
Winelib User’s Guide

Winelib User’s Guide

Table of Contents
1. Winelib Introduction ..1

What is Winelib?..1
System requirements ..1
Getting Started...1

Winemaker introduction...1
Test Drive ..2
Step by step guide ...2

2. Portability issues..5
Unicode...5
C library..5
Compiling Problems ...5

3. The Winelib development toolkit ..7
Winemaker ...7

Support for Visual C++ projects ..7
Winemaker’s source analysis...7
The interactive mode...8
The Makefile files...8

Compiling resource files: WRC ...10
The Spec file ...11

Introduction..11
More details ..11

Linking it all together ...13
4. Dealing with the MFC ..15

Introduction ...15
Legal issues ..15
Compiling the MFC ..16

5. Building WineLib DLLs ...17
Introduction ...17
Writing the spec file ..17
Writing the wrapper ...18
Building ..19
Installing ...19
Converting filenames..20

iii

iv

Chapter 1. Winelib Introduction

What is Winelib?
Winelib is a development toolkit which allows you to compile your Windows
applications on Unix.

Most of Winelib’s code consists of the Win32 API implementation. Fortunately
this part is 100 percent shared with Wine. The remainder consists of Windows
compatible headers and tools like the resource compiler (and even these are used
when compiling Wine).

Thanks to the above, Winelib supports most C and C++ source code, resource
and message files, and can generate graphical or console applications as well as
dynamic libraries.

What is not supported is 16bit source code as the types it depends on (especially
segmented pointers) are not supported by Unix compilers. Also missing are some
of the more exotic features of Microsoft’s compiler like native COM support and
structured exception handling. So you may need to perform some modifications
in your code when recompiling your application with Winelib. This guide is here
to help you in this task.

What you gain by recompiling your application with Winelib is the ability to
make calls to Unix APIs, directly from your Windows source code. This allows
for a better integration with the Unix environment than is allowed by running
an unmodified Windows application running in Wine. Another benefit is that a
Winelib application can relatively easily be recompiled on a non-Intel architecture
and run there without the need for a slow software emulation of the processor.

System requirements
The requirements for Winelib are similar to those for Wine.

Basically if you can run Wine on your computer then you can run Winelib. But
the converse is not true. You can also build Winelib and Winelib applications on
platforms not supported by Wine, typically platforms with a non i386 processor.
But this is still pretty much uncharted territory. It would be more reasonable to
target one of the more mundane i386-based platforms first.

The main difference is that the compiler becomes much more important. It is
highly recommended that you use gcc, g++, and the GNU binutils. The more
recent your gcc compiler the better. For any serious amount of code you should
not consider anything older than gcc 2.95.2. The latest gcc snapshots contain some
useful bug fixes and much better support for anonymous structs and unions.
This can help reduce the number of changes you have to do in your code but
these are not stable releases of the compiler so you may not want to use them in
production.

Getting Started

Winemaker introduction
So what is needed to compile a Windows application with Winelib? Well, it really
depends on the complexity of your application but here are some issues that are
shared by all applications:

• the case of your files may be bad. For example they could be in all caps:
HELLO.C. It’s not very nice to work with and probably not what you intended.

• then the case of the filenames in your include statements may be wrong: maybe
they include Windows.h instead of windows.h.

1

Chapter 1. Winelib Introduction

• your include statements may use ’\’ instead of ’/’. ’\’ is not recognized by Unix
compilers while ’/’ is recognized in both environments.

• you will need to perform the usual Dos to Unix text file conversion otherwise
you’ll get in trouble when the compiler considers that your ’\’ is not at the end
of the line since it is followed by a pesky carriage return.

• you will have to write new makefiles.

The best way to take care of all these issues is to use winemaker.

Winemaker is a perl script which is designed to help you bootstrap the conversion
of your Windows projects to Winelib. In order to do this it will go analyze your
code, fixing the issues listed above and generate straight Makefiles.

Let’s suppose that you are already in the top directory of your sources. Then
converting your project to Winelib may be as simple as just running the two com-
mands below (note the dot indicating current directory at the end of the first
command):

$ winemaker --lower-uppercase .
$ make

But of course things are not always that simple which is why we have this guide
at all.

Test Drive
Before starting to work on a big project you may want to try to port a small appli-
cation. The notepad application from the Wine source tree suits well for testing
purposes. It can be found in the programs subdirectory. notepad is a simple ap-
plication, but has a few C, header and resource files.

Run make clean in the notepad source directory if it contains results of previous
builds. Create a separate directory with name notepad2, so it won’t conflict with
the Wine copy of the application. Copy the sources of notepad (files *.c, *.h, *.rc)
to this directory. Now run the commands, mentioned above from the notepad2
directory:

$ winemaker --lower-uppercase .
$ make

Notice how it fails linking, because of undefined reference to wnsprintfW. This
is because we didn’t specify the libraries we need to link to. Normally you know
which libraries you need or you can find a list in your old Makefile or project file.

To fix that problem, open notepad2/Makefile.in in a text editor and search for
an assignment to a variable with IMPORTS as part of its name. There will be a list
of import libraries. Now run winemaker again, but with these libraries prefixed
by -i:

$ winemaker --lower-uppercase -icomdlg32 -ishell32 -ishlwapi -iuser32 -igdi32 -iadvapi32 .
$ make

You are done! Now you can start the application as wine notepad2.exe.so or
./notepad2.exe.

