next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
DGAlgebras :: findTrivialMasseyOperation

findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)

Synopsis

Description

This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]

o1 = Q

o1 : PolynomialRing
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)

o2 = ideal (x x , x x , x x , x x , x x )
             3 5   4 5   1 6   3 6   4 6

o2 : Ideal of Q
i3 : R = Q/I

o3 = R

o3 : QuotientRing
i4 : A = koszulComplexDGA(R)

o4 = {Ring => R                                      }
      Underlying algebra => R[T , T , T , T , T , T ]
                               1   2   3   4   5   6
      Differential => {x , x , x , x , x , x }
                        1   2   3   4   5   6
      isHomogeneous => true

o4 : DGAlgebra
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 :      -- used 0.0132767 seconds
Computing generators in degree 2 :      -- used 0.0327192 seconds
Computing generators in degree 3 :      -- used 0.076519 seconds

o5 = true
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00230175 seconds
Computing generators in degree 2 :      -- used 0.0225891 seconds
Computing generators in degree 3 :      -- used 0.0255157 seconds
Computing generators in degree 4 :      -- used 0.0121295 seconds
Computing generators in degree 5 :      -- used 0.0113006 seconds
Computing generators in degree 6 :      -- used 0.00855565 seconds

o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
       5 4   5 3   6 4   6 3   6 1    6 1 3    5 3 4    6 3 4    6 1 4   
     ------------------------------------------------------------------------
     x T T  + x T T , - x T T  + x T T , x T T T , x T T T  - x T T T }
      6 4 5    5 4 6     6 3 5    5 3 6   6 1 3 4   6 3 4 5    5 3 4 6

o6 : List
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 :      -- used 0.00318782 seconds
Computing generators in degree 2 :      -- used 0.0251411 seconds
Computing generators in degree 3 :      -- used 0.0268616 seconds
Computing generators in degree 4 :      -- used 0.0024276 seconds
Computing generators in degree 5 :      -- used 0.00191615 seconds
Computing generators in degree 6 :      -- used 0.00191361 seconds

o7 = {{3} | 0    0 0   0    0 0    0    0    0    0    |, {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    -x_6 0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    -x_6 |  {4} | x_6 0 0   0 0
      {3} | 0    0 0   0    0 0    -x_6 0    0    0    |  {4} | 0   0 x_6 0 0
      {3} | 0    0 0   0    0 0    0    0    -x_6 0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | -x_5 0 x_6 -x_6 0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 -x_6 0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
     ------------------------------------------------------------------------
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 x_6 0 0 0 0 0   0 -x_6 0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 x_6 0 0    0 -x_6 0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   x_6 0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 x_5 0 x_6 0   -x_5 0 -x_6 0
     ------------------------------------------------------------------------
     0   |, {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |,
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |
     0   |
     x_6 |
     0   |
     0   |
     0   |
     0   |
     0   |
     0   |
     ------------------------------------------------------------------------
     0, 0}

o7 : List
i8 : assert(tmo =!= null)
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]

o9 = Q

o9 : PolynomialRing
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)

              3   3   3   2 2 2
o10 = ideal (x , y , z , x y z )

o10 : Ideal of Q
i11 : R = Q/I

o11 = R

o11 : QuotientRing
i12 : A = koszulComplexDGA(R)

o12 = {Ring => R                          }
       Underlying algebra => R[T , T , T ]
                                1   2   3
       Differential => {x, y, z}
       isHomogeneous => true

o12 : DGAlgebra
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 :      -- used 0.0102257 seconds
Computing generators in degree 2 :      -- used 0.0257002 seconds
Computing generators in degree 3 :      -- used 0.0221811 seconds

o13 = false
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00173909 seconds
Computing generators in degree 2 :      -- used 0.0132276 seconds
Computing generators in degree 3 :      -- used 0.0130157 seconds

        2     2     2       2 2       2 2       2   2         2 2     
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
          1     2     3         1         1 2         1 2         1 3 
      -----------------------------------------------------------------------
         2 2         2   2         2 2
      x*y z T T T , x y*z T T T , x y z*T T T }
             1 2 3         1 2 3         1 2 3

o14 : List
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 :      -- used 0.00176427 seconds
Computing generators in degree 2 :      -- used 0.0131164 seconds
Computing generators in degree 3 :      -- used 0.0131362 seconds

Ways to use findTrivialMasseyOperation :