MMM Mode Manual

Multiple Major Modes for Emacs
Edition 0.4.8
9 March 2003

Michael Abraham Shulman

Copyright (© 2000 Michael Abraham Shulman.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Overview of MMM Mode 1

1 Overview of MMM Mode

MMM Mode is a minor mode for Emacs which allows Multiple Major Modes to coexist in
a single buffer. The name is an abbreviation of ‘Multiple Major Modes*. A major mode
is a customization of Emacs for editing a certain type of text, such as code for a specific
programming language. See Section “Major Modes” in The Emacs Manual, for details.

MMM Mode is a general extension to Emacs which is useful whenever one file contains
text in two or more programming languages, or that should be in two or more different
modes. For example:

e CGI scripts written in any language, from Perl to PL/SQL, may want to output ver-
batim HTML, and the writer of such scripts may want to use Emacs’ html-mode or
sgml-mode to edit this HTML code, while remaining in the appropriate programming
language mode for the rest of the file. See Section 4.3 [Here-documents|, page 16, for
example.

e There are now many “content delivery systems” which turn the CGI script idea around
and simply add extra commands to an HTML file, often in some programming language,
which are interpreted on the server. See Section 4.1 [Mason], page 15, See Section 4.6
[Embperl], page 17, See Section 4.7 [ePerl], page 17, See Section 4.8 [JSP], page 18.

e HTML itself can also contain embedded languages such as Javascript and CSS styles,
for which Emacs has different major modes. See Section 4.4 [Javascript|, page 17, and
See Section 4.5 [Embedded CSS], page 17, for example.

e The idea of “literate programming” requires the same file to contain documentation
(written as text, html, latex, etc.) and code (in an appropriate programming language).
See Section 4.10 [Noweb], page 18, for example.

e Emacs allows files of any type to contain ‘local variables’, which can include Emacs
Lisp code to be evaluated. See Section “File Variables” in The Emacs Manual. It may
be easier to edit this code in Emacs Lisp mode than in whatever mode is used for the
rest of the file. See Section 4.2 [File Variables|, page 16.

e There are many more possible uses for MMM Mode. RPM spec files can contain shell
scripts (see Section 4.9 [RPM], page 18). Email or newsgroup messages may contain
sample code. And so on. We encourage you to experiment.

1.1 Basic Concepts

The way MMM Mode works is as follows. Each buffer has a dominant or default major
mode, which is chosen as major modes normally are: the user can set it interactively, or it
can be chosen automatically with ‘auto-mode-alist’ (see Section “Choosing Modes” in The
Emacs Manual). Within the file, MMM Mode creates submode regions within which other
major modes are in effect. While the point is in a submode region, the following changes
occur:

1. The local keymap is that of the submode. This means the key bindings for the submode
are available, while those of the dominant mode are not.

! The name is derived from mmm.el for XEmacs by Gongquan Chen <chen@posc.org>, from which MMM
Mode was adapted.

Chapter 1: Overview of MMM Mode 2

2. The mode line (see Section “Mode Line” in The Emacs Manual) changes to show which
submode region is active. This can be configured; see Section 3.3 [Mode Line], page 11.

3. The major mode menu, both on the menu bar and the mouse popup, are that of the
submode.

4. Some local variables of the submode shadow those of the default mode (see Section 3.5
[Local Variables], page 12). For the user, this serves to help make Emacs behave as if
the submode were the major mode.

5. The syntax table and indentation are those of the submode.

6. Font-lock (see Section “Font Lock” in The Emacs Manual) fontifies correctly for the
submode.

7. The submode regions are highlighted by a background color; see Section 3.1 [Region
Coloring]|, page 10.

The submode regions are represented internally by Emacs Lisp objects known as overlays.
Some of the above are implemented by overlay properties, and others are updated by an
MMM Mode function in ‘post-command-hook’. You don’t need to know this to use MMM
Mode, but it may make any error messages you come across more understandable. See
Section “Overlays” in The GNU Emacs Lisp Reference Manual, for more information on
overlays.

Because overlays are not saved with a file, every time a file is opened, they must be
created. Creating submode regions is occasionally referred to as mmm-ification. (I've never
had occasion to pronounce this, but if I did I would probably say ‘mummification’. Like
what they did in ancient Egypt.) You can mmm-ify a buffer interactively, but most often
MMM Mode will find and create submode regions automatically based on a buffer’s file
extension, dominant mode, or local variables.

1.2 Installing MMM Mode

MMM Mode has a standard installation process. See the file INSTALL for generic infor-
mation on this process. To summarize, unpack the archive, cd to the created MMM Mode
directory, type ‘./configure’, then ‘make’, then ‘make install’. If all goes correctly, this
will compile the MMM Mode elisp files, install them in your local site-lisp directory, and
install the MMM Mode info file mmm. info in your local info directory.

Now you need to configure your Emacs initialization file (usually ~/.emacs) to use
MMM Mode. First, Emacs has to know where to find MMM Mode. In other words, the
MMM Mode directory has to be in load-path. This can be done in the parent directory’s
subdirs.el file, or in the init file with a line such as:

(add-to-list ’load-path "/path/to/site-lisp/mmm/")

Once load-path is configured, MMM Mode must be loaded. You can load all of MMM

Mode with the line
(require ’mmm-mode)
but if you use MMM Mode only rarely, it may not be desirable to load all of it at the

beginning of every editing session. You can load just enough of MMM Mode so it will turn
itself on when necessary and load the rest of itself, by using instead the line

(require ’mmm-auto)

Chapter 1: Overview of MMM Mode 3

in your initialization file.

One more thing you may want to do right now is to set the variable mmm-global-mode.
If this variable is nil (the default), MMM Mode will never turn itself on. If it is t, MMM
Mode will turn itself on in every buffer. Probably the most useful value for it, however, is
the symbol maybe (actually, anything that is not nil and not t), which causes MMM Mode
to turn itself on in precisely those buffers where it would be useful. You can do this with a
line such as:

(setq mmm-global-mode ’maybe)

in your initialization file. See Section 2.7 [Global Mode|, page 8, for more detailed informa-
tion.

1.3 Getting Started Quickly

Perhaps the simplest way to create submode regions is to do it interactively by specifying
a region. First you must turn MMM Mode on—say, with M-x mmm-mode—then place point
and mark around the area you want to make into a submode region, type C-c 7 C-r, and
enter the desired major mode. See Section 2.6 [Interactive], page 8, for more details.

A better way to add submode regions is by using submode classes, which store a lot of
useful information for MMM Mode about how to add and manipulate the regions created.
See Section 2.2 [Submode Classes|, page 5, for more details. There are several sample
submode classes that come with MMM Mode, which are documented later in this manual.
Look through these and determine if one of them fits your needs. If so, I suggest reading
the comments on that mode. Then come back here to find out to use it.

To apply a submode class to a buffer interactively, turn MMM Mode on as above,
then type C-c 7 C-c and enter the name of the class. Submode regions should be added
automatically, if there are any regions in the buffer appropriate to the submode class.

If you want a given file to always use a given submode class, you can express this in
a file variable: add a line containing the string ‘~—*- mmm-classes: class —*-’ at the top
of the file. See Section “File Variables” in The Emacs Manual, for more information and
other methods. Now whenever MMM Mode is turned on in that file, it will be mmm-
ified according to class. If mmm-global-mode is non-nil, then MMM Mode will turn itself
on whenever a file with a mmm-classes local variable is opened. See Section 2.7 [Global
Mode], page 8, for more information.

If you want a submode class to apply to all files in a certain major mode or with a
certain extension, add a line such as this to your initialization file:

(mmm-add-mode-ext-class mode extension class)

After this call, any file opened whose name matches the regular expression extension and
whose default mode is mode will be automatically mmme-ified according to class (assuming
mmm-global-mode is non-nil). If one of extension or mode is nil, a file need only satisfy
the other one to be mmm-ified.

You can now read the rest of this manual to learn more about how MMM Mode works
and how to configure it to your preferences. If none of the supplied submode classes fit your
needs, then you can try to write your own. See Chapter 5 [Writing Classes|, page 20, for
more information.

