear forms are the fundamental structure used
to integrate. Next, we describe the syntax of polynomials and linear forms

• A polynomial is represented as a list of its monomials in the form

[monomial1,monomial2,. . .],

where monomiali is represented by

[coefficient,[exponent-vector]].

11

For example, 3x2
0x

4
1x

6
2+7x3

1x
5
2 is input as [[3,[2,4,6]], [7,[0,3,5]]].

• To deal directly with sums of powers of linear forms, a fundamental data
structure in LattE integrale, the input format is

[linear-term1, linear-term2, . . .],

where linear-termi is represented by

[coefficient,[power,[coefficient-vector]]].

For example, 3(2x0+4x1+6x2)
10+7(3x1+5x2)

12 is input as [[3,[10,[2,4,6]]],
[7,[12,[0,3,5]]]].

The reason this is useful is because any polynomial can be written as a
sum of powers of linear forms, see [2].

3 Running LattE

3.1 How to use count

count has a nice help menu, to view it, run

./count --help

The following options control what count computes.

• Count the number of lattice points in polytope P , where P is given in a
file named “fileName.hrep.latte” in different file formats.

./count fileName.hrep.latte

./count --vrep fileName.vrep.latte

./count --cdd fileName.ine

• Count the number of lattice points in nP , the dilation of P by the integer
factor n.

./count --dilation=n fileName.hrep.latte

• Use the homogenized Barvinok algorithm [5] to count the number of lattice
points in the polytope P . Use if number of vertices of P is big compared
to the number of constraints.

./count --homog fileName.hrep.latte

• Compute the number of lattice points (default)

12

./count --count-lattice-points fileName.hrep.latte

• Compute the multivariate generating function of the set of lattice points
of the polyhedron

./count --multivariate-generating-function fileName.hrep.latte

For unbounded polyhedra, one needs to combine this with --compute-vertex-cones=4ti2,
as other methods in LattE currently refuse to handle unbounded polyhe-
dra. For example,

count --compute-vertex-cones=4ti2 --multivariate-generating-function fileName

writes the multivariate generating function (in Maple notation) to “file-
Name.rat.”

• Compute the Ehrhart polynomial of an integral polytope

./count --ehrhart-polynomial fileName.hrep.latte

• Compute the unsimplified Ehrhart series as a univariate rational function

./count --ehrhart-series fileName.hrep.latte

• Compute the simplified Ehrhart series as a univariate rational function
(needs Maple).

./count --simplified-ehrhart-series fileName.hrep.latte

• Compute the first N terms of the Ehrhart series

./count --ehrhart-taylor=N fileName.hrep.latte

The following options relate to the Barvinok algorithm and where introduced
by Matthias Köppe in LattE macchiato, see [7].

• Triangulate and signed-decompose in the dual space (traditional method,
default)

./count --dual fileName.hrep.latte

• Triangulate in the dual space, signed-decompose in the primal space using
irrationalization

./count --irrational-primal fileName.hrep.latte

• Triangulate and signed-decompose in the primal space using irrationaliza-
tion

13

./count --irrational-all-primal fileName.hrep.latte

This gives a new method for computing Ehrhart polynomials of integral
polytopes in the primal space

./count --all-primal --ehrhart-polynomial fileName.hrep.latte

• Decompose cones down to an index (determinant) of N instead down to
unimodular cones (which have an index of 1).

./count --maxdet=N fileName.hrep.latte

• Do not signed-decompose simplicial cones

./count --no-decomposition fileName.hrep.latte

• Use polynomial substitution for specialization (traditional method, de-
fault)

./count --polynomial fileName.hrep.latte

• Use exponential substitution for specialization (recommended for maxdet
larger than 1)

./count --exponential fileName.hrep.latte

REMARK The functionality of the LattE v1.2 ehrhart command has been
merged into count:

count --ehrhart-series FILENAME

(replaces: ehrhart FILENAME)

count --simplified-ehrhart-series FILENAME

(replaces: ehrhart simplify FILENAME)

count --ehrhart-taylor=N FILENAME

(replaces: ehrhart N FILENAME)

The ehrhart program is still available, but it does not accept the new command-
line options of count.