If you come across problems preparing and building this application this proba-
bly means that winemaker utility is broken by some changes in Wine. Try asking
for help on <wine-devel@winehq.org>

Step by step guide
Let’s retrace the steps above in more details.

2

Chapter 1. Winelib Introduction

Getting the source

First you should try to get the sources together with the executables/libraries
that they build. If you have no Visual C++ project files available winemaker
having these around can help it guess what it is that your project is trying
to build. Otherwise, it is able to understand Visual C++ projects. Usually the
executables and libraries are in a Release or Debug subdirectory of the di-
rectory where the sources are. So it’s best if you can transfer the source files
and either of these directories to Linux. Note that you don’t need to trans-
fer the .obj, .pch, .sbr and other files that also reside in these directories;
especially as they tend to be quite big.

cd <root_dir>

Then go to the root directory where are your source files. Winemaker can
deal with a whole directory hierarchy at once so you don’t need to go into
a leaf directory, quite the contrary. Winemaker will automatically generate
makefiles in each directory where one is required, and will generate a global
makefile so that you can rebuild all your executables and libraries with a
single make command.

Making the source writable

Then make sure you have write access to your sources. It may sound ob-
vious, but if you copied your source files from a CD-ROM or if they are in
Source Safe on Windows, chances are that they will be read-only. But Wine-
maker needs write access so that it can fix them. You can arrange that by
running chmod -R u+w .. Also you will want to make sure that you have
a backup copy of your sources in case something went horribly wrong, or
more likely, just for reference at a later point. If you use a version control
system you’re already covered.

If you have already modified your source files and you want to make sure
that winemaker will not make further changes to them then you can use the
--nosource-fix option to protect them.

Running winemaker

Then you’ll run winemaker. Here are the options you will most likely want
to use. For complete list of options see the winemaker man page.

--lower-uppercase
--lower-all

These options specify how to deal with files, and directories, that have
an ’incorrect’ case. --lower-uppercase specifies they should only be
renamed if their name is all uppercase. So files that have a mixed case,
like ’Hello.c’ would not be renamed. --lower-all will rename any file.
If neither is specified then no file or directory will be renamed, almost.
As you will see later winemaker may still have to rename some files.

--nobackup

Winemaker normally makes a backup of all the files in which it does
more than the standard Dos to Unix conversion. But if you already have
(handy) copies of these files elsewhere you may not need these so you
should use this option.

--dll
--console

These option lets winemaker know what kind of target you are build-
ing. If you have the windows library in your source hierarchy then you
should not need to specify --dll. But if you have console executables
then you will need to use the corresponding option.

3

Chapter 1. Winelib Introduction

--mfc

This option tells winemaker that you are building an MFC
application/library.

-Dmacro[=defn]
-Idir
-Ldir
-idll
-llibrary

The -i specifies a Winelib library to import via the spec file
mechanism. Contrast this with the -l which specifies a Unix library to
link with. The other options work the same way they would with a C
compiler. All are applied to all the targets found. When specifying a
directory with either -I or -L, winemaker will prefix a relative path
with $(TOPDIRECTORY)/ so that it is valid from any of the source
directories. You can also use a variable in the path yourself if you wish
(but don’t forget to escape the ’$’). For instance you could specify
-I\$(WINELIB_INCLUDE_ROOT)/msvcrt.

So your command may finally look like: winemaker --lower-uppercase
-Imylib/include .

File renaming

When you execute winemaker it will first rename files to bring their charac-
ter case in line with your expectations and so that they can be processed by
the makefiles. This later category implies that files with a non lowercase ex-
tension will be renamed so that the extension is in lowercase. So, for instance,
HELLO.Cwill be renamed to HELLO.c. Also if a file or directory name contains
a space or a dollar, then this character will be replaced with an underscore.
This is because these characters cause problems with current versions of au-
toconf (2.13) and make (3.79).

Source modifications and makefile generation

winemaker will then proceed to modify the source files so that they will com-
pile more readily with Winelib. As it does so it may print warnings when it
has to make a guess or identifies a construct that it cannot correct. Finally it
will generate the makefiles. Once all this is done you can review the changes
that winemaker did to your files by using diff -uw. For instance: diff -uw
hello.c.bak hello.c

Running make

This is a pretty simple step: just type make and voila, you should have all
your executables and libraries. If this did not work out, then it means that
you will have to read this guide further to:

• review the Makefile files to adjust what winemaker thinks are the binaries
you are trying to build and which sources should be used for each. See the
Winemaker’s source analysis section for some hints.

• fix the portability issues in your sources. See Portability issues for more
details.

4

Chapter 2. Portability issues

Unicode
The wchar_t type has different standard sizes in Unix (4 bytes) and Windows
(2 bytes). You need a recent gcc version (2.9.7 or later) that supports the
-fshort-wchar option to set the size of wchar_t to the one expected by
Windows applications.

If you are using Unicode and you want to be able to use standard library calls
(e.g. wcslen, wsprintf), then you must use the msvcrt runtime library instead of
glibc. The functions in glibc will not work correctly with 16 bit strings.

C library
There are 2 choices available to you regarding which C library to use: the native
glibc C library or the msvcrt C library.

Note that under Wine, the crtdll library is implemented using msvcrt, so there is
no benefit in trying to use it.

Using glibc in general has the lowest overhead, but this is really only important
for file I/O, as many of the functions in msvcrt are simply resolved to glibc.