Chapter 2: MMM Mode Basics 4

2 MMM Mode Basics

This chapter explains the most important parts of how to use MMM Mode.

2.1 The MMM Minor Mode

An Emacs minor mode is an optional feature which can be turned on or off in a given buffer,
independently of the major mode. See Section “Minor Modes” in The Emacs Manual.
MMM Mode is implemented as a minor mode which manages the submode regions. This
minor mode must be turned on in a buffer for submode regions to be effective. When
activated, the MMM Minor mode is denoted by ‘MMM’ in the mode line (see Section 3.3
[Mode Line|, page 11).

2.1.1 Enabling MMM Mode

If mmm-global-mode is non-nil (see Section 2.7 [Global Mode|, page 8), then the MMM
minor mode will be turned on automatically whenever a file with associated submode classes
is opened (see Section 2.3 [Selecting Classes], page 5). It is also turned on by interactive
mmm-ification (see Section 2.6 [Interactive], page 8), although the interactive commands
do not have key bindings when it is not on and must be invoked via M-x. You can also
turn it on (or off) manually with M-x mmm-mode, in which case it applies all submode classes
associated with the buffer. Turning MMM Mode off automatically removes all submode
regions from the buffer.

mmm-mode arg [Command]
Toggle the state of MMM Mode in the current buffer. If arg is supplied, turn MMM
Mode on if and only if arg is positive.

mmm-mode-on [Function]
Turn MMM Mode on unconditionally in the current buffer.

mmm-mode-off [Function]
Turn MMM Mode off unconditionally in the current buffer.

mmm-mode [Variable]
This variable represents whether MMM Mode is on in the current buffer. Do not set
this variable directly; use one of the above functions.

2.1.2 Key Bindings in MMM Mode

When MMM Mode is on, it defines a number of key bindings. By default, these are bound
after the prefix sequence C-c 7. Minor mode keymaps are supposed to use C-c punctuation
sequences, and I find this one to be a good mnemonic because ‘%’ is used by Mason to denote
special tags. This prefix key can be customized; Section 3.4 [Key Bindings|, page 12.

There are two types of key bindings in MMM Mode: commands and insertions. Com-
mand bindings run MMM Mode interactive functions to do things like re-parse the buffer or
end the current submode region, and are defined statically as normal Emacs key-bindings.
Insertion bindings insert submode region skeletons with delimiters into the buffer, and are
defined dynamically, according to which submode classes (see Section 2.2 [Submode Classes],
page 5) are in effect, via a keymap default binding.

Chapter 2: MMM Mode Basics 5

To distinguish between the two, MMM Mode uses distinct modifier keys for each. By
default, command bindings use the control key (e.g. C-c / C-b re-parses the buffer),
and insertion bindings do not (e.g. C-c 7% p, when the Mason class is in effect, inserts a
‘<Yhperl>...</Y%perl>’ region). This makes the command bindings different from in previ-
ous versions, however, so the variable mmm-use-0ld-bindings is provided. If this variable
is set to ‘t’ before MMM Mode is loaded, the bindings will be reversed: insertion bindings
will use the control key and command bindings will not.

Normally, Emacs gives help on a prefix command if you type C-h after that command
(e.g. C-x C-hdisplays all key bindings starting with C-x). Because of how insertion bindings
are implemented dynamically with a default binding, they do not show up when you hit
C-c % C-h. For this reason, MMM Mode defines the command C-c 7% h which displays a
list of all currently valid insertion key sequences. If you use the defaults for command and
insertion bindings, the C-h and h should be mnemonic.

In the rest of this manual, I will assume you are using the defaults for the mode prefix
(C-c %) and the command and insertion modifiers. You can customize them, however;
Section 3.4 [Key Bindings], page 12.

2.2 Understanding Submode Classes

A submode class represents a “type” of submode region. It specifies how to find the regions,
what their delimiters look like, what submode they should be, how to insert them, and how
they behave in other ways. It is represented by a symbol, such as mason or eval-elisp.

For example, in the Mason set of classes, there is one class representing all ‘<%...%>’
inline Perl regions, and one representing regions such as ‘<Jperl>...</%perl>’,
‘<%init>...</%init>’, and so on. These are different to Mason, but to Emacs they are
all just Perl sections, so they are covered by the same submode class.

But it would be tedious if whenever we wanted to use the Mason classes, we had to
specify both of these. (Actually, this is a simplification: there are some half a dozen Mason
submode classes.) So submode classes can also “group” others together, and we can refer
to the mason class and mean all of them.

The way a submode class is used is to apply it to a buffer. This scans the buffer for
regions which should be submode regions according to that class, and also remembers the
class for later, so that new submode regions can be inserted and scanned for later.

2.3 How MMM Mode selects submode classes

Submode classes that apply to a buffer come from three sources: mode/extension-associated
classes, file-local classes, and interactive MMMe-ification (see Section 2.6 [Interactive],
page 8). Whenever MMM Mode is turned on in a buffer (see Section 2.1 [MMM Minor
Mode], page 4, and Section 2.7 [Global Mode|, page 8), it inspects the value of two
variables to determine which classes to automatically apply to the buffer. This covers the
first two sources; the latter is covered in a later chapter.

Chapter 2: MMM Mode Basics 6

2.3.1 File-Local Submode Classes

mmm-classes [Variable]
This variable is always buffer-local when set. Its value should be either a single symbol
or a list of symbols. Each symbol represents a submode class that is applied to the
buffer.

mmm-classes is usually set in a file local variables list. See Section “File Variables” in
The Emacs Manual. The easiest way to do this is for the first line of the file to contain the
string ‘—*- mmm-classes: classes —*-’, where classes is the desired value of mmm-classes
for the file in question. It can also be done with a local variables list at the end of the file.

2.3.2 Submode Classes Associated with Modes and Extensions

mmm-mode-ext-classes-alist [User Option]
This global variable associates certain submode classes with major modes and/or file
extensions. Its value is a list of elements of the form (mode ext class). Any buffer
whose major mode is mode (a symbol) and whose file name matches ext (a regular
expression) will automatically have the submode class class applied to it.

If mode is nil, then only ext is considered to determine if a buffer fits the criteria,
and vice versa. Thus if both mode and ext are nil, then class is applied to all buffers
in which MMM Mode is on. Note that ext can be any regular expression, although
its name indicates that it most often refers to the file extension.

If class is the symbol t, then no submode class is actually applied for this association.
However, if mmm-global-mode is non-nil and non-t, MMM Mode will be turned on
in matching buffers even if there are no actual submode classes being applied. See
Section 2.7 [Global Mode]|, page 8.

mmm-add-mode-ext-class mode ext class [Function]
This function adds an element to mmm-mode-ext-classes-alist, associating the
submode class class with the major mode mode and extension ext.

Older versions of MMM Mode required this function to be used to control the value
of mmm-mode-ext-classes-alist, rather than setting it directly. In this version it is
provided purely for convenience and backward compatibility.

2.3.3 Globally Applied Classes and the Universal Class

In addition to file-local and mode-ext-associated submode classes, MMM Mode also allows
you to specify that certain submode classes apply to all buffers in which MMM Mode is
enabled.

mmm-global-classes [User Option]
This variable’s value should be a list of submode classes that apply to all buffers with
MMM Mode on. It can be overriden in a file local variables list, such as to disable
global class for a specific file. Its default value is (universal).

The default global class is the “universal class”, which is defined in the file mmm-univ.el
(loaded automatically), and allows the author of text to specify that a certain section of
it be in a specific major mode. Thus, for example, when writing an email message that

Chapter 2: MMM Mode Basics 7

includes sample code, the author can allow readers of the message (who use emacs and
MMM) to view the code in the appropriate major mode. The syntax used is ‘{%mode’}
... {%/mode%}’, where mode should be the name of the major mode, with or without the
customary ‘-mode’ suffix: for example, both ‘cperl’ and ‘cperl-mode’ are acceptable.