14

3.2 How to use integrate

Like count, integrate has a help menu. To view the menu, run

./integrate --help

There are two different integration (and volume) algorithms. The triangulation
method triangulates the entire polytope and integrates over each simplex. In the
cone decomposition method we integrate over each cone, possibly triangulating
it first. Unlike other integration software, LattE integrates polynomials and
powers of linear forms in exact arithmetic.

• Integrates using the cone-decomposition method.

--cone-decompose

• Integrates using the triangulation method.

--triangulate

• Sets what you want to compute: a volume or an integral.

--valuation=integrate

--valuation=volume

• Prints the cone-decomposition rational function for volumes

--valuation=volume --cone-decompose --print-cone-decompose-function

• Sets the file that contains the polynomial or powers of linear forms. If
this option is not set, and the valuation is integration, the polynomial or
powers of linear forms will be read from stdin.

--monomials=FILE

--linear-forms=FILE

Example: Let us view a few examples of the above options

• Integrates a polynomial in file “FILE” using the triangulation method.

./integrate --valuation=integral --triangulate --monomials=FILE fileName.hrep.latte

• Find a volume using the cone decomposition method from a LattE v-
representation file.

15

./integrate --valuation=volume --cone-decompose --vrep fileName.vrep.latte

• If an integration method is not given, LattE integrale computes the
integral with both methods. This cal also be done by the --all option.
The next two commands do the same thing: find a volume using both
methods from a LattE v-representation file.

./integrate --valuation=volume --vrep fileName.vrep.latte

./integrate --valuation=volume --all --vrep fileName.vrep.latte

3.3 Options common to both count and integrate

A common subproblem in counting lattice points and integration requires finding
triangulations and tangent cones. Also, there are many different software tools
available to do this. Instead of reinventing the wheel, LattE links with other
software tools to compute these basic objects. In this section, we describe how
you can control which software tool is used.

• The 4ti2 program can be used instead of cddlib and CDD+ to compute
the vertex cones of polytopes, triangulations, and duals of cones. In many
cases, 4ti2 is faster.

--compute-vertex-cones={cdd,4ti2}

--triangulation={cddlib,4ti2}

--dualization={cdd,4ti2}

• By default, LattE assumes the h-representation may contain redundant
hyperplanes and tries to find and remove them. You can control how
much more LattE should spend checking the input h-representation with
the following option.

--redundancy-check={none,cddlib,full-cddlib}.

– “full-cddlib” (the default) uses cddlib to compute an irredundant sys-
tem of linear equations and inequalities describing the polyhedron.
This corresponds to the traditional LattE behavior; it can be expen-
sive.

– “cddlib” (used to be the default in the 1.2+mk-0.9.x series) uses
cddlib to compute some implicit linearities only; it often fails but is
faster than full-cddlib.

– “none” does nothing, the input description of the polytope should be
irredundant.

16

3.4 Optimization

LattE can also optimize over the integer points of a polytope. However, this
part of the software is not as stable as the rest of the code. The optimization
executables require a cost vector specified in “fileName.cost” if the polytope
file is named “fileName.”

• Maximizes/Minimizes a given linear cost function over the lattice points
in the polytope. The Digging algorithm [5] is used. Optimal point and
optimal value is returned.

./latte-maximize fileName

./latte-minimize fileName

• Maximizes/Minimizes a given linear cost function over the lattice points
in the polytope. The Binary search algorithm is used. Only optimal value
is returned.

./latte-maximize bbs fileName

./latte-minimize bbs fileName

4 Downloading and Installing LattE

LattE is downloadable from the following website:

http://www.math.ucdavis.edu/∼latte/

LattE uses the GNU Autoconf and Automake tools. Please see the README file
in the LattE directory for detailed directions for installing LattE.

5 A Brief Tutorial

In this section we invite the reader to follow along a few examples that show
how to use LattE and also how to counter-check results.

5.1 Counting Magic Squares

Our first example deals with counting magic 4 × 4 squares. We call a 4 × 4
array of nonnegative numbers a magic square if the sums of the 4 entries along
each row, along each column and along the two main diagonals equals the same
number s, the magic constant. Let us start with counting magic 4 × 4 squares
that have the magic constant 1. Associating variables x1, . . . , x16 with the 16
entries, the conditions of a magic 4 × 4 square of magic sum 1 can be encoded
into the following input file “EXAMPLES/magic4x4” for LattE.

