next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000087547 seconds elapsed
 -- 0.000896793 seconds elapsed
 -- 0.000219623 seconds elapsed
 -- 0.000093957 seconds elapsed
 -- 0.00078263 seconds elapsed
 -- 0.000216805 seconds elapsed
 -- 0.000072361 seconds elapsed
 -- 0.00007162 seconds elapsed
 -- 0.000179715 seconds elapsed
 -- 0.000089593 seconds elapsed
 -- 0.000764688 seconds elapsed
 -- 0.000200857 seconds elapsed
 -- 0.000081246 seconds elapsed
 -- 0.000703228 seconds elapsed
 -- 0.000212898 seconds elapsed
 -- 0.00008393 seconds elapsed
 -- 0.000678947 seconds elapsed
 -- 0.000204884 seconds elapsed
 -- 0.000088136 seconds elapsed
 -- 0.000770612 seconds elapsed
 -- 0.000223195 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000089582 seconds elapsed
 -- 0.000804157 seconds elapsed
 -- 0.000230528 seconds elapsed
 -- 0.000092815 seconds elapsed
 -- 0.000799016 seconds elapsed
 -- 0.000222429 seconds elapsed
 -- 0.000101174 seconds elapsed
 -- 0.000739904 seconds elapsed
 -- 0.000226298 seconds elapsed
 -- 0.000092243 seconds elapsed
 -- 0.000722429 seconds elapsed
 -- 0.000219436 seconds elapsed
 -- 0.00008788 seconds elapsed
 -- 0.000705042 seconds elapsed
 -- 0.000211936 seconds elapsed
 -- 0.000098621 seconds elapsed
 -- 0.000786064 seconds elapsed
 -- 0.000224221 seconds elapsed
 -- 0.000089219 seconds elapsed
 -- 0.000858562 seconds elapsed
 -- 0.000211755 seconds elapsed
 -- 0.000083207 seconds elapsed
 -- 0.000758996 seconds elapsed
 -- 0.000214726 seconds elapsed
 -- 0.000088208 seconds elapsed
 -- 0.000724133 seconds elapsed
 -- 0.000210693 seconds elapsed
 -- 0.000086255 seconds elapsed
 -- 0.000717619 seconds elapsed
 -- 0.000215544 seconds elapsed
 -- 0.00008762 seconds elapsed
 -- 0.000702084 seconds elapsed
 -- 0.000212385 seconds elapsed
 -- 0.000096169 seconds elapsed
 -- 0.00074293 seconds elapsed
 -- 0.000226183 seconds elapsed
 -- 0.000086862 seconds elapsed
 -- 0.00105002 seconds elapsed
 -- 0.000322848 seconds elapsed
 -- 0.000092682 seconds elapsed
 -- 0.00109826 seconds elapsed
 -- 0.000318529 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.