Abelian Lie Algebras¶
AUTHORS:
- Travis Scrimshaw (2016-06-07): Initial version
-
sage.algebras.lie_algebras.abelian.
AbelianLieAlgebra
¶ An abelian Lie algebra.
A Lie algebra \(\mathfrak{g}\) is abelian if \([x, y] = 0\) for all \(x, y \in \mathfrak{g}\).
EXAMPLES:
sage: L.<x, y> = LieAlgebra(QQ, abelian=True) sage: L.bracket(x, y) 0
-
sage.algebras.lie_algebras.abelian.
InfiniteDimensionalAbelianLieAlgebra
¶ An infinite dimensional abelian Lie algebra.
A Lie algebra \(\mathfrak{g}\) is abelian if \([x, y] = 0\) for all \(x, y \in \mathfrak{g}\).