17

10 17

1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1

1 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0

1 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0

1 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0

1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1

1 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1

1 0 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 0

linearity 10 1 2 3 4 5 6 7 8 9 10

nonnegative 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Now we simply invoke the counting function of LattE by typing:

./count EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen look as follows:

Total Unimodular Cones: 418

Maximum number of simplicial cones in memory at once: 27

***** Total number of lattice points: 8 ****

Computation done.

Time: 1.24219 sec

Therefore, there are exactly 8 magic 4×4 squares that have the magic constant
1. This is not yet impressive, as we could have done that by hand. Therefore,
let us try and find the corresponding number for the magic constant 12. Since
this problem is a dilation (by factor 12) of the original problem, we do not have
to create a new file. Instead, we use the option “dilation” to indicate that we
want to count the number of lattice points of a dilation of the given polytope:

./count --dilation=12 EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen look as follows:

Total Unimodular Cones: 418

Maximum number of simplicial cones in memory at once: 27

***** Total number of lattice points: 225351 ****

Computation done.

Time: 1.22656 sec

18

Therefore, there are exactly 225351 magic 4 × 4 squares that have the magic
constant 12. (We would NOT want to do THAT one by hand, would we?!)

Here is some amazing observation: the running time of LattE is roughly the
same for counting magic squares of sum 1 and of sum 12. This phenomenon
is due to the fact that the main part of the computation, the creation of the
generating function that encodes all lattice points in the polytope, is nearly
identical in both cases.

Although we may be already happy with these simple counting results, let us
be a bit more ambitious and and let us find a counting formula that, for given
magic sum s, returns the number of magic 4 × 4 squares that have the magic
constant s.

For this, simply type (note that LattE invokes Maple to simplify intermediate
expressions):

./count --simplified-ehrhart-series EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen looks as follows:

Rational function written to EXAMPLES/magic4x4.rat

Computation done.

Time: 0.724609 sec

We are informed that this call created a file “EXAMPLES/magic4x4.rat” con-
taining the Ehrhart series as a rational function:

(t^8+4*t^7+18*t^6+36*t^5+50*t^4+36*t^3+18*t^2+4*t+1)/(-1+t)^4/(-1+t^2)^4

Now we could use Maple (or your favorite computer algebra software) to find a
series expansion of this expression.

t8 + 4 ∗ t7 + 18 ∗ t6 + 36 ∗ t5 + 50 ∗ t4 + 36 ∗ t3 + 18 ∗ t2 + 4 ∗ t+ 1

(−1 + t)4(−1 + t2)4

= 1 + 8t1 + 48t2 + 200t3 + 675t4 + 1904t5 + 4736t6 + 10608t7 + 21925t8 +

42328t9 + 77328t10 + 134680t11 + 225351t12 + 364000t13 + 570368t14 +

869856t15 +O(t16)

The summands 8t and 225351t12 reconfirm our previous counts.

Although this rational function encodes the full Ehrhart series, it is not always
as easy to compute as for magic 4 × 4 squares. As it turns out, adding and
simplifying rational functions, although in just one variable t, can be extremely

19

costly due to the high powers in t and due to long integer coefficients that
appear.

However, even if we cannot compute the full Ehrhart series, we can at least try
and find the first couple of terms of it.

./count --ehrhart-taylor=15 EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen look as follows:

Memory Save Mode: Taylor Expansion:

1

8t^1

48t^2

200t^3

675t^4

1904t^5

4736t^6

10608t^7

21925t^8

42328t^9

77328t^10

134680t^11

225351t^12

364000t^13

570368t^14

869856t^15

Computation done.

Time: 1.83789 sec

Again, our previous counts are reconfirmed.

Nice, but the more terms we want to compute the more time-consuming this task
becomes. Clearly, if we could find sufficiently many terms, we could compute
the full Ehrhart series expansion in terms of a rational function by interpolation.