To use glibc, you don’t need to make changes to your application; it should work
straight away. There are a few situations in which using glibc is not possible:

1. Your application uses Win32 and C library unicode functions.

2. Your application uses MS specific calls like beginthread(),
loadlibrary(), etc.

3. You rely on the precise semantics of the calls, for example, returning -1
rather than non-zero. More likely, your application will rely on calls like
fopen() taking a Windows path rather than a Unix one.

In these cases you should use msvcrt to provide your C runtime calls.

Add -mno-cygwin to your compiler flags. This will cause winebuild to resolve
your c library calls to msvcrt.dll. Many simple calls which behave the same
have been specified as non-importable from msvcrt; in these cases winebuild
will not resolve them and the standard linker ld will link to the glibc version
instead.

In order to avoid warnings in C (and potential errors in C++) from not having
prototypes, you may need to use a set of MS compatible header files. These are
scheduled for inclusion into Wine but at the time of writing are not available.
Until they are, you can try prototyping the functions you need, or just live with
the warnings.

If you have a set of include files (or when they are available in Wine), you need
to use the -isystem "include_path" flag to gcc to tell it to use your headers in
preference to the local system headers.

To use option 3, add the names of any symbols that you don’t want to use from
msvcrt into your applications .spec file. For example, if you wanted the MS spe-
cific functions, but not file I/O, you could have a list like:

@ignore = (fopen fclose fwrite fread fputs fgets)

Obviously, the complete list would be much longer. Remember too that some
functions are implemented with an underscore in their name and #defined to
that name in the MS headers. So you may need to find out the name by examining
dlls/msvcrt/msvcrt.spec to get the correct name for your @ignore entry.

5

Chapter 2. Portability issues

Compiling Problems
If you get undefined references to Win32 API calls when building your applica-
tion: if you have a VC++ .dsp file, check it for all the .lib files it imports, and
add them to your applications .spec file. winebuild gives you a warning for un-
used imports so you can delete the ones you don’t need later. Failing that, just
import all the DLLs you can find in the dlls/ directory of the Wine source tree.

If you are missing GUIDs at the link stage, add -luuid to the link line.

gcc is more strict than VC++, especially when compiling C++. This may require
you to add casts to your C++ to prevent overloading ambiguities between similar
types (such as two overloads that take int and char respectively).

If you come across a difference between the Windows headers and Wine’s that
breaks compilation, try asking for help on <wine-devel@winehq.org>.

6

Chapter 3. The Winelib development toolkit

Winemaker

Support for Visual C++ projects
Winemaker supports the Visual C++ project files! Supported filetypes are .dsp,
.dsw, .vcproj and .sln. It detects the defines to be used, any custom include
path, the list of libraries to link with, and exactly which source files to use to
build a specific target.

It is recommended to use Winemaker with a project file if available. If you have to
choose between a .dsp file and a .vcproj, then you should use the .dsp, because
it offers more information.

The usage is very easy, just replace the path to the sourcefolder with the path to
the projectfile.

$ winemaker --lower-uppercase myproject.vcproj
$ make

Winemaker’s source analysis
Winemaker can do its work even without a Windows makefile or a Visual Studio
project to start from (it would not know what to do with a windows makefile
anyway). This involves doing many educated guesses which may be wrong. But
by and large it works. The purpose of this section is to describe in more details
how winemaker proceeds so that you can better understand why it gets things
wrong and how to fix it/avoid it.

At the core winemaker does a recursive traversal of your source tree looking for
targets (things to build) and source files. Let’s start with the targets.

First are executables and DLLs. Each time it finds one of these in a directory,
winemaker puts it in the list of things to build and will later generate a Makefile
in this directory. Note that Winemaker also knows about the commonly used
Release and Debug directories, so it will attribute the executables and libraries
found in these to their parent directory. When it finds an executable or a DLL
winemaker is happy because these give it more information than the other cases
described below.

If it does not find any executable or DLL winemaker will look for files with a
.mak extension. If they are not disguised Visual C++ projects (and currently even
if they are), winemaker will assume that a target by that name should be built in
this directory. But it will not know whether this target is an executable or a library.
So it will assume it is of the default type, i.e. a graphical application, which you
can override by using the --cuiexe and --dll options.

Finally winemaker will check to see if there is a file called makefile. If there
is, then it will assume that there is exactly one target to build for this directory.
But it will not know the name or type of this target. For the type it will do as
in the above case. And for the name it will use the directory’s name. Actually, if
the directory starts with src winemaker will try to make use of the name of the
parent directory instead.

Once the target list for a directory has been established, winemaker will check
whether it contains a mix of executables and libraries. If it is so, then winemaker
will make it so that each executable is linked with all the libraries of that directory.

If the previous two steps don’t produce the expected results (or you think they
will not) then you should put winemaker in interactive mode (see The interactive
mode). This will allow you to specify the target list (and more) for each directory.

In each directory winemaker also looks for source files: C, C++ or resource files.
If it also found targets to build in this directory it will then try to assign each

7

Chapter 3. The Winelib development toolkit

source file to one of these targets based on their names. Source files that do not
seem to match any specific target are put in a global list for this directory, see the
EXTRA_xxx variables in the Makefile, and linked with each of the targets. The
assumption here is that these source files contain common code which is shared
by all the targets. If no targets were found in the directory where these files are
located, then they are assigned to the parent’s directory. So if a target is found in
the parent directory it will also ’inherit’ the source files found in its subdirectories.