The universal class also defines an insertion key, ‘/’, which prompts for the submode to
use. See Section 2.4 [Insertion], page 7. The universal class is most useful when mmm-global-
mode is set to t; Section 2.7 [Global Mode], page 8.

2.4 Inserting new submode regions

So much for noticing submode regions already present when you open a file. When editing
a file with MMM Mode on, you will often want to add a new submode region. MMM Mode
provides several facilities to help you. The simplest is to just hit a few keys and have the
region and its delimiters inserted for you.

Each submode class can define an association of keystrokes with “skeletons” to insert a
submode region. If there are several submode classes enabled in a buffer, it is conceivable
that the keys they use for insertion might conflict, but unlikely as most buffers will not use
more than one or two submode classes groups.

As an example of how insertion works, consider the Mason classes. In a buffer with
MMM Mode enabled and Mason associated, the key sequence C-c 7 p inserts the following
perl section (the semicolon is to prevent CPerl Mode from getting confused—see Section 4.1
[Mason], page 15):

<perl>-<-;
- | -

->-</Yperl>

In this schematic representation, the string ‘-!-’ represents the position of point (the
cursor), ‘=<-’ represents the beginning of the submode region, and ‘->-’ its end.

All insertion keys come after the MMM Mode prefix keys (by default C-c 7; see
Section 3.4 [Key Bindings|, page 12) and are by default single characters such as p, 7%, and
i. To avoid confusion, all the MMM Mode commands are bound by default to control
characters (after the same prefix keys), such as C-b, C-% and C-r. This is a change from
earlier versions of MMM Mode, and can be customized; see Section 3.4 [Key Bindings],
page 12.

To find out what insertion keys are available, consult the documentation for the submode
class you are using. If it is one of the classes supplied with MMM Mode, you can find it in
this Info file.

Because insertion keys are implemented with a “default binding” for flexibility, they do
not show up in the output of C-h m and cannot be found with C-h k. For this reason, MMM
Mode supplies the command C-c 7/ h (mmm-insertion-help to view the available insertion
keys.

2.5 Re-Parsing Submode Regions

Describe mmm-parse-buffer, mmm-parse-region, mmm-parse-block, and mmm-clear-
current-region.

Chapter 2: MMM Mode Basics 8

2.6 Interactive MM M-ification Functions

There are several commands you can use to create submode regions interactively, rather
than by applying a submode class to a buffer. These commands (in particular, mmm-ify-
region), can be useful when editing a file or email message containing a snippet of code
in some other language. Also see Section 2.3.3 [Global Classes|, page 6, for an alternate
approach to the same problem.

C-c 7 C-r Creates a submode region between point and mark. Prompts for the submode to
use, which must be a valid Emacs major mode name, such as emacs-1isp-mode
or cperl-mode. Adds markers to the interactive history. (mmm-ify-region)

C-c 7 C-c Applies an already-defined submode class to the buffer, which it prompts for.
Adds this class to the interactive history. (mmm-ify-by-class)

C-c % C-x Scans the buffer for submode regions (prompts for the submode) using front
and back regular expressions that it also prompts for. Briefly, it starts at the
beginning of the buffer and searches for the front regexp. If it finds a match,
it searches for the back regexp. If it finds a match for that as well, it makes a
submode region between the two matches and continues searching until no more
matches are found. Adds the regexps to the interactive history. (mmm-ify-by-
regexp)

These commands are also useful when designing a new submode class (see Section 2.2
[Submode Classes|, page 5). Working with the regexps interactively can make it easier to
debug and tune the class before starting to use it on automatic. All these commands also
add to value of the following variable.

mmm-interactive-history [Variable]
Stores a history of all interactive mmme-ification that has been performed in the
current buffer. This way, for example, the re-parsing functions (see Section 2.5 [Re-
parsing], page 7) will respect interactively added regions, and the insertion keys for
classes that were added interactively are available.

If for any reason you want to “wipe the slate clean”, this command should help you. By
default, it has no key binding, so you must invoke it with M-x mmm-clear-history RET.

mmm-clear-history [Command|
Clears all history of interactive mmme-ification in the current buffer. This command
does not affect existing submode regions; to remove them, you may want to re-parse
the buffer with C-c 7 C-b (mmm-parse-buffer).

2.7 MMM Global Mode

When a file has associated submode classes (see Section 2.3 [Selecting Classes], page 5), you
may want MMM Mode to turn itself on and parse that file for submode regions automatically
whenever it is opened in an Emacs buffer. The value of the following variable controls when
MMM Mode turns itself on automatically.

mmm-global-mode [User Option]
Do not be misled by the fact that this variable’s name ends in ‘-mode’: it is not a
simple on/off switch. There are three possible (meanings of) values for it: t, nil,
and anything else.

Chapter 2: MMM Mode Basics 9

When this variable is nil, MMM Mode is never enabled automatically. If it is enabled
manually, such as by typing M-x mmm-mode, any submode classes associated with the
buffer will still be used, however.

When this variable is t, MMM Mode is enabled automatically in all buffers, including
those not visiting files, except those whose major mode is an element of mmm-never-
modes. The default value of this variable contains modes such as help-mode and
dired-mode in which most users would never want MMM Mode, and in which MMM
might cause problems.

When this variable is neither nil nor t, MMM Mode is enabled automatically in
all buffers that would have associated submode classes; i.e. only if there would be
something for it to do. The value of mmm-never-modes is still respected, however.
Note that this can include buffers not visiting files, if that buffer’s major mode is
present in mmm-mode-ext-classes-alist with a nil value for ext (see Section 2.3.2
[Mode-Ext Classes|, page 6). Submode class values of t in mmm-mode-ext-classes-
alist cause MMM Mode to be enabled in matching buffers, but supply no submode
classes to be applied.

2.7.1 The Major Mode Hook

This section is intended for users who understand Emacs Lisp and want to know how
MMM Global Mode is implemented, and perhaps use the same technique. In fact, MMM
Mode exports a hook variable that you can use easily, without understanding any of the
details—see below.

In order to enable itself in all buffers, however, MMM Mode has to hook itself into all
major modes. Global Font Lock Mode from the standard Emacs distribution (see Section
“Font Lock” in The Emacs Manual) has a similar problem, and solves it by adding a function
to change-major-mode-hook, which is run by kill-all-local-variables, which is run
in turn by all major mode functions at the beginning. This function stores a list of which
buffers need fontification. It then adds a different function to post-command-hook, which
checks if the current buffer needs fontification, and if so performs it. MMM Global Mode
uses the same technique.

In the interests of generality, and for your use, the function that MMM Mode runs
in post-command-hook (mmm-run-major-mode-hook) is not specific to MMM Mode, but
rather runs the hook variable mmm-major-mode-hook, which by default contains a function
(mmm-mode-on-maybe) which possibly turns MMM Mode on, depending on the value of
mmm-global-mode. Thus, to run another function in all major modes, all you need to do
is add it to this hook. For example, the following line in an initialization file will turn on
Auto Fill Mode (see Section “Auto Fill” in The Emacs Manual) in all buffers:

(add-hook ’mmm-major-mode-hook ’turn-on-auto-fill)

Chapter 3: Customizing MMM Mode 10

3 Customizing MMM Mode

This chapter explains how to customize the appearance and functioning of MMM Mode
however you want.

3.1 Customizing Region Coloring

By default, MMM Mode highlights all submode regions with a background color. There are
three levels of this decoration, controlled by the following variable:

mmm-submode-decoration-level [User Option]
This variable controls the level of coloring of submode regions. It should be one of
the integers 0, 1, or 2, representing (respectively) none, low, and high coloring.

No coloring means exactly that. Submode regions have the same background as the rest
of the text. This produces the minimal interference with font-lock coloration. In particular,
if you want to use background colors for font-lock, this may be a good idea, because the
submode highlight, if present, overrides any font-lock background coloring.

Low coloring uses the same background color for all submode regions. This color is
specified with the face mmm-default-submode-face (see Section “Faces” in The Emacs
Manual) which can be customized, either through the Emacs “customize” interface or using
direct Lisp commands such as set-face-background. Of course, other aspects of the face
can also be set, such as the foreground color, bold, underline, etc. These are more likely to
conflict with font-lock, however, so only a background color is recommended.

