i1 : P = booleanLattice 3; |
i2 : Q = naturalLabeling P o2 = Poset{cache => CacheTable{...13...} } GroundSet => {0, 1, 2, 4, 3, 5, 6, 7} RelationMatrix => | 1 1 1 1 1 1 1 1 | | 0 1 0 1 0 1 0 1 | | 0 0 1 1 0 0 1 1 | | 0 0 0 1 0 0 0 1 | | 0 0 0 0 1 1 1 1 | | 0 0 0 0 0 1 0 1 | | 0 0 0 0 0 0 1 1 | | 0 0 0 0 0 0 0 1 | Relations => {{0, 1}, {2, 4}, {0, 2}, {1, 4}, {3, 5}, {6, 7}, {3, 6}, {5, 7}, {0, 3}, {1, 5}, {2, 6}, {4, 7}} o2 : Poset |
i3 : all(allRelations Q, r -> r_0 <= r_1) o3 = true |
i4 : C = chain 3; |
i5 : Q' = sum(3, i -> naturalLabeling(C, 3*i)) o5 = Poset{cache => CacheTable{} } GroundSet => {0, 1, 2, 3, 4, 5, 6, 7, 8} RelationMatrix => | 1 1 1 0 0 0 0 0 0 | | 0 1 1 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 | | 0 0 0 1 1 1 0 0 0 | | 0 0 0 0 1 1 0 0 0 | | 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 1 1 1 | | 0 0 0 0 0 0 0 1 1 | | 0 0 0 0 0 0 0 0 1 | Relations => {{0, 1}, {1, 2}, {3, 4}, {4, 5}, {6, 7}, {7, 8}} o5 : Poset |
i6 : all(allRelations Q', r -> r_0 <= r_1) o6 = true |