
Apache POI - HWPF - Java API to
Handle Microsoft Word Files

Overview

by Nicola Ken Barozzi, Andrew C. Oliver, Ryan Ackley, Rainer Klute

1. Overview

HWPF is the name of our port of the Microsoft Word 97(-2007) file format to pure Java. It
also provides limited read only support for the older Word 6 and Word 95 file formats.

The partner to HWPF for the new Word 2007 .docx format is XWPF. Whilst HWPF and
XWPF provide similar features, there is not a common interface across the two of them at
this time.

HWPF is still in early development. It is in the scratchpad section of the SVN. You will need
to ensure you either have a recent SVN checkout, or a recent SVN nightly build (including
the scratchpad jar!)

Source code in the org.apache.poi.hdf tree is the old legacy code. Source in the
org.apache.poi.hwpf.model tree is the old legacy code refactored into an new object model.
Those packages contains Java representation of internal Word format structure. This code is
"internal", it shall not be used by your code. Because of backward-compatibility some API
still has references to those packages. They are subject to be deprecated and removed. Code
from org.apache.poi.hwpf.usermodel package is actual public and user-friendly (as much as
possible) API to access document parts. Source code in the org.apache.poi.hwpf.extractor
tree is a wrapper of this to facilitate easy extraction of interesting things (eg the Text), and
org.apache.poi.hwpf.converter package contains Word-to-HTML and Word-to-FO
converters (latest can be used to generate PDF from Word files when using with Apache FOP
). Also there is a small file-structure-dumping utility in org.apache.poi.hwpf.dev package,
primally for developing purposes.

The main entry point to HWPF is HWPFDocument. Currently it has a lot of references both
to internal interfaces (org.apache.poi.hwpf.model package) and public API (
org.apache.poi.hwpf.usermodel) package. It is possible that it will be split into two different
interfaces (like WordFile and WordDocument) in later versions.

Page 1
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

http://svn.apache.org/viewcvs.cgi/poi/trunk/src/scratchpad/
http://xmlgraphics.apache.org/fop/

Word document can be considered as very long single text buffer. HWPF API provides
"pointers" to document parts, like sections, paragraphs and character runs. Usually user will
iterates over main document part sections, paragraphs from sections and character runs from
paragraph. Each such interface is a pointer to document text subrange along with additional
properties (and they all extends same Range parent class). There is additional Range
implementations like Table, TableRow, TableCell, etc. Some structures like Bookmark or
Field can also provide subranges pointers.

Changing file content usually requires a lot of synchronized changes in those structures like
updating property boundaries, position handlers, etc. Because of that HWPF API shall be
considered as not thread safe. In addition, there is a "one pointer" rule for changing content.
It means you should not use two different Range instances at one time. More precisely, if you
are changing file content using some range pointer, all other range pointers except parents'
ones become invalid. For example if you obtain overall range (1), paragraph range (2) from
overall range and character run range (3) from paragraph range and change text of paragraph,
character run range is now invalid and should not be used, but overall range pointer still
valid. Each time you obtaining range (pointer) new instance is created. It means if you
obtained two range pointers and changed document text using first range pointer, second one
became invalid.

2. XWPF Patches Required!

At the moment, XWPF covers many common use cases for reading and writing .docx files.
Whilst this is a great thing, it does mean that XWPF does everything that the current POI
committers need it to do, and so none of the committers are actively adding new features.

If you come across a feature in XWPF that you need, and isn't currently there, please do send
in a patch to add the extra functionality! More details on contributing patches are available
on the "Contribution to POI" page.

3. HWPF Pointman Needed!

At the moment we unfortunately do not have someone taking care for HWPF and fostering
its development. What we need is someone to stand up, take this thing under his hood as his
baby and push it forward. Ryan Ackley, who put a lot of effort into HWPF, is no longer on
board, so HWPF is an orphan child waiting to be adopted.

If you are interested in becoming the new HWPF pointman, you should look into the
Microsoft Word internals. A good starting point seems to be Ryan Ackley's overview. Full
details on the word format is available from Microsoft, but the documentation can be a little
hard to get into at first... Try reading the overview first, and looking at the existing code, then
finally look up the documentation for specific missing features.

Apache POI - HWPF - Java API to Handle Microsoft Word Files

Page 2
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

../guidelines.html
docoverview.html
http://www.microsoft.com/interop/docs/OfficeBinaryFormats.mspx
docoverview.html

As a first step you should familiarize yourself with the source code, examples, test cases, and
the HWPF patches available at Bugzilla (if any). Then you should compile an overview of

• the current HWPF status,
• the patches in Bugzilla to be checked in (and those that should better be ditched),
• the available test cases and the test cases still to be written,
• the available documentation and the docs to be written,
• anything else that seems reasonable

When you start coding, you will not yet have write access to the SVN repository. Please
submit your patches to Bugzilla and nag the dev list until someone commits them. Besides
the actual checking in of HWPF patches, current POI committers will also do some minor
reviews now and then of your source code patches, test cases and documentation to help
ensure software quality. But most of the time you will be on your own. However, anyone
offering useful contributions over a period of time will be offered committership!

Please do not forget to write JUnit test cases and documentation! We won't accept code that
doesn't come with test cases. And please consider that other contributors should be able to
understand your source code easily. If you need any help getting started with JUnit test cases
for HWPF, please ask on the developers' mailing list! If you show that you are prepared to
stick at it you will most likely be given SVN commit access. See "Contribution to POI" page
for more details and help getting started.

Of course we will help you as best as we can. However, presently there is no committer who
is really familiar with the Word format, so you'll be mostly on your own. We are looking
forward for you and your contributions! Honor and glory of becoming a POI committer are
waiting!

Apache POI - HWPF - Java API to Handle Microsoft Word Files

Page 3
Copyright © 2002-2011 The Apache Software Foundation All rights reserved.

http://issues.apache.org/
http://issues.apache.org/bugzilla/
http://issues.apache.org/
mailto:dev@poi.apache.org
http://www.junit.org/
../guidelines.html

	1 Overview
	2 XWPF Patches Required!
	3 HWPF Pointman Needed!