5.2 Counting Lattice Points in the 24-Cell

Our next example deals with a well-known combinatorial object, the 24-cell. Its
description is given in the file “EXAMPLES/24 cell”:

24 5

2 -1 1 -1 -1

1 0 0 -1 0

2 -1 1 -1 1

20

2 -1 1 1 1

1 0 0 0 1

1 0 1 0 0

2 1 -1 1 -1

2 1 1 -1 1

2 1 1 1 1

1 1 0 0 0

2 1 1 1 -1

2 1 1 -1 -1

2 1 -1 1 1

2 1 -1 -1 1

2 1 -1 -1 -1

1 0 0 1 0

2 -1 1 1 -1

1 0 0 0 -1

2 -1 -1 1 -1

1 0 -1 0 0

2 -1 -1 1 1

2 -1 -1 -1 1

2 -1 -1 -1 -1

1 -1 0 0 0

Now we invoke the counting function of LattE by typing:

./count EXAMPLES/24_cell

The last couple of lines that LattE prints to the screen look as follows:

Total Unimodular Cones: 240

Maximum number of simplicial cones in memory at once: 30

***** Total number of lattice points: 33 ****

Computation done.

Time: 0.429686 sec

Therefore, there are exactly 33 lattice points in the 24-cell. We get the same
result by using the homogenized Barvinok algorithm:

./count --homog EXAMPLES/24_cell

The last couple of lines that LattE prints to the screen look as follows:

Memory Save Mode: Taylor Expansion:

21

**** Total number of lattice points is: 33 ****

Computation done.

Time: 0.957031 sec

5.3 Integrating over a polytope

Let us integrate the polynomial w2x2y4z8 − 3/8x2 and the power of a linear
form 3(w + 2x+ 4y + 6z)10 over the 24-cell.

Create a file named “even.polynomial” that has on its first line the polynomial.
See Section 2.6 for a review of the syntax.

[[1,[2,2,4,8]], [-3/8,[0,2,0,0]]]

After running the integration command using the triangulation method

./integrate --valuation=integrate --triangulate --monomials=even.polynomial 24_cell

we see that the two monomials where decomposed into 406 powers of linear
forms and the answer is

starting to integrate 406 linear forms.

Integration (using the triangulation method)

Answer: -110535307/170059500

Decimal: -0.64998019516698567266162725399052

Time: 1.92 sec

Computational time (algorithms + processing + program control)

Total time: 2.00 sec

Now create a new file named “power10.linearforms” that has in its first line the
power of a linear form:

[[3,[10,[1,2,4,6]]]]

Then integrate this power of a linear form over the 24 cell using the cone de-
composition method with the following command:

./integrate --cone-decompose --linear-forms=power10.linearforms 24_cell

We see the answer is computed very quickly.

22

Integration (using the cone decomposition method)

Answer: 59555515086/77

Decimal: 773448247.87012987012987012987013

Time: 0.02 sec

Computational time (algorithms + processing + program control)

Total time: 0.07 sec

Figure 3: The truncated cube.

For the next example, consider the truncated cube in Figure 3

The vertices are

24 4

1 3 1 1

1 3 1 -1

1 3 -1 1

1 3 -1 -1

1 -3 1 1

1 -3 1 -1

1 -3 -1 1

1 -3 -1 -1

1 1 3 1

1 1 3 -1

1 1 -3 1

1 1 -3 -1

1 -1 3 1

1 -1 3 -1

1 -1 -3 1

1 -1 -3 -1

1 1 1 3

1 1 1 -3

1 1 -1 3

1 1 -1 -3

1 -1 1 3

1 -1 1 -3

1 -1 -1 3

23

1 -1 -1 -3

This time, let us enter the polynomial x40y40z40 from stdin, which will be de-
composed into 68, 920 powers of linear forms. Run

./integrate --cone-decompose --triangulation=4ti2 --vrep truncatedCube.vrep.latte

and type

p [[1,[40,40,40]]]

We see the exact answer is

93991283632941965714919247928639002510318209692293688827363993265109276641003769553256

2795239135836124463932439643671211584534957465679791608181565

This answer displays the power of using exact rational arithmetic!

5.4 Example of Optimization with LattE

Next, let us solve the problem “cuww1” [4, 5]. Its description is given in the file
“EXAMPLES/cuww1”:

1 6

89643482 -12223 -12224 -36674 -61119 -85569

linearity 1 1

nonnegative 5 1 2 3 4 5

The cost function can be found in the file “EXAMPLES/cuww1.cost”:

1 5

213 -1928 -11111 -2345 9123

Now let us maximize this cost function over the given knapsack polytope. Note
that by default, the digging algorithm as described in [5] is used.

