Developing Formula Evaluation

by Amol Deshmukh, Yegor Kozlov

1. Introduction

This document is for developers wishing to contribute to the FormulaEvaluator API
functionality.

When evaluating workbooks you may encounter a
org.apache.poi.ss.formula.eval .Notl mplementedException which indicates that a function is
not (yet) supported by POI. Is there a workaround? Y es, the POI framework makes it easy to
add implementation of new functions. Prior to POI-3.8 you had to checkout the source code
from svn and make a custom build with your function implementation. Since POI-3.8 you
can register new functionsin run-time.

Currently, contribution is desired for implementing the standard MS excel functions. Place
holder classes for these have been created, contributors only need to insert implementation
for theindividual "evaluate()" methods that do the actual evaluation.

2. Overview of FormulaEvaluator

Briefly, a formula string (along with the sheet and workbook that form the context in which
the formula is evaluated) is first parsed into RPN tokens using the FormulaParser class . (If
you dont know what RPN tokens are, now is a good time to read this.)

2.1. Thebig picture

RPN tokens are mapped to Eval classes. (Class hierarchy for the Evals is best understood if
you view the class diagram in a class diagram viewer.) Depending on the type of RPN token
(also called as Ptgs henceforth since that is what the FormulaParser calls the classes) a
specific type of Eval wrapper is constructed to wrap the RPN token and is pushed on the
stack.... UNLESS the Ptg is an OperationPtg. If it is an OperationPtg, an OperationEval
instance is created for the specific type of OperationPtg. And depending on how many
operands it takes, that many Evals are popped of the stack and passed in an array to the
OperationEval instance's evaluate method which returns an Eval of subtype VaueEval.Thus
an operation in the formulais evaluated.

Page 1

http://www-stone.ch.cam.ac.uk/documentation/rrf/rpn.html

Developing Formula Evaluation

An Eva is of subinterface ValueEval or OperationEval. Operands are aways VaueEvals, Operations are aways
OperationEvals.

Oper ati onEval . eval uat e(Eval []) returns an Eval which is supposed to be of type
ValueEva (actually since ValueEval is an interface, the return value is instance of one of the
implementations of ValueEval). The valueEval resulting from evaluate() is pushed on the
stack and the next RPN token is evaluated.... this continues till eventually there are no more
RPN tokens at which point, if the formula string was correctly parsed, there should be just
one Eval on the stack - which contains the result of evaluating the formula.

Of course | glossed over the details of how AreaPtg and ReferencePtg are handled a little
differently, but the code should be self explanatory for that. Very briefly, the cellsincluded in
AreaPtg and RefPtg are examined and their values are populated in individual ValueEval
objects which are set into the AreaEval and RefEva (ok, since AreaEval and RefEval are
interfaces, the implementations of AreaEval and RefEval - but you'll figure all that out from
the code)

OperationEvals for the standard operators have been implemented and tested.

3. What functions ar e supported?

As of Feb 2012, POI supports about 140 built-in functions, see Appendix A for the full list.
You can programmatically list supported / unsuported functions using trhe following helper
methods:

/1 list of functions that PO can eval uate
Col | ection<String> suportedFuncs = WrkbookEval uat or. get Support edFuncti onNames() ;

/1 list of functions that are not supported by PO
Col I ecti on<Stri ng> unsupportedFuncs = Whr kbookEval uat or. get Not Support edFunct i onName

4. Two baseinterfacesto start your implementation

All Excel formula function classes implement either
org.apache.poi.hssf.record.formula.functions.Function or
org.apache.poi.hssf.record.formula.functions.FreeRefFunction interface. Function is a
commonn interface for the functions defined in the binary Excel format (BIFF8): these are
"classic" Excdl functions like SUM, COUNT, LOOKUP, etc. FreeRefFunction is a common
interface for the functions from the Excel Analysis Toolpack and for User-Defined
Functions. In the future these two interfaces are expected be unified into one, but for now

Page 2

Developing Formula Evaluation

you have to start your implementation from two slightly different roots.

5. Which interfaceto start from?

You are about to implement a function XXX and don't know which interface to start from:
Function or FreeRefFunction. Use the following code to check whether your function is from
the excel Analysis Toolpack:

i f (Anal ysi sTool Pack. i sATPFuncti on(functi onNane)){

/1 the function inplenents org.apache. poi. hssf.record.fornmula.functions. Functio
} else {

/1 the function inplenents org.apache. poi. hssf.record. formula.functions. FreeRef
}

6. Walkthrough of an " evaluate()" implementation.
Hereisthe fun part: lets walk through the implementation of the excel function SQRT ()

AnalysisToolPack.isATPFunction("SQRTPI") returns false so the base interface is Function.
There are sub-interfaces that make life easier when implementing numeric functions or
functions with fixed number of arguments, 1-arg, 2-arg and 3-arg function:

« org.apache.poi.hssf.record.formula.functions.NumericFunction

« org.apache.poi.hssf.record.formula.functions.Fixed1ArgFunction
« org.apache.poi.hssf.record.formula.functions.Fixed2ArgFunction
« org.apache.poi.hssf.record.formula.functions.Fixed3ArgFunction
« org.apache.poi.hssf.record.formula.functions.Fixed4ArgFunction