Finally winemaker also looks for more exotic files like .h headers, .inl files con-
taining inline functions and a few others. These are not put in the regular source
file lists since they are not compiled directly. But winemaker will still remember
them so that they are processed when the time comes to fix the source files.

Fixing the source files is done as soon as winemaker has finished its recursive
directory traversal. The two main tasks in this step are fixing the CRLF issues
and verifying the case of the include statements.

Winemaker makes a backup of each source file (in such a way that symbolic links
are preserved), then reads it fixing the CRLF issues and the other issues as it
goes. Once it has finished working on a file it checks whether it has done any non
CRLF-related modification and deletes the backup file if it did not (or if you used
--nobackup).

Checking the case of the include statements (of any form, including files refer-
enced by resource files), is done in the context of that source file’s project. This
way winemaker can use the proper include path when looking for the file that is
included. If winemaker fails to find a file in any of the directories of the include
path, it will rename it to lowercase on the basis that it is most likely a system
header and that all system headers names are lowercase (this can be overridden
by using --nolower-include).

Finally winemaker generates the Makefile files. From the above description you
can guess at the items that winemaker may get wrong in this phase: macro defini-
tions, include path, DLL path, DLLs to import, library path, libraries to link with.
You can deal with these issues by using winemaker’s -D, -P, -i, -I, -L and -l op-
tions if they are homogeneous enough between all your targets. Otherwise you
may want to use winemaker’s interactive mode so that you can specify different
settings for each project / target.

For instance, one of the problems you are likely to encounter is that of the STRICT
macro. Some programs will not compile if STRICT is not turned on, and others
will not compile if it is. Fortunately all the files in a given source tree use the same
setting so that all you have to do is add -DSTRICT on winemaker’s command line
or in the Makefile file(s).

Finally the most likely reasons for missing or duplicate symbols are:

• The target is not importing the right set of DLLs, or is not being linked with the
right set of libraries. You can avoid this by using winemaker’s -P, -i, -L and
-l options or adding these DLLs and libraries to the Makefile.

• Maybe you have multiple targets in a single directory and winemaker guessed
wrong when trying to match the source files with the targets. The only way to
fix this kind of problem is to edit the Makefile file manually.

• Winemaker assumes you have organized your source files hierarchically. If
a target uses source files that are in a sibling directory, e.g. if you link with
../hello/world.o then you will get missing symbols. Again the only solu-
tion is to manually edit the Makefile file.

The interactive mode
what is it, when to use it, how to use it

8

Chapter 3. The Winelib development toolkit

The Makefile files
The Makefile is your makefile. So this is the file to modify if you want to cus-
tomize things. Here’s a detailed description of its content:

SRCDIR = .
SUBDIRS =
DLLS =
LIBS =
EXES = hello.exe

This is where the targets for this directory are listed. The names are pretty self-
explanatory. SUBDIRS is usually only present in the top-level makefile. For li-
braries and executables, specify the full name, including the ’.dll’, ’.a’ or ’.exe’
extension. Note that these names must be in all lowercase.

Common settings

DEFINES = -DSTRICT
INCLUDE_PATH =
DLL_PATH =
DLL_IMPORTS =
LIBRARY_PATH =
LIBRARIES =

This section contains the global compilation settings: they apply to all the targets
in this makefile. The LIBRARIES variable allows you to specify additional Unix
libraries to link with. Note that you would normally not specify Winelib libraries
there. To link with a Winelib library, one uses DLL_IMPORTS The exception is for
C++ libraries where you currently don’t have a choice but to link with them in
the Unix sense. One library you are likely to find here is mfc.

The other variable names should be self-explanatory. There are also CEXTRA,
CXXEXTRA and RCEXTRA which allow you to specify additional flags for,
respectively, the C compiler, the C++ compiler and the resource compiler. Finally
note that all these variables contain the option’s name.

Then there is one section per target, each describing the various components that
target is made of.

hello.exe sources and settings

hello_exe_C_SRCS = hello.c
hello_exe_CXX_SRCS =
hello_exe_RC_SRCS =

The above variables list the sources that are used togenerate the target. Each sec-
tion will start with a comment indicating the name of the target. Then come a
series of variables prefixed with the name of that target. Note that the name of
the prefix may be slightly different from that of the target because of restrictions
on the variable names.

hello_exe_DLL_PATH =
hello_exe_DLLS =
hello_exe_LIBRARY_PATH =
hello_exe_LIBRARIES =

The above variables specify how to link the target. Note that they add to the
global settings we saw at the beginning of this file.

The DLLS field is where you would enumerate the list of DLLs that executable
imports. It should contain the full DLL name , but not the ’-l’ option.

hello_exe_OBJS = $(hello_exe_C_SRCS:.c=.o) \
$(hello_exe_CXX_SRCS:.cpp=.o) \
$(hello_exe_RC_SRCS:.rc=.res)

9

Chapter 3. The Winelib development toolkit

The above just builds a list of all the object files that correspond to this target.
This list is later used for the link command.

Global source lists

C_SRCS = $(hello_exe_C_SRCS)
CXX_SRCS = $(hello_exe_CXX_SRCS)
RC_SRCS = $(hello_exe_RC_SRCS)

This section builds ’summary’ lists of source files.