High coloring uses multiple background colors, depending on the function of the submode
region. The recognized functions and their meanings are as follows:

‘init’ Code that is executed at the beginning of (something), as initialization of some
sort.

‘cleanup’ Code that is executed at the end of (something), as some sort of clean up facility.

‘declaration’
Code that provides declarations of some sort, perhaps global or local arguments,
variables, or methods.

‘comment’ Text that is not executed as code, but instead serves to document the code
around it. Submode regions of this function often use a mode such as Text
Mode rather than a programming language mode.

‘output’ An expression that is evaluated and its value interpolated into the output pro-
duced.
‘code’ Executed code not falling under any other category.

‘special’ Submode regions not falling under any other category, such as component calls.

The different background colors are provided by the faces mmm-function-submode-face,
which can be customized in the same way as mmm-default-submode-face.

Chapter 3: Customizing MMM Mode 11

3.2 Preferred Major Modes

Certain of the supplied submode classes know only the language that certain sections are
written in, but not what major mode you prefer to use to edit such code. For example, many
people prefer CPerl mode over Perl mode; you may have a special mode for Javascript or
just use C++ mode. This variable allows you to tell submodes such as Mason (see Section 4.1
[Mason], page 15) and Embedded Javascript (see Section 4.4 [Javascript], page 17) what
major mode to use for the submodes:

mmm-ma jor-mode-preferences [User Option]
The elements of this list are cons cells of the form (language . mode). language
should be a symbol such as perl, html-js, or java, while mode should be the name
of a major mode such as perl-mode, cperl-mode, javascript-mode, or c++-mode.

You probably won’t have to set this variable at all; MMM tries to make
intelligent guesses about what modes you prefer. For example, if a function called
javascript-mode exists, it is chosen, otherwise c++-mode is used. Similarly for
jde-mode and java-mode.

If you do need to change the defaults, you may find the following function convenient.

mmm-set-major-mode-preferences language mode &optional [Function]
default
Set the preferred major mode for LANGUAGE to MODE. If there is already a mode
specified for LANGUAGE, and DEFAULT is nil or unsupplied, then it is changed. If
DEFAULT is non-nil, then any existing mode is unchanged. This is used by packages
to ensure that some mode is present, but not override any user-specified mode. If you
are not writing a submode class, you should ignore the third argument.

Thus, for example, to use my-java-mode for Java code, you would use the following line:

(mmm-set-major-mode-preferences ’java ’my-java-mode)

3.3 Customizing the Mode Line Display

By default, when in a submode region, MMM Mode changes the section of the mode line (see
Section “Mode Line” in The Emacs Manual) that normally displays the major mode name—
for example, ‘HTML’—to instead show both the dominant major mode and the currently
active submode—for example, ‘HTML [CPerl]’. You can change this format, however.

mmm-submode-mode-line-format [User Option]
The value of this variable should be a string containing one or both of the escape
sequences ‘"M and ‘“m’. The string displayed in the major mode section of the mode
line when in a submode is obtained by replacing all occurrences of ‘"M’ with the
dominant major mode name and ‘“m’ with the currently active submode name. For
example, to display only the currently active submode, set this variable to ‘“m’. The
default value is “"M["m]’.

The MMM minor mode also normally displays the string ‘MMM’ in the minor mode section
of the mode line to indicate when it is active. You can customize or disable this as well.

Chapter 3: Customizing MMM Mode 12

mmm-mode-string [User Option]
This string is displayed in the minor mode section of the mode line when the MMM
minor mode is active. If nonempty, it should begin with a space to separate the MMM
indicator from that of other minor modes. To eliminate the indicator entirely, set this
variable to the empty string.

3.4 Customizing the MMM Mode Key Bindings

The default MMM Mode key bindings are explained in Section 2.1.2 [MMM Mode Keys],
page 4, and in Section 2.4 [Insertion], page 7. There are a couple of ways to customize these
bindings.

mmm-mode-prefix-key [User Option]
The value of this variable (default is C-c %) should be a key sequence to use as the
prefix for the MMM Mode keymap. Minor modes typically use C-c followed by a
punctuation character, but you can change it to any user-available key sequence. To
have an effect, this variable should be set before MMM Mode is loaded.

mmm-use-old-command-keys [User Option]
When this variable is nil, MMM Mode commands use the control modifier and
insertion keys no modifier. Any other value switches the two, so that mmm-parse-
buffer, for example, is bound to C-c 7 b, while perl-section insertion in the Mason
class is bound to C-c 7 C-p. This variable should be set before MMM Mode is loaded
to have an effect.

When MMM is loaded, it uses the value of mmm-use-o0ld-command-keys to set the val-
ues of the variables mmm-command-modifiers and mmm-insert-modifiers, so if you prefer
you can set these variables instead. They should each be a list of key modifiers, such
as (control) or (). The Meta modifier is used in some of the command and insertion
keys, so it should not be used, and the Shift modifier is not particularly portable between
Emacsen—if it works for you, feel free to use it. Other modifiers, such as Hyper and Super,
are not universally available, but are valid when present.

3.5 Changing Saved Local Variables

A lot of the functionality of MMM Mode—that which makes the major mode appear to
change—is implemented by saving and restoring the values of local variables, or pseudo-
variables. You can customize what variables are saved, and how, with the following variable.

mmm-save-local-variables [Variable]
At its simplest, this is a list each of whose elements is a buffer-local variable whose
value is saved and restored for each major mode. Each elements can also, however,
be a list whose first element is the variable symbol and whose subsequent elements
specify how and where the variable is to be saved. The second element of the list, if
present, should be one of the symbols global, buffer, or region. If not present, the
default value is global. The third element, if present, should be a list of major mode
symbols in which to save the variable. In the list form, the variable symbol itself can
be replaced with a cons cell of two functions, one to get the value and one to set the
value. This is called a “pseudo-variable”.

Chapter 3: Customizing MMM Mode 13

Globally saved variables are the same in all (MMM-controlled) buffers and submode
regions of each major mode listed in the third argument, or all major modes if it is t or not
present. Buffer-saved variables are the same in all submode regions of a given major mode
in each buffer, and region-saved variables can be different for each submode region.

Pseudo-variables are used, for example, to save and restore the syntax table (see Section
“Syntax” in The Emacs Manual) and mode keymaps (see Section “Keymaps” in The Emacs
Manual).

3.6 Changing the Supplied Submode Classes

If you need to use MMM with a syntax for which a submode class is not supplied, and
you have some facility with Emacs Lisp, you can write your own; see Chapter 5 [Writing
Classes|, page 20. However, sometimes you will only want to make a slight change to one of
the supplied submode classes. You can do this, after that class is loaded, with the following
functions.

mmm-set-class—-parameter class param value [Function]
Set the value of the keyword parameter param of the submode class class to value.
See Chapter 5 [Writing Classes], page 20, for an explanation of the meaning of each
keyword parameter. This creates a new parameter if one is not already present in the
class.

mmm-get-class-parameter class param [Function]
Get the value of the keyword parameter param for the submode class class. Returns
nil if there is no such parameter.

3.7 Hooks Provided by MMM Mode

MMM Mode defines several hook variables (see Section “Hooks” in The Emacs Manual)
which are run at different times. The most often used is mmm-major-mode-hook which is
described in Section 2.7.1 [Major Mode Hook|, page 9, but there are a couple others.

mmm-mode-hook [Variable]
This normal hook is run whenever MMM Mode is enabled in a buffer.

mmm-ma jor-mode-hook [Variable]
This is actually a whole set of hook variables, a different one for every major mode.
Whenever MMM Mode is enabled in a buffer, the corresponding hook variable for the
dominant major mode is run.

mmm-submode-submode-hook [Variable]
Again, this is a set of one hook variable per major mode. These hooks are run
whenever a submode region of the corresponding major mode is created in any buffer,
with point at the start of the new submode region.

mmm-class-class-hook [Variable]
This is a set of one hook variable per submode class. These hooks are run when a
submode class is first applied to a given buffer.

