NetworkX

Previous topic

rich_club_coefficient

Next topic

Shortest Paths

rich_club_coefficient

rich_club_coefficient(G, normalized=True, Q=100)[source]

Return the rich-club coefficient of the graph G.

The rich-club coefficient is the ratio, for every degree k, of the number of actual to the number of potential edges for nodes with degree greater than k:

System Message: WARNING/2 (\phi(k) = \frac{2 Ek}{Nk(Nk-1)})

latex exited with error: [stderr] [stdout] This is pdfTeX, Version 3.1415926-2.5-1.40.13 (TeX Live 2013/dev) restricted \write18 enabled. entering extended mode (./math.tex LaTeX2e <2011/06/27> Babel <v3.8m> and hyphenation patterns for english, dumylang, nohyphenation, lo aded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo)) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty (/usr/share/texlive/texmf-dist/tex/latex/ucs/utf8x.def)) (/usr/share/texlive/texmf-dist/tex/latex/ucs/ucs.sty (/usr/share/texlive/texmf-dist/tex/latex/ucs/data/uni-global.def)) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty For additional information on amsmath, use the `?’ option. (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty)) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty)) (/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty)) (/usr/share/texlive/texmf-dist/tex/latex/tools/bm.sty) ! LaTeX Error: File `preview.sty’ not found. Type X to quit or <RETURN> to proceed, or enter new name. (Default extension: sty) Enter file name: ! Emergency stop. <read *> l.12 \begin {document}^^M No pages of output. Transcript written on math.log.

where Nk is the number of nodes with degree larger than k, and Ek be the number of edges among those nodes.

Parameters :

G : NetworkX graph

normalized : bool (optional)

Normalize using randomized network (see [R199])

Q : float (optional, default=100)

If normalized=True build a random network by performing Q*M double-edge swaps, where M is the number of edges in G, to use as a null-model for normalization.

Returns :

rc : dictionary

A dictionary, keyed by degree, with rich club coefficient values.

Notes

The rich club definition and algorithm are found in [R199]. This algorithm ignores any edge weights and is not defined for directed graphs or graphs with parallel edges or self loops.

Estimates for appropriate values of Q are found in [R200].

References

[R199](1, 2, 3) Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano, “The rich-club phenomenon across complex network hierarchies”, Applied Physics Letters Vol 91 Issue 8, August 2007. http://arxiv.org/abs/physics/0701290
[R200](1, 2) R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon, “Uniform generation of random graphs with arbitrary degree sequences”, 2006. http://arxiv.org/abs/cond-mat/0312028

Examples

>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0] 
0.4