Generic targets

all: $(SUBDIRS) $(DLLS:%=%.so) $(LIBS) $(EXES)

The above first defines the default target for this makefile. Here it consists in
trying to build all the targets.

Target specific build rules

Then come additional directives to link the executables and libraries. These are
pretty much standard and you should not need to modify them.

Compiling resource files: WRC
To compile resources you should use the Wine Resource Compiler, wrc for short,
which produces a binary .res file. This resource file is then used by winebuild
when compiling the spec file (see The Spec file).

Again the makefiles generated by winemaker take care of this for you. But if you
were to write your own makefile you would put something like the following:

WRC=$(WINE_DIR)/tools/wrc/wrc

WINELIB_FLAGS = -I$(WINE_DIR)/include -DWINELIB -D_REENTRANT
WRCFLAGS = -r -L

.SUFFIXES: .rc .res

.rc.res:
$(WRC) $(WRCFLAGS) $(WINELIB_FLAGS) -o $@ $<

There are two issues you are likely to encounter with resource files.

The first problem is with the C library headers. WRC does not know where these
headers are located. So if an RC file, of a file it includes, references such a header
you will get a ’file not found’ error from wrc. Here are a few ways to deal with
this:

• The solution traditionally used by the Winelib headers is to enclose the
offending include statement in an #ifndef RC_INVOKED statement where
RC_INVOKED is a macro name which is automatically defined by wrc.

• Alternately you can add one or more -I directive to your wrc command so
that it finds you system files. For instance you may add -I/usr/include
-I/usr/lib/gcc-lib/i386-linux/2.95.2/include to cater to both C and
C++ headers. But this supposes that you know where these header files reside
which decreases the portability of your makefiles to other platforms.

Or you could use the C/C++ compiler to perform the preprocessing. To do so,
simply modify your makefile as follows:

10

Chapter 3. The Winelib development toolkit

.rc.res:
$(CC) $(CC_OPTS) -DRC_INVOKED -E -x c $< | $(WRC) -N $(WRCFLAGS) $(WINELIB_FLAGS) -o $@

The second problem is that the headers may contain constructs that WRC fails
to understand. A typical example is a function which return a ’const’ type. WRC
expects a function to be two identifiers followed by an opening parenthesis. With
the const this is three identifiers followed by a parenthesis and thus WRC is con-
fused (note: WRC should in fact ignore all this like the windows resource com-
piler does). The current work-around is to enclose offending statement(s) in an
#ifndef RC_INVOKED.

Using GIF files in resources is problematic. For best results, convert them to BMP
and change your .res file.

If you use common controls/dialogs in your resource files, you will need to
add #include <commctrl.h> after the #include <windows.h> line, so that wrc
knows the values of control specific flags.

The Spec file

Introduction
In Windows applications and libraries contain some information which are nec-
essary to make APIs such as GetProcAddress work. So it is necessary to dupli-
cate these data structures in the Unix world to make these same APIs work with
Winelib applications and libraries.

The spec file is there to solve the semantic gap described above. It provides infor-
mation about each API exported from a Dll so that the appropriate tables can be
generated. Further the information is used to for better relay logging.

A typical spec file will look something like this:

@ stdcall -private DllCanUnloadNow()
@ stdcall -private DllGetClassObject(ptr ptr ptr)
@ stdcall -private DllRegisterServer()
@ stdcall -private DllUnregisterServer()

More details
Here is a more detailed description of the spec file’s format.

comment text

Anything after a ’#’ will be ignored as comments.

ORDINAL FUNCTYPE OPTIONS EXPORTNAME([ARGTYPE [ARGTYPE [...]]]) HANDLERNAME
@ stdcall CreateDesktopW(wstr wstr ptr long long ptr)
@ stdcall CM_Get_Parent(ptr long long) setupapi.CM_Get_Parent
@ cdecl -arch=x86_64 ceilf(float) MSVCRT_ceilf

This field can be present zero or more times. Each instance defines a function
entry point. The prototype defined by EXPORTNAME ([ARGTYPE [ARGTYPE
[...]]]) specifies the name available for dynamic linking and the format of the
arguments. ORDINAL is replaced by the ordinal number corresponding to the
function, or @ for automatic ordinal allocation (Win32 only).

FUNCTYPE should be one of:

11

Chapter 3. The Winelib development toolkit

pascal

for a Win16 function

stdcall

for a normal Win32 function

cdecl

for a Win32 function using the C calling convention

varargs

for a Win32 function taking a variable number of arguments

thiscall

for a Win32 function using the C++ calling convention

ARGTYPE should be one of:

word

for a 16-bit word

s_word

for a 16-bit signed word

segptr

for a segmented pointer

segstr

for a segmented pointer to a null-terminated string

long

a 32-bit value

ptr

for a linear pointer

str

for a linear pointer to a null-terminated string

wstr

for a linear pointer to a null-terminated wide (16-bit Unicode) string

int64

a 64-bit value

int128

a 128-bit value

float

a 32-bit floating-point value

double

a 64-bit floating-point value

For Win32 functions word, s_word, segptr and segstr are not valid.
HANDLERNAME is the name of the actual Wine function that will process the
request in 32-bit mode.

Strings should almost always map to str, wide strings - wstr. As the general rule
it depends on whether the parameter is IN, OUT or IN/OUT.