Chapter 3: Customizing MMM Mode 14

Submode classes also have a :creation-hook parameter which should be a function to
run whenever a submode region is created with that class, with point at the beginning of
the submode region. This can be set for supplied submode classes with mmm-set-class-
parameter; Section 3.6 [Changing Classes|, page 13.

Chapter 4: Supplied Submode Classes 15

4 Supplied Submode Classes

This chapter describes the submode classes that are supplied with MMM Mode.

4.1 Mason: Perl in HTML

Mason is a syntax to embed Perl code in HTML and other documents. See http://
www . masonhq . com for more information. The submode class for Mason components is
called ‘mason’ and is loaded on demand from ‘mmm-mason.el’. The current Mason class is
intended to correctly recognize all syntax valid in Mason 0.896. There are insertion keys for
most of the available syntax; use mmm-insertion-help (C-c % h by default) with Mason on
to get a list.

If you want to have mason submodes automatically in all Mason files, you can use
automatic mode and filename associations; the details depend on what you call your Mason
components and what major mode you use. See Section 2.3.2 [Mode-Ext Classes|, page 6.
If you use an extension for your Mason files that emacs does not automatically place in
your preferred HTML Mode, you will probably want to associate that extension with your
HTML Mode as well; Section “Choosing Modes” in The Emacs Manual. This also goes for
“special” Mason files such as autohandlers and dhandlers.

The Perl mode used is controlled by the user: See Section 3.2 [Preferred Modes], page 11.
The default is to use CPerl mode, if present. Unfortunately, there are also certain problems
with CPerl mode in submode regions. (Not to say that the original perl-mode would do
any better—it hasn’t been much tried.) First of all, the first line of a Perl section is usually
indented as if it were a continuation line. A fix for this is to start with a semicolon on the
first line. The insertion key commands do this whenever the Mason syntax allows it.

<perl>;
print $var;
</%perl>

In addition, some users have reported that the CPerl indentation sometimes does not
work. This problem has not yet been tracked down, however, and more data about when
it happens would be helpful.

Some people have reported problems using PSGML with Mason. Adding the following
line to a .emacs file should suffice to turn PSGML off and cause emacs to use a simpler
HTML mode:

(autoload ’html-mode "sgml-mode" "HTML Mode" t)

Earlier versions of PSGML may require instead the following fix:

(delete ’("\\.html$" . sgml-html-mode) auto-mode-alist)
(delete ’("\\.shtml$" . sgml-html-mode) auto-mode-alist)

Other users report using PSGML with Mason and MMM Mode without difficulty. If you
don’t have problems and want to use PSGML, you may need to replace html-mode in the
suggested code with sgml-html-mode. (Depending on your version of PSGML, this may
not be necessary.) Similarly, if you are using XEmacs and want to use the alternate HTML
mode hm--html-mode, replace html-mode with that symbol.

One problem that crops up when using PSGML with Mason is that even ignoring the
special tags and Perl code (which, as I've said, haven’t caused me any problems), Mason

http://www.masonhq.com
http://www.masonhq.com

Chapter 4: Supplied Submode Classes 16

components often are not a complete SGML document. For instance, my autohandlers
often say

<body>
<% $m->call_next %>
</body>
in which case the actual components contain no doctype declaration, <html>, <head>,
or <body>, confusing PSGML. One solution I've found is to use the variable sgml-parent-
document in such incomplete components; try, for example, these lines at the end of a
component.

%# Local Variables:

%# sgml-parent-document: ("autohandler" "body" nil ("body"))
%# sgml-doctype: "/top/level/autohandler"

%# End:

This tells PSGML that the current file is a sub-document of the file autohandler and
is included inside a <body> tag, thus alleviating its confusion.

4.2 Elisp in a Local Variables List

Emacs allows the author of a file to specify major and minor modes to be used while editing
that file, as well as specifying values for other local Elisp variables, with a File Variables
list. See Section “File Variables” in The Emacs Manual. Since file variables values are
Elisp objects (and with the eval special “variable”, they are forms to be evaluated), one
might want to edit them in emacs-1lisp-mode. The submode class file-variables allows
this, and is suitable for turning on in a given file with mmm-classes, or in all files with
mmm-global-classes.

4.3 Here-documents

One of the long-time standard syntaxes for outputting large amounts of code (or text,
or HTML, or whatever) from a script (notably shell scripts and Perl scripts) is the here-
document syntax:

print <<END_HTML;
<html>
<head>
<title>Test Page</title>
</head>
<body>
END_HTML

The here-doc submode class recognizes this syntax, and can even guess the correct
submode to use in many cases. For instance, it would put the above example in html-mode,
noticing the string ‘HTML’ in the name of the here-document. If you use less than evocative
here-document names, or if the submode is recognized incorrectly for any other reason, you
can tell it explicitly what submode to use.

mmm-here-doc-mode-alist [User Option]
The value of this variable should be an alist, each element a cons pair associating a
regular expression to a submode symbol. Whenever a here-document name matches

Chapter 4: Supplied Submode Classes 17

one of these regexps, the corresponding submode is applied. For example, if this
variable contains the element ("CODE" . cc-mode), then any here-document whose
name contains the string ‘CODE’ will be put in cc-mode. The value of this variable
overrides any guessing that the here-doc submode class would do otherwise.

4.4 Javascript in HTML

The submode class html-js allows for embedding Javascript code in HTML documents. It
recognizes both this syntax:

<script language="Javascript">
function foo(...) {

}
</script>
and this syntax:
<input type="button" onClick="validate();">

The mode used for Javascript regions is controlled by the user; See Section 3.2 [Preferred
Modes], page 11.

4.5 CSS embedded in HTML

CSS (Cascading Style Sheets) can also be embedded in HTML. The embedded-css submode
class recognizes this syntax:

<style>
h1 {

}
</style>

It uses css—mode if present, c++-mode otherwise. This can be customized: See Section 3.2
[Preferred Modes|, page 11.

4.6 Embperl: More Perl in HTML

Embperl is another syntax for embedding Perl in HTML. See http://perl.apache.org/
embperl for more information. The embperl submode class recognizes most if not all of the
Embperl embedding syntax. Its Perl mode is also controllable by the user; See Section 3.2
[Preferred Modes|, page 11.

4.7 ePerl: General Perl Embedding

Yet another syntax for embedding Perl is called ePerl. See http://www.engelschall.com/
sw/eperl/ for more information. The eperl submode class handles this syntax, using the
Perl mode specified by the user; See Section 3.2 [Preferred Modes|, page 11.

http://perl.apache.org/embperl
http://perl.apache.org/embperl
http://www.engelschall.com/sw/eperl/
http://www.engelschall.com/sw/eperl/

Chapter 4: Supplied Submode Classes 18

4.8 JSP: Java Embedded in HTML

JSP (Java Server Pages) is a syntax for embedding Java code in HTML. The submode class
jsp handles this syntax, using a Java mode specified by the user; See Section 3.2 [Preferred
Modes|, page 11. The default is jde-mode if present, otherwise java-mode.

4.9 RPM Spec Files

mmm-rpm. el contains the definition of an MMM Mode submode class for editing shell script
sections within RPM (Redhat Package Manager) spec files. It is recommended for use
in combination with rpm-spec-mode.el by Stig Bjrlykke <stigb@tihlde.hist.no> and Steve
Sanbeg <sanbeg@dset.com> (http://www.xemacs.org/ stigb/rpm-spec-mode.el).

Suggested setup code:
(add-to-list ’mmm-mode-ext-classes-alist
> (rpm-spec-mode "\\.spec\\’" rpm-sh))
Thanks to Marcus Harnisch <Marcus.Harnisch@gmx.net> for contributing this submode
class.