./latte-maximize EXAMPLES/cuww1

The last couple of lines that LattE prints to the screen look as follows:

24

Finished computing a rational function.

Time: 0.158203 sec.

There is one optimal solution.

No digging.

An optimal solution for [213 -1928 -11111 -2345 9123] is: [7334 0 0 0 0].

The projected down opt value is: 191928257104

The optimal value is: 1562142.

The gap is: 7995261.806

Computation done.

Time: 0.203124 sec.

The solution (7334, 0, 0, 0, 0) is quickly found. Now let us try to find the optimal
value again by a different algorithm, the binary search algorithm.

./latte-maximize bbs EXAMPLES/cuww1

The last couple of lines that LattE prints to the screen look as follows:

Total of Iterations: 26

The total number of unimodular cones: 125562

The optimal value: 1562142

The number of optimal solutions: 1

Time: 0.042968

Note that we get the same optimal value, but no optimal solution is provided.

6 Release Information

6.1 System Requirements

6.1.1 Platform

The binaries for LattE v1.1 as well as for cdd (by K. Fukuda [6]) are for platforms
that run Unix, that is, Mac and Linux.

6.1.2 Memory Requirements

The memory requirements are essentially problem dependent; however, LattE
count runs in a “memory saving mode” whenever appropriate. In this mode
count rarely uses more than around 20 MB beyond the amount of memory
needed to calculate triangulations.

25

6.2 Additional Maple Connection

The call

./count --simplified-ehrhart-series fileName

requires Maple for simplifications of expressions. It should be sufficient to have
a copy of Maple installed on your machine, without any additional special con-
figuration required. LattE will still run even if Maple is not installed, but this
simplification feature to “count” will not be available.

We have tested this connection with Maple 5.1, 8.0, and 14.0 and experienced
no problem. Please let us know about any problem you experience with our
connection to Maple.

6.3 File Descriptions

The LattE Linux release consists a single archive file, latte v1.*.tar.gz. The
archive contains the following files:

Name Description

count Main program executables
ehrhart
latte-maximize
latte-minimize
integrate

simplify2.add additional files used by LattE

redcheck (← modified from cdd library)
install

cdd external cdd software executable used by LattE,
original name in cdd: cddr+ gmp

EXAMPLES/ Subdirectory containing sample input files

manual.pdf User’s guide

code/ LattE source code (including NTL, cdd and cdd lib)

gpl.txt GNU General Public License agreement

26

6.4 License Agreement

This program is free software; you can redistribute it and/or modify it under
the terms of the version 2 of GNU General Public License as published by the
Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. (The careful user can find an install script for
the source code in the directory “code/”.)

You should have received a copy of the GNU General Public License along
with this program; see the file COPYING. If not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

We have included a copy of the GNU General Public License also at the end of
this document.

6.5 How to Cite LattE

Although LattE is free software, your acknowledgment is requested. If LattE is
useful in your research or applications please acknowledge it by referencing this
manual as

De Loera, J.A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Wu, J.
A User’s Guide for LattE integrale v1.5, 2011, software package LattE is
available at http://www.math.ucdavis.edu/∼latte/

6.6 The LattE Team

Project directors Prof. Jesús A. De Loera and Prof. Matthias Köppe

Students currently working on the project Brandon Dutra

Distinguished LattE Scientists, Collaborators and Advisors

• Dr. Raymond Hemmecke (LattE v1.2)

• Prof. Ruriko Yoshida (LattE v1.2)

• Dr. David Haws (LattE v1.2)

• Dr. Peter Huggins (LattE v1.2)

• Prof. Tyrrell McAllister

• Prof. Velleda Baldoni

• Prof. Nicole Berline

27

• Prof. Michele Vergne

• Prof. Alexander Barvinok

• Prof. Bernd Sturmfels

Alumni of the project

• Gregory Pinto (LattE integrale)

• Stanislav Moreinis (LattE integrale)

• Jianqiu Wu (LattE integrale)

• Jeremy Tauzer (LattE v1.2)

• Jonathan Brooks (LattE v1.2)

• Carol Shih (LattE v1.2)

• Esteban Pauli (LattE v1.2)

• Mike Zhang (LattE v1.2)

6.7 Acknowledgments

LattE currently uses many wonderful pieces of software. First is cdd [6], devel-
oped by Komei Fukuda, whose webpage can be found at:

http://www.cs.mcgill.ca/∼fukuda/

Next, LattE uses 4ti2 [1] whose webpage can be found at:

http://www.4ti2.de

cdd and 4ti2 is used for finding vertices of polytopes and the triangulation of
cones.