12

Chapter 3. The Winelib development toolkit

• IN: str/wstr

• OUT: ptr

• IN/OUT: str/wstr

It is for debug messages. If the parameter is OUT it might not be initialized and
thus it should not be printed as a string.

To declare a function using a variable number of arguments in Win16, spec-
ify the function as taking no arguments. The arguments are then available with
CURRENT_STACK16->args. In Win32, specify the function as varargs and de-
clare it with a ’...’ parameter in the C file. See the wsprintf* functions in user.spec
and user32.spec for an example.

ORDINAL stub EXPORTNAME

This field can be present zero or more times. Each instance defines a stub function.
It makes the ordinal available for dynamic linking, but will terminate execution
with an error message if the function is ever called.

ORDINAL extern EXPORTNAME SYMBOLNAME

This field can be present zero or more times. Each instance defines an entry that
simply maps to a Wine symbol (variable or function); EXPORTNAME will point to
the symbol SYMBOLNAME that must be defined in C code. This type only works
with Win32.

Linking it all together

Note: FIXME:The following is not up-to-date.

To link an executable you need to link together: your object files, any Windows
libraries that your application depends on, gdi32 for instance, and any additional
library that you use. All the libraries you link with should be available as ’.so’ li-
braries. If one of them is available only in ’.dll’ form then consult Building WineLib
DLLs.

It is also when attempting to link your executable that you will discover whether
you have missing symbols or not in your custom libraries. On Windows when
you build a library, the linker will immediately tell you if a symbol it is supposed
to export is undefined. In Unix, and in Winelib, this is not the case. The symbol
will silently be marked as undefined and it is only when you try to produce an
executable that the linker will verify all the symbols are accounted for.

So before declaring victory when first converting a library to Winelib, you should
first try to link it to an executable (but you would have done that to test it anyway,
right?). At this point you may discover some undefined symbols that you thought
were implemented by the library. Then, you to the library sources and fix it. But
you may also discover that the missing symbols are defined in, say, gdi32. This
is because you did not link the said library with gdi32. One way to fix it is to
link this executable, and any other that also uses your library, with gdi32. But it
is better to go back to your library’s makefile and explicitly link it with gdi32.

As you will quickly notice, this has unfortunately not been (completely) done
for Winelib’s own libraries. So if an application must link with ole32, you will
also need to link with advapi32, rpcrt4 and others even if you don’t use them
directly. This can be annoying and hopefully will be fixed soon (feel free to submit
a patch).

13

Chapter 3. The Winelib development toolkit

14

Chapter 4. Dealing with the MFC

Introduction
To use the MFC in a Winelib application you will first have to recompile the MFC
with Winelib. In theory it should be possible to write a wrapper for the Windows
MFC as described in Building WineLib DLLs. But in practice it does not seem to be
a realistic approach for the MFC:

• the huge number of APIs makes writing the wrapper a big task in itself.

• furthermore the MFC contain a huge number of APIs which are tricky to deal
with when making a wrapper.

• even once you have written the wrapper you will need to modify the MFC
headers so that the compiler does not choke on them.

• a big part of the MFC code is actually in your application in the form of macros.
This means even more of the MFC headers have to actually work to in order
for you to be able to compile an MFC based application.

This is why this guide includes a section dedicated to helping you compile the
MFC with Winelib.

Legal issues
The purpose of this section is to make you aware of potential legal problems. Be
sure to read your licenses and to consult your lawyers. In any case you should
not consider the remainder of this section to be authoritative since it has not been
written by a lawyer.

During the compilation of your program, you will be combining code from sev-
eral sources: your code, Winelib code, Microsoft MFC code, and possibly code
from other vendor sources. As a result, you must ensure that the licenses of all
code sources are obeyed. What you are allowed and not allowed to do can vary
depending on how you combine the code and if you will be distributing it. For
example, if you are releasing your code under the GPL or LGPL, you cannot use
MFC because these licenses do not allow covered code to depend on libraries
with non-compatible licenses. There is a workaround - in the license for your
code you can make an exception for the MFC library. For details see The GNU
GPL FAQ1.

Wine/Winelib is distributed under the GNU Lesser General Public License. See
the license for restrictions on the modification and distribution of Wine/Winelib
code. In general it is possible to satisfy these restrictions in any type of applica-
tion. On the other hand, MFC is distributed under a very restrictive license and
the restrictions vary from version to version and between service packs. There
are basically three aspects you must be aware of when using the MFC.

First you must legally get MFC source code on your computer. The MFC source
code comes as a part of Visual Studio. The license for Visual Studio implies it is a
single product that cannot be broken up into its components. So the cleanest way
to get MFC on your system is to buy Visual Studio and install it via Wine or on a
dual boot Linux box.

Then you must check that you are allowed to recompile MFC on a non-Microsoft
operating system! This varies with the version of MFC. The MFC license from
Visual Studio 6.0 reads in part:

1.1 General License Grant. Microsoft grants to you as an individual, a personal,
nonexclusive license to make and use copies of the SOFTWARE PRODUCT for
the sole purposes of designing, developing, and testing your software product(s)
that are designed to operate in conjunction with any Microsoft operating system
product. [Other unrelated stuff deleted.]

15

Chapter 4. Dealing with the MFC

So it appears you cannot even compile MFC for Winelib using this license. For-
tunately the Visual Studio 6.0 service pack 3 license reads (the Visual Studio 5.0
license is similar):

1.1 General License Grant. Microsoft grants to you as an individual, a personal,
nonexclusive license to make and use copies of the SOFTWARE PRODUCT for the
purpose of designing, developing, and testing your software product(s). [Other
unrelated stuff deleted]

So under this license it appears you can compile MFC for Winelib.