4.10 Noweb literate programming

mmm-noweb.el contains the definition of an MMM Mode submode class for editing Noweb
documents. Most Noweb documents use \LaTeX for the documentation chunks. Code
chunks in Noweb are document-specific, and the mode may be set with a local variable
setting in the document. The variable mmm-noweb-code-mode controls the global code
chunk mode. Since Noweb files may have many languages in their code chunks, this mode
also allows setting the mode by specifying a mode in the first line or two of a code chunk,
using the normal Emacs first-line mode setting syntax. Note that this first-line mode setting
only matches a single word for the mode name, and does not support the variable name
setting of the generalized first file line syntax.

% —*— mode: latex; mmm-noweb—code-mode: c++; —*-—
% First chunk delimiter!

Q@

\noweboptions{smallcode}

\title{Sample Noweb File}

\author{Joe Kelsey\\
\nwanchorto{mailto:bozo@bozo.bozo}{\tt bozo@bozo.bozo}}
\maketitle

e

\section{Introduction}

Normal noweb documentation for the required [[*]] chunk.
<<K>>=

// C++ mode here!

// We might list the program here, or simply included chunks.
<<myfile.cc>>

@ Jdef myfile.cc

http://www.xemacs.org/~stigb/rpm-spec-mode.el

Chapter 4: Supplied Submode Classes 19

C]

\section{[[myfile.cc]]}

This is [[myfile.cc]]. MMM noweb-mode understands code quotes in
documentation.

<<myfile.cc>>=

// This section is indented separately from previous.

C]

@

\section{A Perl Chunk}

We need a Perl chunk.

<<myfile.pl>>=

#!/usr/bin/perl

—*- perl —*-

Each differently named chunk is flowed separately.
¢

\section{Finish [[myfile.cc]]}

When we resume a previously defined chunk, they are indented together.
<<myfile.cc>>=

// Pick up where we left off...

e

The quoted code chunks inside documentation chunks are given the mode found in the
variable mmm-noweb-quote-mode, if set, or the value in mmm-noweb-code-mode otherwise.
Also, each quoted chunk is set to have a unique name to prevent them from being indented
as a unit.

Suggested setup code:
(mmm-add-mode-ext-class ’latex-mode "\\.nw\\’" ’noweb)
(add-to-1list ’auto-mode-alist ’ ("\\.nw\\’" . latex-mode))

In mmm-noweb buffers, each differently-named code chunk has a different :name, allow-
ing all chunks with the same name to get indented together.

This mode also supplies special paragraph filling operations for use in documentation ar-
eas of the buffer. From a primary-mode (latex-mode, , emacs) region, pressing C-c 7% C-q
will mark all submode regions with word syntax (mmm-word-other-regions), fill the cur-
rent paragraph ((fill-paragraph justify)), and remove the syntax markings (mmm-undo-
syntax-other-regions).

Thanks to Joe Kelsey <joe@zircon.seattle.wa.us> for contributing this class.

Chapter 5: Writing Submode Classes 20

5 Writing Submode Classes

Sometimes (perhaps often) you may want to use MMM with a syntax for which it is suited,
but for which no submode is supplied. In such cases you may have to write your own
submode class. This chapter briefly describes how to write a submode class, from the basic
to the advanced, with examples.

5.1 Writing Basic Submode Classes

Writing a submode class can become rather complex, if the syntax to match is complicated
and you want to take advantage of some of MMM Mode’s extra features. But a simple
submode class is not particularly difficult to write. This section describes the basics of
writing submode classes.

Submode classes are stored in the variable mmm-classes-alist. Each element of this list
represents a single submode class. For convenience, the function mmm-add-classes takes
a list of submode classes and adds them all to this alist. Each class is represented by a
list containing the class name—a symbol such as mason or html-js—followed by pairs of
keywords and arguments called a class specifier. For example, consider the specifier for the
submode class embedded-css:

(mmm-add-classes
> ((embedded-css
:submode css
:face mmm-declaration-submode-face
:front "<style[">]*>"
:back "</style>")))

The name of the submode is embedded-css, the first element of the list. The rest of
the list consists of pairs of keywords (symbols beginning with a colon) such as :submode
and :front, and arguments, such as css and "<style[">]*>". It is the keywords and
arguments that specify how the submode works. The order of keywords is not important;
all that matters is the arguments that follow them.

The three most important keywords are :submode, :front, and :back. The argument
following :submode names the major mode to use in submode regions. It can be either a
symbol naming a major mode, such as text-mode or c++-mode, or a symbol to look up in
mmm-major-mode-preferences (see Section 3.2 [Preferred Modes|, page 11) such as css,
as in this case.

The arguments following :front and :back are regular expressions (see Section “Reg-
exps” in The Emacs Manual) that should match the delimiter strings which begin and end
the submode regions. In our example, CSS regions begin with a ‘<style>’ tag, possibly
with parameters, and end with a ‘</style>’ tag.

The argument following :face specifies the face (background color) to use when
mmm-submode-decoration-level is 2 (high coloring). See Section 3.1 [Region Coloring]
page 10, for a list of canonical available faces.

9

There are many more possible keywords arguments. In the following sections, we will
examine each of them and their uses in writing submode classes.

Chapter 5: Writing Submode Classes 21

5.2 Matching Paired Delimiters

A simple pair of regular expressions does not always suffice to exactly specify the beginning
and end of submode regions correctly. For this reason, there are several other possible
keyword /argument pairs which influence the matching process.

Many submode regions are marked by paired delimiters. For example, the tags
used by Mason (see Section 4.1 [Mason], page 15) include ‘<%init>...</%init>" and
‘<hargs>...</hargs>'. It would be possible to write a separate submode class for each
type of region, but there is an easier way: the keyword argument :save-matches. If
supplied and non-nil, it causes the regular expression :back, before being searched for, to
be formatted by replacing all strings of the form ‘"N’ (where N is an integer) with the
corresponding numbered subexpression of the match for :front. As an example, here is
an excerpt from the here-doc submode class. See Section 4.3 [Here-documents|, page 16,
for more information about this submode.

:front "<<\\([a-zA-Z0-9_-]1+\\)"
:back """1$"
:save-matches 1

The regular expression for :front matches ‘<<’ followed by a string of one or more
alphanumeric characters, underscores, and dashes. The latter string, which happens to be
the name of the here-document, is saved as the first subexpression, since it is surrounded
by ‘N(...\)’. Then, because the value of :save-matches is present and non-nil, the string
‘~1’ is replaced in the value of :back by the name of the here-document, thus creating a
regular expression to match the correct ending delimiter.

5.3 Placing Submode Regions Precisely

Normally, a submode region begins immediately after the end of the string matching the
:front regular expression and ends immediately before the beginning of the string matching
the :back regular expression. This can be changed with the keywords :include-front and
:include-back. If their arguments are nil, or they do not appear, the default behavior
is unchanged. But if the argument of :include-front (respectively, :include-back) is
non-nil, the submode region will begin (respectively, end) immediately before (respectively,
after) the string matching the :front (respectively, :back) regular expression. In other
words, these keywords specify whether or not the delimiter strings are included in the
submode region.

When :front and :back are regexps, the delimiter is normally considered to be the
entire matched region. This can be changed using the :front-match and :back-match
keywords. The values of the keywords is a number specifying the submatch. This defaults
to zero (specifying the whole regexp).

Two more keywords which affect the placement of the region :front-offset and
:back-offset, which both take integers as arguments. The argument of :front-offset
(respectively, :back-offset) gives the distance in characters from the beginning
(respectively, ending) location specified so far, to the actual point where the submode
region begins (respectively, ends). For example, if :include-front is nil or unsupplied
and :front-offset is 2, the submode region will begin two characters after the end of the
match for :front, and if :include-back is non-nil and :back-offset is -1, the region
will end one character before the end of the match for :back.

Chapter 5: Writing Submode Classes 22

In addition to integers, the arguments of :front-offset and :back-offset can be
functions which are invoked to move the point from the position specified by the matches and
inclusions to the correct beginning or end of the submode region, or lists whose elements are
either functions or numbers and whose effects are applied in sequence. To help disentangle
these options, here is another excerpt from the here-doc submode class:

:front "<<\\([a-zA-Z0-9_-]1+\\)"
:front-offset (end-of-line 1)
:back "~~1$"

:save-matches 1

Here the value of :front-offset is the list (end-of-1line 1), meaning that from the
end of the match for : front, go to the end of the line, and then one more character forward
(thus to the beginning of the next line), and begin the submode region there. This coincides
with the normal behavior of here-documents: they begin on the following line and go until
the ending flag.