In addition, LattE currently uses NTL, a Library for doing Number Theory,
written by Victor Shoup [10], for LLL algorithm, matrix manipulations, storing
variable length integers, and floating point numbers. NTL can be found at:

http://shoup.net/ntl/

We are truly grateful to Velleda Baldoni, Alexander Barvinok, Nicole Berline,
Komei Fukuda, Tyrrell McAllister, Dmitrii Pasechnik, Michele Vergne, and
Bernd Sturmfels for several suggestions and useful conversations that improved
our software. We thank the National Science Foundation for support to this
project via NSF grants DMS-0309694, DMS-0073815, DMS-0914107 and DMS-
0914873. Most of the students were supported by those grants and by summer
fellowships provided through the UC Davis VIGRE grants DMS-0135345 and
DMS-0636297.

28

References

[1] 4ti2 team, 4ti2—a software package for algebraic, geometric and combina-
torial problems on linear spaces, Available at www.4ti2.de.

[2] V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne, How
to integrate a polynomial over a simplex, Mathematics of Computation 80
(2011), no. 273, 297–325.

[3] A. I. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice
points in polyhedra, New Perspectives in Algebraic Combinatorics (L. J.
Billera, A. Björner, C. Greene, R. E. Simion, and R. P. Stanley, eds.),
Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge,
1999, pp. 91–147.

[4] G. Cornuejols, R. Urbaniak, R. Weismantel, and L. Wolsey, Decompo-
sition of integer programs and of generating sets, Algorithms ESA ’97
(R. Burkard and G. Woeginger, eds.), Lecture Notes in Computer Sci-
ence, vol. 1284, Springer Berlin / Heidelberg, 1997, 10.1007/3-540-63397-
9 8, pp. 92–103.

[5] J. De Loera, D. Haws, R. Hemmecke, P. Huggins, and R. Yoshida, Three
kinds of integer programming algorithms based on barvinoks rational func-

tions, Integer Programming and Combinatorial Optimization (D. Bienstock
and G. Nemhauser, eds.), Lecture Notes in Computer Science, vol. 3064,
Springer Berlin / Heidelberg, 2004, 10.1007/978-3-540-25960-2 19, pp. 3–9.

[6] K. Fukuda, cddlib, version 094a, Available from URL http://www.cs.

mcgill.ca/~fukuda/soft/cdd_home/cdd.html, 2005.

[7] M. Köppe, A primal Barvinok algorithm based on irrational decompositions,
SIAM Journal on Discrete Mathematics 21 (2007), no. 1, 220–236.

[8] J. A. D. Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu,
Software for exact integration of polynomials over polyhedra, Manuscript,
2011.

[9] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective lattice
point counting in rational convex polytopes, Journal of Symbolic Computa-
tion 38 (2004), no. 4, 1273 – 1302, Symbolic Computation in Algebra and
Geometry.

[10] V. Shoup, NTL, a library for doing number theory, Available from URL
http://www.shoup.net/ntl/, 2005.

7 The GNU General Public License

Version 2, June 1991

29

Copyright c� 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions trans-
late to certain responsibilities for you if you distribute copies of the software, or
if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that every-
one understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others
will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain

30

patent licenses, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

Terms and Conditions For Copying,
Distribution and Modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

31

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program

32

in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distribut-
ing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original li-
censor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indirectly

33

through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is will-
ing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

No Warranty

34

11. Because the program is licensed free of charge, there is no
warranty for the program, to the extent permitted by ap-
plicable law. Except when otherwise stated in writing the
copyright holders and/or other parties provide the program
“as is” without warranty of any kind, either expressed or im-
plied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the program
is with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to
in writing will any copyright holder, or any other party
who may modify and/or redistribute the program as permitted
above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of
the use or inability to use the program (including but not
limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the
program to operate with any other programs), even if such
holder or other party has been advised of the possibility of
such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your

New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

35

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foun-
dation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for de-
tails type ‘show w’.
This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than show w and show c; they could even be mouse-
clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-
gram
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead
of this License.

36