Finally you must check whether you have the right to distribute an MFC library.
Check the relevant section of the license on “redistributables and your redistribu-
tion rights”. The license seems to specify that you only have the right to distribute
binaries of the MFC library if it has no debug information and if you distribute
it with an application that provides significant added functionality to the MFC
library.

Compiling the MFC
Here is a set of recommendations for getting the MFC compiled with WineLib:

We recommend running winemaker in ’--interactive’ mode to specify the
right options for the MFC and the ATL part (to get the include paths right, to not
consider the MFC MFC-based, and to get it to build libraries, not executables).

Then when compiling it you will indeed need a number of _AFX_NO_XXX macros.
But this is not enough and there are other things you will need to ’#ifdef-out’.
For instance Wine’s richedit support is not very good. Here are the AFX options
I use:

#define _AFX_PORTABLE
#define _FORCENAMELESSUNION
#define _AFX_NO_DAO_SUPPORT
#define _AFX_NO_DHTML_SUPPORT
#define _AFX_NO_OLEDB_SUPPORT
#define _AFX_NO_RICHEDIT_SUPPORT

You will also need custom ones for CMonikerFile, OleDB, HtmlView, ...

We recommend using Wine’s msvcrt headers (-isystem
$(WINE_INCLUDE_ROOT)/msvcrt), though it means you will have to temporarily
disable winsock support (#ifdef it out in windows.h).

You should use g++ compiler more recent than g++ 2.95. g++ 2.95 does not sup-
port unnamed structs while the more recent ones do, and this helps a lot. Here
are the options worth mentioning:

• -fms-extensions (helps get more code to compile)

• -fshort-wchar -DWINE_UNICODE_NATIVE (helps with Unicode support)

• -DICOM_USE_COM_INTERFACE_ATTRIBUTE (to get the COM code to work)

When you first reach the link stage you will get a lot of undefined symbol errors.
To fix these you will need to go back to the source and #ifdef-out more code until
you reach a ’closure’. There are also some files that don’t need to be compiled.

Maybe we will have ready-made makefile here someday...

Notes
1. http://www.gnu.org/licenses/gpl-faq.html

16

Chapter 5. Building WineLib DLLs

Introduction
For one reason or another you may find yourself with a Linux library that you
want to use as if it were a Windows Dll. There are various reasons for this includ-
ing the following:

• You are porting a large application that uses several third-party libraries. One
is available on Linux but you are not yet ready to link to it directly as a Linux
shared library.

• There is a well-defined interface available and there are several Linux solutions
that are available for it (e.g. the ODBC interface in Wine).

• You have a binary only Windows application that can be extended through
plugins, such as a text editor or IDE.

The process for dealing with these situations is actually quite simple. You need to
write a spec file that will describe the library’s interface in the same format as a Dll
(primarily what functions it exports). Also you will want to write a small wrapper
around the library. You combine these to form a Wine built-in Dll that links to the
Linux library. Then you modify the DllOverrides in the wine config file to ensure
that this new built-in DLL is called rather than any windows version.

In this section we will look at two examples. The first example is extremely sim-
ple and leads into the subject in "baby steps". The second example is the ODBC
interface proxy in Wine. The files to which we will refer for the ODBC example
are currently in the dlls/odbc32 directory of the Wine source.

The first example is based very closely on a real case (the names of the functions
etc. have been changed to protect the innocent). A large Windows application
includes a DLL that links to a third-party DLL. For various reasons the third-
party DLL does not work too well under Wine. However the third-party library
is also available for the Linux environment. Conveniently the DLL and Linux
shared library export only a small number of functions and the application only
uses one of those.

Specifically, the application calls a function:

signed short WINAPI MyWinFunc (unsigned short a, void *b, void *c,
unsigned long *d, void *e, int f, char g, unsigned char *h);

and the linux library exports a corresponding function:

signed short MyLinuxFunc (unsigned short a, void *b, void *c,
unsigned short *d, void *e, char g, unsigned char *h);

Writing the spec file
Start by writing the spec file. This file will describe the interface as if it were a
DLL. See elsewhere for the details of the format of a spec file (e.g. man winebuild).

In the simple example we want a Wine built-in Dll that corresponds to the MyWin
Dll. The spec file is MyWin.dll.spec and looks something like this:

#
File: MyWin.dll.spec
#
some sort of copyright
#
Wine spec file for the MyWin.dll built-in library (a minimal wrapper around the
linux library libMyLinux)

17

Chapter 5. Building WineLib DLLs

#
For further details of wine spec files see the Winelib documentation at
www.winehq.org

2 stdcall MyWinFunc (long ptr ptr ptr ptr long long ptr) MyProxyWinFunc

End of file

Notice that the arguments are flagged as long even though they are smaller than
that. With this example we will link directly to the Linux shared library whereas
with the ODBC example we will load the Linux shared library dynamically.

In the case of the ODBC example you can see this in the file odbc32.spec.

Writing the wrapper
Firstly we will look at the simple example. The main complication of this case is
the slightly different argument lists. The f parameter does not have to be passed
to the Linux function and the d parameter (theoretically) has to be converted
between unsigned long *i and unsigned short *. Doing this ensures that the
"high" bits of the returned value are set correctly. Also unlike with the ODBC
example we will link directly to the Linux Shared Library.