If the :back should not be able to start a new submode region, set the :end-not-begin
keyword to non-nil.

5.4 Defining Groups of Submodes

Sometimes more than one submode class is required to accurately reflect the behavior of a
single type of syntax. For example, Mason has three very different types of Perl regions:
blocks bounded by matched tags such as ‘<Yperl>...</%perl>’ inline output expressions
bounded by ‘<%...%>’, and single lines of code which simply begin with a ‘%’ character. In
cases like these, it is possible to specify an “umbrella” class, to turn all these classes on or
off together.

mmm-add-group group classes [Function]
The submode classes classes, which should be a list of lists, similar to what might
be passed to mmm-add-classes, are added just as by that function. Furthermore,
another class named group is added, which encompasses all the classes in classes.

Technically, an group class is specified with a :classes keyword argument, and the
subsidiary classes are given a non-nil :private keyword argument to make them invisible.
But in general, all you should ever need to know is how to invoke the function above.

mmm-add-to-group group classes [Function]
Adds a list of classes to an already existing group. This can be used, for instance, to
add a new quoting definition to html-js using this example to add the quote characters

“%:%77 .

(mmm-add-to-group ’html-js ’((js-html
:submode javascript
:face mmm-code-submode-face
:front "%=%"
:back "%=%"
:end-not-begin t)))

Chapter 5: Writing Submode Classes 23

5.5 Calculating the Correct Submode

In most cases, the author of a submode class will know in advance what major mode to
use, such as text-mode or c++-mode. If there are multiple possible modes that the user
might desire, then mmm-major-mode-preferences should be used (see Section 3.2 [Preferred
Modes], page 11). The function mmm-set-major-mode-preferences can be used, with a
third argument, to ensure than the mode is present.

In some cases, however, the author has no way of knowing in advance even what language
the submode region will be in. The here-doc class is one of these. In such cases, instead of
the :submode keyword, the :match-submode keyword must be used. Its argument should
be a function, probably written by the author of the submode class, which calculates what
major mode each region should use.

It is invoked immediately after a match is found for :front, and is passed one argu-
ment: a string representing the front delimiter. Normally this string is simply whatever
was matched by :front, but this can be changed with the keyword :front-form (see
Section 5.10 [Delimiters|, page 26). The function should then return a symbol that would
be a valid argument to :submode: either the name of a mode, or that of a language to look
up a preferred mode. If it detects an invalid match—for example, the user has specified a
mode which is not available—it should (signal ’mmm-no-matching-submode nil).

Since here-documents can contain code in any language, the here-doc submode class
uses :match-submode rather than :submode. The function it uses is mmm-here-doc-get-
mode, defined in mmm-sample.el, which inspects the name of the here-document for flags
indicating the proper mode. For example, this code should probably be in perl-mode (or
cperl-mode):

print <<PERL;
s/foo/bar/g;
PERL

This function is also a good example of proper elisp hygiene: when writing accessory
functions for a submode class, they should usually be prefixed with ‘mmm-’ followed by the
name of the submode class, to avoid namespace conflicts.

5.6 Calculating the Correct Highlight Face

As explained in Section 5.1 [Basic Classes|, page 20, the keyword :face should be used to
specify which of the standard submode faces (see Section 3.1 [Region Coloring], page 10) a
submode region should be highlighted with under high decoration. However, sometimes the
function of a region can depend on the form of the delimiters as well. In this case, a more
flexible alternative to :face is :match-face. Its value can be a function, which is called
with one argument—the form of the front delimiter, as with :match-submode—and should
return the face to use. A more common value for :match-face is an association list, a list
of pairs (delim . face), each specifying that if the delimiter is delim, the corresponding
region should be highlighted with face. For example, here is an excerpt from the embperl
submode class:

:submode perl

:front "\\[\\CL-ANHINNANSINND "
:back "“1\\1"

Chapter 5: Writing Submode Classes 24

:save-matches 1

:match-face (("[+" . mmm-output-submode-face)
("[-" . mmm-code-submode-face)
("['" . mmm-init-submode-face)
("[*" . mmm-code-submode-face)
("[$" . mmm-special-submode-face))

Thus, regions beginning with ‘ [+’ are highlighted as output expressions, which they are,
while ‘[~ and ‘[*’ regions are highlighted as simple executed code, and so on. Note that
mmm-submode-decoration-level must be set to 2 (high decoration) for different faces to be
displayed.

5.7 Specifying Insertion Commands

As described in Section 2.4 [Insertion], page 7, submode classes can specify key sequences
which automatically insert submode regions, with delimiters already in place. This is done
by the keyword argument : insert. Its value should be a list, each element of which specifies
a single insertion key sequence. As an example, consider the following insertion key sequence
specifier, from the embperl submode class:

(7p embperl "Region Type (Character): "
@ n [ll Str @ n n _ n n @ Str "] n @)

As you can see, the specifier is a list. The first element of the list is the character
‘p’. (The question mark tells Emacs that this is a character object, not a one-character
symbol.) In general, the first element can be any key, including both characters such as ‘?p’
and function keys such as ‘return’. It can also be a dotted pair in which the first element
is a modifier symbol such as meta, and the second is a character or function key. The use
of any other modifier than meta is discouraged, as ‘mmme-insert-modifiers’ is sometimes set
to \(control), and other modifiers are not very portable. The second element is a symbol
identifying this key sequence. The third element is a prompt string which is used to ask
the user for input when this key sequence is invoked. If it is nil, the user is not prompted.

The rest of the list specifies the actual text to be inserted, where the submode region and
delimiters should be, and where the point should end up. (Actually, this string is simply
passed to skeleton-insert; see the documentation string of that function for more details
on the permissible elements of such a skeleton.) Strings and variable names are inserted
and interpolated. The value entered by the user when prompted, if any, is available in the
variable str. The final location of the point (or the text around which the region is to be
wrapped) is marked with a single underscore ‘_’. Finally, the @-signs mark the delimiters
and submode regions. There should be four @-signs: one at the beginning of the front
delimiter, one at the beginning of the submode region, one at the end of the submode
region, and one at the end of the back delimiter.

The above key sequence, bound by default to C-c 7 p, always prompts the user for the
type of region to insert. It can also be convenient to have separate key sequences for each
type of region to be inserted, such as C-c 7 + for ‘[+...+]’ regions, C-c 7 - for ‘[-...-]1’
regions, and so on. So that the whole skeleton doesn’t have to be written out half a dozen
times, there is a shortcut syntax, as follows:

(7+ embperl+ 7p . "+")

Chapter 5: Writing Submode Classes 25

If the key sequence specification is a dotted list with four elements, as this example is, it
means to use the skeleton defined for the key sequence given as the third element (?p), but
to pass it the fourth (dotted) element ("+") as the ‘str’ variable; the user is not prompted.

5.8 Giving Names to Submode Regions for Grouping

Submode regions can be given “names” which are used for grouping. Names are always
strings and are compared as strings. Regions with the same name are considered part of
the same chunk of code. This is used by the syntax and fontification functions. Unnamed
regions are not grouped with any others.

By default, regions are nameless, but with the :match-name keyword argument a name
can be supplied. This argument must be a string or a function. If it is a function, it is
passed a string representing the front delimiter found, and must return the name to use. If
it is a string, it is used as-is for the name, unless :save-name has a non-nil value, in which
case expressions such as ‘1’ are substituted with the corresponding matched subexpression
from :front. This is the same as how :back is interpreted when : save-matches is non-nil.

As a special optimization for region insertion (see Section 5.7 [Insertion Commands,
page 24), the argument :skel-name can be set to a non-nil value, in which case the insertion
code will use the user-prompted string value as the region name, instead of going through
the normal matching procedure.