Since SQRTPI takes exactly one argument we start our implementation from
org.apache.poi.hssf.record.formula.functions.Fixed1ArgFunction:

Functi on SQRTPI = new Fi xed1Ar gFunction() {
publ i c Val ueEval eval uate(int srcRow ndex, int srcCol uml ndex, Val ueEval arg0)
try {
/1 Retrieves a single value froma variety of different argunent types
/1 Excel rules. Does not performany type conversion
Val ueEval ve = OperandResol ver. get Si ngl eVal ue(ar g0, srcRow ndex, srcCol

/1 Applies sone conversion rules if the supplied value is not already a
/1 Throws Eval uati onExcepti on(#VALUE!) if the supplied paraneter is not
doubl e arg = Oper andResol ver. coer ceVal ueToDoubl e(ve) ;

/1 this where all the heavy-lifting happens
doubl e result = Math.sqrt(arg*Math. Pl);

/] Excel uses the error code #NUM instead of | EEE NaN and Infinity,
// so when a nuneric function eval uates to Doubl e. NaN or Double.Infinit

Page 3

Developing Formula Evaluation

/1 be sure to translate the result to the appropriate error code
if (Double.isNaN(result) || Double.islnfinite(result)) {

t hr ow new Eval uati onExcepti on(Error Eval . NUM ERRCR) ;
}

return new Nunber Eval (result);
} catch (Eval uati onException e){
return e.getErrorEval ();

}

Now when the implementation is ready we need to register it in the formula evaluator:
Wor kbookEval uat or. regi st er Functi on(" SQRTPI ", SQRTPI) ;

Voilal The formulaevaluator now recognizes SQRTPI!

7. Floating-point Arithmetic in Excel

Excel uses the IEEE Standard for Double Precision Floating Point numbers except two cases
where it does not adhere to |EEE 754:

1. Positive/Negative Infinities: Infinities occur when you divide by 0. Excel does not
support infinities, rather, it givesa#DIV/O! error in these cases.

2. Not-a-Number (NaN): NaN is used to represent invalid operations (such as
infinity/infinity, infinity-infinity, or the square root of -1). NaNs alow a program to
continue past an invalid operation. Excel instead immediately generates an error such as
#NUM! or #DIV/0!.

Be aware of these two cases when saving results of your scientific calculations in Excel:
“where are my Infinities and NaNs? They are gone!”

8. Testing Framework

Automated testing of the implemented Function is easy. The source code for this is in the
file: o.ap.h.record.formula.GenericFormulaTestCase.java This class has a reference to the
test xlIs file (not /al test xls, /the/ test xIs :) which may need to be changed for your
environment. Once you do that, in the test xIs, locate the entry for the function that you have
implemented and enter different testsin acell in the FORMULA row. Then copy the "value
of" the formulathat you entered in the cell just below it (thisis easily done in excel as: [copy
the formula cell] > [go to cell below] > Edit > Paste Special > Values > "ok"). You can enter
multiple such formulas and paste their values in the cell below and the test framework will
automatically test if the formula evaluation matches the expected value (Again, hard to put in
words, so if you will, please take time to quickly look at the code and the currently entered

Page 4

Developing Formula Evaluation

tests in the patch attachment "FormulaEval TestData.xIs' file).

9. Appendix A
Functions supported by POI (as of Feb 2012)

ABS
ACOS
ACOSH
ADDRESS
AND

ASI'N

ASI NH
ATAN
ATAN2
ATANH
AVEDEV
AVERAGE
CEl LI NG
CHAR
CHOOSE
CLEAN
COLUMN
COLUWNS
COMVBI N
CONCATENATE
cos

COSH
COUNT
COUNTA
COUNTBLANK
COUNTI F
DATE

DAY
DAYS360
DEGREES
DEVSQ
DOLLAR
ERROR. TYPE
EVEN
EXACT

EXP

FACT
FALSE

FI ND
FLOOR

FV

HL OOKUP
HOUR
HYPERLI NK
| F

| NDEX

Page 5

| SNUMBER
| SODD

| SREF

| STEXT
LARCE
LEFT

LEN

Pl

PMI

PO SSON
POVNER
PRCDUCT
PV

RADI ANS
RAND
RANDBETWEEN
RANK
RATE
REPLACE

Developing Formula Evaluation

Page 6

Developing Formula Evaluation

Rl GHT
ROUND
ROUNDDOWN
ROUNDUP
ROW
ROAB
SEARCH
SECOND
SIGN

SIN

SI NH
SMALL
SQRT
STDEV
SUBSTI TUTE
SUBTOTAL
SUM

SUM F
SUM FS
SUMPRODUCT
SUMBQ
SUMK2MY2
SUMK2PY2
SUMKMY2
2

TAN

TANH
TEXT

TI ME
TODAY
TRIM
TRUE
TRUNC
UPPER
VALUE
VAR

VARP

VL OOKUP
\ORKDAY
YEAR
YEARFRAC

Page 7

	1 Introduction
	2 Overview of FormulaEvaluator
	2.1 The big picture

	3 What functions are supported?
	4 Two base interfaces to start your implementation
	5 Which interface to start from?
	6 Walkthrough of an "evaluate()" implementation.
	7 Floating-point Arithmetic in Excel
	8 Testing Framework
	9 Appendix A