/*
* File: MyWin.c
*
* Copyright (c) The copyright holder.
*
* Basic Wine wrapper for the Linux <3rd party library> so that it can be
* used by <the application>
*
* Currently this file makes no attempt to be a full wrapper for the <3rd
* party library>; it only exports enough for our own use.
*
* Note that this is a Unix file; please don’t go converting it to DOS format
* (e.g. converting line feeds to Carriage return/Line feed).
*
* This file should be built in a Wine environment as a WineLib library,
* linked to the Linux <3rd party> libraries (currently libxxxx.so and
* libyyyy.so)
*/

#include < <3rd party linux header> >
#include <windef.h> /* Part of the Wine header files */

/* This declaration is as defined in the spec file. It is deliberately not
* specified in terms of <3rd party> types since we are messing about here
* between two operating systems (making it look like a Windows thing when
* actually it is a Linux thing). In this way the compiler will point out any
* inconsistencies.
* For example the fourth argument needs care
*/

signed short WINAPI MyProxyWinFunc (unsigned short a, void *b, void *c,
unsigned long *d, void *e, int f, char g, unsigned char *h)

{
unsigned short d1;
signed short ret;

d1 = (unsigned short) *d;
ret = <3rd party linux function> (a, b, c, &d1, e, g, h);
*d = d1;

return ret;
}

/* End of file */

18

Chapter 5. Building WineLib DLLs

For a more extensive case we can use the ODBC example. This is implemented as
a header file (proxyodbc.h) and the actual C source file (proxyodbc.c). Although
the file is quite long it is extremely simple in structure.

DllMain the function is used to initialize the DLL. On the process attach event
the function dynamically links to the desired Linux ODBC library (since there are
several available) and builds a list of function pointers. It unlinks on the process
detach event.

Then each of the functions simply calls the appropriate Linux function through
the function pointer that was set up during initialization.

Building
So how do we actually build the Wine built-in Dll? The easiest way is to get
Winemaker to do the hard work for us. For the simple example we have two
source files (the wrapper and the spec file). We also have the 3rd party header
and library files of course.

Put the two source files in a suitable directory and then use winemaker to create
the build framework, including configure script, makefile etc. You will want to
use the following options of winemaker:

• --nosource-fix (requires winemaker version 0.5.8 or later) to ensure that the two
files are not modified. (If using an older version of winemaker then make the
two files readonly and ignore the complaints about being unable to modify
them).

• --dll --single-target MyWin --nomfc to specify the target

• -DMightNeedSomething -I3rd_party_include -L3rd_party_lib -lxxxx -lyyyy
where these are the locations of the header files etc.

After running winemaker I like to edit the Makefile to add the line CEXTRA =
-Wall just before the DEFINES =.

Then simply run the configure and make as normal (described elsewhere).

Installing
So how do you install the proxy and ensure that everything connects up cor-
rectly? You have quite a bit of flexibility in this area so what follows are not the
only options available.

Ensure that the actual Linux Shared Object is placed somewhere where the Linux
system will be able to find it. Typically this means it should be in one of the di-
rectories mentioned in the /etc/ld.so.conf file or somewhere in the path specified
by LD_LIBRARY_PATH. If you can link to it from a Linux program it should be
OK.

Put the proxy shared object (MyWin.dll.so) in the same place as the rest of the
built-in DLLs. Alternatively ensure that WINEDLLPATH includes the directory
containing the proxy shared object.

If you have both a Windows DLL and a Linux DLL/proxy pair then
you will have to ensure that the correct one gets called. The easiest way
is probably simply to rename the windows version so that it doesn’t get
detected. Alternatively you could specify in the DllOverrides section (or the
AppDefaults\\myprog.exe\\DllOverrides section) of the config file (in your
.wine directory) that the built-in version be used. Note that if the Windows
version Dll is present and is in the same directory as the executable (as opposed
to being in the Windows directory) then you will currently need to specify the
whole path to the dll, not merely its name.

19

Chapter 5. Building WineLib DLLs

Once you have done this you should be using the Linux Shared Object success-
fully. If you have problems then set the WINEDEBUG=+module environment
variable before running wine to see what is actually happening.

Converting filenames
Suppose you want to convert incoming DOS format filenames to their Unix
equivalent. Of course there is no suitable function in the true Microsoft Windows
API, but wine provides a function for just this task and exports it from its copy
of the kernel32 DLL. The function is wine_get_unix_file_name (defined in
winbase.h).

20

	Winelib User's Guide
	Table of Contents
	Chapter 1. Winelib Introduction
	What is Winelib?
	System requirements
	Getting Started
	Winemaker introduction
	Test Drive
	Step by step guide

	Chapter 2. Portability issues
	Unicode
	C library
	Compiling Problems

	Chapter 3. The Winelib development toolkit
	Winemaker
	Support for Visual C++ projects
	Winemaker's source analysis
	The interactive mode
	The Makefile files

	Compiling resource files: WRC
	The Spec file
	Introduction
	More details

	Linking it all together

	Chapter 4. Dealing with the MFC
	Introduction
	Legal issues
	Compiling the MFC

	Chapter 5. Building WineLib DLLs
	Introduction
	Writing the spec file
	Writing the wrapper
	Building
	Installing
	Converting filenames

