next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2      2   2     2      2    2        2       2 2 
o2 = ideal (d*o*v - x, o*t  - s*x , e g - c n, a*b  - c n, f*g*x  - v, h o w
     ------------------------------------------------------------------------
        2     2 2    2
     - i , i*o r  - p )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 3 2   4     3 2 2 3   3 3 4 2 2    2          2 2 4 2 2 2  
o3 = ideal (a g i o*r u - m n p x , b g n u w  - d f*l*o*v, b f i k q t  -
     ------------------------------------------------------------------------
      4 3 4 3       4 3 4       3 3 4
     e g r v , a*b*i l p r*x - q s w )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.