5.9 Other Hooks into the Scanning Process

Sometimes, even the flexibility allowed by all the keyword arguments discussed so far is
insufficient to correctly match submode regions. There are several other keyword arguments
which accept custom functions to be invoked at various points in the MMMe-ification process.

First of all, the arguments of :front and :back, in addition to regular expressions, can
be themselves functions. Such functions should “act like” a regular expression search: they
should start searching at point, take one argument as a limit for the search, and return its
result by setting the match data (presumably by calling some regexp matching function).

This is rarely necessary, however, because often all that is needed is a simple regexp
search, followed by some sort of verification. The keyword arguments :front-verify
and :back-verify, if supplied, may be functions which are invoked after a match is
found for :front or :back, respectively, and should inspect the match data (such as with
match-string) and return non-nil if a submode region should be begun at this match, nil
if this match should be ignored and the search continue after it.

The keyword argument : creation-hook, if supplied, should be a function that is invoked
whenever a submode region of this class is created, with point at the beginning of the new
region. This can be used, for example, to set local variables appropriately.

Finally, the entire MMM-ification process has a “back door” which allows class authors to
take control of the entire thing. If the keyword argument :handler is supplied, it overrides
any other processing and is called, and passed all other class keyword arguments, instead
of mmm-ify to create submode regions. If you need to write a handler function, I suggest
looking at the source for mmm-ify to get an idea of what must be done.

Chapter 5: Writing Submode Classes 26

5.10 Controlling the Delimiter Regions and Forms

MMM also makes overlays for the delimiter regions, to keep track of their position and form.
Normally, the front delimiter overlay starts at the beginning of the match for :front and
ends at the beginning of the submode region overlay, while the back delimiter overlay starts
at the end of the submode region overlay and ends at the end of the match for :back. You
can supply offsets from these positions using the keyword arguments :front-delim and
:back-delim, which take values of the same sort as :front-offset and :back-offset.

In addition, the delimiter regions can be in a major mode of their own. There are usually
only two meaningful modes to use: the primary mode or a non-mode like fundamental-mode.
These correspond to the following two situations:

e If the delimiter syntax which specifies the submode regions is something added to the
syntax of the primary mode by a pre-interpreter, then the delimiter regions should be in
a non-mode. This is the case, for example, with all server-side HTML script extensions,
such as See Section 4.1 [Mason], page 15, See Section 4.6 [Embperl], page 17, and See
Section 4.7 [ePerl|, page 17. It is also the case for literate programming such as See
Section 4.10 [Noweb], page 18. This is the default behavior. The non-mode used is
controlled by the variable mmm-delimiter-mode, which defaults to fundamental-mode.

e If, on the other hand, the delimiter syntax and inclusion of different modes is an
intrinsic part of the primary mode, then the delimiter regions should remain in the
primary mode. This is the case, for example, with See Section 4.5 [Embedded CSS],
page 17, and See Section 4.4 [Javascript|, page 17, since the <style> and <script>
tags are perfectly valid HTML. In this case, you should give the keyword parameter
:delimiter-mode with a value of nil, meaning to use the primary mode.

The keyword parameter :delimiter-mode can be given any major mode as an argument,
but the above two situations should cover the vast majority of cases.

The delimiter regions can also be highlighted, if you wish. The keyword parameters
:front-face and :back-face may be faces specifying how to highlight these regions under
high decoration. Under low decoration, the value of the variable mmm-delimiter-face is
used (by default, nothing), and of course under no decoration there is no coloring.

Finally, for each submode region overlay, MMM Mode stores the “form” of the front and
back delimiters, which are regular expressions that match the delimiters. At present these
are not used for much, but in the future they may be used to help with automatic updating
of regions as you type. Normally, the form stored is the result of evaluating the expression
(regexp-quote (match-string 0)) after each match is found.

You can customize this with the keyword argument :front-form (respectively,
:back-form). If it is a string, it is used verbatim for the front (respectively, back) form. If
it is a function, that function is called and should inspect the match data and return the
regular expression to use as the form.

In addition, the form itself can be set to a function, by giving a one-element list containing
only that function as the argument to : front-form or :back-form. Such a function should
take 1-2 arguments. The first argument is the overlay to match the delimiter for. If the
second is non-nil, it means to insert the delimiter and adjust the overlay; if nil it means to
match the delimiter and return the result in the match data.

Chapter 5: Writing Submode Classes 27

5.11 Miscellaneous Other Keyword Arguments

You can specify whether delimiter searches should be case-sensitive with the keyword argu-
ment :case-fold-search. It defaults to t, meaning that case should be ignored. See the
documentation for the variable case-fold-search.

Chapter 6: Indices

6 Indices

6.1 Concept Index

C

class, mmme-ification by 8
classes, submode............... L 5
clearing submode regions 7
customizing submode faces..................... 10

D

default major mode.............. 1
default submode face oL 10
disabling mmm mode 4
dominant major mode 1

E

enabling mmm mode 4

F

faces, submode il 10

G

global mmm mode.............. ... oL 8

H

history of interactive mmme-ification............. 8
hook, majormode L. 9

I

interactive mmm-ification....................... 8
interactive mmm-ification, history of 8

K

key bindings in mmm mode..................... 4

M

major mode hook............................... 9
major mode, defaulto L 1
major mode, dominant.......................... 1
minor mode, MIMIMvvteene e 4
mmm global mode............. L 8
mmm minor mode. ... 4

28
mmm mode key bindings 4
mmm mode, disablingo L 4
mmm mode, enabling..............o 4
mmm mode, turning off.......... 4
mmm mode, turning on.............. ... 4
mmm-ification........... ... i 1
mmme-ification by class.................... 8
mmm-ification by regexp.......... 8
mmm-ification by region........... ... oL 8
mmme-ification, interactive 8
mmm-ification, interactive history............... 8
mmm-mode, overview of L 1
mode, mmm global 8
mode, mmm Minoroueeiueenneen... 4
O
overlays, submode 1
overview of mmm-mode............ 1
P
parsing submode regions............ 7
R
re-parsing submode regions 7
regexp, mmm-ification by 8
region, mmme-ification by L 8
regions, submode o oo 1
regions, submode, clearing 7
regions, submode, re-parsing.................... 7
S
simple submode classes 20
submode classes 5
submode classes, simple........................ 20
submode faces........... ... i i 10
submode overlays............. ... oo 1
submode regions........... ... il 1
submode regions, clearing....................... 7
submode regions, re-parsing..................... 7

T

turning off mmm mode L. 4
turning on mmm mode 4

Chapter 6: Indices

6.2 Function and Variable Index

mMM=add=gTOUPo 22
mmm-add-mode-ext-class....................... 6
mmm-add-to—group...........ouiuiiiiiin... 22
mmm-class-class-hook........................ 13
MMM-ClasSSeS. .. oititit ettt 6
mmm-clear-history.............oooiiiiiiina.. 8
mmm-get-class-parameter..................... 13
mmm-global-classescoiiiiiiiiiiiian. 6
mmm-global-mode............................. 8
mmm-here-doc-mode-alist..................... 16
mmm-insertion-help, 4
mmm-interactive-history................. 8
mmm-major-mode-hook 9
mmm-major-mode-hookooiun.. 13
mmm-ma jor-mode-preferences 11

6.3 Keystroke Index

CmC G 7
C=C th CmD 7
C=C h Cb e 7
C=C h CmC et 8
CmC Gt 7

29
V111 o o (= 4
mmm-mode-ext-classes-alist 6
mmm-mode—hooKoiiiiiiii i 13
mmm-mode-off 4
MMM=TOAE=0M . .« o\ ettt et e ie e ie e ie e iee s 4
mmm-mode-prefix-key 12
mmm-mode-string............l 12
MMM—NEeVEer—TOAESottt et e ieeenennnn 8
mmm-save-local-variables 12
mmm-set-class-parameter..................... 13
mmm-set-major-mode-preferences............. 11
mmm-submode-decoration-level............... 10
mmm-submode-mode-line-format............... 11
mmm-submode-submode-hook 13
mmm-use-old-command-keys 12
C—C hCR. 7
C=C h G 8
C=C hh CmX ettt 8
CmC b B e 4

